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Abstract

In this paper, we have estimated the parameter of Generalized Order Statistics (GOS) of Expo-
nentiated Distribution Family using Bayesian and E-Bayesian method for computing estimates. To
find the estimates, we have employed various loss function viz. Square Error Loss Function (SELF),
LINEX and General Entropy Loss Function (GELF). The estimates are derived considering the con-
jugate prior. Furthermore, the relation among E-Bayesian under different prior distribution of hyper-
parameters have been established. In the last section, the comparison have been made of derived
estimates using Monte Carlo Simulation. To support and validate the obtained result a real Data set
is analysed.

Keywords: Generalized Order Statistics (GOS), exponentiated distribution family, E-Bayesian,
square error loss function (SELF), LINEX, general entropy loss function (GELF), Monte Carlo sim-
ulation.

1. Introduction

Generalized Order Statistics models plays an important roles in Statistics and are commonly
used in Reliability theory and life testing experiments. The concept of Generalized Order Statistics
was developed by Kamps (1995), as generalized framework for models of ordered random variables.
Moreover, many other models like, upper order statistics, record values, sequential order statistics
and progressively Type-II censoring order statistics are seen to be a particular cases of GOS Sarhan
(2007).

Let X(1,n,m, k), X(2,n,m,k),... X (r,n,m,k) be the Generalized Order Statistics. The
joint density function of GOS based on absolutely continuous distribution function F with density
function f is given by

r—1 m
fX(l,n,m,k),X(Q,n,m,k)...X(r,n,m,k)(x(l)v Z2),--- vx(r)) =Cr1 |: H (1 - F(£(1))> f($(1)>:|
i=1

(1-#w) 1) 0

for F71(0+) <zq) < ax)-- < apy < F 1) wherey; =k + (n—r)(m+1) >0
and C,_1 = [[\_;v r=1,2...n, v = kwithneN,k = 1 and meR, X (r,n,m, k) reduces
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to the ordinary 7" order statistics and (1) reduces to joint pdf of 7" order statistics. For study of
various distributions and the properties of ordinary order statistics one may refer David (1998) and
Arnold et al. (1998). The record values were firstly introduced by Chandler (1952). Record values
or Record Statistics are defined as the largest or smallest values obtained from the sequence of the
random variables. The theory of the record values ware closely related to order statistics. For detailed
properties of record values one can refer Ahsanulla (2000) and Arnold et al. (1998). If m=-1 and k=1
then (1) reduced to joint pdf of the " upper record values. Also, if m; = R;,i =1,2...,n— 1 and
k = R, + 1, then (1) reduced to the progressive Type-II censored data. In life testing experiment,
most of Type-I and Type-II censoring schemes are used. In Type-I censoring scheme, experiment
continues up to a predefined time 7" and any failure that occur after 7" will not be observed. In Type-
II censoring, the experiment terminated after occurrence of pre-specified number of items (r < n)
failure. Unfortunately, in any of these censoring schemes, it is not possible to withdraw live item
during the experiment. To overcome this, Progressive Type-II censoring scheme was introduced
which is the generalization of the both censoring scheme, in which it is possible to withdraw live
items during the experiment.

The statistical properties based on Generalized Order Statistics (GOS) for some life time distri-
butions have been studied by many researchers. Kampus and Gather (1997) developed distributional
properties of GOS of the Exponential distribution. Properties of GOS of two parametric exponential
distribution studied by Ahsanallah (2000). Habibullah (2000) derived the estimators of the parame-
ters of Pareto Type-II distribution for the GOS model. Cramer and Kampus (2000) derived relations
for the expectations of function of GOS class of distributions which include Exponential, Uniform,
Pareto, Lomax and Pearson are special cases. Moghadam et al. (2012) obtained Bayesian estimates of
the unknown parameters of GOS of Lomax distribution. Gupta and Jamal (2019) studied the Weibull
generalized exponential distribution based on generalized order statistics. Classical estimation of Ex-
ponential family based on Generalized Order Statistics derived by Khan and Khatoon (2020). Azhad
et al. (2021) estimated the parameters of several heterogeneous exponential populations based on
generalized order statistics. The work in recent years on Generalized Order Statistics is more or less
has been extended using the Bayesian inference tools as well as employed the censoring Scheme.

Bayesian estimation based on k record data for exponential family of distribution was studied
by Ahmadi et al. (2009). Kim et al. (2011) derived the Bayesian estimates of shape parameters
and reliability function of Exponentiated family based on Type-II right censored data. The reliabil-
ity function estimate for a family of Exponentiated Distributions studied by Chaturvedi and Pathak
(2014). Moreover, Kim and Han (2014) obtained the estimators and credible interval for scale param-
eters of Rayleigh distribution based on GOS. A new approach of Bayesian estimation was introduced
by Han (1997), named E-Bayesian estimation. In recent years, there has been a growing interest
of researchers in the study of E-Bayesian estimation. Han (2019) studied E-Bayesian estimate of the
Exponentiated distribution family parameter under LINEX loss function. E-Bayesian estimates of the
unknown parameter and the reliability function for the generalized half Logistic distribution and their
relations has been derived by Reyad (2016). E-Bayesian estimate of the parameter of truncated Geo-
metric distribution has been studied by Devi et al. (2019). E-Bayesian estimated for the proportional
hazard and reversed hazard rate models based on record values have been developed by Kizilaslan
(2017). Sharma and Kumar (2020) studied E-Bayesian and Bayesian estimate of parameters of in-
verse Lomax distribution obtained under different loss function.

In Section 2, we have introduced the model of Exponentiated Family of distribution under Gen-
eralized Order Statistics (GOS). In Section 3, we have obtained Bayes estimators of parameters of
proposed distribution family using gamma conjugate prior under symmetric and asymmetric loss
function. In Section 4, Expected-Bayes (E-Bayes) estimators has obtained for the unknown parame-
ter 6 using three different prior distributions under three different loss functions viz; SELF, LINEX
and Generalized entropy Loss function (GELF). In Section 5, we have derived the properties of E-
Bayesian estimators. In section 6, comparison and computations between Bayes and E-Bayes esti-
mators have been made using Monte Carlo simulation. Furthermore, analysis of a real data set is
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presented.

2. The Model of Exponentiated Family of Distribution under GOS
The cumulative distribution function of exponentiated family of distribution (cdf) is defined as

F(x;0)=1- [g(x)]g, where A<z < B,0 >0 2)

and the corresponding the probability density function (pdf) is

’

fla;0) = —0[g(2)] [9()]""", A<z<BO>0 3)

where g(x) is monotone decreasing function such that g(A)=1, g(B)=0 and 6 is an unknown shape
parameter.

If X = (21,22 ...x,) are the sample observation from distribution family (3), then the likeli-
hood function is obtained by substituting Eqns. (2) and (3) in (1),

1(6/z) o (1o T |42

i=1

Jean| =6 1) ; toalg(w)) + kloglao) }|.

Let Z, = [(m + 1) og(g(x)) + klog(g(:c))} then

L(0/z) = (-1)"0"]] g(w:)

i=1
It may be noted that (2) represents a family of exponentiated distributions as it cover the following
distributions as particular cases:

- {g(xi)/}emp[ ~02,]. )

1. If g(x)= e~%, A = 0, B= 400 then it reduces to exponential distribution with pdf f(x) = e =07,

2. If g(x)=e~(*=#) A = ;1 > 0, B= 400 then it reduces to with pdf two parameter exponential
distribution f(x)= fe =01,

3. If g(x)= e*“"x, A =0, B= +o0o then it reduces to two parameter Weibull distribution with pdf
f(x) = OAz*~Le=02" where \ is another unknown parameter.

4. Ifg(z) = (14 %)"',A = 0, B = +oo then it reduces to two parameter Lomax distribution
with pdf f(x) = %(1 4 %)—(9-&-1).

5.1f g(z) = (1 +2*)7'A = 0,B = +oo then it reduces to two parameter Burr type XII
distribution having pdf f(x)=\gz*~1(1 4 )~ (0+1),
6. If g(x)= 2, A =\, B= +oo0 then it reduces to two parameter Pareto distribution having pdf

x

fz) =X z=(A+D),

3. Bayesian Estimation of Parameter under GOS

In this section, we have discussed and derived the expression for the Bayes estimators of the un-
known parameter () of the model (2) using symmetric and asymmetric loss functions. In most prac-
tical situations the statistician possesses some subjective a prior information concerning the probable
values of the parameter. This prior information depends on the hyper-parameters. On the other, Loss
function is an important function in Bayesian analysis. In the Bayesian analysis, the Squared Error
Loss function (SELF) is the most commonly used loss function as it is symmetrical and gives equal
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weight to over estimation as well as under estimation. Being symmetric loss functions it is inappro-
priate to use it in many circumstances, particularly when positive and negative errors have different
consequences. In such cases, the most commonly used asymmetric loss function is the LINEX (linear
exponential) loss function. It was introduced by Varian (1975) and became popular due to Zellner
(1986). As the LINEX loss function is suitable only for estimation of location parameter. In many
practical situations, it appears to be more realistic to express the loss in terms of the ratio. For such
cases, Calabria and Pulcini (1996) point out that another a useful asymmetric loss function is the Gen-
eralized Entropy loss function (GELF). In this section, we have obtained the Bayesian estimates of the
parameters of GOS of Exponential Family by considering SELF, LINEX and GELF loss functions.
We have taken conjugate prior of #, namely gamma (a,b) the pdf given as

b0V exp(—ob)
I'(a) ’

m(a,b) = 9>0 6)
where T'(a) = fooo 2% lexp(—x)dx is the gamma function, @ > 0 and b > 0 are the hyper-

parameters.
From (5) and (6), the posterior density of 6 is given as

~ 7(a,b)L(0/2)
h(0/a,b) = [ m(a,b)L(8/x)db

(r+a)
:%9<T+a—1>exp< 0z, + b)) 7

where Z, = | (m +1) 30— log(g(z)) + k log(g(x))] as defined in Section 2.

3.1. Bayesian estimation under SELF
Mood (1974) introduced the SELF and defined it as

where @ is an estimator of § .
The Bayesian estimate of 6 is obtained as

E(0/z) = / " cop(—0) h(0/a,b)d6

(r+a)
(Z, +b) / 9(7+“)exp( 9(Zr+b)>d9
r—|—a

r+a
Z.+b’

®)

Opse =

3.2. Bayesian estimation under LINEX
The LINEX loss function is defined as

L(6,6) = exp[p(d — 0)] —p(0 —0) — 1

where p # 0 is known parameter, sign and magnitude of p reflects the direction and degree of asym-
metry.
The Bayesian estimator of  is given as

E(—p/z) = %lnE {exp(—pﬂ/w)}
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we have
E(—pb)z) = / cap(—ph) h(8/a, b)d
0
(Zr +b)(7'+a) /oo L
S S Bt AN glrta=1) —0(Z,+b de
T exp| —0(Z +b+p)
B ( ZT + b >7‘+a
-\ Z.+b+p ’
On simplification, we get Bayesian estimate of § under LINEX is
A r+a P
0 = In(1 .
BLLF < » >n< +Zr+b> )

3.3. Bayesian estimation under GELF
The Generalized Entropy loss function is defined as

L(9,0) = Kg)c—czn@) — 1} c#0 (10)

where, 0 is the estimator of the . For ¢ > 0 is the over estimation has more serious effect then a
negative error and for ¢ < 0, a under estimation has a more serious effect than a positive error.
The Bayesian estimator of  is given as

=1

OpcpLr = E(07°/z)™
E(0~¢/x) :/0 exp(0~¢) h(f/a,b)db

Z, +b)rta) oo
_(Z ) / 0<”+“1>exp( —0(Z, + b+ p)>d0
0

I'(r+a)
—1 1
. I'(r4+a) |°
0 =(Z-+b - 11
BGELF ( + > [F(r+ac)} an
when ¢ = 1 then generalized entropy loss function reduces to entropy loss function given as
. (r+a-—1)
0 =-—". 12
BELF 7, +0) (12)

4. Expected-Bayesian (E-Bayesian) Estimation of Parameter under GOS

In this section, we have derived the expression for the E-Bayes estimators of 6 under different
loss functions and using three different prior distributions. E-Bayesian is the Expected-Bayesian (E-
Bayes), which is a new approach of Bayesian estimation introduced by Han (1997). According to Han
(1997), in Eqn. (6) a and b should be selected to guarantee that 7(6/a, b) is a decreasing function of
0.

The derivative of w(0/a, b) with respect to 6 is,

dm(6/a,b) b 0 2exp(—bh)
do N Ta

[(a—1) —bd]. (13)

Note that a > 0,b > 0 and 6 > 0. It follows 0 < a < 1,b > 0 due to W < 0, and therefore

m(0/a,b) is a decreasing function of 6. Given 0 < a < 1, the larger b is, the thinner will be the tail



580 Thailand Statistician, 2024; 22(3): 575-593

of the gamma density function. Considering the robustness of Bayesian estimate Berger (1985), the
narrower tailed prior distribution often leads to worse robustness. Accordingly, it is better to choose
b below some given upper bound c (c is a positive constant). Thus, we consider the scope of hyper
parameter ¢ and bas 0 < b < cand a < 1.

The E-Bayes estimate of 6 (expectation of the Bayes estimate) can be written as

0= / /D 0(a,b)r(a,b)dadb

where D is the domain of a, b and é(a, b) is the Bayesian estimator of § with hyper parameters a , b
and 7(a, b) is the density function of a and b.

E-Bayes estimate of  is obtained by using three different prior distributions of the hyper param-
eters a and b. These distributions are used to observe the influence of different prior distributions on
the E-Bayes estimate of §. We have used following distributions of a and b

m(a,b) = ma“*lu—a)“‘l, 0<a<1l0<b<c (14)
2 .

ﬂ2(a7b):m(c—b)a“_1(l—a) ! 0<a<l,0<b<ec (15)
20 u—1 v—1

W3(a,b):ma (1_(1) y 0<a<170<b<c (16)

where B(u, v) is the beta function.

4.1. E-Bayesian estimate of 6 under SELF
Under SELF, E-Bayesian estimate of 6 based on 71 (a, b) is obtained by using (8) and (14) as

X T+ a 1 qu—1 v—1
= 1—
Opse, / / (Z +b> ¢B(u, v) (1—a)"" dadb
u c 1
——db
c<r+u—|—v>/0 Z,+b
1 u Z,.+c
= - l . 17
) (72) a
Similarly, E-Bayesian estimate of # based on m3(a, b) is obtained by using (8) and (15) as
. r+a 2 _1 v—1
0 = . —b)a" (1 — dadb
ESE, / / (Z n b) 2B, 0) (c—b)a* (1 —a) a
Cc—b
— db
c2(T+u+v>/O Zyr+b
2 Z, Zy
(r—i— “ )K +c)ln( +C>—1} . (18)
c u—+v c c
Similarly, E-Bayesian estimate of 6 based on 73(a, b) is obtained by using (8) and (16) as
A r+a 2b _ 1
0 = “=1(1 — @)’ "dadb
ESE;3 / / (Z +b) CzB(U ’U)a ( a) a
)
db
62<r+u+v>/0 Z.+b
2 u Z Z.+c
- 1—1— I . 19
(i) - (F)n (%) a
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4.2. E-Bayesian estimate of ¢ under LINEX
Under LINEX Loss function, E-Bayesian estimate of 6 based on 71 (a, b) is obtained by using
(9) and (14) as

= i(”%-h) /Ozlol (” Zﬂb)db
(i) (i 25) (B ) n(e 25
_z ln(ZTZ—: C)} 20)

Similarly, E-Bayesian estimate of 6 based on 72 (a, b) is obtained by using (9) and (15) as

1 c
A r+a D 2 1 o1
0 = In(1 —b)a* (1 — dadb
ELL, /0 /0 < » ) n< + Zr—i-b) 2B(u,v) (c Ja" " ( a) a
u 1 D (Z, + c)? c
= “nll4+=) - Inll4+—=—
<r+u+v> [p n( JrZT> cZp K +ZT

2
(Zr+p+c) c 1
(1 - . 21
s m( +Zr+p) J @1

Similarly, E-Bayesian estimate of 6 based on 73(a, b) is obtained by using (9) and (16) as

N B Lrerlr+a D 20 w1 vl
HELLg _/0 /0 ( )ln(l + Zr —|—b> CQB(U v)a (1 —a) dadb
_ u p : P
()l 2t) s S0 2)
(2 +p) ( >+1]. 22)
c2p c

4.3. E-Bayesian estimate of ¢ under ELF
Under Entropy Loss function, E-Bayesian estimate of § based on 7 (a, b) is obtained by using

(12) and (14) as
Oppr, = / / (r;— aJr—bl) cB(i,v) a1 (1 —a)"" 'dadb
- c( tuto _1>/0 Zr1+bdb
(o ()

Similarly, E-Bayesian estimate of # based on 7 (a, b) is obtained by using (12) and (15) as

Oppr, = / / (T;—C:__bl)CQB? )( —b)a*" (1 —a)" "dadb

)
e
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Similarly, E-Bayesian estimate of § based on 73(a, b) is obtained by using (12) and (16) as

- Lorerrda—1 2b 1
0 . = =11 — a)" " dadb
EEL; /0 /o ( Z b >C2B(u,v)a (1-a) a
2 u ¢ b

== 1

02(r+u+v )/0 ZT—&—bdb
2 U Zy Z,.+c
: )= (Z .
) ()(52)] e

5. Relation among Different E-Bayesian Estimators

In this section, we have derived the relationship among three E-Bayesian estimators éE smy) éELL ,

and OEEL ,where i=1,2,3, which represents different loss function as defined in previous section 4.
We have established the relationship among estimators in the form of theorems as follows

Theorem 1 E-Bayes estimator of parameter 9(9 psp, 1 = 1,2,3) under Squared Error loss function
follows the following relation

Z) 9ESE3 <9ESE2 <9ESE1
i) lim 6., = lim éESEZ = lim 6

ESE
Zp—>00 1 Zp—>00 Zy—>00 3

Proof (i): From (17) and (18) , we have

. . 1 U ([(c+22Z, Z,.+c |
Opse, —9EsE, = - <?" + et v) < c >ZOQ<ZT> — 2_ . (26)
From (18) and (19)
A A 1 U [ (c+22Z, Zr+c ]
_ S —2|. 2
0rse, —9EsE, - (7“ + " v) ( . )log( 2 ) | 27)

From (26) and (27), we get
éESEg - éESEl = éESEl - éESEg

1 u c+ 27, Zr+c
() (2 )m() - e

The difference in (28) is positive for any ¢ > O and Z,, > 0.
Let x=c/Z,. Eqn. (28) can be rewritten and represented as

fa) =3 (r+ o )i 9
where
filz) = (1 + 2/x>ln(1 +z)—2,2>0.

Then we have lim,_,o f1(x) = 0,lim,_,+ f1(2) = 00, and f{(m) > 0 forx > 0, that is f1(z) is an
increasing function, and f;(x) > 0. Hence from (29), we have f(xz) > 0 forany ¢ > O and Z,. > 0

which implies HESE <9ESE <9ESE d
Proof (ii): As Z, — oo then T — 0 for fixed value of c. From (28) and (29), we have

Z,lﬂllzloo <0ESE1 - oESEz) = Zili{loo (0E5E2 - 9ESE3>
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1 U
_Z ~0. 30
(s ) n (30)
Thus,
Z}ii)ll QESEI Z}ii;rl GESE Z}gnoo 9ESE3 ° |:|

Theorem 2 E-Bayes estimator of parameter 9(6) wrn, b= 1,2, 3) under LINEX loss function follows
the following relation

Z) aELLl <9ELL2 <9ELL3
ii) lim @ = lim 6 = lim 6
)Zr—wo ELLq Z, 500 ELLoy Z, D00 ELLg3

Proof (i): From (20) and (21) , we have

. . 1 7?2
= S )| o)
O (T PR T
From (21) and (22), we have

. ~ 1 U 22
eELLg_eELLIZCI)(7"+U+U)|:<+Z> ( )

<(Zr+p)+z +p)ln<1+Z+ )+ } (32)

c

From (31) and (32) , we have

5 - . A 1 Z?
Orrr, —95rL, =O9erLs —OELL, = — <7“ 4+ U ) [( + Z, )ln(l + c)
cp u+v Zy

—<(Zr+p)2+z )l (1 ¢ ) } 33
Sz )in(14 5 ) | 63)

Let x = C/Zr and f(c, Zr,w) = éELLl — QAELL2 = QAELL3 — éELLl- Then, Eqn. (33) can be
rewritten and represented as

1
f(x):cp(r Wt )fl() (34)
where
2
fl(x):ZT(lmm(l"‘x)_(M-i—w+Zr+w)ln<1+ Tc )+w.
v z ¢ c+zw

As the limits of f(x) are investigated as  — 0 and x — oo. For any ¢, f(z) = lim,_o f(z) =
0 and lim, o f(z) = oo. Itis clear that f{(x) > 0 for p > 0 that is fi(z) is an increas-
mg function for fi(xz) > 0 for any ¢ > 0,¢ > 0 and Z, > 0. Hence from (34), we have
eELL <9ELL <0ELL D

Proof (ii): As Z, — oo then x — 0 for fixed value of c. From (33) and (34), we have

Z}iinoo <éELL1 - éELLQ) = Zliinoo <éELL2 - éELL3>

1 U
_Cp<n+u+v>f1(:1:)_0 (35)
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Thus,

lim 6 = lim 0

ELL ELLg *°
Zp—>00 2 Zp—>00 3

lim 6

ELL,
Zi—»00 1

Theorem 3 E-Bayes estimator of parameter 6(0 ., L t=12 3) under Entropy loss function follows
the following relation

Z) 9EEL3<9EEL2 <9EEL1
ii) lim 6 = lim @ = lim @ .
) Zp—00 BEL: Zp—00 EBLz Zp—>00 EBLs

Proof (i): From (23) and (24) , we have

. . 1 u [(c+2Z, Z,+c |
- = - -1 —1].
GEELQ 9EEL3 c <T+ w+ v > -< - )lOg( ZT ) ] (36)
From (24) and (25)
A N 1 U [(c+22, Z.+c i
HEELl_eEEL3—C<T+U+U—1>_< - )log( 2 ) —1_ . 37

From (36) and (37), we get
éEELz - éEELl = éEELl - éEEL3

1 u c+ 27, Zr+c
At () o

It will be shown that the difference in (38) is positive for any ¢ > 0 and Z, > 0. Let x=c¢/Z,. Eqn.
(38) can be rewritten and represented as

U
u—+v

- 1) fi(z) (39

where
fi(z) = <1 + 2/$>ln(1 +x)—1,2>0.

Then we have lim, ¢ f1(x) = 0,lim,_,o f1(z) = 0o, and f;(z) > 0 for 2 > 0, that is f)(z) is an
increasing function ( f1(z) > 0). Hence from (29), we have f(z) > 0 for any ¢ > 0 and Z, > 0 we
have éEEL3<éEEL2<éEEL1. O

Proof (ii): As Z,, — oo then z — 0 for fixed value of c. From (38) and (39), we have

Zliinoo (éEELl - éEELQ) = Z}igloo (éEELZ - éEELg)

1 u
= - =0. 40
c(r—i-u_'_U)fl(x) (40)
Thus,
A v = i O, = i O, .
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6. Monte Carlo Simulation Study

In this section, We have carried out Monte Carlo simulations to compare the Bayesian and E-
Bayesian estimates. To illustrate the methods proposed in the paper. We have analysed a real data set
of golfer income used by Arnold (2015). We choose Pareto distribution P(\, #), defined as

0
A
F(z,0)=1- <> z,0,A>0 41
x
as definition family as per (2). The algorithm used for above purpose is defined as

1. Set the default values u = 1.5,v = 0.5,k =2,A =6,¢c =6.5,m = 1,p = 0.5,n = 150, 100
and r (100,120,130,140) and (60,70,80,90), with respect to n.

2. Generate a and b from Beta hyper-prior and Gamma hyper-prior distribution, respectively.
3. Use generated values of a and b, to generate 6 from Gamma prior using Eqn. (6)
4. Draw random sample of size n from Pareto distribution for known values of .

5. Compute Bayes estimates and E-Bayes estimates of the unknown shape parameter under dif-
ferent loss functions using (8), (9), (12), (17), (18), (19)(20), (21), (22), (23), (24) and (25) re-
spectively.

6. Repeat the steps (1 to 5) 10,000 times and compute the MSE for all the estimates for different

sample sizes and termination sample numbers (r). where ,

1 N 2
MSE = > (6;—0)

and @ stands for the estimator of 6.

To implement this algorithm, we have written a program in R(ver 3.6.3) well as Matlab 2016a.
The obtained results are compared on the basis of their MSE and bias. We have illustrated the con-
clusion through tables for different combinations of influencing parameters.
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In Table 1, SEF, LLF and ELF represents the Squared Error Loss Function, LINEX Loss Func-
tion and Entropy Loss Function respectively. The values in column represents the estimated values
of # under corresponding loss function. The first row values represents the estimated values, second
row values represents the bias and third row values in parenthesis represents the MSE.

In Table 2, SEF, LLF and ELF represents the Squared Error Loss Function, LINEX Loss Func-
tion and Entropy Loss Function respectively. The values in column represents the estimated values
of # under corresponding loss function. The first row values represents the estimated values, second
row values represents the bias and third row values in parenthesis represents the MSE.

In the Tables 1 and 2, we observed their MSE of the estimators decrease as the sample size n
increase. The MSE under SEF are ordered as éE5E2 < éESEl < §E5E3 < éBSE . Similarly, MSE
under LINEX and Entropy losss function are ordered as QAELL2 < éELLl < éELLS < 93,;,; and
éEEL2 < éEELl < éEELS < éBEL. Moreover all the MSE are close to each other as n increases.
Bayesian and E-Bayesian estimates under Squared loss function given better estimates than LINEX
and Entropy loss function.

Real Data Set :- A real life data set, of golfers income is considered to illustrate the use of the
proposed estimators. This data set is a secondary data and has been used by Arnold (2015) for the
observation of the 50 golfers earning more than 70000 dollar, their income by the end of the 1980 are
year data as given below.

3581,1690, 1433, 1184, 1066, 1005, 883, 841, 778, 753, 2474, 1684, 1410,
1171, 1056, 1001, 878, 825, 778, 746, 2202, 1627, 1374, 1109, 1051, 965,
871, 820, 771, 729, 1858, 1537, 1338, 1095, 1031, 944, 849, 8l6, 769, 712,
1829, 1519, 1208, 1092, 1016, 912, 844, 814, 759, 708

Similar algorithm followed to obtained the proposed estimators. Also performance of Bayesian
and E-Bayesian estimators of the unknown parameter ¢ are compared for different values of ¢ and .
Then generated a and b from Uniform and Beta priors. Let w = 1.5, v = 0.5,k = 1,n = 50, m = 1,
p = 0.5, A = 15,20, 30 and ¢ = 20, 25, 35 respectively.

In Table 3, SEF , LLF and ELF represents the Squared Error Loss Function, LINEX Loss Func-
tion and Entropy Loss Function respectively. The values in column represents the estimated values
of 6 under corresponding loss function. The first row values represents the estimated values, second
row values represents the bias and third row values in parenthesis represents the MSE.

In Table 4, SEF, LLF and ELF represents the Squared Error Loss Function, LINEX Loss Func-
tion and Entropy Loss Function respectively. The values in column represents the estimated values
of 6 under corresponding loss function. The first row values represents the estimated values, second
row values represents the bias and third row values in parenthesis represents the MSE.

In Table 5, SELF, LLF and ELF represents the Squared Error Loss Function, LINEX Loss Func-
tion and Entropy Loss Function respectively. The values in column represents the estimated values of
6 under corresponding loss function. The first row values represents the estimated values, second row
values represents the bias and third row values in parenthesis represents the MSE. From the Tables
3, 4 and 5, the MSE of the estimators decrease as the sample size n increase. The MSE under SEF
are ordered as HES By < 0 ESE, < 0 BsE < 0 ESE; - Slmllarly MSE under LINEX and Entropy loss
function are ordered as 9ELL3 < 9ELL2 < HBLL < ¢9ELL3 and GEELJ < 9ELL2 <OppL < OEELl
Moreover all the MSE are close to each other as n increases. Bayesian and E- Bayesian estimates
under Entropy loss function given better estimates than LINEX and Square error loss function.
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7. Conclusions

In this paper, we have used Bayesian and E-Bayesian technique to obtain the estimates of the
unknown parameters of generalized order statistics of Exponential Family. We have used Pareto dis-
tribution for the explanation of Exponential Family. We have used three different loss functions such
as SELF, LINEX and Generalized Entropy Loss Function to obtain Bayes and E-Bayes estimators
of the unknown parameters. We have made comparison between the performance of the obtained
estimators by using Monte Carlo simulation study and using real data set.

Furthermore, we have been compared of the Bayes and E-Bayes estimator in terms their bias
and MSE. from the Simulation study, we have observed that their bias and MSE decreases as sample
size say r (order statistics) increases and estimator improved. In the numerical study, we seen that
the proposed E-Bayes estimators have better performance in terms of their bias and MSE than Bayes
estimators. So, E-Bayesian technique is a good choice instead of Bayesian method.
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