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Abstract

In the statistical literature, there are many lifetime distributions used in reliability analysis,
including exponential, normal, gamma, and Weibull distributions. Power distribution is also useful in
many scientific contexts, with significant consequences for our understanding of natural and man-
made phenomena. This expository paper presents the evaluation of reliability when stress and strength
follow power distribution with a common scale and different shape parameters. We obtain maximum
likelihood (ML) estimates of stress-strength reliability with their confidence intervals. Furthermore,
to compare the performance of various procedures, we apply statistical simulation. Finally, an analysis
of a real dataset is given for illustrative purposes.

Keywords: Maximum likelihood estimator; P[Y<X], right censoring, asymptotic confidence interval, real data.

1. Introduction

The stress-strength reliability of a system can be defined as an assessment of reliability in terms
of stress, represented by a random variable Y, experienced by a component and the strength which is
represented by the random variable X of a component. In other words, we can say that if the stress
on a system exceeds the strength of the component, then the system will fail. The literature of system
stress strength reliability and applications has been discussed by Birnbaum (1956). Firstly, Birnbaum
and McCarty (1958) proposed the stress strength reliability of a system and obtained the confidence
bound based distribution free sample for the stress strength reliability. Cheng and Chao (1984)
obtained the distribution free confidence interval for probability of ¥ < X of a system. Surles and
Padgett (1998) obtained an estimate of stress-strength reliability when both components follow the
Burr type X distribution. Al-Mutairi (2013) discussed the inferential procedure for stress strength
reliability when both variables follow the Lindley distribution. Kumar et al. (2015) considered
estimation process of stress and strength reliability when both follow the Lindely distribution under
progressively first failure censoring. Sharma et al. (2015) discussed stress-strength reliability when
both are the inverse Lindley lifetime and obtained a maximum likelihood (ML) estimate of the
reliability function. They also obtained the Bayes estimate of parametric function by using Markov
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chain Monte Carlo (MCMC) method and Lindley approximation under informative and non-
informative prior. Chaudhary et al. (2017) obtained the stress strength reliability when both strength
and stress follows the Maxwell distribution. They also found the Bayes estimate of stress-strength
reliability under the square error loss function by using the MCMC technique. Kumar and Kumar
(2021) obtained the estimation of the stress-strength reliability for the inverse Pareto distribution under
progressively censored data. Saini et al. (2021) discussed the classical and Bayesian estimate of the
stress-strength reliability for generalized Maxwell failure distribution under progressive first failure
censoring. In the past few decades, the literature has reviewed several papers on the application of
stress strength reliability for various models. A few names for reference are cited (Dhillon 1980,
Govindarajulu 1967, Juvairiyya and Kumar 2019, Pham and Almhana 1995, Weerahandi and Johnson
1992).

Power distribution has wide applications in many fields of survival and reliability analysis. The
following methods are commonly used for analyzing the power-law data: least-squares fitting and
parameter estimation in different situations for the power distributions. Even in many cases, such
methods provide an accurate answer, but they are not satisfactory because they do not show the
indication to obey the power distribution. Gaudoin (2003) discussed some related transformations and
tests for goodness of fit for power distribution. Goldstein et al. (2004a) showed the same basic
characteristics of discrete and continuous power-law distribution and discussed the application for
scientific importance, which has significant consequences for our understanding of survival and
reliability. They also found the ML estimate of the scale parameter of the power distribution and the
estimating procedure of the lower bound on power-law behavior. They also used the Kolmogorov-
Smirnov (K-S) test for goodness of fit and pointed out the powerful application of this distribution for
twenty-four real data points. Cordeiro and Brito (2012) showed that the power distribution is the
inverse of the Pareto distribution and obtained the basic characteristics of this distribution. They also
derived the ML function for some real data. Okorie et al. (2017) discussed some statistical properties
of modified power function distribution and obtained the ML estimate of the parameter of modified
power distribution using some real data sets (see Koen and Kondlo 2009, Meniconi and Barry 1996,
Rigdon 1989).

There are many situations where power distribution is widely used in many areas of reliability. In
this paper, we have considered the estimation procedures and application of the stress-strength
reliability when strength and stress and both components are followed to the power distribution with
the same scale and different shape parameters. We organize the remainder of this paper as follows: In
Section 2, we discussed some statistical properties of the power distribution. In Section 3, we evaluate
the ML estimate of stress-strength reliability for complete and censored data. In Section 4, we also
calculated the asymptotic confidence and boot-p intervals for both cases. Section 5 discusses the
analysis of the simulation study and a real data set, while Section 6 concludes with some concluding
remarks.

2. The Model
Let X be a random variable follow to power distribution and having probability density
function (pdf) is given as
f(x)zgiax“'], 0<x<8,a>0,0>0. (1)
where «a is the shape and @ is the scale parameter and the cumulative distribution function (cdf) of
power distribution is
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F(x)= X ,0>0,a>0,0<x<80.
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Figure 1 The pdf plots of the power distribution

Figure 1 shows the behavior of the pdf based on different value of @ and o.The m™ moment of

the power distribution is
E ( X" ):ﬂ
m+a

So, the mean (x) and variance (o) of the power distribution are

O 5 b’
u= and 0" =————.
a+l (x+2)(a+1)

The corresponding hazard function (%(¢)) and survival function (S(¢)) are given by

h(t) =

ga(ita " and S@t)=(0"—-1")0 ",

where ¢ is the pre-define time.
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Figure 2 The hazard function plot of the power distribution

The time to failure of given distribution is given by
E@)=1-exp|—|h(y)dy |=1—ex
® p{!(y) y} p Iga_xa }

On substituting 8 —x” =u and integrating, we get

0% —1* ta

E(t)=1—exp{— J la’u =—.
g U 6

Figure 2 shows the behavior of the A(¢) based on different value of € and «. The quantile function

of the power distribution is O (p)=6 p"“

2.1. The moment generating and characteristics function
The moment generating function (M, (¢)) and characteristics function ( (&, (¢)), respectively, of

the power distribution are as follows
all'(a)-T(a,—t0 r —T(a.—i
[ (@) ( )] and () () (a,—it0) a

(10 iy 0"

M. ()=

2.2. Order statistic
Let X,, X,,.... X, be the independent and identically distributed random variables of size n and

each variate having cdf given in Equation (2). If these variables are put in ascending order with theirs

magnitude and these written in the form X, <X <X, Wesay X, asthe r" order statistic,

m S S

th

now the pdf of 7" order statistic is
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Lo @y (2]
f(x(r))_x B(r,n—r—i—l)[ﬁ”) ’

Since X(j) =min(Xy, X5,...X,) and X, =max(X,,X,,..,X,) are define as the first and
last order statistic, respectively. The pdf of X, 0 and X (n) are obtained by putting » =1 and » =n in
f(x,) and define as

na (@ -x")"
ena (ea _xa) >

f(x,) = g[gj .

The pdf of joint order statistic say X, =x and X(X) =y, X <Y, is given by

f(xu)) =

and

s—r—1

n! ya—l xar—] <ya_xa)
(r—l)!(n—s)!(n—s—l)! o« <9a—ya)kn .

JX, =x,X =y)=

The pdf of range, say w, is define as

(n-Dna’ - n-

f(w) :TJ.XDH (w+x)a 1{(x+w)a —x”’}

2
dx, 0<w<é6.

Since the above integral is not closed form so we use some numerical method i.e., MCMC method to
solve it.

2.3. Parameter estimates by method of moment

One perceptive method of estimation of parameters is the method of moment, which compares
the sample moments with corresponding population moments, which are the values expressed in terms
of the parameters of the given distribution. Here, the mean and variance of given sample are

X=n'Yx, and s’=(n-1)") (x,—X)’, respectively. On equating the sample moments to
i=1 i=1

corresponding population moment, we have

afd ) ab?
and 5" =—7———.
a+l (a+2)(a+1)

f:

After solving these equations and we get the estimate of parameters of 6 and «, say ém and @, are

define as

2.4. Lorenz curve

The Lorenz curve is defined the graphical representation of the cumulative income distribution.
The Lorenz curve (Lorenz 1905) for a positive real random variable X is defined as the graph of the
ratio
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E(X|X<x) [ xf@)dr
EX)  [Txfdr

For the power distribution, the denominator and nominator of above equation are

L(F(x))=

xa+l a ae
xf(x)dx = | x—x* =~ 7 an x F( dxe =[x xaldx_
.I. f( ) J‘ 9 90!(a+1) J‘ f( ) J. - a+1
a+l
So the Lorenz curve is defined as L (F(x)) = ;CM

3. Stress-Strength Reliability Computation
Let X and Y be represents the strength and stress for a system and having the densities f(x)
and f(y), respectively. Since X follows to the power distribution having shape parameter ¢, and

scale parameter €, and the pdf of X is given by

all

== ]al,a1>0,0<x<9,¢9>0. 3)

Since Y also follows to the power distribution having shape parameter o, and common scale

parameter @, and the pdf of Y is given by

()= 2y Lo, >0,0<y<0,0>0. )
So that the stress-strength reliability is deﬁne as
R=PY <X)= _[f ) Fy (x)dx.
Using (1) and (2), the Equation (5) is
R= x“” ye'dy tdx.
foe o

After simplifying, we obtain stress strength reliability in this form

R = a,

)

o, +062

3.1. Maximum likelihood estimator (MLE) of ‘R based on complete sample
Let x,,x,,..x, be a random sample of size n, from f(x,60,a,) and y,,y,,...y, be a random

sample of size n, from f(y,6,c,), respectively. Since X and Y follows to the power distribution,

then the likelihood function is given by

(0‘1’0‘27‘9|3C y HHf(x ) ()

i=l j==1

Using (3) and (4), the above equation is as the form

L(al,az,mx,y):n[%xfﬂ }H[ % } ©
Lo Lo

Taking the logarithm both side of Equation (7) and the log-likelihood function is as follows
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logL =nIna, —ne; n0+(a, —1)Z‘:lnxi -na,In0+n,Ina, +(a, —1)21nyj. (7
=

i=1
Therefore, the ML estimates of 6, ; and «, and which maximizes Equation (8). The normal
equations are given by

Ont(en0) M g4 inx —0
1 / ’

o, a, P

olnL(a,, a,0) n, S

A e+ ny, =0, 8
aaZ aZ ’ ; y‘/ ( )

oInL(0, oy, ;) __maytma,
o0 0 '

Then we obtain the ML estimate of ¢, and «, are the function of 8, respectively, given by

N n, A
o =—— and ¢, =

n

mn@-> Inx, n, ln@—ilnyj

i=1 j=1

n,

©)

From (7), we estimate the ML estimate of & as follows

_nlal+n2a2:0 = é:oo

We cannot obtain the ML estimate of @ directly. So, in this case, the ML estimates of € as
follows: we have to choose 6 for L(e,,a,,0) in (8) is maximum. Now L(q,,,,6) is maximum if
0 is minimum. Let x,,x,,...x, and y.,»,,..y, be a random samples of size n and n,

independent observation from the given population so that OSx(l) X S S, <6 and

0< Yoy Vo) S SV = 6. Since the minimum value of @ consistent with the sample is Xn) and

Vim) the largest sample observation, é:max(x(nl),y(m)). We obtain the ML estimate of stress-

strength reliability, say R, from (6), by using invariance property of the ML estimate, is =

A A

a ta,

3.2. Maximum likelihood estimation for censored sample

Censoring refers to lifetime data analysis for mechanistic or natural systems. Life testing
experiments, usually consume more time as well as these are very expensive due to their destructive
nature. In some situations, it is neither possible nor desirable to observe each and every unit under test.
In such circumstances, only a portion of the sample is studied, and we call the experiment censored.
The important factor that affects the life-time experiment is the amount of time required to obtain the
complete sample. To limit this factor, we may put some items into a test and have the have the test
terminate at a pre-defined time. The sample obtained from this type of experiment is called a time-
censored sample or type-I censoring. In another way, we may put the same items into a test, and the
test terminates when a pre-defined number of failed items is reached. The samples obtained from this
experiment are called ‘failure censored samples’ or type-II censoring. Failure-censored samples are
most useful in dealing with high-cost items such as color television tubes, submarines, jet plane
engines, etc. Now we use failure or type-II censoring for the following analysis (see more about type-
II censoring in Panahi and Asadi (2011), Kumar and Tomer (2016), Banerjee and Kundu (2008)).
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Let (X, n,, ml) and (Y s Ny mz) be the combinations of two type-1I censored data such that
(X, n,m)=X, Xypniseee X, and (Y, ny, my)=Y, Y nom.. Thus the

Lmny 2 2imying 2 > S mym n g Lmoyingy> YZ:mz:nz""" myimoyin,

combined likelihood function of the parameters (¢,,,,6) given observed data is written as

(nl -m )'(nz Hf X, 0,0 |:1 F(xm ,al,9>:|"‘7’"'

xﬁf(y/,az,ﬁ)[l—F(yMZ,az,B)Trmz. (10)

The likelihood function is modified by using (1), (2) and (10), we have
(ZlmI a;"z a, o\ a a, \2 7" e a; -1 -~ a, -1
oc noy +na; el_xml ez_ynf xil y‘z
01 1tmay ( l) ( 2) 1121[ 11 J

Taking logarithm both side of above equation, we have

L(e,,0, a,|data)=

log Lum, log e, +m, logar, — (max, + n,a, ) log @+ (n, — ml)log(é’“' — X )+(n2 —mz)log(m2 —y,ji)

a, 1) 210gx +(a, -1 Zlogyj (11)
On partial differentiation of (11) with respect to ¢,,, and 6, we have
n, —m )(0% logf—x" logx, | m
alongﬂ_nllogeJr( 1 1)( | ')+210g
Ja, ¢ 0 —x,!
dloe L n,—m,)(0% logf—-y,>logy, | &
o8 :ﬂ—nzlog9+( - 2)( ~ ” )+Zlogyj,
oa, a, 0% -y, =
OlogL _ -(nao +na,) n a, (nl _ml)garl " (nz _mz)azé’mr1
00 0 o —x,! 0“ -y,

The above differential equations are put equal to zero. After solving these normal equations, we get

the ML estimate of «,,c, and 0 say ¢,,a, and 6, respectively, which are defined as

-1

(l’ll —m, )(gal :Og Ha— xZ: log X, ) —ilog x|,
6" —xz .

m

a, =m| nlogf-

- 0” logd —x* lo my
) e gxaz = gme)—Zlogy,- : (12)
-

my

a, =m,| n,logf-

(n,—my)e,0%7 LG (n,—m)o"" |

o — y,'zz o9 — x*

m

0= (mo, +nyaxy)

Since the above system of normal equations is not closed form so we used some numerical
iteration method for solving these equations. Let ¢, &, and 6 are the MLE of the oy, a, and 6.

By using the invariance property of MLE, the ML estimator of ‘R is obtained as

R=—"— (13)
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4. Interval Estimation

We have obtained the asymptotic confidence (AC) interval for parametric functions. Since the
distribution of the ML estimate is not completely specified in the distribution, we construct the AC
interval for the parameter by using the asymptotic property of the ML estimate. The AC intervals of
a,, a, and @ are find out by fisher information matrix. Since R is the function of ¢, and «,, so

we cannot obtained the AC interval directly. In this case, we use the delta method to obtain the AC
interval of ‘R.

4.1. AC interval by delta method

Now, we use the delta method (Qehlert 1992) to obtain the asymptotic confidence interval (ACI)
of R. The delta method is a standard technique in statistics, and it is based on a truncated Taylor series
expansion. The delta method allows a normal approximation for a continuous and differentiable
function of a sequence of random variables that already has a normal limit in distribution. According

to the delta method, the variance of R is estimated by /n [‘.R - ‘Jﬂ >N (O, V(R)(R ’)2 ) So the ACI

of R is obtain as follows
R+ z,,S.E(R), (14)
where z,,, is upper 100(e/2)" % of standard normal variate and S.E.(R) is the standard error of

R (Qehlert 1992). The ACI of R will be found in case of complete and censored data.

4.2. Bootstrap confidence interval

Since we deal with censored sample observations obtained from the life-testing experiments. The
cognitive sample observations from such an experiment may not be large, so ACI may not be a proper
choice. In such situation, we discuss the procedure the bootstrap confidence interval (CI) for R as
discussed by Efron and Tibshirani (1994). The necessary steps for obtained the parametric bootstrap

method for SR are follows.

1. Generate the random samples x,,x,,..x, and y,,y,,..y, form f(x,0,¢) and f(y,0,a,),
respectively.

2. Compute the MLE &,,é, and 6.

3. Using ¢,,a, and 0, generate the samples of size n, and n, under similar conditions, as in
step 1, take {xl* Xy X, } and { D D y;z} samples under type-II censored for pre-define values
of m, and m,.

4. Now based on the samples obtained from step 3 and obtained the bootstrap estimate of R say
R” by using delta method.

5. Repeat the Step 3, M times, to obtained the set of bootstrap estimates (if?:; k=12,.,M).

A

6. Arrange (ﬁ?;; k=1,2,...,M) in ascending order, say (SR s 2],...,92*”,,]).
7. A two-sided 100(1 - ) percentile boot-p CI are given by
(R, 90)= (0 e T ) (15)

o

where [¢] represents the ¢" integer part of the sequence (m[l],m[z],...,mw]).
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5. Numerical Application

Here, we have considered some numerical data to show the application of the power distribution
in a real-life situation. We present some illustrations based on the simulation study. Now, we
concentrate the sample generation procedure on the power distribution with complete and censored
sample data. Sample generation procedure is as follows:

1. We use inverse cdf sampling technique for generating random numbers from the power
distribution i.e. generate U ~Unif (0,1) and X =F,'(U).

2. Chose the parametric initial values (¢,,,,0).

3. Generate the random sample X, X,, ..., X, ofsize n, form f/(«,,0).

4. Generate a random sample Y, Y,, ..., ¥, of size n, form f,(a,, 9).

5. Assume pre-fixed values m, and m, and get two ordered sample X =X, . X, , ..., X, and

Y=Y,Y,,..,Y

L7 we T s Ly
For the simulation study, we assume that
1. Assume o, ={2,3}, o, ={2,3} and 6 ={2,3}.

2. Take {m,,m,} ={(10,10),(20,20), (30,30)} for particular value of (n,,n,) ={30,30}.
3. Again assume {m,, m,} = {(20, 20), (40, 40),(50,50)} for (n,,n,)={50, 50}.

4. Firstly obtained the ML estimates of ,, a,, and @ say &, d,, and .

5. Obtained the ML estimate of ‘R, by using invariance property of the ML estimates, for the
different combination of parameters values based with complete and censored data.

6. Asymptotic confidence and boot-p intervals of R are also calculated at o level of significance.

7. The ML estimate of R with respected mean square error (MSE) is shown in Tables 1-4.

8. The AC and boot-p intervals length with respected coverage probability (CP) are also calculated
in Tables 5-8.

We generate repeated samples using these parametric values and enumerate average ML estimate
of R along with its MSE and also enumerate AC and boot-p intervals along with their CP based on
5000 iteration. From all the tables, we observe that MSEs of stress strength reliability based on the
observed sample size. In the simulation study, we observed that

1. ML estimate of stress-strength reliability based on given sample size.

2. ML estimate of parameters are calculated for complete and type-1I censored data and we see
that the ML estimate based on complete sample are more reliable to the ML estimate obtained by
censored sample.

3. In the life time experiment with censored sample, the MSE of ML estimate parallel decreases
with observed sample size increase.

4. While comparing boot-p and AC intervals of ‘R, the CP of boot-p interval is better than the CP

of AC interval for given values of (n,m).

5. The length of asymptotic and boot-p confidence intervals for censored data is larger than the
complete data. Their length and CP also decrease as m increases for a given value of n for the
censored sample.
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Table 1 Average ML estimate values of R and their MSEs for o, =2, =2 and different values

of a,,n,,m,n,, and m,

a, =150 a, =175 o =2.00 a, =225  a,=2.50
(n,n,) (m;,m,)
R 0.42857 0.46667 0.50000 0.52941 0.55556
(30,30) (10, 10) R 0.42682 0.44758 0.50193 0.52193 0.55193
MSE 0.12878 0.14527 0.16452 0.14276 0.17626
(20, 20) R 0.42902 0.45428 0.50621 0.53621 0.54621
MSE 0.12105 0.12140 0.13251 0.14210 0.14425
(30, 30) R 0.43138 0.44093 0.51058 0.51058 0.55308
MSE 0.09854 0.10142 0.11542 0.10254 0.10982
(50, 50) (20, 20) R 0.42480 0.43436 0.52114 0.52114 0.56114
MSE 0.10141 0.14122 0.14152 0.14685 0.15562
(30, 30) R 0.43979 0.44592 0.49267 0.52267 0.55067
MSE 0.09845 0.12457 0.13485 0.12362 0.13826
(50, 50) R 0.42982 0.43615 0.50461 0.52192 0.54192
MSE 0.0856 0.09475 0.10451 0.11204 0.10241

Table 2 Average ML estimate values of ‘R and their MSEs for «,

values of «,,n,,m,,n,, and m,

=3, @ =3 and different

=150 =175 a =2.00 a, =225 a =250
(ny,n,) (my,m,)
R 0.33333 0.36842 0.40000 0.42857 0.45455
(30,30) (10, 10) R 0.33479 0.38211 0.42541 0.42281 0.47505
MSE 0.16652 0.17142 0.18214 0.16254 0.16251
(20, 20) R 0.324591 0.37619 0.41248 0.43909 0.46718
MSE 0.13150 0.14512 0.15146 0.14215 0.16245
(30, 30) R 0.34523 0.36422 0.42040 0.43122 0.45243
MSE 0.10120 0.11521 0.12541 0.10574 0.11542
(50,50)  (20,20) R 0.39384 0.33254 0.41542 0.42704 0.46412
MSE 0.16844 0.15212 0.17511 0.16524 0.17265
(30, 30) R 0.32411 0.35245 0.41228 0.42247 0.45248
MSE 0.12104 0.13254 0.14214 0.12548 0.14251
(50, 50) R 0.32438 0.35535 0.40145 0.42545 0.45441
MSE 0.09451 0.10541 0.10547 0.09544 0.09851
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Table 3 Average ML estimate values of R and their MSEs for o, =2, =2 and different

values of «,,n,,m,,n,, and m,

a, =1.50 a, =175 «a,=2.00 a,=225 a,=250

(n17n2) (ml’mz)
R 057143 0.53333  0.50000 0.47059  0.44444

(30,30) (10,10) R 0.57842 0.52548 0.50525 0.46854 0.45854
MSE 0.13256 0.14425 0.14384 0.13845 0.14522

(20,20) g3 0.58542 053245  0.50785 047592 0.43585
MSE ~ 0.11454  0.11247  0.12549 0.13554  0.12457

(30, 30) R 0.58445 0.54841 0.51548 0.46854 0.44586
MSE 0.09451 0.09842 0.10745 0.10112 0.10845

(50,50) (20, 20) R 0.59240 0.55245 0.49254 0.48562 0.45471
MSE 0.10461 0.12451 0.13251 0.12548 0.13542

(30,30) g3 056754 053254  0.49525 046422  0.46251
MSE  0.09411 0.10124  0.11555 0.10144  0.10515

(50, 50) R 0.58452 0.54215 0.51541 0.47625 0.45421
MSE 0.09215 0.08214 0.10624 0.10024 0.09451

Table 4 Average ML estimate values of R and their MSEs for ¢, =3.0, 6 =3 and different

values of «,,n,,m,,n,, and m,

a,=150 o, =175 @, =200 a,=225 a, =250

(n17n2) (ml’mz)
R 066667  0.63158  0.60000 0.57147  0.54545

(30,30) (10, 10) R 0.66542 0.63558 0.61451 0.57842 0.55145
MSE 0.14515 0.14685 0.15842 0.13944 0.13745

(20, 20) R 0.65411 0.64251 0.60125 0.58542 0.54268
MSE 0.12488 0.12985 0.13845 0.12575 0.11452

(30, 30) R 0.67541 0.64555 0.62834 0.58445 0.55044
MSE 0.09458 0.09842 0.11652 0.09764 0.10441

(50,50) (20, 20) R 0.65284 0.62549 0.62485 0.59240 0.52417
MSE 0.16844 0.15212 0.17511 0.10461 0.17265

(30, 30) R 0.66454 0.63877 0.60124 0.56754 0.54218
MSE 0.11254 0.12484 0.12410 0.11542 0.12493

(50, 50) R 0.66458 0.62581 0.61245 0.58452 0.56241
MSE 0.08245 0.09541 0.10435 0.09841 0.09552
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Table 5 Average length with coverage probability of R and their MSEs for o, =2, =2 and

different values of «,,n,,m,,n,, and m,

(n,n)  (m,m,) @, =150 a =175 a, =200 a =225 a =250

(30, 30) (10, 10) ACI Length 0.13952  0.13535 0.13456 0.13521 0.13821
CP 0.92514  0.92541 0.93541 0.92541 0.93581

Boot-p  Length 0.14582  0.14755 0.13284 0.14785 0.13284
CP 0.93584  0.93258 0.92541 0.93250 0.93284

(20, 20) ACI Length 0.11310  0.12417 0.12427 0.11427 0.12127
CP 0.95447  0.93519 0.94514 0.93851 0.94514

Boot-p  Length 0.12545 0.12548 0.11325 0.10244 0.11715
CP 0.94582  0.94257 0.93540 0.94157 0.93684

(30, 30) ACI Length 0.10292  0.10235 0.10540 0.10521 0.11101
CP 0.96742  0.96541 0.96684 0.94566 0.97564

Boot-p  Length 0.11457  0.11254 0.11547 0.12154 0.12451
CP 0.95847  0.95487 0.97554 0.95686 0.96854

(50, 50) (20, 20) ACI Length 0.11284  0.11557 0.12541 0.12117 0.11457
CP 0.94154  0.94259 0.95484 0.94521 0.95842

Boot-p  Length 0.12144  0.10124 0.12548 0.11845 0.12144
CP 0.95487  0.95424 0.96523 0.95458 0.96484

(30, 30) ACI Length 0.10872  0.10745 0.10581 0.10584 0.11854
CP 0.95215  0.96631 0.96480 0.95614 0.98450

Boot-p  Length 0.11124  0.10125 0.11545 0.11024 0.10155
CP 0.954515 0.96636 0.96845 0.96171 0.97215

(50, 50) ACI Length 0.09457  0.09102 0.09115 0.08215 0.10542
CP 0.98541 0.97518 0.98412 0.98635 0.99015

Boot-p  Length 0.10214  0.09552 0.10548 0.15484 0.09845
CP 0.97252  0.98258 0.97892 0.97895 0.98514

Table 6 Average length with coverage probability of R and their MSEs for «, =3, 6 =3 and

different values of «,,n,,m,,n,, and m,

(n,n)  (m.m,) @, =150 a =175 a,=2.00 a =225 a =250

(30, 30) (10, 10) ACI Length 0.12254  0.13335 0.13254 0.13845 0.12458
CP 0.93154  0.93854 0.94154 0.93824 0.94251

Boot-p  Length 0.11815 0.12515 0.11557 0.12844 0.11854
CP 0.94845 0.94854 0.95458 0.94549 0.95540

(20, 20) ACI Length 0.12547  0.11415 0.12484 0.12454 0.11545
CP 0.94875 0.94549 0.9546 0.94545 0.95148

Boot-p  Length 0.11155 0.12145 0.12842 0.13151 0.12845
CP 0.95485 0.95284 0.96484 0.96584 0.96748

(30, 30) ACI Length 0.10941 0.10548 0.10654 0.11745 0.10541
CP 0.97256  0.96844 0.97245 0.96242 0.96451

Boot-p  Length 0.12584  0.10258 0.15554 0.11450 0.11021
CP 0.97455 0.98154 0.98214 0.97251 0.98151
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Table 6 (Continued)

(n,n)  (m.m,) @, =150 a =175 @, =200 a =225 a =250

(50, 50) (10, 10) ACI Length 0.13254  0.12547 0.13898 0.13185 0.12457
CP 0.95414  0.95414 0.94521 0.95650 0.96245

Boot-p  Length 0.13845 0.13545 0.12545 0.12545 0.13254

CP 0.96854  0.97541 0.96554 0.96848 0.97815

(20, 20) ACI Length 0.101542  0.11545 0.10581 0.11184 0.09456
CP 0.96845 0.97545 0.96484 0.96554 0.97255

Boot-p  Length 0.11541 0.12454 0.10545 0.10451 0.10241

CP 0.97842  0.98454 0.97815 0.97851 0.98121

(30, 30) ACI Length 0.08262  0.08245 0.09245 0.09254 0.10822
CP 0.99423 0.98264 0.97515 0.98544 0.98245

Boot-p  Length 0.09852  0.09451 0.10242 0.09125 0.09451

CP 0.98955 0.98851 0.98451 0.99151 0.99151

Table 7 Average length with coverage probability of R and their MSEs for ¢, =2, =2 and

different values of «,,n,,m,,n,, and m,

(n,n,) (my,m,) a,=150 «a,=175 a,=2.00 a,=225 a,=2.50

(30, 30) (10, 10) ACI Length 0.12155 0.12584 0.11455 0.12584 0.13454
CP 0.95421 0.95416 0.95641 0.96540 0.94895

Boot-p  Length 0.11544  0.12145 0.11041 0.12685 0.12181
CP 0.96854  0.96455 0.95451 0.95474 0.95484

(20, 20) ACI Length 0.10154  0.11454 0.11845 0.12854 0.10154
CP 0.97564  0.96425 0.97564 0.97541 0.96842

Boot-p  Length 0.11520  0.10151 0.10415 0.11514 0.10451
CP 0.97584  0.97841 0.96844 0.96945 0.97155

(30, 30) ACI Length 0.09424  0.09425 0.10451  0.102324 0.09121
CP 0.98685  0.98421 0.98642 0.97684 0.98368

Boot-p  Length 0.10254  0.09542 0.10984 0.09454 0.10125
CP 0.99841 0.98547 0.98454 0.98152 0.98574

(50, 50) (20, 20) ACI Length 0.10544  0.10224 0.11248 0.11015 0.10544
CP 0.96854  0.97244 0.96852 0.96844 0.97651

Boot-p  Length 0.11458  0.10215 0.11515 0.10455 0.11515
CP 0.97815 0.98154 0.97245 0.97155 0.96154

(30, 30) ACI Length 0.09234  0.09854 0.10281 0.09254 0.08521
CP 0.98241 0.98236 0.98564 0.98256 0.98754

Boot-p  Length 0.10254  0.09185 0.10054 0.10189 0.09154
CP 0.98945 0.98514 0.98045 0.98012 0.98045

(50, 50) ACI Length 0.07541 0.08542 0.08634 0.08254 0.09515
CP 0.99284  0.99254 0.99636 0.99754 0.99854

Boot-p  Length 0.09155 0.09415 0.09151 0.10082 0.08424
CP 0.98915 0.98915 0.98151 0.99540 0.99550
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Table 8 Average length with coverage probability of R and their MSEs for o, =3, =3 and

different values of «,,n,,m,,n,, and m,

(n,n)  (m,m,) a,=150 a,=175 a,=200 a,=225 a,=2.50

(30, 30) (10, 10) ACI Length 0.11424  0.12584 0.12154 0.11548 0.12471
CP 0.94521 0.94852 0.94856 0.95846 0.95474

Boot-p  Length 0.12515 0.12511 0.11515 0.12155 0.12454

CP 0.95451 0.95447 0.95485  0.961544 0.95051

(20, 20) ACI Length 0.10124  0.09548 0.10451 0.10254 0.10514
CP 0.96485 0.96474 0.96744 0.95743 0.97154

Boot-p  Length 0.11454  0.10545 0.11054 0.11545 0.11745

CP 0.96654  0.96478 0.96051 0.97215 0.96845

(30, 30) ACI Length 0.08245 0.08456 0.09842 0.09012 0.08545
CP 0.98254  0.98415 0.97545 0.97584 0.98544

Boot-p  Length 0.10215 0.09455 0.09545 0.10455 0.09845

CP 0.98451 0.978411 0.97145 0.98545 0.97155

(50, 50) (20, 20) ACI Length 0.11754  0.10451 0.11452 0.10498 0.10145
CP 0.96154  0.96745 0.95421 0.96521 0.96481

Boot-p  Length 0.11455 0.11415 0.12815 0.11545 0.11451

CP 0.96584  0.96421 0.96585 0.97245 0.96845

(30, 30) ACI Length 0.09842  0.09254 0.09454 0.09854 0.09245
CP 0.98242  0.98514 0.98754 0.97154 0.98655

Boot-p  Length 0.10254  0.09844 0.10545 0.10515 0.10245

CP 0.97515 0.97554 0.97215 0.98454 0.97154

(50, 50) ACI Length 0.08215 0.08124 0.09214  0.082451 0.08625
CP 0.99255 0.99284 0.98954 0.99251 0.99285

Boot-p  Length 0.09155 0.09012 0.09415 0.09112 0.08954

CP 0.99845 0.99011 0.98455 0.99545 0.99478

5.1. Simulation data
In this section, we deal the analysis of a simulated data and show how can use the result in real
life problem. We generate a simulated sample from the power distribution population having ¢, =2

and «, =2.5 and 6 =3 with same sample size n =n, =25 presented in Table 9. The observed

sample of stress (¥) and strength (X)) are as

Table 9 Simulated data of X and Y
Data X : 0.73517, 0.76286, 0.94939, 1.29551, 1.47085, 1.50888, 1.71101, 1.79574, 1.82376,
1.86437, 1.97652, 2.04804, 2.07875, 2.10856, 2.13789, 2.19393, 2.42172, 2.42760, 2.43914,
2.53862,2.64788, 2.68165, 2.73583, 2.88319, 2.93943
Data Y: 0.57674, 0.85571, 0.96919, 1.09143, 1.59470, 1.76226, 1.84869, 2.14430, 2.17365,
2.18479, 2.29608, 2.30037, 2.35548, 2.40995, 2.55089, 2.55180, 2.65471, 2.65852, 2.66172,
2.66583, 2.79449, 2.79636, 2.80176, 2.95940, 2.96953
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Using the (9), the ML estimates of «,,a,, and @ are 2.1601582, 2.5773875 and 2.9695278,
respectively. So, the ML estimate of R (by using the invariance property of MLE) is 0.45596.

Table 10 The ML estimate of R with ACI and boot-p for simulated data
(my,my) R ACI Boot-p
(10, 10) 0.41154  (0.35242, 0.45182) (0.34038, 0.45230)
(20, 20) 0.42614  (0.37619, 0.46102) (0.37885, 0.4723)

(25, 25) 0.45596  (0.41051, 0.52847) (0.40867, 0.53135)

5.2. Real data application

For numerical purposes, we show two real data sets to analysis of the strength of system. The
data sets are represented and studied by Xie et. al (2009). The data show the Jute fiber breaking
strength at two different gauge lengths where X represents the strength of Smm fiber and Y is the
strength of 15mm fiber.

Table 11 The Jute fiber breaking strength at two different gauge lengths
Data set 1 of length S mm: X (», =30) | Dataset2 oflength 15 mm: Y (#n, =30)

566.31, 270.79, 516.48, 823.03, 226.53, | 594.40, 202.75, 68.37, 574.86, 225.65,
367.70, 185.42,441.87, 618.57, 546.11, | 76.38, 156.67, 127.81, 813.87, 562.39,
268.20, 315.33, 809.23, 218.86, 583.97, | 468.47, 135.09, 72.24, 497.94, 355.56,
304.84, 129.08, 537.45,496.28, 167.87, | 569.07, 640.48, 200.76, 550.42, 748.75,
306.99, 178.25, 370.02, 168.20, 554.61, | 489.66, 678.06,457.71, 106.73, 716.30,
360.80, 260.97, 254.29, 495.51, 187.68. | 42.66, 80.40, 339.22, 70.09, 193.42.

First, we use the Kolmogorov-Smirnov (K-S) test to check whether the power distribution fits the
given data. We calculate the ML estimate of given parameters ¢, a,, and @ of the power distribution
for stress and strength model. The K-S distance for data I is 0.2227 with p-value 0.087 whereas for
data IT the K-S distance is 0.1432 with associated p-value 0.524. It shows that the power distribution
is appropriate for both data. The ML estimates of reliability for the real data set are 0.567. The ML
estimate of R and related confidence intervals based on different sample size are defines in Table 12.

Table 12 The ML estimate of R with ACI and boot-p for the real data set

(my, m,) R ACI Boot-p
(10, 10) 0481 (0.442,0512) (0.438, 0.523)
(20, 20) 0512 (0.461,0.561) (0.458, 0.572)
(30, 30) 0567  (0.532,0.612) (0.541, 0.620)

6. Conclusions

In this study, we see that the power distribution is used as a simple model to evaluate system
reliability and obtain its statistical properties like mean, variance, order statistic, moment generating
function, characteristic function, m™ moment, method of moments estimate and Lorenz curve also
examined. Since this study is based on the reliability so the stress-strength reliability and hazard rate
function also calculated. The ML estimate of the stress-strength reliability also calculated when both
stress and strength of a system also follows to the power distribution. It is suggested that the power
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distribution be given consideration when analyzing failure experiments. We hope that this work will
aid in future research.
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Appendix
The second derivatives of the log likelihood function with respect to ¢;,a,, and @ are as follow:
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