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Abstract 

In the statistical literature, there are many lifetime distributions used in reliability analysis, 
including exponential, normal, gamma, and Weibull distributions. Power distribution is also useful in 
many scientific contexts, with significant consequences for our understanding of natural and man-
made phenomena. This expository paper presents the evaluation of reliability when stress and strength 
follow power distribution with a common scale and different shape parameters. We obtain maximum 
likelihood (ML) estimates of stress-strength reliability with their confidence intervals. Furthermore, 
to compare the performance of various procedures, we apply statistical simulation. Finally, an analysis 
of a real dataset is given for illustrative purposes. 
______________________________ 
Keywords: Maximum likelihood estimator; P[Y<X], right censoring, asymptotic confidence interval, real data. 
 
1. Introduction 

The stress-strength reliability of a system can be defined as an assessment of reliability in terms 
of stress, represented by a random variable ,Y  experienced by a component and the strength which is 
represented by the random variable X  of a component. In other words, we can say that if the stress 
on a system exceeds the strength of the component, then the system will fail. The literature of system 
stress strength reliability and applications has been discussed by Birnbaum (1956). Firstly, Birnbaum 
and McCarty (1958) proposed the stress strength reliability of a system and obtained the confidence 
bound based distribution free sample for the stress strength reliability. Cheng and Chao (1984) 
obtained the distribution free confidence interval for probability of Y X<  of a system. Surles and 
Padgett (1998) obtained an estimate of stress-strength reliability when both components follow the 
Burr type X  distribution. Al-Mutairi (2013) discussed the inferential procedure for stress strength 
reliability when both variables follow the Lindley distribution. Kumar et al. (2015) considered 
estimation process of stress and strength reliability when both follow the Lindely distribution under 
progressively first failure censoring. Sharma et al. (2015) discussed stress-strength reliability when 
both are the inverse Lindley lifetime and obtained a maximum likelihood (ML) estimate of the 
reliability function. They also obtained the Bayes estimate of parametric function by using Markov 
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chain Monte Carlo (MCMC) method and Lindley approximation under informative and non-
informative prior. Chaudhary et al. (2017) obtained the stress strength reliability when both strength 
and stress follows the Maxwell distribution. They also found the Bayes estimate of stress-strength 
reliability under the square error loss function by using the MCMC technique. Kumar and Kumar 
(2021) obtained the estimation of the stress-strength reliability for the inverse Pareto distribution under 
progressively censored data. Saini et al. (2021) discussed the classical and Bayesian estimate of the 
stress-strength reliability for generalized Maxwell failure distribution under progressive first failure 
censoring. In the past few decades, the literature has reviewed several papers on the application of 
stress strength reliability for various models. A few names for reference are cited (Dhillon 1980, 
Govindarajulu 1967, Juvairiyya and Kumar 2019, Pham and Almhana 1995, Weerahandi and Johnson 
1992). 

Power distribution has wide applications in many fields of survival and reliability analysis. The 
following methods are commonly used for analyzing the power-law data: least-squares fitting and 
parameter estimation in different situations for the power distributions. Even in many cases, such 
methods provide an accurate answer, but they are not satisfactory because they do not show the 
indication to obey the power distribution. Gaudoin (2003) discussed some related transformations and 
tests for goodness of fit for power distribution. Goldstein et al. (2004a) showed the same basic 
characteristics of discrete and continuous power-law distribution and discussed the application for 
scientific importance, which has significant consequences for our understanding of survival and 
reliability. They also found the ML estimate of the scale parameter of the power distribution and the 
estimating procedure of the lower bound on power-law behavior. They also used the Kolmogorov-
Smirnov (K-S) test for goodness of fit and pointed out the powerful application of this distribution for 
twenty-four real data points. Cordeiro and Brito (2012) showed that the power distribution is the 
inverse of the Pareto distribution and obtained the basic characteristics of this distribution. They also 
derived the ML function for some real data. Okorie et al. (2017) discussed some statistical properties 
of modified power function distribution and obtained the ML estimate of the parameter of modified 
power distribution using some real data sets (see Koen and Kondlo 2009, Meniconi and Barry 1996, 
Rigdon 1989). 

There are many situations where power distribution is widely used in many areas of reliability. In 
this paper, we have considered the estimation procedures and application of the stress-strength 
reliability when strength and stress and both components are followed to the power distribution with 
the same scale and different shape parameters. We organize the remainder of this paper as follows: In 
Section 2, we discussed some statistical properties of the power distribution. In Section 3, we evaluate 
the ML estimate of stress-strength reliability for complete and censored data. In Section 4, we also 
calculated the asymptotic confidence and boot-p intervals for both cases. Section 5 discusses the 
analysis of the simulation study and a real data set, while Section 6 concludes with some concluding 
remarks. 
 
2. The Model 

Let X  be a random variable follow to power distribution and having probability density 
function (pdf) is given as 

( ) 1, 0 , 0, 0.f x x xα
α

α θ α θ
θ

−= < < > >                                        (1) 

where α  is the shape and θ is the scale parameter and the cumulative distribution function (cdf) of 
power distribution is 
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( ) , 0, 0,0 .xF x x
α

θ α θ
θ
 = > > < < 
 

                                           (2) 

 

    
 

Figure 1 The pdf plots of the power distribution 
 

Figure 1 shows the behavior of the pdf based on different value of θ  and .α The thm  moment of 
the power distribution is  

( ) .
m

mE X
m
β θ

α
=

+
 

So, the mean ( )µ  and variance 2( )σ  of the power distribution are  

1
θαµ
α

=
+

 and 
2

2
2 .

( 2)( 1)
αθσ

α α
=

+ +
 

The corresponding hazard function ( ( ))h t  and survival function ( ( ))S t  are given by  

1( )h t t
t

α
α α

α
θ

−=
−

 and ( )( ) ,S t tα θ αθ θ −= −  

where t  is the pre-define time. 
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Figure 2 The hazard function plot of the power distribution 
 
The time to failure of given distribution is given by  

1

0 0

( ) 1 exp ( ) 1 exp .
t t xE t h y dy dx

x

α

α α

α
θ

−   
= − − = − −   −   

∫ ∫  

On substituting x uα αθ − =  and integrating, we get 

1( ) 1 exp .
t tE t du

u

α α

α

θ α

α
θ θ

− 
= − − = 

  
∫  

Figure 2 shows the behavior of the ( )h t  based on different value of θ  and .α  The quantile function 

of the power distribution is 1/( ) .Q p p αθ=  
 
2.1. The moment generating and characteristics function 

The moment generating function ( ( ))XM t  and characteristics function ( ( ( )),X tφ  respectively, of 
the power distribution are as follows 

[ ]
( )

( ) ( , )
( )x

t
M t

t α

α α α θ

θ

Γ −Γ −
=

−
 and 

( )
( ) ( , )( ) .X

itt
i t α α

α α θ αφ
θ

Γ −Γ −
=

−
 

 
2.2. Order statistic 

Let 1 2, ,..., nX X X  be the independent and identically distributed random variables of size n  and 
each variate having cdf given in Equation (2). If these variables are put in ascending order with theirs 
magnitude and these written in the form (1) (2) ( )... .nX X X≤ ≤ ≤  We say ( )rX  as the thr  order statistic, 

now the pdf of thr  order statistic is 
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( )
( )( ) .
( , 1)

n r r

r n

x xf x
x B r n r

αα αα θ
θ

−  −
=  − +  

 

Since (1) 1 2min ( , ,..., )nX X X X=  and ( ) 1 2max ( , ,..., )n nX X X X=  are define as the first and 

last order statistic, respectively. The pdf of ( )1X  and ( )nX  are obtained by putting 1r =  and r n=  in 

( )( )rf x  and define as 

1
(1)

( )( ) ,
( )

n
r

n

n xf x x
x

α α

α α α

α θ
θ θ

− −
=

−
 

and 

( )( ) .
n

n
n xf x
x

α

θ
 =  
 

 

The pdf of joint order statistic say ( )rX x=  and ( ) ,sX y=  ,X Y<  is given by 

( )
( )

1
1 1!( , ) .

( 1)!( )!( 1)!

s r
r

r s s nn

y xn y xf X x X y
r n s n s y

α αα α

α α αθ θ

− −
− −

−

−
= = =

− − − − −
 

The pdf of range, say ,w  is define as 

( ) ( ){ }
2 211

0

( 1)( ) , 0 .
n

n

n nf w x w x x w x dx w
θ

α αα α
α

α θ
θ

−−−−
= + + − ≤ ≤∫  

Since the above integral is not closed form so we use some numerical method i.e., MCMC method to 
solve it. 
 
2.3. Parameter estimates by method of moment 

One perceptive method of estimation of parameters is the method of moment, which compares 
the sample moments with corresponding population moments, which are the values expressed in terms 
of the parameters of the given distribution. Here, the mean and variance of given sample are 

1

1

n

i
i

x n x−

=

= ∑  and 2 1 2

1
( 1) ( ) ,

n

i
i

s n x x−

=

= − −∑  respectively. On equating the sample moments to 

corresponding population moment, we have 

1
x αθ

α
=

+
 and 

2
2

2 .
( 2)( 1)

s αθ
α α

=
+ +

 

After solving these equations and we get the estimate of parameters of θ  and ,α  say m̂θ  and ˆmα  are 
define as 

2 2

ˆm
s x s

s
α − −

=  and 
2 2

2 2
ˆ .m

x s x
s x s

θ −
=

− −
 

 
2.4. Lorenz curve 

The Lorenz curve is defined the graphical representation of the cumulative income distribution. 
The Lorenz curve (Lorenz 1905) for a positive real random variable X is defined as the graph of the 
ratio 



706                                                                   Thailand Statistician, 2024; 22(3): 701-719 

( ) ( ) 0

0

( )|
( ) .

( ) ( )

x
x f x dxE X X x

L F x
E X x f x dx

∞

≤
= = ∫

∫
 

For the power distribution, the denominator and nominator of above equation are  
1

1

0
0

( )
( 1)

x
x xx f x dx x x dx

α
α

α α

α α
θ θ α

+
−= =

+∫ ∫   and  1

0
0

( ) .
1

x f x dx x x dx
θ

θ α
α

α αθ
αθ

−= =
+∫ ∫  

So the Lorenz curve is defined as ( )
1

1( ) .xL F x
α

αθ

+

+=  

 
3.    Stress-Strength Reliability Computation 

Let X  and Y  be represents the strength and stress for a system and having the densities ( )f x  

and ( ),f y  respectively.  Since X  follows to the power distribution having shape parameter 1α  and 
scale parameter ,θ  and the pdf of X  is given by 

 
1

1

1
1

1( ) , 0,0 , 0.xf x x
α

α

α
α θ θ

θ

−

= > < < >                 (3) 

Since Y  also follows to the power distribution having shape parameter 2α  and common scale 
parameter ,θ  and the pdf of Y  is given by 

  

2

2

1
2

2( ) , 0, 0 , 0.yf y y
α

α

α
α θ θ

θ

−

= > < < >                                              (4) 

So that the stress-strength reliability is define as 

( )
0

( ) ( ) .YP Y X f x F x dx
θ

ℜ = < = ∫  

Using (1) and (2), the Equation (5) is 

1 2

1 2

1 11 2

0 0

.
x

x y dy dx
θ

α α
α α

α α
θ θ

− −  ℜ =  
  

∫ ∫  

After simplifying, we obtain stress strength reliability in this form 

 1

1 2

.α
α α

ℜ =
+

                 (5) 

 
3.1. Maximum likelihood estimator (MLE) of ℜ  based on complete sample 

Let 
11 2, ,... nx x x  be a random sample of size 1n  from 1( , , )f x θ α  and 

21 2, ,... ny y y  be a random 

sample of size 2n  from 2( , , ),f y θ α  respectively. Since X  and Y  follows to the power distribution, 
then the likelihood function is given by  

( )
1 2

1 2
1 1

, , | , ( ) ( ).
n n

i j
i j

L x y f x f yα α θ
= ==

=∏∏  

Using (3) and (4), the above equation is as the form 

( )
1 2

1 2

1 2

1 11 2
1 2

1 1

, , | , .
n n

i j
i j

L x y x yα α
α α

α α
α α θ

θ θ
− −

= =

   =       
∏ ∏                                    (6) 

Taking the logarithm both side of Equation (7) and the log-likelihood function is as follows  
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 ( ) ( )
1 2

1 1 1 1 1 2 2 2 2 2
1 1

log ln ln 1 ln ln ln 1 ln .
n n

i j
i j

L n n x n n yα α θ α α θ α α
= =

= − + − − + + −∑ ∑          (7) 

Therefore, the ML estimates of ,θ 1α  and 2α  and which maximizes Equation (8). The normal 
equations are given by  

 

( )

( )

( )

1

2

1 2 1
1

11 1

2 1 2
2

12 2

1 2 1 1 2 2

ln , ,
ln ln 0,

ln , ,
ln ln 0,

ln , ,
0.

n

i
i

n

j
j

L n n x

L n n y

L n n

α α θ
θ

α α
α α θ

θ
α α

θ α α α α
θ θ

=

=

∂ 
= − + = ∂ 

∂ = − + = 
∂ 

∂ + = − =
∂ 

∑

∑                                        (8) 

Then we obtain the ML estimate of 1α  and 2α  are the function of ,θ  respectively, given by  

 
1

1
1

1
1

ˆ
ln ln

n

i
i

n

n x
α

θ
=

=
−∑

  and  
2

2
2

2
1

ˆ .
ln ln

n

j
j

n

n y
α

θ
=

=
−∑

               (9) 

From (7), we estimate the ML estimate of θ  as follows 

1 1 2 2 0n nα α
θ
+

− =  ⇒  ˆ .θ = ∞  

We cannot obtain the ML estimate of θ  directly.  So, in this case, the ML estimates of θ  as 
follows: we have to choose θ  for ( )1 2, ,L α α θ  in (8) is maximum. Now ( )1 2, ,L α α θ  is maximum if 

θ  is minimum.  Let 
21 2, ,..., nx x x
 

and 
21 2, ,..., ny y y  be a random samples of size 1n  and 2n  

independent observation from the given population so that ( ) ( ) ( )11 20 ... nx x x θ≤ ≤ ≤ ≤ ≤  and 

( ) ( ) ( )21 20 ... .ny y y θ≤ ≤ ≤ ≤ ≤  Since the minimum value of θ  consistent with the sample is ( )1nx  and 

( )2
,ny  the largest sample observation, ( ) ( )1 2

ˆ max( , ).n nx yθ =  We obtain the ML estimate of stress-

strength reliability, say ,ℜ  from (6), by using invariance property of the ML estimate, is 1

1 2

ˆˆ .
ˆ ˆ
α

α α
ℜ =

+
 

 
3.2. Maximum likelihood estimation for censored sample 

Censoring refers to lifetime data analysis for mechanistic or natural systems. Life testing 
experiments, usually consume more time as well as these are very expensive due to their destructive 
nature. In some situations, it is neither possible nor desirable to observe each and every unit under test. 
In such circumstances, only a portion of the sample is studied, and we call the experiment censored. 
The important factor that affects the life-time experiment is the amount of time required to obtain the 
complete sample. To limit this factor, we may put some items into a test and have the have the test 
terminate at a pre-defined time. The sample obtained from this type of experiment is called a time-
censored sample or type-I censoring. In another way, we may put the same items into a test, and the 
test terminates when a pre-defined number of failed items is reached. The samples obtained from this 
experiment are called ‘failure censored samples’ or type-II censoring. Failure-censored samples are 
most useful in dealing with high-cost items such as color television tubes, submarines, jet plane 
engines, etc. Now we use failure or type-II censoring for the following analysis (see more about type-
II censoring in Panahi and Asadi (2011), Kumar and Tomer (2016), Banerjee and Kundu (2008)).  
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Let ( )1 1, ,X n m  and ( )2 2, ,Y n m  be the combinations of two type- II censored data such that 

( )
1 1 1 1 1 1 11 1 1: : 2: : : :, , , ,. . . .,m n m n m m nX n m X X X=  and ( ) 2 2 2 2 2 2 22 2 1: : 2: : : :, , , ,. . . ., .m n m n m m nY n m Y Y Y= Thus the 

combined likelihood function of the parameters ( )1 2, ,α α θ  given observed data is written as 

( ) ( ) ( ) ( ) ( )
1 1 1

1

1 2
1 2 1 1

11 1 2 2

! !, , | , , 1 , ,
! !

m n m

i m
i

n nL data f x F x
n m n m

α θ α α θ α θ
−

=

 = − − − ∏
  

 

             ( ) ( )
2 2 2

22 2
1

, , 1 , , .
m n m

j m
j

f y F yα θ α θ
−

=

 × − ∏                                          (10) 

The likelihood function is modified by using (1), (2) and (10), we have 

( ) ( )
1 2 1 2

1 1 2 2
1 1 2 2 1 2

1 21 1 1 2

1 11 2

1 1

.
m m m mn m n m

m m i jn n
i j

x y x yα α α α α α
α α

α α
θ θ

θ
− − − −

+
= =

∝ − − ∏ ∏  

Taking logarithm both side of above equation, we have 

( ) ( ) ( ) ( )1 1 2 2

1 21 1 2 2 1 1 2 2 1 1 2 2log log log ( ) log log logm mLµ m m n n n m x n m yα α α αα α α α θ θ θ+ − + + − − + − −    

( ) ( )
1 2

1 2
1 1

1 log 1 log .
m m

i j
i j

x yα α
= =

+ − + −∑ ∑                                                                                        (11) 

On partial differentiation of (11) with respect to 1 2,α α  and ,θ  we have 

( )( )

( )( )

( ) ( )

1 1 1
1 1

1 1

1

2 2 1
2 2

2 2

2

1 2

1 1 2 2

1 2

1 11
1

11 1

2 22
2

12 2

1 1
1 1 1 2 2 21 1 2 2

log loglog log log ,

log loglog log log ,

( )log .

m
m m

i
im

m
m m

j
jm

m m

n m x xmL n x
x

n m y ymL n y
y

n m n mn nL
x y

α α

α α

α α

α α

α α

α α α α

θ θ
θ

α α θ

θ θ
θ

α α θ

α θ α θα α
θ θ θ θ

=

=

− −

− −∂
= − + +

∂ −

− −∂
= − + +

∂ −

− −− +∂
= + +

∂ − −

∑

∑













 

The above differential equations are put equal to zero.  After solving these normal equations, we get 
the ML estimate of 1 2,α α  and θ  say 1 2ˆ ˆ,α α  and ˆ,θ  respectively, which are defined as 

 

( )( )

( )( )

( ) ( )

1 1 1
1 1

1 1

1

2 2 2
2 2

2 2

2

2 1

2 2 1 1

2 1

1

1 1
1 1 1

1

1

2 2
2 2 2

1

1 1
2 2 2 1 1 1

1 1 2 2

log log
ˆ log log ,

log log
ˆ log log ,

ˆ ( )

m
m m

i
im

m
m m

j
jm

m m

n m x x
m n x

x

n m x x
m n y

x

n m n m
n n

y x

α α

α α

α α

α α

α α

α α α α

θ θ
α θ

θ

θ θ
α θ

θ

α θ α θ
θ α α

θ θ

−

=

−

=

− −

 − −
 = − −

−  

 − −
 = − −

−  

 − −
= + +

− −

∑

∑
1

.
−















            (12) 

Since the above system of normal equations is not closed form so we used some numerical 
iteration method for solving these equations.  Let 21 ˆ,ˆ αα  and θ̂  are the MLE of the 21, αα  and .θ  
By using the invariance property of MLE, the ML estimator of ℜ  is obtained as 

1

1 2

ˆˆ .
ˆ ˆ
α

α α
ℜ =

+
                                                                (13) 
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4. Interval Estimation 
We have obtained the asymptotic confidence (AC) interval for parametric functions. Since the 

distribution of the ML estimate is not completely specified in the distribution, we construct the AC 
interval for the parameter by using the asymptotic property of the ML estimate. The AC intervals of 

1,α 2α  and θ  are find out by fisher information matrix. Since ℜ  is the function of 1α  and 2 ,α  so 
we cannot obtained the AC interval directly. In this case, we use the delta method to obtain the AC 
interval of .ℜ  
 
4.1. AC interval by delta method 

Now, we use the delta method (Qehlert 1992) to obtain the asymptotic confidence  interval (ACI) 
of .ℜ  The delta method is a standard technique in statistics, and it is based on a truncated Taylor series 
expansion. The delta method allows a normal approximation for a continuous and differentiable 
function of a sequence of random variables that already has a normal limit in distribution. According 

to the delta method, the variance of ℜ is estimated by ( )( )2ˆ 0, ( ) ' .n N V ℜ−ℜ → ℜ ℜ   So the ACI 

of ℜ  is obtain as follows 

/2
ˆ ˆ. .( ),z S Eαℜ± ℜ                 (14) 

where /2zα  is upper th100( / 2) %α  of standard normal variate and ˆ. .( )S E ℜ  is the standard error of 

ℜ̂ (Qehlert 1992). The ACI of ℜ will be found in case of complete and censored data. 
 
4.2. Bootstrap confidence interval 

Since we deal with censored sample observations obtained from the life-testing experiments. The 
cognitive sample observations from such an experiment may not be large, so ACI may not be a proper 
choice. In such situation, we discuss the procedure the bootstrap confidence interval (CI) for ℜ  as 
discussed by Efron and Tibshirani (1994). The necessary steps for obtained the parametric bootstrap 
method for ℜ̂ are follows. 

1. Generate the random samples 
11 2, ,... nx x x  and 

21 2, ,... ny y y  form 1( , , )f x θ α  and 2( , , ),f y θ α

respectively. 
2. Compute the MLE 1 2ˆ ˆ,α α  and ˆ.θ  

3. Using 1 2ˆ ˆ,α α  and ˆ,θ  generate the samples of size 1n  and 2n  under similar conditions, as in 

step 1, take { }1

* * *
1 2, ,..., mx x x  and { }2

* * *
1 2, ,..., my y y  samples under type-II censored for pre-define values 

of 1m  and 2.m  
4. Now based on the samples obtained from step 3 and obtained the bootstrap estimate of ℜ  say 

*ℜ̂  by using delta method. 

5. Repeat the Step 3, M times, to obtained the set of bootstrap estimates *ˆ( ; 1, 2,..., ).k k Mℜ =  

6. Arrange *ˆ( ; 1, 2,..., )k k Mℜ =  in ascending order, say * * *
[1] [ 2 ] [ ]

ˆ ˆ ˆ( , ,..., ).Mℜ ℜ ℜ  

7. A two-sided 100(1 )α−  percentile boot-p CI are given by 

 ( ) ( )
* * * *

[ /2 ] [ 1 /2 ]
ˆ ˆ ˆ ˆ( , ) ( , ),L U M Mα α−ℜ ℜ = ℜ ℜ               (15) 

where [ ]q  represents the thq  integer part of the sequence * * *
[1] [2 ] [ ]

ˆ ˆ ˆ( , ,..., ).Mℜ ℜ ℜ  
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5. Numerical Application 
Here, we have considered some numerical data to show the application of the power distribution 

in a real-life situation. We present some illustrations based on the simulation study. Now, we 
concentrate the sample generation procedure on the power distribution with complete and censored 
sample data. Sample generation procedure is as follows: 

1.  We use inverse cdf sampling technique for generating random numbers from the power 
distribution i.e. generate (0,1)U Unif  and 1( ).XX F U−=  

2. Chose the parametric initial values 1 2( , , ).α α θ  

3. Generate the random sample 
11 2, , ..., nX X X  of size 1n  form 1 1( , ).f α θ  

4. Generate a random sample 
21 2, , ..., nY Y Y  of size 2n  form ( )2 2 ,f α θ . 

5. Assume pre-fixed values 1m  and 2m  and get two ordered sample 
1(1) (2) ( ), , ..., mX X X X=  and 

2(1) (2) ( ), , ..., .mY Y Y Y=   

 For the simulation study, we assume that 
1. Assume 1 {2,3},α =  2 {2,3}α =  and {2,3}.θ =  

2. Take { }1 2{ , } (10,10), (20,20), (30,30)m m =  for particular value of { }1 2( , ) 30,30 .n n =  

3. Again assume { } ( ){ }1 2, (20,20), (40,40), 50,50m m =  for ( ) { }1 2, 50, 50 .n n =  

4. Firstly obtained the ML estimates of 1 2, , andα α θ  say 1 2
ˆˆ ˆ, , and .α α θ  

5.  Obtained the ML estimate of ,ℜ by using invariance property of the ML estimates, for the 
different combination of parameters values based with complete and censored data. 

6. Asymptotic confidence and boot-p intervals of ℜ  are also calculated at α level of significance. 
7. The ML estimate of ℜ with respected mean square error (MSE) is shown in Tables 1-4. 
8. The AC and boot-p intervals length with respected coverage probability (CP) are also calculated 

in Tables 5-8. 
We generate repeated samples using these parametric values and enumerate average ML estimate 

of ℜ  along with its MSE and also enumerate AC and boot-p intervals along with their CP based on 
5000 iteration. From all the tables, we observe that MSEs of stress strength reliability based on the 
observed sample size. In the simulation study, we observed that   

1. ML estimate of stress-strength reliability based on given sample size. 
2.  ML estimate of parameters are calculated for complete and type- II censored data and we see 

that the ML estimate based on complete sample are more reliable to the ML estimate obtained by 
censored sample.   

3.  In the life time experiment with censored sample, the MSE of ML estimate parallel decreases 
with observed sample size increase. 

4. While comparing boot-p and AC intervals of ,ℜ the CP of boot-p interval is better than the CP 
of AC interval for given values of ( , ).n m  

5.  The length of asymptotic and boot-p confidence intervals for censored data is larger than the 
complete data.  Their length and CP also decrease as m  increases for a given value of n  for the 
censored sample. 

 
 



Sachin Chaudhary et al. 711 

Table 1 Average ML estimate values of ℜ  and their MSEs for 2 2,α =  2θ =  and different values 

of 1 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m  
 1 1.50α =  1 1.75α =  1 2.00α =  1 2.25α =  1 2.50α =  

ℜ  0.42857 0.46667 0.50000 0.52941 0.55556 
(30, 30) (10, 10) ℜ̂  

MSE 
0.42682 
0.12878 

0.44758 
0.14527 

0.50193 
0.16452 

0.52193 
0.14276 

0.55193 
0.17626 

(20, 20) ℜ̂  
MSE 

0.42902 
0.12105 

0.45428 
0.12140 

0.50621 
0.13251 

0.53621 
0.14210 

0.54621 
0.14425 

(30, 30) ℜ̂  
MSE 

0.43138 
0.09854 

0.44093 
0.10142 

0.51058 
0.11542 

0.51058 
0.10254 

0.55308 
0.10982 

(50, 50) (20, 20) ℜ̂  
MSE 

0.42480 
0.10141 

0.43436 
0.14122 

0.52114 
0.14152 

0.52114 
0.14685 

0.56114 
0.15562 

(30, 30) ℜ̂  
MSE 

0.43979 
0.09845 

0.44592 
0.12457 

0.49267 
0.13485 

0.52267 
0.12362 

0.55067 
0.13826 

(50, 50) ℜ̂  
MSE 

0.42982 
0.0856 

0.43615 
0.09475 

0.50461 
0.10451 

0.52192 
0.11204 

0.54192 
0.10241 

 
Table 2 Average ML estimate values of ℜ  and their MSEs for 2 3,α =  3θ =  and different 

values of 1 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m  
 1 1.50α =  1 1.75α =  1 2.00α =  1 2.25α =  1 2.50α =  

ℜ  0.33333 0.36842 0.40000 0.42857 0.45455 
(30, 30) (10, 10) ℜ̂  

MSE 
0.33479 
0.16652 

0.38211 
0.17142 

0.42541 
0.18214 

0.42281 
0.16254 

0.47505 
0.16251 

(20, 20) ℜ̂  
MSE 

0.324591 
0.13150 

0.37619 
0.14512 

0.41248 
0.15146 

0.43909 
0.14215 

0.46718 
0.16245 

(30, 30) ℜ̂  
MSE 

0.34523 
0.10120 

0.36422 
0.11521 

0.42040 
0.12541 

0.43122 
0.10574 

0.45243 
0.11542 

(50, 50) (20, 20) ℜ̂  
MSE 

0.39384 
0.16844 

0.33254 
0.15212 

0.41542 
0.17511 

0.42704 
0.16524 

0.46412 
0.17265 

(30, 30) ℜ̂  
MSE 

0.32411 
0.12104 

0.35245 
0.13254 

0.41228 
0.14214 

0.42247 
0.12548 

0.45248 
0.14251 

(50, 50) ℜ̂  
MSE 

0.32438 
0.09451 

0.35535 
0.10541 

0.40145 
0.10547 

0.42545 
0.09544 

0.45441 
0.09851 
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Table 3 Average ML estimate values of ℜ  and their MSEs for 1 2,α =  2θ =  and different 

values of 2 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m  
 2 1.50α =  2 1.75α =  2 2.00α =  2 2.25α =  2 2.50α =  

ℜ  0.57143 0.53333 0.50000 0.47059 0.44444 
(30, 30) (10, 10) ℜ̂  

MSE 
0.57842 
0.13256 

0.52548 
0.14425 

0.50525 
0.14384 

0.46854 
0.13845 

0.45854 
0.14522 

(20, 20) ℜ̂  
MSE 

0.58542 
0.11454 

0.53245 
0.11247 

0.50785 
0.12549 

0.47592 
0.13554 

0.43585 
0.12457 

(30, 30) ℜ̂  
MSE 

0.58445 
0.09451 

0.54841 
0.09842 

0.51548 
0.10745 

0.46854 
0.10112 

0.44586 
0.10845 

(50, 50) (20, 20) ℜ̂  
MSE 

0.59240 
0.10461 

0.55245 
0.12451 

0.49254 
0.13251 

0.48562 
0.12548 

0.45471 
0.13542 

(30, 30) ℜ̂  
MSE 

0.56754 
0.09411 

0.53254 
0.10124 

0.49525 
0.11555 

0.46422 
0.10144 

0.46251 
0.10515 

(50, 50) ℜ̂  
MSE 

0.58452 
0.09215 

0.54215 
0.08214 

0.51541 
0.10624 

0.47625 
0.10024 

0.45421 
0.09451 

 
Table 4 Average ML estimate values of ℜ  and their MSEs for 1 3.0,α =  3θ =  and different 

values of 2 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m  
 2 1.50α =  2 1.75α =  2 2.00α =  2 2.25α =  2 2.50α =  

ℜ  0.66667 0.63158 0.60000 0.57147 0.54545 
(30, 30) (10, 10) ℜ̂  

MSE 
0.66542 
0.14515 

0.63558 
0.14685 

0.61451 
0.15842 

0.57842 
0.13944 

0.55145 
0.13745 

(20, 20) ℜ̂  
MSE 

0.65411 
0.12488 

0.64251 
0.12985 

0.60125 
0.13845 

0.58542 
0.12575 

0.54268 
0.11452 

(30, 30) ℜ̂  
MSE 

0.67541 
0.09458 

0.64555 
0.09842 

0.62834 
0.11652 

0.58445 
0.09764 

0.55044 
0.10441 

(50, 50) (20, 20) ℜ̂  
MSE 

0.65284 
0.16844 

0.62549 
0.15212 

0.62485 
0.17511 

0.59240 
0.10461 

0.52417 
0.17265 

(30, 30) ℜ̂  
MSE 

0.66454 
0.11254 

0.63877 
0.12484 

0.60124 
0.12410 

0.56754 
0.11542 

0.54218 
0.12493 

(50, 50) ℜ̂  
MSE 

0.66458 
0.08245 

0.62581 
0.09541 

0.61245 
0.10435 

0.58452 
0.09841 

0.56241 
0.09552 
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Table 5 Average length with coverage probability of ℜ  and their MSEs for 2 2,α =  2θ =  and 

different values of 1 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m    1 1.50α =  1 1.75α =  1 2.00α =  1 2.25α =  1 2.50α =  
(30, 30) (10, 10) ACI Length 

CP 
0.13952 
0.92514 

0.13535 
0.92541 

0.13456 
0.93541 

0.13521 
0.92541 

0.13821 
0.93581 

Boot-p Length 
CP 

0.14582 
0.93584 

0.14755 
0.93258 

0.13284 
0.92541 

0.14785 
0.93250 

0.13284 
0.93284 

(20, 20) ACI Length 
CP 

0.11310 
0.95447 

0.12417 
0.93519 

0.12427 
0.94514 

0.11427 
0.93851 

0.12127 
0.94514 

Boot-p Length 
CP 

0.12545 
0.94582 

0.12548 
0.94257 

0.11325 
0.93540 

0.10244 
0.94157 

0.11715 
0.93684 

(30, 30) ACI Length 
CP 

0.10292 
0.96742 

0.10235 
0.96541 

0.10540 
0.96684 

0.10521 
0.94566 

0.11101 
0.97564 

Boot-p Length 
CP 

0.11457 
0.95847 

0.11254 
0.95487 

0.11547 
0.97554 

0.12154 
0.95686 

0.12451 
0.96854 

(50, 50) (20, 20) ACI Length 
CP 

0.11284 
0.94154 

0.11557 
0.94259 

0.12541 
0.95484 

0.12117 
0.94521 

0.11457 
0.95842 

Boot-p Length 
CP 

0.12144 
0.95487 

0.10124 
0.95424 

0.12548 
0.96523 

0.11845 
0.95458 

0.12144 
0.96484 

(30, 30) ACI Length 
CP 

0.10872 
0.95215 

0.10745 
0.96631 

0.10581 
0.96480 

0.10584 
0.95614 

0.11854 
0.98450 

Boot-p Length 
CP 

0.11124 
0.954515 

0.10125 
0.96636 

0.11545 
0.96845 

0.11024 
0.96171 

0.10155 
0.97215 

(50, 50) ACI Length 
CP 

0.09457 
0.98541 

0.09102 
0.97518 

0.09115 
0.98412 

0.08215 
0.98635 

0.10542 
0.99015 

Boot-p Length 
CP 

0.10214 
0.97252 

0.09552 
0.98258 

0.10548 
0.97892 

0.15484 
0.97895 

0.09845 
0.98514 

 
Table 6 Average length with coverage probability of ℜ and their MSEs for 2 3,α =  3θ =  and 

different values of 1 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m    1 1.50α =  1 1.75α =  1 2.00α =  1 2.25α =  1 2.50α =  
(30, 30) (10, 10) ACI Length 

CP 
0.12254 
0.93154 

0.13335 
0.93854 

0.13254 
0.94154 

0.13845 
0.93824 

0.12458 
0.94251 

Boot-p Length 
CP 

0.11815 
0.94845 

0.12515 
0.94854 

0.11557 
0.95458 

0.12844 
0.94549 

0.11854 
0.95540 

(20, 20) ACI Length 
CP 

0.12547 
0.94875 

0.11415 
0.94549 

0.12484 
0.9546 

0.12454 
0.94545 

0.11545 
0.95148 

Boot-p Length 
CP 

0.11155 
0.95485 

0.12145 
0.95284 

0.12842 
0.96484 

0.13151 
0.96584 

0.12845 
0.96748 

(30, 30) ACI Length 
CP 

0.10941 
0.97256 

0.10548 
0.96844 

0.10654 
0.97245 

0.11745 
0.96242 

0.10541 
0.96451 

Boot-p Length 
CP 

0.12584 
0.97455 

0.10258 
0.98154 

0.15554 
0.98214 

0.11450 
0.97251 

0.11021 
0.98151 

 
 
 



714                                                                   Thailand Statistician, 2024; 22(3): 701-719 

Table 6 (Continued) 

1 2( , )n n  1 2( , )m m    1 1.50α =  1 1.75α =  1 2.00α =  1 2.25α =  1 2.50α =  
(50, 50) (10, 10) ACI Length 

CP 
0.13254 
0.95414 

0.12547 
0.95414 

0.13898 
0.94521 

0.13185 
0.95650 

0.12457 
0.96245 

Boot-p Length 
CP 

0.13845 
0.96854 

0.13545 
0.97541 

0.12545 
0.96554 

0.12545 
0.96848 

0.13254 
0.97815 

(20, 20) ACI Length 
CP 

0.101542 
0.96845 

0.11545 
0.97545 

0.10581 
0.96484 

0.11184 
0.96554 

0.09456 
0.97255 

Boot-p Length 
CP 

0.11541 
0.97842 

0.12454 
0.98454 

0.10545 
0.97815 

0.10451 
0.97851 

0.10241 
0.98121 

(30, 30) ACI Length 
CP 

0.08262 
0.99423 

0.08245 
0.98264 

0.09245 
0.97515 

0.09254 
0.98544 

0.10822 
0.98245 

Boot-p Length 
CP 

0.09852 
0.98955 

0.09451 
0.98851 

0.10242 
0.98451 

0.09125 
0.99151 

0.09451 
0.99151 

 
Table 7 Average length with coverage probability of ℜ  and their MSEs for 1 2,α =  2θ =  and 

different values of  2 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m    2 1.50α =  2 1.75α =  2 2.00α =  2 2.25α =  2 2.50α =  
(30, 30) (10, 10) ACI Length 

CP 
0.12155 
0.95421 

0.12584 
0.95416 

0.11455 
0.95641 

0.12584 
0.96540 

0.13454 
0.94895 

Boot-p Length 
CP 

0.11544 
0.96854 

0.12145 
0.96455 

0.11041 
0.95451 

0.12685 
0.95474 

0.12181 
0.95484 

(20, 20) ACI Length 
CP 

0.10154 
0.97564 

0.11454 
0.96425 

0.11845 
0.97564 

0.12854 
0.97541 

0.10154 
0.96842 

Boot-p Length 
CP 

0.11520 
0.97584 

0.10151 
0.97841 

0.10415 
0.96844 

0.11514 
0.96945 

0.10451 
0.97155 

(30, 30) ACI Length 
CP 

0.09424 
0.98685 

0.09425 
0.98421 

0.10451 
0.98642 

0.102324 
0.97684 

0.09121 
0.98368 

Boot-p Length 
CP 

0.10254 
0.99841 

0.09542 
0.98547 

0.10984 
0.98454 

0.09454 
0.98152 

0.10125 
0.98574 

(50, 50) (20, 20) ACI Length 
CP 

0.10544 
0.96854 

0.10224 
0.97244 

0.11248 
0.96852 

0.11015 
0.96844 

0.10544 
0.97651 

Boot-p Length 
CP 

0.11458 
0.97815 

0.10215 
0.98154 

0.11515 
0.97245 

0.10455 
0.97155 

0.11515 
0.96154 

(30, 30) ACI Length 
CP 

0.09234 
0.98241 

0.09854 
0.98236 

0.10281 
0.98564 

0.09254 
0.98256 

0.08521 
0.98754 

Boot-p Length 
CP 

0.10254 
0.98945 

0.09185 
0.98514 

0.10054 
0.98045 

0.10189 
0.98012 

0.09154 
0.98045 

(50, 50) ACI Length 
CP 

0.07541 
0.99284 

0.08542 
0.99254 

0.08634 
0.99636 

0.08254 
0.99754 

0.09515 
0.99854 

Boot-p Length 
CP 

0.09155 
0.98915 

0.09415 
0.98915 

0.09151 
0.98151 

0.10082 
0.99540 

0.08424 
0.99550 
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Table 8 Average length with coverage probability of ℜ  and their MSEs for 1 3,α =  3θ =  and 

different values of  2 1 1 2, , , ,n m nα  and 2m  

1 2( , )n n  1 2( , )m m    2 1.50α =  2 1.75α =  2 2.00α =  2 2.25α =  2 2.50α =  
(30, 30) (10, 10) ACI Length 

CP 
0.11424 
0.94521 

0.12584 
0.94852 

0.12154 
0.94856 

0.11548 
0.95846 

0.12471 
0.95474 

Boot-p Length 
CP 

0.12515 
0.95451 

0.12511 
0.95447 

0.11515 
0.95485 

0.12155 
0.961544 

0.12454 
0.95051 

(20, 20) ACI Length 
CP 

0.10124 
0.96485 

0.09548 
0.96474 

0.10451 
0.96744 

0.10254 
0.95743 

0.10514 
0.97154 

Boot-p Length 
CP 

0.11454 
0.96654 

0.10545 
0.96478 

0.11054 
0.96051 

0.11545 
0.97215 

0.11745 
0.96845 

(30, 30) ACI Length 
CP 

0.08245 
0.98254 

0.08456 
0.98415 

0.09842 
0.97545 

0.09012 
0.97584 

0.08545 
0.98544 

Boot-p Length 
CP 

0.10215 
0.98451 

0.09455 
0.978411 

0.09545 
0.97145 

0.10455 
0.98545 

0.09845 
0.97155 

(50, 50) (20, 20) ACI Length 
CP 

0.11754 
0.96154 

0.10451 
0.96745 

0.11452 
0.95421 

0.10498 
0.96521 

0.10145 
0.96481 

Boot-p Length 
CP 

0.11455 
0.96584 

0.11415 
0.96421 

0.12815 
0.96585 

0.11545 
0.97245 

0.11451 
0.96845 

(30, 30) ACI Length 
CP 

0.09842 
0.98242 

0.09254 
0.98514 

0.09454 
0.98754 

0.09854 
0.97154 

0.09245 
0.98655 

Boot-p Length 
CP 

0.10254 
0.97515 

0.09844 
0.97554 

0.10545 
0.97215 

0.10515 
0.98454 

0.10245 
0.97154 

(50, 50) ACI Length 
CP 

0.08215 
0.99255 

0.08124 
0.99284 

0.09214 
0.98954 

0.082451 
0.99251 

0.08625 
0.99285 

Boot-p Length 
CP 

0.09155 
0.99845 

0.09012 
0.99011 

0.09415 
0.98455 

0.09112 
0.99545 

0.08954 
0.99478 

 
5.1. Simulation data 

In this section, we deal the analysis of a simulated data and show how can use the result in real 
life problem. We generate a simulated sample from the power distribution population having 1 2α =  

and 2 2.5α =  and 3θ =  with same sample size 1 2 25n n= =  presented in Table 9. The observed 

sample of stress ( )Y  and strength ( )X  are as 
 

Table 9 Simulated data of X  and Y  
Data :X  0.73517, 0.76286, 0.94939, 1.29551, 1.47085, 1.50888, 1.71101, 1.79574, 1.82376, 
1.86437, 1.97652, 2.04804, 2.07875, 2.10856, 2.13789, 2.19393, 2.42172, 2.42760, 2.43914, 
2.53862, 2.64788, 2.68165, 2.73583, 2.88319, 2.93943 
Data :Y  0.57674, 0.85571, 0.96919, 1.09143, 1.59470, 1.76226, 1.84869, 2.14430, 2.17365, 
2.18479, 2.29608, 2.30037,  2.35548,  2.40995,  2.55089, 2.55180, 2.65471, 2.65852, 2.66172, 
2.66583, 2.79449, 2.79636, 2.80176, 2.95940, 2.96953 
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Using the (9), the ML estimates of 1 2, ,α α  and θ  are 2.1601582, 2.5773875 and 2.9695278, 

respectively. So, the ML estimate of ℜ̂ (by using the invariance property of MLE) is 0.45596. 
 

Table 10 The ML estimate of ℜ  with ACI and boot-p for simulated data 
1 2( , )m m  ℜ̂  ACI Boot-p 

(10, 10) 0.41154 (0.35242, 0.45182) (0.34038, 0.45230) 
(20, 20) 0.42614 (0.37619, 0.46102) (0.37885, 0.4723) 
(25, 25) 0.45596 (0.41051, 0.52847) (0.40867, 0.53135) 

 
5.2. Real data application 

For numerical purposes, we show two real data sets to analysis of the strength of system. The 
data sets are represented and studied by Xie et. al (2009). The data show the Jute fiber breaking 
strength at two different gauge lengths where X  represents the strength of 5mm fiber and Y  is the 
strength of 15mm fiber. 
 

Table 11 The Jute fiber breaking strength at two different gauge lengths 
Data set 1 of length 5 mm: X  ( 1 30n = ) Data set 2 of length 15 mm: Y  ( 2 30n = ) 
566.31, 270.79, 516.48, 823.03, 226.53, 
367.70, 185.42,441.87, 618.57, 546.11, 
268.20, 315.33, 809.23, 218.86, 583.97, 
304.84, 129.08, 537.45, 496.28,  167.87, 
306.99, 178.25, 370.02, 168.20, 554.61, 
360.80, 260.97, 254.29, 495.51, 187.68. 

594.40, 202.75, 68.37, 574.86, 225.65, 
76.38, 156.67, 127.81, 813.87, 562.39, 
468.47, 135.09, 72.24, 497.94, 355.56, 
569.07, 640.48, 200.76, 550.42, 748.75, 
489.66, 678.06, 457.71, 106.73, 716.30, 
42.66, 80.40, 339.22, 70.09, 193.42. 

 
First, we use the Kolmogorov-Smirnov (K-S) test to check whether the power distribution fits the 

given data. We calculate the ML estimate of given parameters 1 2, ,α α  and θ  of the power distribution 
for stress and strength model. The K-S distance for data I is 0.2227 with p-value 0.087 whereas for 
data II the K-S distance is 0.1432 with associated p-value 0.524. It shows that the power distribution 
is appropriate for both data. The ML estimates of reliability for the real data set are 0.567. The ML 
estimate of ℜ  and related confidence intervals based on different sample size are defines in Table 12. 
 

Table 12 The ML estimate of ℜ with ACI and boot-p for the real data set 
( )21, mm  ℜ  ACI Boot-p 
(10, 10) 0.481 (0.442, 0.512) (0.438, 0.523) 
(20, 20) 0.512 (0.461, 0.561) (0.458, 0.572) 
(30, 30) 0.567 (0.532, 0.612) (0.541, 0.620) 

 
6.    Conclusions 

In this study, we see that the power distribution is used as a simple model to evaluate system 
reliability and obtain its statistical properties like mean, variance, order statistic, moment generating 
function, characteristic function, thm  moment, method of moments estimate and Lorenz curve also 
examined.  Since this study is based on the reliability so the stress-strength reliability and hazard rate 
function also calculated. The ML estimate of the stress-strength reliability also calculated when both 
stress and strength of a system also follows to the power distribution.  It is suggested that the power 
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distribution be given consideration when analyzing failure experiments.  We hope that this work will 
aid in future research. 
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Appendix 
The second derivatives of the log likelihood function with respect to 1 2, ,α α  and θ  are as follow: 
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