

Thailand Statistician
July 2024; 22(3): 618-633
<http://statassoc.or.th>
Contributed paper

Explicit Formulas of Average Run Lengths of Moving Average-Range Control Chart

Suganya Phantu [a], Chanaphun Chanenet [b], Yupaporn Areepong [b] and Saowanit Sukparungsee* [b]

[a] Faculty of Science, Energy, and Environment, King's Mongkut University of Technology North Bangkok, Rayong, Thailand.

[b] Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.

*Corresponding author; e-mail: saowanit.s@sci.kmutnb.ac.th

Received: 19 September 2023

Revised: 28 November 2023

Accepted: 18 February 2024

Abstract

Based on the statistical principles, the control chart detects and controls the production process to meet the required quality. This research aimed to present the explicit formula of average run length for moving average based on range (MA_R) control chart for detecting a change of variation. In addition, the efficiency of the change detection of the MA_R control chart and R chart at different levels of the parameter change are compared. The criteria used for measuring the efficiency included the average run length for the control process (ARL). The research showed that the processes' results were under normal distribution. The performance of the control chart shows that the MA_R chart has lower ARL_1 values than the R chart for all change levels. The adaptation results of the proposed control chart to two sets of actual data corresponded to the research results.

Keywords: Closed-form formulas, variation, moving average control chart, average run length, range.

1. Introduction

Control charts are commonly used tools for controlling process quality, reducing variation, and improving processes to ensure efficiency. Process changes that often occur include average or standard deviation, etc. Therefore, control charts can follow an ongoing production process to monitor data change trends until changes outside of control limits are detected. Control charts are also indicators of production process efficiency and are used to identify causes of data change. They can also be used to standardize product configurations to meet manufacturer and consumer standards. The quality control charts can be divided into two types: the control chart for variables consists of the average control chart (x-bar chart), the standard deviation chart (S chart), and the range control chart (R chart). Both the S and R charts measure subgroup variability. The S chart uses the standard deviation to represent the data spread, and the R chart uses the range. Use the S chart when subgroup sizes are nine or more excellent. S chart uses all the data to calculate the subgroup process standard deviation. They use an

S chart for processes with a high production rate or when data collection is quick and inexpensive. Use the R chart when subgroup sizes are eight or fewer. The second type is control charts for attributes, which are control charts used for detecting the number of defects or nonconformities, which is counting data and is an integer. An example of this type of control chart is the defect proportion control chart (p chart), the number of defect control chart (np chart), and the number of nonconforming products per unit control chart (u chart), etc. (Montgomery 2009).

In 1923, Shewhart (1923) proposed the Shewhart control chart, an effective control chart for detecting significant average changes. However, the small mean change could not be detected. Subsequently, other quality control charts have been developed to detect small changes more efficiently than Shewhart's control charts. Later, in 2004, Khoo developed a moving average control chart (MA) using a simple idea to calculate the MA statistics by giving a width of average (w). This control chart is easy to calculate and implement as well as its efficiency suits for small to moderate shifts (see Areepong and Sukparungsee (2013), Chananet et al. (2015), Sukparungsee et al. (2020), Taboran et al. (2020), Saengsura et al. (2022)). In 2016, Adeoti and Olaomi (2016) developed an MA control chart for the standard deviation, so-called the MA-S control chart as a mixed control chart (see also Phantu and Sukparungsee (2020) and Sukparungsee et al. (2021)) and proposed the explicit formulas to determine the average run length (ARL) (see Raweesawat and Sukparungsee 2024) and compare the results in detecting variance changes with the S chart. Recently, Chananet et al. (2024) designed a moving average based on range (MA_R) control chart for process variation based on range value. It was suitable for magnitudes of small sizes. Such research shows that control charts are often used with mean and variance measures such as range and standard deviation. Process variance measurements, such as process consistency checks, are more critical than process averages in some situations. Therefore, a process variability control chart must be developed to restore the process as smoothly as possible.

The most commonly used control chart performance check is ARL, which is divided into two states: in control average run length (ARL_0) and out of control average run length (ARL_1). The methodology for calculating the ARL used, Monte Carlo simulation (MC), estimates the ARL from a simulation under given circumstances. It is a simple and convenient way to validate the results obtained by other methods. However, such methods have limitations in processing results that are time-consuming. Subsequently, an explicit formula method took less time to calculate. Nevertheless, it may not be found in all cases of the study.

In this research, we have intensively extend from Chananet et al. 2024, which derive a proof of explicit formula of average run length (ARL) for the MA_R control chart to reduce the time-consuming from the previous work. In addition, the performance of the MA_R control chart is compared with the R chart for detecting process variations and applying them to real data. The control chart gives the lowest value ARL_1 , indicating that the control chart is most effective in detecting variation changes.

2. Research Methodology

This research aims to propose the explicit formulas for the ARL of the MA_R control chart. The efficiency of detection of process variation is compared with the classical range chart (R chart), in which the proposed explicit formulas are less time-consuming compared with other methods. The control chart had the lowest ARL_1 , so detecting the variation changes was the most efficient. This section will explain the methodology in the following details.

2.1. Control charts and their properties

2.1.1 R chart

A range chart is a statistical process control (SPC) tool that displays the variation within a data set. It tracks the variation in a process over time and helps identify any changes in the process variance. It plots the range of the data in each subgroup, where the range is calculated from the difference between the highest and lowest values in each subgroup over time. The R chart is suitable if the sample sizes (n) are negligible ($n \leq 10$). For developing a quality control chart, it is essential to always consider this R chart in conjunction with the x-bar chart, which can be calculated to find the average of the range (\bar{R}) as follows:

$$\bar{R} = \frac{\sum_{j=1}^m R_j}{m}, \quad (1)$$

where the value of from (1) is the difference between the highest value and the lowest value in sample j . The calculation of the upper control limit (UCL) and lower control limit (LCL) is divided into 2 cases: known and unknown parameters σ . For the latter case, the parameter must be estimated. Montgomery (2009) stated that in the process variability, an unbiased estimator of σ , is $\hat{\sigma} = \bar{R} / d_2$ for the R chart. Consequently, the control limits are as follows:

1) Known σ

$$\begin{aligned} UCL &= d_2 \sigma + 3d_3 \sigma = D_2 \sigma, \\ CL &= d_2 \sigma, \\ LCL &= d_2 \sigma - 3d_3 \sigma = D_1 \sigma, \end{aligned} \quad (2)$$

where the values from (2), $D_1 = (d_2 - 3d_3)$ and $D_2 = (d_2 + 3d_3)$, are factors of control limits and depend on the sample size (n). In addition, the values of d_2 and d_3 are also the factors of control limits which the tables of the factor of control limits are addressed in several quality control textbooks.

2) Unknown σ , then an estimate $\hat{\sigma} = \bar{R} / d_2$,

$$\begin{aligned} UCL &= \bar{R} + 3 \frac{d_3}{d_2} \bar{R} = D_4 \bar{R}, \\ CL &= \bar{R}, \\ LCL &= \bar{R} - 3 \frac{d_3}{d_2} \bar{R} = D_3 \bar{R}. \end{aligned} \quad (3)$$

Then, the values from (3), $D_3 = \left(1 - 3 \frac{d_3}{d_2}\right)$ and $D_4 = \left(1 + 3 \frac{d_3}{d_2}\right)$. In addition, their values are a constant found in the factor of control limits as well as D_1 and D_2 .

2.1.2 Moving average control chart

In the moving average control chart, the width (w) and the statistics of the MA control chart (Khoo 2004) at i are calculated from the moving average at each w . There are two cases as follows:

$$MA_i = \begin{cases} \frac{X_i + X_{i-1} + X_{i-2} + \dots + X_1}{i} & ; i < w \\ \frac{X_i + X_{i-1} + \dots + X_{i-w+1}}{w} & ; i \geq w, \end{cases} \quad (4)$$

where w is the width of the MA control chart, and the mean and variance of statistics MA_i are shown in Equations (5) and (6):

$$E(MA_i) = \mu_0, \quad (5)$$

and

$$Var(MA_i) = \begin{cases} \frac{\sigma^2}{i}, & i < w \\ \frac{\sigma^2}{w}, & i \geq w. \end{cases} \quad (6)$$

Therefore, the control limits of the MA control chart are as follows:

$$UCL / LCL = \begin{cases} \mu_0 \pm \frac{3\sigma}{\sqrt{i}} ; & i < w \\ \mu_0 \pm \frac{3\sigma}{\sqrt{w}} ; & i \geq w, \end{cases} \quad (7)$$

where μ_0 is the mean, and σ is the standard deviation of the process from (7) when it is under control.

2.1.3 Moving average-range control chart

The moving average based on range (MA_R) control chart can be used to detect a change in the process mean and process variability (i.e., Chananet et al. 2024). The MA_R control chart is implemented to detect a change in process variation based on the range value, which depends on the sample size (n). The MA_R statistic of width w at times i is calculated as (8)

$$MA_{R_i} = \begin{cases} \frac{R_i + R_{i-1} + R_{i-2} + \dots}{i} & ; i < w \\ \frac{R_i + R_{i-1} + \dots + R_{i-w+1}}{w} & ; i \geq w, \end{cases} \quad (8)$$

where R_j is the range of each sample number. The MA_R statistics from (4) can be rewritten as follows:

$$MA_{R_i} = \begin{cases} \frac{\sum_{j=1}^i R_j}{i} & ; i < w \\ \frac{\sum_{j=i-w+1}^i R_j}{w} & ; i \geq w. \end{cases} \quad (9)$$

The expectation of the MA_R statistics when $i < w$, is presented in (10),

$$E(MA_{R_i}) = E\left(\frac{1}{i} \sum_{j=1}^i R_j\right) = \frac{1}{i} \sum_{j=1}^i E(R_j) = d_2 \sigma. \quad (10)$$

Also, the expectation of the MA_R statistics, when $i \geq w$, shown in (11),

$$E(MA_{R_i}) = E\left(\frac{1}{w} \sum_{j=i-w+1}^w R_j\right) = \frac{1}{w} \sum_{j=i-w+1}^w E(R_j) = d_2 \sigma. \quad (11)$$

The variance of the MA_R statistics, when $i < w$, is presented in (12),

$$Var(MA_{R_i}) = Var\left(\frac{1}{i} \sum_{j=1}^i R_j\right) = \frac{1}{i^2} \sum_{j=1}^i Var(R_j) = \frac{d_3^2 \sigma^2}{i}. \quad (12)$$

Also, the variance of the MA_R statistics, when $i \geq w$, shown in (13),

$$Var(MA_{R_i}) = Var\left(\frac{1}{w} \sum_{j=i-w+1}^w R_j\right) = \frac{1}{w^2} \sum_{j=i-w+1}^w Var(R_j) = \frac{d_3^2 \sigma^2}{w}. \quad (13)$$

Therefore, the upper control limit (UCL) and lower control limit (LCL) of the MA_R chart can be calculated in two cases following:

1) Known σ

1.1) when $i < w$,

$$UCL = d_2 \sigma + 3\sqrt{\frac{d_3^2 \sigma^2}{i}} = d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{i}} = D_6^* \sigma$$

$$CL = d_2 \sigma$$

$$LCL = d_2 \sigma - 3\sqrt{\frac{d_3^2 \sigma^2}{i}} = d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{i}} = D_5^* \sigma,$$

where $D_5^* = \left(d_2 - 3\frac{d_3}{\sqrt{i}}\right)$ and $D_6^* = \left(d_2 + 3\frac{d_3}{\sqrt{i}}\right)$, they are the control limits factor.

1.2) when $i \geq w$,

$$UCL = d_2 \sigma + 3\sqrt{\frac{d_3^2 \sigma^2}{w}} = d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{w}} = D_8^* \sigma$$

$$CL = d_2 \sigma$$

$$LCL = d_2 \sigma - 3\sqrt{\frac{d_3^2 \sigma^2}{w}} = d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{w}} = D_7^* \sigma,$$

where $D_7^* = \left(d_2 - \frac{3d_3}{\sqrt{w}}\right)$ and $D_8^* = \left(d_2 + \frac{3d_3}{\sqrt{w}}\right)$, they are the factor of control limits from the proposed chart.

2) Unknown σ

2.1) when $i < w$,

$$UCL = \bar{R} + 3\bar{R} \frac{d_3}{d_2 \sqrt{i}} = D_{10}^* \bar{R}$$

$$CL = d_2 \sigma$$

$$LCL = \bar{R} - 3\bar{R} \frac{d_3}{d_2 \sqrt{i}} = D_9^* \bar{R},$$

where $D_9^* = \left(1 - 3\frac{d_3}{d_2 \sqrt{i}}\right)$ and $D_{10}^* = \left(1 + 3\frac{d_3}{d_2 \sqrt{i}}\right)$.

2.2) when $i \geq w$,

$$UCL = \bar{R} + 3\bar{R} \frac{d_3}{d_2 \sqrt{w}} = D_{12}^* \bar{R}$$

$$CL = \bar{R}$$

$$LCL = \bar{R} - 3\bar{R} \frac{d_3}{d_2 \sqrt{w}} = D_{11}^* \bar{R},$$

where $D_{11}^* = \left(1 - 3 \frac{d_3}{d_2 \sqrt{w}}\right)$ and $D_{12}^* = \left(1 + 3 \frac{d_3}{d_2 \sqrt{w}}\right)$.

2.2. Performance measurement

Control chart performance is traditionally quantified regarding the Average Run Length (ARL). Run Length is defined as the number of observations in the process from the start of the control to the first out-of-control signal. After this observation, the counting process is stopped, and the calculation of the run length is recommended for the following in-control observation. Accordingly, ARL is the mean of the run length of the realized control chart. They were divided into in-control processors (ARL_0) and out of control processors (ARL_1). The minimum ARL_1 indicated the most efficient control chart. The ARL_0 can be calculated as in (14), and the ARL_1 can be calculated as in (15).

$$ARL_0 = \frac{1}{\alpha}, \quad (14)$$

where α is the probability that a process is found out of the control limit when the process does not change and

$$ARL_1 = \frac{1}{1 - \beta}, \quad (15)$$

where β is the probability that the process is found to be in control state limit when the process changes.

3. Explicit formulas for determining ARL for MA_R

In this section, the explicit formula of the MA_R control chart is proposed. The performance for control charts is ARL, which consists of 2 types: ARL_0 and ARL_1 . The explicit formulas for evaluating ARL_0 and ARL_1 can be analytically derived by the central limit theorem. Given o.o.c. is an out-of-control limit and

Let $ARL = n$,

$$\begin{aligned} \frac{1}{ARL} &= \left(\frac{1}{n} \right) P(\text{o.o.c signal at time } i < w) + \left(\frac{n-w+1}{n} \right) P(\text{o.o.c signal at time } i \geq w), \\ &= \frac{1}{n} \left[\sum_{i=1}^{w-1} \left(P\left(\frac{1}{i} \sum_{j=1}^i R_j > UCL_i \right) + P\left(\frac{1}{i} \sum_{j=1}^i R_j < LCL_i \right) \right) \right] + \\ &\quad \left(\frac{n-w+1}{n} \right) \left[P\left(\frac{1}{w} \sum_{j=i-w+1}^i R_j > UCL_w \right) + P\left(\frac{1}{w} \sum_{j=i-w+1}^i R_j < LCL_w \right) \right]. \end{aligned}$$

Assume that $Z_1 = \frac{\sum_{j=1}^i R_j - \bar{R}}{\frac{d_3 \sigma}{\sqrt{i}}}$ and $Z_2 = \frac{\sum_{j=1}^i R_j - \bar{R}}{\frac{d_3 \sigma}{\sqrt{w}}}$. Therefore,

$$\frac{1}{ARL} = \frac{1}{n} \left[\sum_{i=1}^w \left(P\left(Z_1 > i \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) + P\left(Z_1 < i \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) \right) + \left(\frac{n-w+1}{n} \right) \left[P\left(Z_2 > w \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right) + P\left(Z_2 > w \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right) \right] \right].$$

Then, given $A = \sum_{i=1}^w \left(P\left(Z_1 > i \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) + P\left(Z_1 < i \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) \right)$,

and $B = P\left(Z_2 > w \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right) + P\left(Z_2 > w \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right)$.

Therefore,

$$\frac{1}{n} = \left(\frac{1}{n} \right) (A) + \left(\frac{n-w+1}{n} \right) (B),$$

$$\frac{1-A}{n} = \left(\frac{n-w+1}{n} \right) (B),$$

$$(1-A)B^{-1} = \left(\frac{n-w+1}{n} \right) n,$$

$$n = (1-A)B^{-1} + w-1,$$

$$ARL = (1-A)B^{-1} + w-1,$$

$$ARL = n = \left\{ 1 - \sum_{i=1}^w \left(P\left(Z_1 > i \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) + P\left(Z_1 < i \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{i}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{i}}} \right) \right) \right) \right\} \times$$

$$\left\{ P\left(Z_2 > w \left(\frac{d_2 \sigma + \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right) + P\left(Z_2 > w \left(\frac{d_2 \sigma - \frac{3d_3 \sigma}{\sqrt{w}} - \bar{R}}{\frac{3d_3 \sigma}{\sqrt{w}}} \right) \right) \right\}^{-1} + w-1.$$

Proposition I. The control process is given parameter $\sigma = \sigma_0$. The explicit formula for the ARL_0 of the MA_R control chart is as follows:

$$ARL_0 = n = \left\{ 1 - \sum_{i=1}^w \left(P\left(Z_1 > i \left(\frac{d_2\sigma_0 + \frac{3d_3\sigma_0}{\sqrt{i}} - \bar{R}}{\frac{3d_3\sigma_0}{\sqrt{i}}} \right) \right) + P\left(Z_1 < i \left(\frac{d_2\sigma_0 - \frac{3d_3\sigma_0}{\sqrt{i}} - \bar{R}}{\frac{3d_3\sigma_0}{\sqrt{i}}} \right) \right) \right) \times \right. \\ \left. \left\{ P\left(Z_2 > w \left(\frac{d_2\sigma_0 + \frac{3d_3\sigma_0}{\sqrt{w}} - \bar{R}}{\frac{3d_3\sigma_0}{\sqrt{w}}} \right) \right) + P\left(Z_2 > w \left(\frac{d_2\sigma_0 - \frac{3d_3\sigma_0}{\sqrt{w}} - \bar{R}}{\frac{3d_3\sigma_0}{\sqrt{w}}} \right) \right) \right\}^{-1} + w - 1. \quad (16) \right.$$

Proposition II. The process is in an out of control state with parameter $\sigma = \sigma_1$ and $\sigma_1 = \delta\sigma_0$. Where δ is a magnitude of the shift, the explicit formula for ARL_1 of the MA_R control chart can be written as follows:

$$ARL_1 = n = \left\{ 1 - \sum_{i=1}^w \left(P\left(Z_1 > i \left(\frac{d_2\sigma_1 + \frac{3d_3\sigma_1}{\sqrt{i}} - \bar{R}}{\frac{3d_3\sigma_1}{\sqrt{i}}} \right) \right) + P\left(Z_1 < i \left(\frac{d_2\sigma_1 - \frac{3d_3\sigma_1}{\sqrt{i}} - \bar{R}}{\frac{3d_3\sigma_1}{\sqrt{i}}} \right) \right) \right) \times \right. \\ \left. \left\{ P\left(Z_2 > w \left(\frac{d_2\sigma_1 + \frac{3d_3\sigma_1}{\sqrt{w}} - \bar{R}}{\frac{3d_3\sigma_1}{\sqrt{w}}} \right) \right) + P\left(Z_2 > w \left(\frac{d_2\sigma_1 - \frac{3d_3\sigma_1}{\sqrt{w}} - \bar{R}}{\frac{3d_3\sigma_1}{\sqrt{w}}} \right) \right) \right\}^{-1} + w - 1. \quad (17) \right.$$

4. Numerical Results

This section presents the numerical results of the ARL of the MA_R chart obtained using the ARL approximation previously proposed on (16) and (17). Assumed that the process in control is normally distributed with $N(\mu, \sigma^2)$, and when it is out of control, it is normally distributed as $N(\mu, \delta\sigma^2)$ for $n = 5, 10$ and 15 . The magnitude of shift values is given as $\delta = \sigma_1 / \sigma_0$ when δ is $1.00, 1.05, \dots, 3.00$. It is assumed that $\mu = 0$ and $\sigma_0^2 = 1$. Let in-control process, the ARL_0 of the control chart are approximately 200, 370, and 500. The span (w) values are 2, 3, 4, 5, 10 and 15. A comparison of the performance of the MA_R and R chart is divided into 3 cases as follows: case 1 considers the ARL_0 equal to 200 for sample size (n) equal to 5, 10, and 15, as shown in Tables 1-3, respectively. On Table 1, the MA_R control chart with small subgroup $n = 5$ outperform to R chart for all magnitudes of change as well as the case of medium $n = 10$ and large subgroups $n = 15$ as shown on Tables 2 and 3. Next, case 2 determines the ARL_0 equal to 370 for sample size (n) equal to 5, 10, and 15, as shown in Tables 4-6, respectively. In addition, the performance of MA_R control chart will increase as the span w decrease when the magnitudes of change are increased while the sizes of subgroup is not effected to the performance of the proposed chart. The comparison of that point of view can show as

Table 1 vs Table 4 when $n = 5$, Table 2 vs Table 5 when $n = 10$, and Table 3 vs Table 6. Finally, case 3, given ARL_0 equal to 500 for sample size (n) equal to 5, 10, and 15, is shown in Tables 7-9, respectively. On the other hand, the variation studies of the performance of the MA_R control chart as $ARL_0 = 500$, they do not matter to the performance of monitoring in change of process variation as shown on Tables 7, 8 and 9 when $n = 5, 10$ and 15, respectively. The MA_R control chart has lower ARL_1 values than the R chart for all change levels. When the process change is small, the span (w) values must be significant to maintain ARL_1 . On the other hand, when the process changes large, the value of span (w) values should be small to make ARL_1 the lowest.

Table 1 Comparison ARL_1 of R and MA_R control chart when given $ARL_0 = 200$ and $n = 5$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410
1.05	140.3230	128.9800	119.9020	112.2770	105.7180	82.8149	69.2185
1.10	85.7641	69.0309	58.1944	50.4868	44.7215	29.7648	24.3516
1.15	52.3257	38.0813	30.2019	25.2166	21.8402	14.9467	13.9421
1.20	33.4372	22.7953	17.5546	14.5328	12.6635	9.8979	10.6325
1.25	22.5744	14.8071	11.3299	9.4963	8.4774	7.7561	9.1353
1.50	6.0559	4.0426	3.4852	3.3876	3.4806	4.5542	5.3930
1.75	3.0648	2.3127	2.2437	2.3489	2.4997	3.0542	3.2039
2.00	2.0960	1.7519	1.7911	1.8955	1.9949	2.1997	2.2178
2.25	1.6724	1.4943	1.5512	1.6252	1.6799	1.7511	1.7533
2.50	1.4518	1.3512	1.4024	1.4503	1.4788	1.5046	1.5049
2.75	1.3233	1.2623	1.3034	1.3337	1.3486	1.3587	1.3588
3.00	1.2425	1.2031	1.2349	1.2542	1.2623	1.2665	1.2665

Note: The bold number on each row is the smallest ARL_1 for each shift level.

Table 2 Comparison ARL_1 of R and MA_R control chart when given $ARL_0 = 200$ and $n = 10$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410
1.05	128.4350	111.3620	98.7281	88.8339	80.8394	56.5641	44.8931
1.10	68.1749	49.2543	38.6542	31.9023	27.2972	17.5576	15.5777
1.15	37.2796	24.0558	17.8840	14.4638	12.4167	9.6097	10.4868
1.20	22.0938	13.4479	9.9361	8.2297	7.3642	7.1777	8.7067
1.25	14.1825	8.4610	6.4154	5.5712	5.2570	6.0446	7.4954
1.50	3.5765	2.5001	2.3747	2.4728	2.6250	3.1402	3.2432
1.75	1.9217	1.6227	1.6762	1.7584	1.8177	1.8853	1.8866
2.00	1.4264	1.3288	1.3744	1.4057	1.4192	1.4262	1.4262
2.25	1.2264	1.1913	1.2159	1.2260	1.2287	1.2294	1.2294
2.50	1.1314	1.1177	1.1298	1.1330	1.1336	1.1337	1.1337
2.75	1.0815	1.0757	1.0816	1.0827	1.0828	1.0828	1.0828
3.00	1.0533	1.0506	1.0536	1.0540	1.0540	1.0540	1.0540

Note: The bold number on each row is the smallest ARL_1 for each shift level.

Table 3 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 200 and $n = 15$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410	200.0410
1.05	120.5710	100.5020	86.4464	75.9280	67.7508	44.8350	35.1310
1.10	58.6265	39.8219	30.1293	24.3246	20.5696	13.6154	13.0242
1.15	30.1843	18.3292	13.3012	10.7294	9.3173	8.0954	9.4647
1.20	17.2241	9.9867	7.3652	6.2388	5.7685	6.3548	7.8600
1.25	10.8078	6.2612	4.8571	4.3942	4.3174	5.3785	6.4869
1.50	2.7211	2.0253	2.0199	2.1313	2.2433	2.4530	2.4649
1.75	1.5549	1.4046	1.4559	1.4957	1.5137	1.5233	1.5233
2.00	1.2273	1.1913	1.2135	1.2211	1.2228	1.2231	1.2231
2.25	1.1057	1.0964	1.1038	1.1051	1.1053	1.1053	1.1053
2.50	1.0536	1.0510	1.0534	1.0537	1.0537	1.0537	1.0537
2.75	1.0292	1.0283	1.0292	1.0292	1.0292	1.0292	1.0292
3.00	1.0169	1.0166	1.0169	1.0169	1.0169	1.0169	1.0169

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 4 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 370 and $n = 5$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980
1.05	246.5320	224.1790	206.5610	191.9180	179.4200	136.2650	110.6810
1.10	140.6390	110.7480	91.8105	78.4999	68.6041	42.8262	32.8674
1.15	80.7148	57.1306	44.3198	36.2611	30.7928	19.1580	16.5504
1.20	49.0197	32.3575	24.2480	19.5584	16.6145	11.6604	11.7999
1.25	31.7130	20.0591	14.8641	12.0837	10.4813	8.6854	9.8610
1.50	7.3995	4.7131	3.9215	3.7212	3.7676	4.8641	5.8177
1.75	3.4773	2.5209	2.3970	2.4899	2.6455	3.2733	3.4612
2.00	2.2788	1.8511	1.8769	1.9865	2.0965	2.3392	2.3633
2.25	1.7716	1.5534	1.6093	1.6907	1.7533	1.8397	1.8427
2.50	1.5128	1.3909	1.4448	1.4987	1.5320	1.5636	1.5641
2.75	1.3640	1.2910	1.3355	1.3700	1.3876	1.4000	1.4001
3.00	1.2713	1.2247	1.2596	1.2818	1.2914	1.2966	1.2966

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 5 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 370 and $n = 10$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980
1.05	223.0820	190.2430	166.4390	148.0490	133.3290	89.0911	67.6091
1.10	109.3030	76.6795	58.8120	47.5431	39.8763	23.2628	18.9805
1.15	55.9383	34.7694	25.0410	19.6470	16.3748	11.2359	11.5515
1.20	31.4098	18.2777	12.9750	10.3514	8.9534	7.9011	9.3389
1.25	19.2733	10.9193	7.9111	6.6058	6.0409	6.5095	8.0308
1.50	4.2011	2.7758	2.5629	2.6399	2.7960	3.3927	3.5298
1.75	2.0990	1.7124	1.7586	1.8497	1.9197	2.0060	2.0079
2.00	1.4998	1.3738	1.4234	1.4607	1.4777	1.4870	1.4870
2.25	1.2632	1.2178	1.2461	1.2585	1.2620	1.2630	1.2630
2.50	1.1520	1.1343	1.1486	1.1525	1.1533	1.1534	1.1534
2.75	1.0939	1.0864	1.0935	1.0949	1.0950	1.0951	1.0951
3.00	1.0612	1.0577	1.0614	1.0619	1.0619	1.0619	1.0619

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 6 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 370 and $n = 15$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980	370.3980
1.05	207.8520	169.8180	143.7900	124.5930	109.8100	68.7062	50.9066
1.10	92.7534	60.9126	44.8579	35.3197	29.1445	17.1815	15.1219
1.15	44.5737	25.9068	18.0931	14.0702	11.8022	9.1108	10.2252
1.20	24.0492	13.2192	9.2974	7.5509	6.7426	6.8718	8.4217
1.25	14.3998	7.8480	5.7848	5.0321	4.8117	5.7689	7.0067
1.50	3.1229	2.1993	2.1518	2.2637	2.3888	2.6491	2.6666
1.75	1.6632	1.4644	1.5188	1.5663	1.5893	1.6026	1.6027
2.00	1.2691	1.2208	1.2470	1.2567	1.2590	1.2595	1.2595
2.25	1.1248	1.1122	1.1213	1.1231	1.1233	1.1233	1.1233
2.50	1.0632	1.0596	1.0627	1.0630	1.0631	1.0631	1.0631
2.75	1.0344	1.0332	1.0343	1.0344	1.0344	1.0344	1.0344
3.00	1.0198	1.0194	1.0198	1.0198	1.0198	1.0198	1.0198

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 7 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 500 and $n = 5$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140
1.05	324.2970	293.3570	269.1610	249.1630	232.1650	173.8850	139.5040
1.10	178.8650	139.4200	114.6960	97.4259	84.6333	51.3661	38.3112
1.15	99.6701	69.6520	53.4946	43.3703	36.5061	21.7447	18.0908
1.20	59.0699	38.4183	28.4341	22.6650	19.0303	12.6810	12.4361
1.25	37.4386	23.2871	17.0032	13.6280	11.6610	9.1938	10.2294
1.50	8.1643	5.0850	4.1573	3.8967	3.9146	5.0112	6.0186
1.75	3.7004	2.6301	2.4748	2.5595	2.7163	3.3787	3.5869
2.00	2.3747	1.9015	1.9193	2.0307	2.1456	2.4075	2.4349
2.25	1.8228	1.5829	1.6377	1.7225	1.7890	1.8834	1.8868
2.50	1.5439	1.4106	1.4655	1.5223	1.5580	1.5928	1.5932
2.75	1.3846	1.3051	1.3511	1.3877	1.4067	1.4204	1.4205
3.00	1.2857	1.2354	1.2718	1.2953	1.3057	1.3115	1.3115

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 8 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 500 and $n = 10$

Shift (δ)	R chart	MA_R control chart					
		$w = 2$	$w = 3$	$w = 4$	$w = 5$	$w = 10$	$w = 15$
1.00	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140
1.05	291.8340	246.9160	214.6880	189.9630	170.2690	111.4930	82.9969
1.10	137.5570	95.2035	72.2635	57.8765	48.1137	26.8594	21.0466
1.15	68.1988	41.6678	29.5788	22.8893	18.8197	12.1786	12.1259
1.20	37.3141	21.2675	14.8210	11.6179	9.8858	8.2867	9.6488
1.25	22.4033	12.3912	8.7867	7.1983	6.4795	6.7410	8.2827
1.50	4.5495	2.9240	2.6600	2.7231	2.8790	3.5146	3.6703
1.75	2.1934	1.7581	1.7993	1.8942	1.9694	2.0659	2.0681
2.00	1.5380	1.3963	1.4475	1.4879	1.5067	1.5174	1.5174
2.25	1.2821	1.2310	1.2611	1.2747	1.2787	1.2799	1.2799
2.50	1.1626	1.1426	1.1580	1.1624	1.1632	1.1634	1.1634
2.75	1.1003	1.0918	1.0995	1.1010	1.1012	1.1012	1.1012
3.00	1.0652	1.0614	1.0653	1.0659	1.0659	1.0659	1.0659

Note: The bold number on each row is the smallest ARL₁ for each shift level.

Table 9 Comparison ARL₁ of R and MA_R control chart when given ARL₀ = 500 and n = 15

Shift (δ)	R chart	MA_R control chart					
		w = 2	w = 3	w = 4	w = 5	w = 10	w = 15
1.00	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140	500.1140
1.05	270.9330	219.2750	184.3210	158.7310	139.1230	84.9390	61.4257
1.10	116.0120	75.0161	54.5720	42.4875	34.6765	19.3757	16.3487
1.15	53.9418	30.7262	21.0858	16.1229	13.3052	9.6753	10.6124
1.20	28.3301	15.1915	10.4498	8.3165	7.2983	7.1335	8.6871
1.25	16.5834	8.7830	6.3166	5.3874	5.0787	5.9561	7.2502
1.50	3.3446	2.2910	2.2182	2.3283	2.4591	2.7455	2.7664
1.75	1.7206	1.4947	1.5499	1.6013	1.6269	1.6423	1.6423
2.00	1.2909	1.2357	1.2638	1.2747	1.2773	1.2780	1.2780
2.25	1.1347	1.1202	1.1303	1.1322	1.1325	1.1325	1.1325
2.50	1.0682	1.0641	1.0675	1.0679	1.0679	1.0679	1.0679
2.75	1.0370	1.0357	1.0369	1.0370	1.0370	1.0370	1.0370
3.00	1.0213	1.0209	1.0213	1.0214	1.0214	1.0214	1.0214

Note: The bold number on each row is the smallest ARL₁ for each shift level.

5. Practical Applications

5.1. Application I

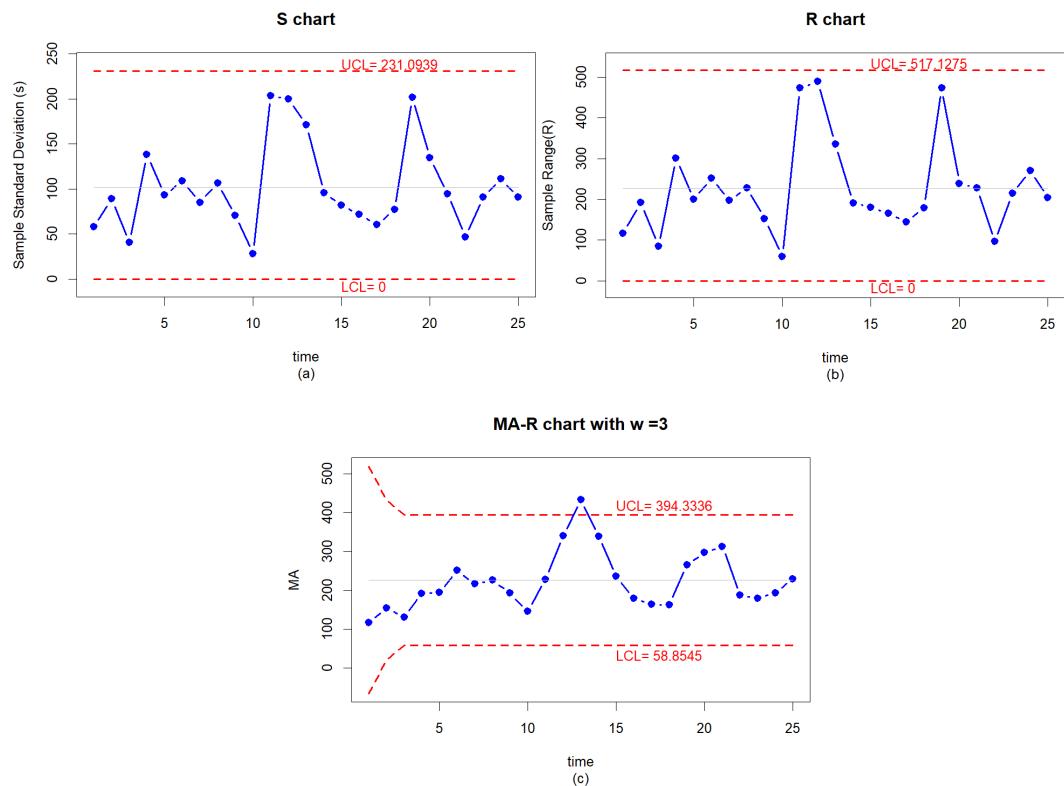
To demonstrate the application of the R and MA_R control chart. The simulated data for the 25 subgroups with fourth sizes are shown in Table 10. The first fifteen samples are assumed to be in control, and the following ten subgroups are out of control. The S, R and MA_R control chart for w equal to 3 are plotted in Figures 1(a), 1(b) and 1(c), respectively. The results show that the R chart has no point plot outside the control limits in this sample and fails to detect a shift in the process variability when the shift occurs.

Table 10 The simulated data for the 25 subgroups with fourth sizes

x_1	x_2	x_3	x_4
64.0800	27.3816	141.6149	143.7999
-40.3340	-55.9834	50.2346	135.6725
-7.9538	46.6545	41.1491	-38.0159
-44.6047	177.5491	-122.7990	-103.7390
-59.8107	49.5423	35.7507	-150.3102
-3.4794	45.9422	248.7460	100.0977
-20.1378	-42.0193	22.9045	-174.4091
12.5464	-63.5503	159.2997	-68.8055
210.9037	58.5432	67.6875	92.7382
6.9895	-43.9235	-51.6511	-8.3742
-83.0418	72.9149	22.8306	390.3523
51.5989	303.3984	-185.8505	63.2211
153.2237	-103.3403	231.9195	-94.5058
190.9359	216.0095	24.9871	54.7366

Table 10 (Continued)

x_1	x_2	x_3	x_4
70.1551	54.5970	1.9787	-110.4029
2.7016	-44.5989	61.7838	120.7181
26.3848	-118.4138	-66.8903	-40.3953
14.9689	52.2048	-20.0342	-126.9771
406.8810	77.7828	-66.0924	64.5313
-135.2496	103.1199	-129.0047	97.9938
-83.5145	47.2105	67.5735	144.2719
52.7670	148.6692	132.9198	70.5915
11.6681	-5.0409	152.6231	-61.8640
-11.3519	144.7597	134.8395	259.6313
-13.7595	165.0084	46.7414	-38.9697

**Figure 1** Compare three control charts: (a) S-chart, (b) R-chart, and (c) MA_R control chart for simulation data

5.2. Application II

This example consists of 20 observations for the flow width measurement in the hard-bake process, each of size five wafers and assumed to be a normal distribution for a slight shift in the process variability (see example from Montgomery 2009). The first ten samples are assumed to be in control.

The process is assumed to follow an $N(10,1)$ distribution, and the next ten subgroups are generated from $N(10,2)$. The S, R and MA_R control chart for $w = 4$ are plotted in Figures 2(a), 2(b) and 2(c), respectively. The result shows that the R chart has no point plot outside the control limits in this sample and fails to detect a shift in the process variability when the shift occurs.

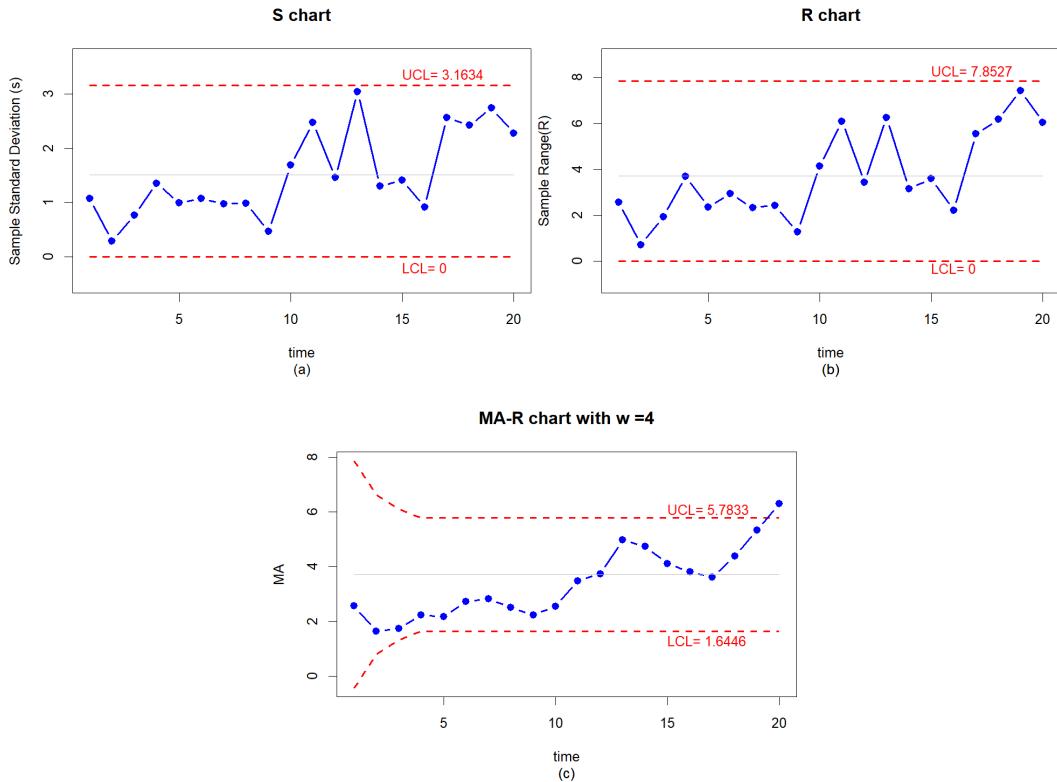


Figure 2 Compare three control charts: (a) S-chart, (b) R-chart, and (c) MA_R control chart for real application II

6. Conclusions and Recommendations

In this study, the efficiency of the MA_R control chart was compared with R charts using ARL_1 as the evaluation criteria under the normality assumption. The numerical result of the MA_R chart was obtained from the explicit formula for both cases of known and unknown parameter σ , with different values of sample size (n) and width (w). The performance comparison of the MA_R chart versus the R chart using two applications consists of simulated data and flow width measurement data. The comparison shows that the proposed chart is superior to the R chart with both application I for simulated data and application II for real application data in hard bake process. This is guaranteed to the performance of the proposed control chart that is very useful and easy to implement with the proposed explicit formulas. Also, the MA_R control chart performs better for small and large sample sizes for both small and moderate shifts in process variability. Therefore, the MA_R control chart is an effective alternative to R due to the more straightforward calculation and interpretation. This proposed

control chart might be robust to the non-normal assumption which the authors are currently investigating into the several case studies.

Acknowledgments

We thank the reviewers for taking the time and effort to review the manuscript. The authors also want to express their gratitude to King Mongkut's University of Technology North Bangkok, which supports the research fund with contract number KMUTNB-66-BASIC-09.

References

Adeoti O, Olaomi, JO. A moving average S control chart for monitoring process variability. *Qual Eng.* 2016; 28(2): 212-219.

Areepong Y, Sukparungsee S. Closed form formulas of average run length of moving average control chart for nonconforming for the zero-inflated process. *Far East J Math Sci.* 2013; 75(2): 385-400.

Chananet C, Areepong Y, Sukparungsee S. An approximate formula for ARL in moving average chart with ZINB data. *Thail Stat.* 2015; 13(2): 209-222.

Chananet C, Areepong Y, Sukparungsee S. On design a moving average-range control chart for enhancing a process variation detection. *Appl Sci Eng Prog.* 2024; 17(1): 1-15.

Montgomery DC. *Statistical quality control: a modern introduction.* New York: John Wiley & Sons; 2009.

Khoo MBC. A moving average control chart for monitoring the fraction non-conforming. *Qual Reliab Eng Int.* 2004; 20(6): 617-635.

Phantu S, Sukparungsee S. A mixed double exponentially weighted moving average-Tukey's control chart for monitoring of parameter change. *Thail Stat.* 2020; 18(4): 392-402.

Raweesawat K., Sukparungsee S. Explicit formulas of ARL on double moving average control chart for monitoring process mean of ZIPINAR(1) model with an excessive number of zeros. *Appl Sci Eng Prog.* 2024; 15(3): 1-12.

Saengsura N, Sukparungsee S, Areepong Y. Mixed moving average-cumulative sum control chart for monitoring parameter change. *Intell Autom Soft Comput.* 2022; 31(1): 635-647.

Shewhart WA. *Economic control of quality manufactured Products.* New York: D. Van Nostrand Company; 1923.

Sukparungsee S, Areepong Y, Taboran R. Exponentially weighted moving average-moving average charts for monitoring the process mean. *PLoS ONE.* 2020; 15(2): e0228208.

Sukparungsee S, Saengsura N, Areepong Y, Phantu S. Mixed Tukey-double moving average for monitoring of process mean. *Thail Stat.* 2021; 19(4): 855-865.

Taboran R, Sukparungsee S, Areepong Y. A new nonparametric Tukey MA-EWMA control charts for detecting mean shifts. *IEEE Access.* 2020; 8: 207249-207259.