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Abstract
In the present study we investigate the problem of estimating the inherent parameters of the

Gumbel and q-Gumbel distributions using record breaking data. We presented the coefficients of
the best linear unbiased estimators (BLUE) for location and scale parameters of the Gumbel and
q-Gumbel distributions. Finally, the usefulness of our result is illustrated using a simulation study.

Keywords: Maximum likelihood estimates, best linear unbiased estimators, best linear invariant
estimators, Akaike information criterion, corrected Akaike information criterion.

1. Introduction
Records are very important when observations are difficult to obtain or when observations are

being destroyed when subjected to an experimental test. Chandler (1952) was first to introduce the
concept of record values, record times and inter record times for analyzing the breaking strength
data of certain material. He proved the result that for any given probability distribution function of
a random variable, the expected value of the inter record time is infinite. Feller (1965) gave some
examples of record values with respect to gambling problems.

Suppose that X1, X2, ..., Xn are a sequence of independent and identically distributed random
variables with cumulative probability distribution function F (x). Let Xn = min{X1, X2, ..., Xn}
for n ≥ 1. We say, Xj is a lower record value of {Xn, n ≥ 1}, if Xj < Xj−1, j > 1. An analogous
definition exist for upper record values. By definition, X1 is a lower as well as upper record value.
The indices at which the lower record values occur are given by the record times {L(r); r > 0},
where L(r) = min{j|j > L(r − 1), Xj < XL(r−1); r > 1}, and L(1) = 1. The probability density
function of XL(r) is given by:

fr(x) =
1

Γ(r)
(− ln(F (x)))r−1f(x, µ, β), x ∈ (−∞,∞). (1)

and the cumulative probability distribution function of XL(r) is:

Fr(x) =
1

Γ(r)

∫ x

−∞
(− ln(F (x)))r−1f(x, µ, β)dx, x ∈ (−∞,∞).
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The joint probability density function of two lower record values XL(r) and XL(s) is given by

f(xr, xs) =
(− ln (F (xr)))

r−1[ln (F (xr))− ln (F (xs))]
s−r−1

Γ(r)Γ(s− r)

f(xr)f(xs)

F (xr)
,−∞ < xs < xr < ∞. (2)

Samaniego and Whitaker (1986) introduced the problem of parametric inference for record-
breaking data. The features of maximum likelihood estimates of the mean of an underlying exponen-
tial probability distribution were investigated. The work of Samaniego and Whitaker, was extended
to the Weibul probability distribution by Gulati and Padgett (2003). The Maximum likelihood and
Bayesian estimation of parameters and prediction of future records for Weibull distribution using δ-
record data were discussed by Raul, et al.(2019). Prediction the sth record value based on the first
m record values (s > m) when the observations from exponential distribution is investigated by
Ahsanuallah (1980).

Nigm (2007) introduced the record values from inverse Weibull distribution (IW) and the explicit
expressions for its means, variances and covariances. Some simple recurrence relations satisfied by
the single and product moments of record values from IW distribution are obtained. The best linear
unbiased estimators for the scale and location parameters are derived. Some associated inference with
regard to the prediction of a future record value and test for spuriously of the current record values
are also developed.

Asymmetrical models such as the Gumbel, logistic, Weibull and generalized extreme value dis-
tributions have been extensively utilized for modeling various random phenomena encountered for
instance in the course of certain survival, financial or reliability studies.

The Extremal Types Theorem [see Haan (2006)] characterizes the limit cdf G as of the type
of one of three classes. The three types are often called the Gumbel, Frechet and Weibull types,
respectively gathered in the following family:

Gξ(x;µ, β, ξ) =

{
exp {−(1 + ξ(x−µ

β ))
−1
ξ }, ξ ̸= 0,

exp {− exp(−x−µ
β )}, ξ → 0,

(3)

and gξ(x;µ, σ, ξ) =


1
β exp {−(1 + ξ(x−µ

β ))
−1
ξ }

×(1 + ξ(x−µ
β ))

−1
ξ −1, ξ ̸= 0,

1
β exp {− exp(−(x−µ

β ))}
× exp(−(x−µ

β )), ξ → 0,

(4)

where µ is a location parameter, β is a positive scale parameter and ξ is the shape parameter. The
support of the distribution is

x ∈


(µ− β

ξ ,∞), ξ > 0,

(−∞,∞), ξ → 0,

(−∞, µ− β
ξ ), ξ < 0.

The distribution in (4) is known as the generalized extreme value distribution under linear nor-
malization. We denote it by GEV L(x;µ, σ, ξ). The Gumbel probability distribution in (3) and (4) as
ξ → 0 is used to analyse and model the behaviour of random phenomena in engineering, business,
biology, management, sports (Mbah and Tsokos, (2007)), and economics, among other fields. For
more information, see Luo and Zhu (2005), Coles, (2001), Gumbel, (1958), Hosking et al. (1985),
Kotz et al.(2000), for examples of how the Gumbel probability distribution, also known as the double
exponential probability distribution.

Provost et al. (2018) hereby introduced q-analogues of the generalized extreme value and Gum-
bel distributions, the additional parameter q allowing for increased modeling flexibility. They intro-
duced the cdf and pdf of the q-GEVL and q-Gumbel (obtained by letting ξ → 0 in the q-GEVL
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model) distributions are respectively given by

F (x;µ, σ, ξ, q) =

{
[1 + q(ξ(sx−m) + 1)−

1
ξ ]−

1
q , ξ ̸= 0, q ̸= 0

(1 + qe−(sx−m))−
1
q , ξ → 0, q ̸= 0

and f(x;µ, σ, ξ, q) =


s(1 + ξ(sx−m))

−1
ξ −1

×[1 + q(ξ(sx−m) + 1)−
1
ξ ]−

1
q−1, ξ ̸= 0, q ̸= 0

(1 + qe−(sx−m))−
1
q−1se−(sx−m), ξ → 0, ̸= 0,

(5)

where s = 1
β and m = µ

β . The support of q- Gumbel distribution is

x ∈

{
(−∞,∞), ξ → 0, q > 0,

(m+ln(−q)
β ,∞), ξ → 0, q < 0.

Figure 1 The PDF of q-Gumbel (q > 0)

Figure 2 The PDF of q-Gumbel (q < 0)
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Figure 3 The CDF of q-Gumbel (q > 0)

Figure 4 The CDF of q-Gumbel (q < 0)

Figure 5 The q-Gumbel PDF of the lower record values(q > 0)

The effects of the parameter q on the shape of the distributions are illustrated graphically in
Figures 1 to 8. Plots of the q-Gumbel PDF and CDF of X are displayed in Figures 1 to 4 for certain
parameter values. Plots of the q-Gumbel PDF and CDF of lower record values are displayed in
Figures 5 to 8 for certain parameter values. These plots illustrate the impressive versatility of the
proposed models.

In this paper, we consider the analysis of record breaking data sets, where only observations that
exceed, or only those that fall below, the current extreme value are recorded. Example of application
areas include industrial stress testing, meteorological analysis, sporting and athletic events, and oil
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Figure 6 The q-Gumbel PDF of the lower record values(q < 0)

Figure 7 The q-Gumbel CDF of the lower record values(q > 0)

Figure 8 The q-Gumbel CDF of the lower record values(q < 0)

and mining surveys.
The paper is organized as follows. Section 2 contains estimation of the parameters of Gumbel

probability distribution used best linear unbiased estimates (BLUE) and best linear invariant estima-
tors (BLIE) methods based on lower record values. The prediction of the Future Record and simula-
tion study are developed in this section. In Section 3, we used maximum likelihood estimator (MLE)
method to estimate the parameters of the Gumbel distribution based on inter record times sequence
and complete sample. The rest of this section, we used some goodness of fit tests to compare between
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the parameters in the inter record times and complete sample. Section 4 contains estimation of the
parameters of q-Gumbel probability distribution BLUE and BLIE methods based on lower record
values. The prediction of the Future Record and simulation study are developed in this section. In
Section 5, we used MLE method to estimate the parameters of the q-Gumbel distribution based on
inter record times sequence and complete sample. The rest of this section, we used some goodness of
fit tests to compare between the parameters in the inter record times and complete sample.

2. Inference Based on Lower Record Values for Gumbel Distribution
In this section, we estimate the parameters of the Gumbel probability distribution using lower

record values. The BLUE based on r lower record values from the Gumbel probability distribution
are obtained in Subsection 2.1. The BLIE based on r lower record values from the Gumbel proba-
bility distribution are derived in Subsection 2.2. The prediction of the future record are developed in
Subsection 2.3. In Subsection 2.4, we presented simulation study.

2.1. Best Linear Unbaised Estimates (BLUEs)
Applying Eqn. (4) and letting µ = 0 and β = 1, the nth moment of XL(r) from the Gumbel

function probability distribution is given by:

E(XL(r))
n =

1

Γ(r)

∫ ∞

−∞
xn[e−x]r−1e−xe−e−x

dx.

Let u = e−x, then

E(XL(r))
n =

1

Γ(r)

∫ ∞

0

[− lnu]nur−1e−udu

=
(−1)n

Γ(r)

∂n

∂rn
[Γ(r)], n ≥ 1. (6)

For n = 1, we get

E(XL(r)) = −Ψ(r) = br, (7)

where Ψ(r) known as the digamma function, is the logarithmic derivative of the gamma function.
For n = 2, we get

E(XL(r))
2 = Ψ(r)2 +Ψ(1, r), (8)

where Ψ(1, r) is the trigamma function. Using Eqns. (7) and (8), we get the variance of XL(r) as

V ar(XL(r)) = Ψ(1, r) = arbr.

Also, using Eqn. (1) and (2), for s > r, xs < xr we have the covariance of XL(r) and XL(s) is
given by:

Cov(XL(r), XL(s)) = E(XL(r)XL(s))− E(XL(r))E(XL(s)) = bs.ar. (9)

To estimate the parameters of Gumbel probability distribution using lower record values, by
using the following theorem:

Theorem 1 Let x1, x2, ..., xr be r record values from the Gumbel probability distribution (4). Then
the best linear unbiased estimates (BLUE) , µ̂, β̂ for µ and β are respectively:

µ̂ =
α′V −1(α1′ − 1α′)V −1h

∆

and β̂ =
1′V −1(1α′ − α1′)V −1h

∆
,

where h′ = (x1, x2, ..., xr), α
′ = (b1, b2, ..., br), V = (υij), υij = aibj , 1 ≤ i, j ≤ r.
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Proof:

h′ = (x1, x2, ..., xr),

then E(h′) = µ1 + β2α,

V ar(h′) = β2V

where from Eqns. (6) and (9),
1′ = (1, 1, ..., 1),

α′ = (b1, b2, ..., br)

V = (υij), υij = aibj , 1 ≤ i, j ≤ r,

V −1 = (V ij), 1 ≤ i < j ≤ r.

Then the entries of V −1 are given by:

V ii =
ai+1bi−1 − ai−1bi+1

(ai+1bi−1 − ai−1bi)(ai+1bi − aibi+1)
, i = 1, ..., r − 1,

V ij = V ji =
−1

ai+1bi − aibi+1

V rr =
−br−1

br(arbr−1 − ar−1br)
,

∆ = (α′V −1α)(1′V −11)− (α′V −11)2.

Applying the method introduced by Lioyd(1952), the best linear unbiased estimates (BLUE),
µ̂, β̂ for µ and β based on r lower record values from the Gumbel distribution are given by:

µ̂ =
α′V −1(α1′ − 1α′)V −1h

∆

and β̂ =
1′V −1(1α′ − α1′)V −1h

∆

The variance and covariance of µ̂, β̂ are given by:

V ar(µ̂) =
α′V −1α

∆
β2,

V ar(β̂) =
1′V −11

∆
β2,

Cov(µ̂, β̂) =
α′V −11

∆
β2,

By using Matlab program(ver 2018), coefficients of the BLUES for µ̂, β̂ and variance covariance
for µ and β are given in Tables 1 and 2, respectively.
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Table 1 Coefficients for the BLUE of µ and β

n r Coefficient for the BLUE of µ Coefficient for the BLUE of β
2 1 0.4228 1
2 2 0.5772 -1
3 1 0.40599 1.029
3 2 0.6276 -1.087
3 3 -0.0336 0.058
4 1 0.397 1.044
4 2 0.614 -1.064
4 3 0.0488 -0.085
4 4 -0.05996 0.104
5 1 0.391 1.055
5 2 0.6044 -1.047
5 3 0.048 -0.08
5 4 0.0345 -0.0598
5 5 -0.078 0.135
7 1 0.3821 1.07
7 2 0.591 -1.023
7 3 0.047 -0.08
7 4 0.0337 -0.0585
7 5 0.0285 -0.0495
7 6 0.0256 -0.0444
7 7 -0.1076 0.1864
8 1 0.379 1.077
8 2 0.585 -1.014
8 3 0.0465 -0.0805
8 4 0.0334 -0.0579
8 5 0.028 -0.0489
8 6 0.025 -0.04398
8 7 0.023 -0.041
8 8 -0.121 0.209
9 1 0.375 1.082
9 2 0.58 -1.005
9 3 0.046 -0.0799
9 4 0.033 -0.057
9 5 0.028 -0.0486
9 6 0.025 -0.044
9 7 0.023 -0.04
9 8 0.0219 -0.038
9 9 -0.134 0.23

15 1 0.361 1.1066
15 2 0.5584 -0.9673
15 3 0.0444 -0.0768
15 4 0.0319 -0.0553
15 5 0.02699 -0.04675
15 6 0.02422 -0.04196
15 7 0.0224 -0.0388
15 8 0.0211 -0.03652
15 9 0.0201 -0.03477
15 10 0.0193 -0.033377
15 11 0.0186 -0.0322
15 12 0.018 -0.03127
15 13 0.0176 -0.0304
15 14 0.0172 -0.02973

Table 2 Coefficient for variance covariance of the BLUE of µ and β in terms of β2

r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
1 0.079 0.076 0.074 0.073 0.0723 0.0715 0.0709 0.0703 0.0698
2 1.09 1.1009 1.1058 1.11 1.112 1.114 1.116 1.12 1.1196
3 -0.137 -0.132 -0.1288 -0.127 -0.125 -0.124 -0.1228 -0.122 -0.1208
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2.2. Best Linear Invariant Estimates (BLIEs)
The best linear invariant (in terms of minimum mean squared error and invariance with respect

to the location parameter µ) estimators (BLIE) µ̃, β̃ of µ and β are:

µ̃ = µ̂− β̂(
E12

1 + E22
) (10)

and β̃ =
β̂

1 + E22
, (11)

where µ̂ and β̂ are BLUE of µ and β, and(
V ar(µ̂) Cov(µ̂, β̂)

Cov(µ̂, β̂) V ar(β̂)

)
= β̂2

(
E11̂ E12

E21 E22

)
.

The mean square errors of these estimators are:

MSE(µ̃) = β̂2[E11 −
E2

12

1 + E22
]

and MSE(β̃) = β̂2[
E2

22

1 + E22
].

2.3. Prediction of the future record
Finally, the notions of records for a specific phenomena that is probabilistically defined by the

Gumbel function probability distribution have been introduced in this paper. We generated some
lower record value distributional features and achieved certain attributes that are important to this
distribution. To predict future observations, we can accomplish this by using return levels

F (xs) = 1/s, s > r

which gives
xs = µ̂− β̂ ln ln s. (12)

2.4. Simulation study
A simulation study is used to demonstrate the performance of the estimators produced in the

preceding section. We used the Gumbel probability distribution with µ = 10 and β = 2 to simulate
a small random sample of size n = 12:

10.7330, 11.0289, 9.3467, 9.6287, 8.7193, 11.6843
12.0619, 12.4918, 9.9028, 9.0482, 7.8056, 13.6339

From the given random sample, four record values can be derived, namely,

10.7330, 9.3467, 8.7193, 7.8056

By using the BLUE and BLIE methods we obtained the estimate parameters of µ and β, for
r = 1, 2, 3, 4. The standard error in each case are calculated. Finally, the prediction 5th future
observation by applying (12) is obtained in each case. All of these results are given below in Table 3:

The simulation results indicate that the estimates for µ and β are quite close to the true values.
The S.E. by BLIE method is smaller than that of the BLUE. This means that the BLIE method is the
best.
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Table 3 The result of the simulation

BLUE (Θ̂) S.E (Θ̂) BLIE (Θ̂) S.E (Θ̂)
µ 9.957 0.36 10.038 0.162
β 1.33 1.4 0.63 0.453

Prediction 5th observation 9.3241 9.7382

3. Maximum Likelihood Method
Let x1, x2, ..., xn represent a complete random sample from the Gumbel probability distribu-

tion function (5). The records required for this investigation are obtained as follow: The first record,
XL(1), is x1, so the first observation, XL(1) = x1. Observing the independent and identically dis-
tributed random variables X

′s
i sequentially from x2, ...xn yields the second record value, XL(2). Let

the next observation that is less than XL(1) needs number of trials to acquire XL(2) equal K1. For
example, let the next observation that is less than XL(1) be X7, so the number of trials to get XL(2)

be K1 = 6.
XL(1) = x1,K1 = k1, XL(2) = x2,K2 = k2..., XL(r) = xr,Kr = kr, where {XL(i), 1 ≤

i ≤ r} is the record value sequence and {Ki, i > 0} and kr = 1 is the inter record time sequence.
Note that The number of records acquired (r) will be smaller than n, the size of the whole random
data sample, if this approach is used. It’s worth noting that the record numbers that don’t include the
inter-record times are referred to as the lower record values.

We may express the likelihood function as

L(x, µ, β) =

r∏
i=1

f(xi)[1− F (xi)]
(ki−1)

for the record-breaking samples XL(1) = x1,K1 = k1, XL(2) = x2,K2 = k2..., XL(r) = xr,Kr =
kr. where f(xi) and F (xi) is the pdf and cdf of the random variable from which the record observa-
tions are obtained.

Applying likelihood function for record observations are obtained from Gumbel distribution we
get

L1(x, µ, β) =

r∏
i=1

1

β
zie

−zi [1− e−zi ](ki−1), (13)

where zi = e−
xi−µ

β .
The log of likelihood function is

logL1(x, µ, β) =

r∑
i=1

{log( 1
β
) + log(zi)− zi + (ki − 1) log [1− e−zi ]}. (14)

We have by taking the partial derivative of (14) with regard to µ and β the following equations

∂logL1(x, µ, β)

∂µ
=

1

β

r∑
i=1

{1− zi + (ki − 1)
zie

−zi

1− e−zi
}, (15)

∂logL1(x, µ, β)

∂β
=

1

β

r∑
i=1

{−1− log(zi) + zi log(zi)− (ki − 1)
zie

−zi log(zi)

1− e−zi
}. (16)

The maximum likelihood estimators for µ and β for the record samples by setting Eqns. (15)
and (16) to zero.
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The estimates of the parameters that are inherent in Eqns. (13) and (14) are obtained as follows
for the complete sample X1, X2, ..., Xn. We can write the log-likelihood from the Gumbel probability
density function given by Eqn. (4) as follows

log(L2(x, µ, β)) =

n∑
i=1

{log( 1
β
) + log(zi)− zi}. (17)

We have by taking the partial derivative of (17) with regard to µ and β the following equations

∂logL2(x, µ, β)

∂µ
=

1

β

n∑
i=1

{1− zi} (18)

∂logL2(x, µ, β)

∂β
=

1

β

n∑
i=1

{−1− log(zi) + zi log(zi)}. (19)

The maximum likelihood estimators for µ and β for the complete samples by setting Eqns. (18)
and (19) to zero.

3.1. Application
Here, we will apply the result in this section on the following example: We used the Gumbel

function probability distribution with µ = 10 and β = 2 to simulate a small random sample of size
n = 15:

12.999, 11.34, 10.1748, 10.733, 11.0289, 9.9028, 9.9287, 9.0482
10.45, 10.174, 8.7193, 13.6339, 12.0619, 8.3319, 7.8056

First, using the entire data, we have the following record values and inter record times. xi =
12.999, 11.34, 10.1748, 9.9028, 9.0482, 8.7193, 8.3319, 7.8056 and ki = 1, 1, 3, 2, 3, 3, 1, 1.

The maximum likelihood estimates with respect to the complete sample and the inter record
times for µ and β are given below in Table 4:

Table 4 The maximum likelihood estimates

(µ̂) (β̂)
Complete sample 9.6906 1.3718
Inter record times 9.6852 1.4856

3.2. Goodness-of-fit tests
A statistical model’s goodness of fit defines how well it fits a collection of data. The disparity

between actual values and predicted values under the model in issue is often summarised by goodness
of fit measures. Such measurements can be used in statistical hypothesis testing, for example, to check
for residual normality, to see whether two samples are taken from the same distribution. By applying
Akaike’s information criterion (AIC) (see Akaike(1974)) and corrected Akaike information criterion
(CAIC) statistics using the previous example where the two statistics can be evaluated from:

AIC = −2L+ 2K and AICC = AIC +
2K(K + 1)

n−K − 1
, (20)

where L is the likelihood of the function K is the number of parameters which estimated and n is the
sample size which used for estimation. In the same direction by applying Cramé-von Mises statistic
which given by:

T =
1

12
+

n∑
i=1

(F (xi)−
2i− 1

2n
)2, (21)
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F (xi) is the cumulative function for ordered observations.
By applying (20), (21) we obtained the following result in Table 5:

Table 5 Statistical models for goodness of fit

AIC AICC T
Complete sample 63.6285 64.5516 0.195956498
Inter record times 40.0106 42.4106 0.100196816

Table 5 provided that the value of AIC in the case of inter record times is smaller than the value
in the case of complete sample. This means that the using of inter record times is the best.

4. Inference Based on Lower Record Values for q-Gumbel Distribution

In this section, we estimate the parameters of the q-Gumbel probability distribution using lower
record values. The BLUE based on r lower record values from the q-Gumbel probability distribution
are obtained in Subsection 5.1. The BLIE based on r lower record values from the q-Gumbel proba-
bility distribution are derived in Subsection 5.2. The prediction of the future record are developed in
Subsection 5.3. In Subsection 5.4, we presented simulation study.

4.1. Best Linear Unbiased Estimates (BLUEs)

Applying Eqn. (5) and letting µ = 0 and β = 1, the nth moment of XL(r) from the q-Gumbel
function probability distribution is given by:

E(XL(r))
n =

1

Γ(r)

∫ ∞

−∞
xn[− ln(1 + qe−x)−

1

q
]r−1e−x[1 + qe−x](−

1
q−1)dx

For n = 1

E(XL(r)) =
1

Γ(r)

∫ ∞

−∞
x[− ln(1 + qe−x)−

1

q
]r−1e−x[1 + qe−x](−

1
q−1)dx

Let

1 + qe−x =
1

1− t
(22)

then E(XL(r)) =
q1−r

Γ(r)

∫ 1

0

[− ln
t

q(1− t)
][ln

1

(1− t)
](r−1)[1− t](

1
q−1)dt

=
q−r

Γ(r)

∫ 1

0

[− ln t+ ln (1− t) + ln q][− ln (1− t)](r−1)[1− t](
1
q−1)dt

=
q−r

Γ(r)
[I1 + I2 + I3] = bqr, (23)
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where I1 =

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

∫ 1

0

1

j.i1....ir−1
t(i1+...+ir−1)(1− t)(j+

1
q−1)dt

=

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

1

j.i1....ir−1
β(i1 + ...+ ir−1 + 1, j +

1

q
)

I2 = −
∞∑

i1=0

...

∞∑
ir=0

∫ 1

0

1

j.i1....ir
t(i1+...+ir)(1− t)(

1
q−1)dt

= −
∞∑

i1=0

...

∞∑
ir=0

1

i1....ir
β(i1 + ...+ ir + 1,

1

q
),

I3 = ln q
∞∑

i1=0

...

∞∑
ir−1=0

∫ 1

0

1

i1....ir−1
t(i1+...+ir−1)(1− t)(

1
q−1)dt

= ln q

∞∑
i1=0

...

∞∑
ir−1=0

1

i1....ir−1
β(i1 + ...+ ir−1 + 1,

1

q
).

As the same, for n = 2:

E(XL(r))
2 =

1

Γ(r)

∫ ∞

−∞
x2[− ln(1 + qe−x)−

1

q
]r−1e−x[1 + qe−x]( − 1

q
− 1)dx.

From (22) then

E(XL(r))
2 =

q1−r

Γ(r)

∫ 1

0

[− ln
t

q(1− t)
]2[ln

1

(1− t)
](r−1)[1− t](

1
q−1)dt

=
q−r

Γ(r)

∫ 1

0

[− ln t+ ln (1− t) + ln q]2[− ln (1− t)](r−1)[1− t](
1
q−1)dt

=
q−r

Γ(r)
[I1 + I2 + I3 + I4 + I5 + I6] (24)

where I1 =

∞∑
i=0

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

∫ 1

0

1

i.j.i1....ir−1
t(i1+...+ir−1)(1− t)(i+j+ 1

q−1)dt

=

∞∑
i=0

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

1

i.j.i1....ir−1
β(i1 + ...+ ir−1 + 1, i+ j +

1

q
),

I2 =

∞∑
i1=0

...

∞∑
ir+1=0

∫ 1

0

1

i1....ir+1
t(i1+...+ir+1)(1− t)(

1
q−1)dt

=

∞∑
i1=0

...

∞∑
ir=0

1

i1....ir+1
β(i1 + ...+ ir+1 + 1,

1

q
),



Rasha Abd El-Wahab Attwa and Esraa Osama Ali Abo Zaid 763

I3 = (ln q)2
∞∑

i1=0

...

∞∑
ir−1=0

∫ 1

0

1

i1....ir−1
t(i1+...+ir−1)(1− t)(

1
q−1)dt

= ln q

∞∑
i1=0

...

∞∑
ir−1=0

1

i1....ir−1
β(i1 + ...+ ir−1 + 1,

1

q
),

I4 = −2

∞∑
j=0

∞∑
i1=0

...

∞∑
ir=0

∫ 1

0

1

j.i1....ir
t(i1+...+ir)(1− t)(j+

1
q−1)dt

=

∞∑
j=0

∞∑
i1=0

...

∞∑
ir=0

1

j.i1....ir
β(i1 + ...+ ir + 1, j +

1

q
),

I5 = 2 ln q

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

∫ 1

0

1

j.i1....ir − 1
t(i1+...+ir−1)(1− t)(j+

1
q−1)dt

= 2 ln q

∞∑
j=0

∞∑
i1=0

...

∞∑
ir−1=0

1

j.i1....ir − 1
β(i1 + ...+ ir−1 + 1, j +

1

q
),

I6 = 2 ln q

∞∑
i1=0

...

∞∑
ir=0

∫ 1

0

1

i1....ir − 1
t(i1+...+ir)(1− t)(

1
q−1)dt

= 2 ln q

∞∑
i1=0

...

∞∑
ir=0

1

i1....ir
β(i1 + ...+ ir + 1,

1

q
).

From (23) and (24) we can compute

V ar(XL(r)) = E(XL(r))
2 − (E(XL(r)))

2 = aqr.bqr, (25)
Cov(XL(r), XL(s)) = E(XL(r)XL(s))− E(XL(r))E(XL(s)) = bqs.aqr (26)

By applying Theorem 1 (Subsection 2.1) and the method introduced by Lioyd (1952) using
Eqns. (24), (25) and (26), we have coefficients of the BLUES for mu and beta. Also, the variance
covariance for µ, β are given in Tables 6 and 7, respectively according different values of q.

4.2. Best Linear Invariant Estimates (BLIEs)
The best linear invariant (in terms of minimum mean squared error and invariance with respect

to the location parameter µ) estimators (BLIE) µ̃, β̃ of µ and β are also computed by applying (10)
and (11) using Eqns. (23), (24) and (26) (see Section 2.2).

4.3. Prediction of the Future Record
Finally, the notions of records for a specific phenomena that is probabilistically defined by the

q-Gumbel function probability distribution have been introduced in this paper. We generated some
lower record values distributional features and achieved certain attributes that are important to this
distribution. To predict future observations, we can accomplish this by using return levels:

F (xs) = 1/s, s > r.

Then,

xs = µ̂− β̂ ln
sq − 1

q
.
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Table 6 Coefficients for the BLUE of µ and β

n r Coefficients for the BLUE Coefficients for the BLUE Coefficients for the BLUE
of µ and β for q = 0.5 of µ and β for q = 1 of µ and β for q = 1.5

2 1 0.6778 -0.3241 0.8471 -0.3333 0.8931 -0.2901
2 2 0.3222 0.3241 0.1529 0.3333 0.1069 0.2901
3 1 1.0323 0.0325 0.9889 -0.0242 2.2969 3.5193
3 2 0.2491 0.2506 0.0918 0.2001 -0.6068 -1.6466
3 3 -0.2814 -0.2831 -0.0807 -0.176 -0.6901 -1.8728
4 1 0.7912 -0.2101 0.8948 -0.2294 1.0047 0.0128
4 2 0.1533 0.1542 0.0831 0.1811 -0.2894 -0.7853
4 3 -0.0634 -0.0638 -0.0159 -0.0347 0.0357 0.097
4 4 0.119 0.1197 0.0381 0.0831 0.249 0.6756
5 1 0.9133 -0.0873 0.949 -0.1111 2.5651 4.2472
5 2 0.1423 0.1431 0.0881 0.1921 -0.7773 -2.1094
5 3 -0.0457 -0.046 -0.0169 -0.0369 0.0837 0.2272
5 4 0.0828 0.0833 0.0071 0.0155 -0.1974 -0.5356
5 5 -0.0926 -0.0932 -0.0274 -0.0596 -0.6742 -1.8295

Table 7 Coefficient for the BLUE of µ and β

r=2 r=3 r=4 r=5

q=0.5
0.8473 1.0844 0.7522 0.8227
1.0089 0.471 0.6582 0.5124
-0.8524 -1.0909 -0.7567 -0.8276

q=1
0.6596 0.7701 0.6968 0.739
1.2337 0.709 1.0573 0.8565
-1.4378 -1.6785 -1.5187 -1.6108

q=1.5
3.5982 16.3757 11.8358 48.113
6.7231 61.804 9.9756 199.6442
-9.7644 -44.4381 -32.1184 -130.562

4.4. Simulation study
To show the performance of the estimators developed in the preceding section, a simulation

study is employed.We used the q-Gumbel function probability distribution with r = 5, q = 0.5,
µ = 5 and β = 0.1 to simulate a small random sample of size n = 15:

5.1173,5.2224,5.094,5.2957,5.1776,5.0361,5.444,4.9498
5.0733,5.0188,4.985,4.8536,4,8848,4.9677,5.0019

From the given random samples, five record values can be derived, namely, 5.1173, 5.094, 5.0361,
4.9498, 4.8536.

By using the BLUE and BLIE methods we obtained the estimate parameters of µ and β for
r = 1, 2, 3, 4, 5. The standard error in each case are calculated. Finally, the prediction 6th future
observation by applying (25) is obtained in each case.

All of these results are given below in Table 8.

Table 8 The result of the simulation

BLUE (Θ̂) S.E (Θ̂) BLIE (Θ̂) S.E (Θ̂)
µ 5.1283 0.0224 5.134 0.00444
β 0.011 0.0079 0.0073 0.00425

Prediction 6th observation 5.1166 5.12622
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The simulation results indicate that the estimates for µ and β are quite close to the true values.
The S.E. by BLIE method is smaller than that of the BLUE. This means that the BLIE method is the
best.

5. Maximum Likelihood Method
Let X1, X2, ..., Xn represent a full random sample from the q-Gumbel probability distribution

function (5):
The records required for this investigation are obtained as follow:
XL(1) = x1,K1 = k1, XL(2) = x2,K2 = k2, ..., XL(r) = xr,Kr = kr, where {XL(i), 1 ≤ i ≤ r}
is the record value sequence and {Ki, 1 > 0} is the inter record time sequence (see section 3). The
likelihood function expressed as:

L(x, µ, β, q) =

r∏
i=1

f(xi)[1− F (xi)]
(ki−1)

for the record-breaking samples XL(1) = x1,K1 = k1, XL(2) = x2,K2 = k2, ..., XL(r) = xr,Kr =
kr. where f(xi) and F (xi) is the pdf and cdf of the random variable from which the record observa-
tions are obtained from q-Gumbel distribution.

Applying likelihood function for record observations are obtained from q-Gumbel distibution
we get:

L1(x, µ, β, q) =

r∏
i=1

1

β
zi[1 + qzi]

−( 1
q+1)[1− (1 + qzi)

−1
q ](ki−1),

where zi = e−(
xi−µ

β )

the log of likelihood function is:

logL1(x, µ, β, q) =

r∑
i=1

{log( 1
β
)+ log(zi)− (

1

q
+ 1) log [1 + qzi] + (ki − 1) log [1− (1 + qzi)

−1
q ]} (27)

By taking the partial derivative of (27) with regard to µ and β the following equations:

∂logL1(x, µ, β, q)

∂µ
=

1

β

r∑
i=1

{1−
q( 1

q
+ 1)zi

[1 + qzi]
+ (ki − 1)

zi[1 + zi]
−1
q

−1

[1− (1 + qzi)
−1
q ]

}, (28)

∂logL1(x, µ, β, q)

∂β
=

1

β

r∑
i=1

{−1− log(zi) +
q( 1

q
+ 1)zi log(zi)

[1 + qzi]
− (ki − 1)

zi log(zi)[1 + qzi]
−1
q

−1

[1− (1 + qezi)
−1
q ]

}

(29)

and

∂logL1(x, µ, β, q)

∂q
=

r∑
i=1

{
−( 1

q
+ 1)zi

[1 + qzi]
+

log [1 + qzi]

q2
+

(ki − 1)zi

[1 + qezi ]
1
q
+1

− (ki − 1) log [1 + qzi]

q2[1 + qzi]1/q
} (30)

The maximum likelihood estimators for µ , β and q for the record samples by setting Eqns. (28),
(29) and (30) to zero.

The estimates of the parameters that are inherent in Eqns. (28), (29) and (30) are obtained as
follows for the complete sample X1, X2, ..., Xn.

We can write the log-likelihood from the q-Gumbel probability density function given by Eqn.
(5) as follows:

log(L2(x, µ, β, q)) =

n∑
i=1

{log( 1
β
)+ log(z)− (

1

q
+ 1) log [1 + qz]} (31)
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We have by taking the partial derivative of (31) with regard to µ, β and q the following equations:

∂logL2(x, µ, β, q)

∂µ
=

1

β

n∑
i=1

{1−
q( 1q + 1)zi

[1 + qzi]
}, (32)

∂logL2(x, µ, β, q)

∂β
=

1

β

n∑
i=1

{−1− log(zi) +
q( 1q + 1)zi log(zi)

[1 + qzi]
} (33)

The maximum likelihood estimators for µ, β and q for the complete samples by setting Eqns.
(31), (32) and (33) to zero.

5.1. Application
Here, we will apply the result in this section on the following example:
We used the q-Gumbel function probability distribution with µ = 5, β = 2 and q = 0.01 to

simulate a small random sample of size n = 15:

7.9976, 7.4889, 5.7261, 8.6323, 6.6800, 5.4420, 5.1657, 4.8923
3.7003, 4.3329, 3.3089, 2.7756 ,7.0583, 4.0321, 6.0229

First, using the entire data , we have the following record values and inter record times. xi =
7.9976, 7.4889, 5.7261, 5.442, 5.1657, 4.8923, 3.7003, 3.3089, 2.7756 and ki = 1, 1, 3, 1, 1, 1, 2, 1, 1

The maximum likelihood estimates with respect to the complete sample and the inter record
times for µ, β and q are given below in Table 9.

Table 9 The maximum likelihood estimates

(µ̂) (β̂) (q̂)
Complete sample 5.4999 1.0273 0.98
Inter record times 5.46522 1.0273 0.8802

5.1.1 Goodness-of-fit
By applying Akaike’s information criterion (AIC), corrected Akaike information criterion (CAIC)

and Cramé-von Mises statistics using data from the q-Gumbel function probability distribution, since
the two statistics can be evaluated from:

AIC = −2L+ 2K and AICC = AIC +
2K(K + 1)

n−K − 1
(34)

and

T =
1

12
+

n∑
i=1

(F (xi)−
2i− 1

2n
)2, (35)

where L is the likelihood of the function, K is the number of parameters which estimated and n is the
sample size which used for estimation. By applying (34) and (35) we obtained the following results
which given below in Table 10:

Table 10 Statistical models for goodness of fit

AIC AICC T
Complete sample 65.684 67.8663 0.049865511
Inter record times 53.76456 458.56456 0.036495806

Table 10, provided that the value of AIC in the case of inter record times is smaller than the
value in the case of complete sample. This means that the using of inter record times is the best.
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6. Conclusions
In the present study, we have introduced the concepts of Records for a given phenomenon that

is probabilistically characterized by the q-Gumbel pdf. Coefficients of the best linear unbiased esti-
mates have been obtained. In addition, a method for predicting future observations given based on
the current data. We have developed the analytical structure of the records, along with their maxi-
mum likelihood estimates. We have illustrated the usefulness of our analytical developments in two
interesting classical applications. Finally, the estimates of our analysis using inter record times are
better than previous results.
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