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Abstract
Coefficient of Variation (CV) is widely used as a measure of variation by researchers in applied

disciplines like chemistry, engineering, climatology, finance, agriculture and biological sciences. CV
is a better measure for analysing health science data as the units of measurement of the index of
different organs are often different. To assess precision in immunoassays and morphological mea-
surements, CV is used. The present study aims to propose an empirical likelihood ratio (ELR) test
for testing CV. The asymptotic null distribution of the proposed test statistic is obtained as Chi-square
distribution with 1 degree of freedom. Simulation is carried out to check the adequacy of Chi-square
approximation for finite samples. The proposed test is compared to Wald, bootstrap tests and ELR
test constructed by Wang et al. (ELRT2) using real data sets and also simulated data sets. The study
indicates that the proposed empirical likelihood ratio test possesses higher power compared to Wald,
bootstrap and ELRT2 tests when the underlying distributions considered are normal, lognormal,
gamma and Weibull.

Keywords: Chi-square approximation, simulation, Wald test, bootstrap test, type 1 error rate,
power of the test, confidence interval.

1. Introduction
CV is widely used as a measure of variation in applied disciplines by researchers. CV is invariant

to the number of replications, therefore it is an ideal index of certainty of measurements when the
number of replications varies across samples. Mean Residual Life (MRL) improves with increasing
replications. Comparison of MRL of two or more populations is meaningful when the same number
of samples are studied, otherwise, CV is a better option. CV is a popular measure for describing the
amount of repeat variability present in ECG measurements from one recording to another. Here, the
aim is to assess repeat variation (reclassification) in computer-measured ECG criteria, i.e. positive
to negative or vice versa, and compare this with the coefficient of variability [McLaughlin et al.
(1998)]. CV is better measure for analysing health science data as the units of measurement of the
index of different organs are often different. CV is used for assessing precision in immunoassays
and morphological measurements. It is the best measure of variability of population size over time
if there are zeros in the data. CV is better indicator of relative risk among different levels of risk for
different securities. It is also used to study investment volatility.
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Rao and Bhatt (1989) proposed tests for CV(s) of one (two) population(s) and derived Edge-
worth expansion for distribution function of sample CV. The asymptotic robustness of these tests is
discussed by Rao and Vidya (1992). Rao and Bhatt (1995) further proposed tests based on jack-
knifing and bootstrapping techniques for one and two sample cases. Singh (1993) proposed tests
based on inverse sample CV. Banik et al. (2012) proposed a bootstrap test for testing population CV
and compared it with existing methods. Kalkur and Rao (2014) have proposed six tests for testing
equality of CVs of bivariate normal distribution.

Empirical likelihood is the nonparametric analogue of parametric likelihood. The first paper on
empirical likelihood is with reference to survival analysis, wherein Thomas and Grunkemeier (1975)
have addressed the issue of censored observations. Owen (1988) and Owen (1990) introduced ELR
for testing specified value of mean of a continuous distribution. Qin and Lawless (1994) extended
ELR test for testing specified values of quantiles of continuous distribution. ELR test shared the same
property with the parametric likelihood ratio test, i.e. ELR test satisfies Wilks’ theorem as in the case
of parametric likelihood ratio test. The asymptotic null distribution of ELR test statistic is central chi-
square distribution with 1 degree of freedom. Naik-Nimbalkar and Rajrshi (1997) used this idea and
developed a test for equality of median survival times for censored data. Adimari (1997) addressed
the issue of censored observation with reference to empirical likelihood as defined by Owen (1988)
and has proposed a simple method to obtain empirical likelihood type confidence interval for the
mean under random censorship. Shen and He (2007) used smoothed empirical likelihood method
to investigate the difference of quantiles under censoring. Further, they extended these techniques
for the construction of confidence intervals for hazard and density functions when observations are
right censored. Yu et al. (2011) proposed four ELR tests for testing the equality of medians of
two populations. Wang et al. (2018) proposed two nonparametric methods to construct confidence
intervals for the coefficient of variation using empirical likelihood method after transforming the
original data and using modified jackknife empirical likelihood method.

An ELR test for testing CV is proposed in Section 2. Type I error rates of proposed ELR,
Wald, bootstrap and ELRT2 tests are estimated in Section 3 through simulation. Performance of
the proposed test with respect to three competent tests is analysed in the same section using power
comparisons. Section 4 considers the illustration of analysis of proposed test through real data set.

2. Test Statistics
2.1. Empirical likelihood ratio test

Let X be a random variable and x1, x2, ..., xn denote a sample of size n from a distribution
with cumulative density function (cdf) F (x), mean µ(µ ̸= 0) and standard deviation σ. For testing
H0 : θ = c0, where θ denotes the CV of the distribution and c0 is the specified value of CV, the test
statistic is

ELRT1 = −2log (L1(c0)),

where empirical likelihood ratio L1(c0) is given by

L1(c0) = max
w1,...,wn

{
n∏

i=1

nwi

∣∣∣∣∣wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wi[(xi − µ)2 − c20µ
2] = 0

}
. (1)

The asymptotic null distribution of (ELRT1) test statistic is central χ2 with 1 degree of freedom.
Alternatively one can construct (1− α)100% empirical likelihood confidence interval for θ as

Rθ = {θ : ELRT1 ≤ k}

where k is (1− α) quantile of χ2
1.

Theorem 1 Under regularity conditions, the asymptotic null distribution of −2 log (L1(c0)) is cen-
tral χ2 with 1 degree of freedom.
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Proof: Since it is similar to the proof as given in Owen (1988)), the sketch of the proof by omitting
finer details is presented.

Let zi = (xi − µ̂)
2 − c20µ̂

2, such that Ezi = 0.

G =

n∑
i=1

nlog (wi)− γ

(
1−

n∑
i=1

wi

)
+ nλ

(
0−

n∑
i=1

wizi

)

Equating

n∑
i=1

wi
δG

δwi
= 0 gives γ = −n

and hence, wi = [n(1 + λzi)]
−1

where λ is a solution of

n∑
i=1

zi
[n(1 + λzi)]

= 0.

Using Taylor series expansion of
∑n

i=1
zi

[n(1+λzi)]
around λ = 0, λ is obtained as

λ =

∑n
i=1 zi∑n
i=1 zi

2
+Op

(
n− 1

2

)
.

Using Taylor series expansion of log(1 + x), omitting the term nlog(n) which eventually gets can-
celled, results in

−2

n∑
i=1

log (wi) = 2

n∑
i=1

log [1 + λzi]

= 2λ

n∑
i=1

zi − λ2
n∑

i=1

z2i +Op(1)

which is simplified as −2
∑n

i=1 log(wi) = n(z)2

σ2
z

. where 1
n

∑n
i=1 zi = z and

1
n

∑n
i=1 z

2
i = σ2

z .

Hence the proof.
The regularity condition

∫
|X|3dF (X) ensures that the reminder term is Op (1) , for further details

Owen (1988) can be referred.

2.2. Wald test
The Wald test statistic as proposed by Rao and Bhatt (1989) for testing H0 : θ = c0 is

W =
(c− c0)

2

V ar (c)
(2)

where, c is sample CV, E (c) = θ +O
(
n−2

)
,

V ar(c) =
θ2

n

(µ4 − µ2
2

4µ2
2

− µ3

µ2µ
′
1

+
µ2(
µ

′
1

)2 )+O
(
n−2

)
and µr = E(X − µ)

r
, µ

′

r = EXr, EX4 < ∞.
The asymptotic null distribution of W is central χ2 with 1 degree of freedom. The distribution

of sample CV is difficult to derive when the underlying distribution is skewed [Acharna (2012)].
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2.3. Bootstrap test
One can construct a test for testing H0 : θ = c0 using bootstrap technique. The test statistic is

BT =
(c− c0)

2

V ar (c1)
(3)

where, V ar(c1) is Variance of bootstrap sample’s CV. The asymptotic null distribution of BT is
central χ2 with 1 degree of freedom.

2.4. Empirical likelihood ratio test due to Wang et al.
Wang et al. (2018) proposed interval estimator for a single CV via the empirical likelihood

method by transforming the original variable. Let m = ⌊n/2⌋ denote the integer part of n/2. Define

yi = 1
2 (xi − xm+i)

2 and zi = 1
2 (x

2
i − x2

m+i) for i = 1, 2, . . . .m. Then τ =
(

Eyi

Ezi−Eyi

) 1
2

is

estimated CV and E
(
yi − τ2 (zi − yi)

)
= 0 is the estimating equation. For testing H0 : θ = c0, the

test statistics is
ELRT2 = −2log (L2(c0)),

where empirical likelihood ratio L2 (c0) is given by,

L2(c0) = max
w1,...,wn

{
n∏

i=1

nwi

∣∣∣∣∣wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wi[(xi − c20(zi − yi)] = 0

}
. (4)

Asymptotic null distribution of ELRT2 is χ2 with 1 degree of freedom and it can be proved
from Owen (1988) similarly as Theorem 1.

3. Type I Error Rates and Power Comparisons when Samples are Drawn from Distributions
ELR test does not have any distributional assumption. The test is distribution-free asymptoti-

cally. Therefore type I error rates can be estimated for generated observations from various probability
distributions through simulation.

3.1. Simulation configurations
For simulation experiment, normal distribution is taken as the reference distribution. For exam-

ple, under normality, if the parameters considered are µ = 100 and σ = 10, the sample is generated
with the CV of 10%. For other distributions that are to be considered, the parameters are adjusted
so as to give same CV with respective combination of mean and variance as in the case of normal
distribution under consideration. The simulation configurations are

Level of significance α = 0.05.
c0 = 0.1, 0.2, 0.3.
Sample size n = 20, 40, 60, 100.
Number of simulations = 2000.
Distributions considered: Normal, Lognormal, Gamma, and Weibull.

The simulations are carried out by using the “emplik” package of R Programming developed by Zhou
and Yang (2012).

3.2. Estimated type I error rates
In this study, type I error rates are estimated using two methods. One method is by considering

χ2 critical value and another one is by constructing the frequency distribution of test statistics under
the null hypothesis. Table 1 to Table 4 show the estimated type I error rates by considering the χ2

distribution for normal, lognormal, gamma, and Weibull distributions respectively.
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Table 1 Estimated type I error rates for normal distribution

CV n
Type I error rate

ELRT1 Wald BT ELRT2

0.1

20 0.144 0.096 0.120 0.172
40 0.095 0.081 0.093 0.106
60 0.082 0.066 0.081 0.081
100 0.066 0.066 0.069 0.068

0.2

20 0.138 0.106 0.125 0.179
40 0.091 0.079 0.095 0.112
60 0.085 0.074 0.084 0.079
100 0.067 0.056 0.072 0.070

0.3

20 0.154 0.103 0.120 0.155
40 0.111 0.078 0.075 0.108
60 0.094 0.065 0.067 0.078
100 0.084 0.062 0.071 0.060

Table 2 Estimated type I error rates for lognormal distribution

CV n
Type I error rate

ELRT1 Wald BT ELRT2

0.10

20 0.150 0.104 0.108 0.183
40 0.090 0.076 0.096 0.109
60 0.072 0.072 0.082 0.084
100 0.071 0.059 0.064 0.071

0.20

20 0.124 0.094 0.110 0.172
40 0.081 0.095 0.081 0.116
60 0.067 0.060 0.072 0.094
100 0.053 0.058 0.064 0.068

0.30

20 0.135 0.093 0.115 0.191
40 0.074 0.077 0.088 0.123
60 0.063 0.070 0.072 0.102
100 0.055 0.050 0.064 0.082

Table 3 Estimated type I error rates for gamma distribution

CV n
Type I error rate

ELRT1 BT ELRT2

0.1

20 0.128 0.121 0.162
40 0.097 0.087 0.116
60 0.073 0.083 0.082
100 0.066 0.062 0.078

0.2

20 0.129 0.119 0.159
40 0.089 0.088 0.096
60 0.065 0.078 0.090
100 0.048 0.073 0.071

0.3

20 0.136 0.102 0.171
40 0.082 0.090 0.115
60 0.078 0.078 0.089
100 0.052 0.066 0.067



774 Thailand Statistician, 2024; 22(4): 769-778

Table 4 Estimated type I error rates for Weibull distribution

CV n
Type I error rate

ELRT1 BT ELRT2

0.1

20 0.209 0.152 0.170
40 0.119 0.111 0.124
60 0.102 0.108 0.100
100 0.103 0.080 0.077

0.2

20 0.178 0.104 0.156
40 0.115 0.092 0.102
60 0.091 0.080 0.070
100 0.097 0.080 0.068

0.3

20 0.153 0.100 0.146
40 0.122 0.072 0.094
60 0.084 0.074 0.085
100 0.092 0.049 0.069

A test is said to maintain type I error rate when the attained level of significance α̂ ∈ [0.04, 0.06].
A similar criterion is also used in the past by several researchers (see Nairy and Rao (2003)). For
ELRT1, Wald, Bootstrap and ELRT2 tests the chi-squared approximation does not maintain type I
error rates when the underlying distribution is normal lognormal , gamma and Weibull because these
tests are asymptotically χ2 distribution under null hypothesis. Type 1 error rate of proposed ELR test
(ELRT1) tends to 0.05 for c0 = 0.2, 0.3 and n = 100 under lognormal and gamma distributions.
Here the aim is to check the performance of α̂ by using χ2 critical value. On the other hand, all the
estimated type I error values constructed by using empirical distribution of the test statistics are less
than 0.05, which means all the tests maintain the type I error rate. In terms of Type 1 error rate, all
the considered tests exhibit similar behavior.

3.3. Power comparison
Simulations are also carried out to compute the power of empirical likelihood ratio test. The

estimated αth percentile values are used for power computation so that all the tests have the same size
α. Simulation configurations are similar to the one used for estimation of type I error rate. Computed
power is compared with Wald, bootstrap, and ELRT2 tests. The power functions of the proposed
test along with its competitors are given in Figure 1 to Figure 4 for normal, lognormal, gamma, and
Weibull distributions respectively when n =20, 40, 60 and 100, c0= 0.1, 0.2 and 0.3, α = 0.05.

From Figure 1 to Figure 4, it is clear that the proposed ELR test has greater power compared to
Wald, bootstrap, and ELRT2 tests in all considered scenarios. The power function is observed to be
increasing with an increasing shift in CV. However, the power is even better for the smaller difference
in observed and assumed CV whenever the latter is small. It is also noted that for larger sample sizes
the power function approaches 1 much faster than for smaller sample sizes.
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Figure 1 Estimated power functions of normal distribution

Figure 2 Estimated power functions of lognormal distribution
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Figure 3 Estimated power functions of gamma distribution

Figure 4 Estimated power functions of Weibull distribution
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4. Illustrations
4.1. Testing the significance of CV

CV is interpreted as volatility per mean return and inverse CV is referred to as a sharp ratio in
stock market analysis and relative risk in the area of finance. The volatility in finance is a measure
of change in the price of a financial instrument over time. It is generally determined by the standard
deviation of prices and returns of financial assets observed. Higher the price or return difference,
higher the standard deviation, which in turn is linked with higher risk. Volatility of financial assets
based on historical values, over the stated duration, with the most recent observation, and the most
recent price. For illustration purpose, Hindustan Unilever Ltd. (HUL) stock prices of the Bombay
Stock Exchange (BSE) is considered and the proposed test is applied along with three competent tests
to check whether volatility of HUL stock is significantly different from zero. Hence, H0 : θ = 0. The
data pertains to a period from 01.01.2020 to 17.12.2020 which yields a sample size (n) as 243 and
CV of sample is 5.1%. The test statistic values of ELRT1 , Wald, Bootstrap, and ELRT2 tests are
4514.3, 483.5, 394.3 and 3988.753 respectively. All the tests indicate rejection of H0, since volatility
of HUL stock is differ significantly from zero. The proposed test gathers more evidence against the
null hypothesis as compared to other three.

4.2. Interval estimation
To measure the reproducibility of serological tests, CV has been widely used. A dataset of the

measurements of the antibody titers on 30 distinct days of a single serum specimen from a serological
test from Wang et al. (2018) is considered. Confidence intervals for various tests also obtained in
Wang et al. (2018). The P-value 0.414 of Shapiro and Wilk (1965) normality test suggests that the
data may come from a normal distribution. The sample CV is 0.327. The 95% confidence intervals
(CI) from proposed and considered three tests are provided in Table 5.

Table 5 95% Confidence interval estimates

Test 95% CI
ELRT1 0.252 0.423
Wald 0.220 0.434
Bootstrap 0.223 0.431
ELRT2 0.231 0.487

From the table, it is clear that all proposed estimators cover the true CV value 0.327. It is
observed that ELRT1 has the narrowest width followed by Wald test. The ELRT2 has the widest
width compared with the rest.

5. Conclusion
The objective of the present study is to propose an empirical likelihood ratio test to test one sam-

ple CV without transforming the original data. The asymptotic null distribution of the proposed test
statistics is obtained as a Chi-square distribution with 1 degree of freedom. Using simulated data and
also real data sets, the proposed test is compared to Wald, bootstrap and ELRT2 tests. Simulation
is carried out to compute type I error rate and power. Type I error rates of all considered tests are
similar whereas the power of ELRT1 is higher than the other three tests when the underlying distri-
butions are normal, lognormal, gamma and Weibull. Two data sets are used to illustrate the proposed
test. ELRT1 gathers more evidence against the null hypothesis than other three tests in testing the
significance of CV and ELRT1 produces a comparably shorter length of confidence interval from
Wald, bootstrap and ELRT2 tests in the estimation of confidence intervals. Thus one can prefer the
proposed test (ELRT1) to construct confidence interval of CV and to test the significance of CV over
other three.
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