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Abstract
In this article, we present a new generalized family of distributions called the Exponentiated

Half-Logistic-Generalized Marshall-Olkin-G (EHL-GMO-G) distribution. Some of the useful math-
ematical and statistical properties for this new family of distributions such as the hazard rate function,
quantile function, moments and moment generating functions, Rényi entropy, order statistics and
stochastic order are derived. The method of maximum likelihood estimation is used for estimating
the model parameters. Simulation experiments are conducted to illustrate consistency of the maxi-
mum likelihood estimates for model parameters and furthermore we apply one special case of this
new family to real life data sets to demonstrate its flexibility in modelling various types of real life
data.

Keywords: Consistency, flexibility, model parameters, maximum likelihood estimation, simula-
tions.

1. Introduction
More recently, various statisticians developed new distributions having the ability to capture

special features critical in data modelling and analysis. The widely used and most common approach
is the use of the so called “generators of distributions” which improves the flexibility of the newly
developed models using the existing distributions. The development of these generators uses the
existing distributions with one or more parameters and well established structural properties. Some
of the well-known families are the Marshall-Olkin-G by Marshall and Olkin (1997), the beta-G by
Eugene et al. (2002), odd log-logistic-G by Alizadeh et al. (2017), the transmuted-G by Shaw
and Buckley (2009), the gamma-G by Zografos and Balakhrishnan (2009), the Kumaraswamy-G
by Cordeiro and de Castro (2011), the logistic-G by Torabi and Montazeri (2014), exponentiated
generalized-G by Cordeiro et al. (2013), T-X family by Alzaatreh et al. (2013), the Weibull-G
by Bourguignon et al. (2014), the exponentiated half-logistic generated family by Cordeiro et al.
(2014) and the beta odd log-logistic generalized by Cordeiro et al. (2016) to mention just a few. Burr
(1942) developed a system of cumulative distribution functions which have been widely extended by
many researchers to generate more flexible and useful distributions. Afify et al. (2017) developed a
new flexible family of distributions called the Odd exponentiated half logistic-G (OEHL-G) family
of distributions using the Half-Logistic (HL) distribution as the generator. The use of these new
generators of continuous distributions have attracted the attention of various authors in recent times.
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Cordeiro et al. (2014) introduced another family of distributions called the exponentiated half-
logistic (EHL) family from the gamma-generator by Zografos and Balakhrishnan (2009). The cumu-
lative distribution function (cdf) of the EHL-G family of distributions is given by

F (x;α, β, ξ) =

{
1− [1−G(x; ξ)]α

1 + [1−G(x; ξ)]α

}β
, (1)

where α, β > 0 are additional shape parameters with ξ as the vector of parameters. Marshall and
Olkin (see Marshall and Olkin (1997), for details) introduced the family of distributions called
Marshall-Olkin-G (MO-G). Various authors have done more work on the generalization of Marshall-
Olkin-G family of distributions, some of which include; Marshall–Olkin-Kumaraswamy-G family
by Handique and Chakraborty (2015), Kumaraswamy Marshall–Olkin-G family by Alizadeh et al.
(2015), generalized Marshall–Olkin Kumaraswamy-G family by Chakraborty and Handique (2017)
and beta generalized Marshall–Olkin-G family by Handique and Chakraborty (2016) as some of the
few among others. The cdf of Marshall-Olkin-G (MO-G) family of distributions is given by

FMO−G(x; δ, ψ) = 1− δG(x;ψ)

1− δG(x;ψ)
, (2)

where δ is the tilt parameter, δ = 1 − δ, δ > 0, G(x;ψ) = 1 − G(x;ψ) and G(x;ψ) is the baseline
cdf with parameter vector ψ. Note that when δ = 1, we have the baseline distribution function,
FMO(x;ψ) = F (x;ψ). The generalized-G (G-G) family has a cdf given by

FG−G(x;α,ψ) = 1−
[
G(x;ψ)

]α
, x ∈ IR, (3)

and the corresponding probability density function (pdf) is given by

fG−G(x;α,ψ) = αg(x;ψ)
[
G(x;ψ)

]α−1
, x ∈ IR, (4)

where α > 0, G(x;ψ) = 1−G(x;ψ) and ψ is the vector of parameters.
Inserting Eqn. (3) into (2), we obtain the Marshall-Olkin generalized-G (MOG-G) family of

distributions with the cdf given by

FMOG−G(x;α, δ, ψ) = 1−
δ
[
G(x;ψ)

]α
1− δ

[
G(x;ψ)

]α , (5)

for α, δ > 0 and the parameter vector ψ, (see Yousof et al. (2018), for additional details).
We can therefore write the cdf of generalized Marshall-Olkin-G (GMO-G) family of distribu-

tions as

FGMOG−G(x;α, δ, ψ) = 1−
(

δG(x;ψ)

1− δG(x;ψ)

)α
, (6)

for α, δ > 0 and the parameter vector ψ.
The main aim of this paper is to propose an alternative family of distributions using the exist-

ing generators having great advantages in data analysis with more flexible kurtosis and skewness in
comparison to the baseline distribution. The proposed family can generate distributions with sym-
metric, left-skewed, right-skewed, reversed-J shaped with hazard rate function (hrf) plots revealing
decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside down bathtub
shapes.

This paper is organized as follows: Section 2, defines the proposed family of distributions and
also presents its hazard rate and quantile functions. The linear representation of the density func-
tion and some of the important structural properties for this newly generated family of distributions,
namely; moments and moment generating functions, Rényi entropy, order statistics and stochastic
order are presented under Section 3. Section 5 contains the maximum likelihood estimates and some
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of the special cases for this family are discussed under Section 6. Simulation studies are performed
under Section 7 and Section 8 presents model applications. We finally give concluding remarks under
Section 9.

2. Developing the New Model & Some Properties
In this section, we present the cdf, pdf, hazard rate function (hrf) and quantile function (qf) for

the exponentiated half-logistic-generalized Marshall-Olkin (EHL-GMO-G) family of distributions.
Note that by using the generator given under Eqn. (1) with Eqn. (6), we can write the cdf and pdf for
the new family of distributions as

F (x;α, δ, β, ψ) =

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β , (7)

and

f(x;α, δ, β, ψ) = 2αβ

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2 , (8)

respectively, for α, δ, β > 0, δ = 1− δ and parameter vector ψ.

2.1. The hazard rate and quantile functions
Let a random variable X follow the underlying family of distribution given by Eqn.(7). The hrf

for this new family of distribution is given by

hF (x;α, δ, β, ψ) = 2αβ

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2

×

1−

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β


−1

,

for α, δ, β > 0, δ = 1−δ and parameter vector ψ. The corresponding qf for the EHL-GMO-G family
of distributions is derived by solving the non-linear equation

F (x;α, δ, β, ψ) =

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β = u,

for 0 ≤ u ≤ 1. That is,
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G(x;ψ) = 1− δ−1




(
1− u

1
β

)
(
1 + u

1
β

)


1
α


−1

+
δ

δ


−1

.

We can finally write the quantile function for this new family of distributions as

Q(u) = G−1

1− δ−1




(
1− u

1
β

)
(
1 + u

1
β

)


1
α


−1

+
δ

δ


−1
 . (9)

3. Linear Representation of Density Function
This section presents series expansion for the pdf of the EHL-GMO-G family of distributions.

The linear representation of the pdf further allows for the study of important mathematical and statis-
tical properties for this new family of distributions. To derive the series expansion for the pdf of this
family, we apply the generalized binomial expansion given by

(1− z)−b =

∞∑
w=0

Γ(b+ w)

Γ(b)w!
zw, for |z| < 1 and b > 0.

The pdf of EHL-GMO-G family of distributions can be written as

f(x;α, δ, β, ψ) = 2αβ

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2
= 2αβ

[
1−

(
δG(x;ψ)

1− δG(x;ψ)

)α]β−1 (
δG(x;ψ)

)α−1

×

[
1 +

(
δG(x;ψ)

1− δG(x;ψ)

)α]−(β+1) (
1− δG(x;ψ)

)−(α+1)
δg(x;ψ)

= 2αβ

∞∑
k,i=0

(−1)k
(
β − 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

(
δG(x;ψ)

)α(k+i+1)−1

×
(
1− δG(x;ψ)

)−α(k+i+1)−1
δg(x;ψ)

= 2αβ

∞∑
k,i,q=0

δα(k+i+1)δ
q
(−1)k+q

(
β − 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

×
(
−α(k + i+ 1)− 1

q

)(
G(x;ψ)

)α(k+i+1)−1+q
g(x;ψ)

= 2αβ

∞∑
k,i,q,p=0

δα(k+i+1)δ
q
(−1)k+q+p

(
β − 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

×
(
−α(k + i+ 1)− 1

q

)(
α(k + i+ 1)− 1 + q

p

)
(G(x;ψ))

p
g(x;ψ)
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= 2αβ

∞∑
k,i,q,p=0

δα(k+i+1)δ
q
(−1)k+q+p

(
β − 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

(
p+ 1

p+ 1

)

×
(
−α(k + i+ 1)− 1

q

)(
α(k + i+ 1)− 1 + q

p

)
(G(x;ψ))

p
g(x;ψ)

=

∞∑
p=0

wp+1gp+1
(x;ψ), (10)

where g
p+1

(x;ψ) = (p+1) (G(x;ψ))
p
g(x;ψ) is the exponentiated-G (E-G) distribution with power

parameter p+ 1 > 0 having parameter vector ψ and

wp+1 = 2αβ
∞∑

k,i,q,p

δα(k+i+1)δ
q
(−1)k+q+p

(
β − 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

(
1

p+ 1

)

×
(
−α(k + i+ 1)− 1

q

)(
α(k + i+ 1)− 1 + q

p

)
. (11)

The mathematical and statistical properties of the EHL-GMO-G family of distributions follows
directly from those of the exponentiated-G (E-G) distribution.

3.1. Moments and generating function
Let Yp+1 ∼ E − G(p + 1), then using Eqn. (10) we derive the rth raw moment, µ′

r of the EHL-
GMO-G family of distributions as

µ′
r = E(Xr) =

∫ ∞

−∞
xrf(x;α, δ, β, ψ)dx =

∞∑
p=0

wp+1E(Y rp+1),

where E(Y rp+1) is the rth raw moment of exponentiated-G (E-G) distribuiton with parameter p + 1

and wp+1 is given by Eqn. (11). The moment generating function (MGF) M(t) = E(etX) is given
by:

M(t) =

∞∑
p=0

wp+1Mp+1(t),

where Mp+1(t) is the MGF of Yp+1 and wp+1 is given by Eqn. (11). We present the first five
moments with the standard deviation (SD or σ), coefficient of variation (CV), coefficient of skewness
(CS) and coefficient of kurtosis (CK) for the exponentiated half-logistic-generalized Marshall-Olkin-
exponential (EHL-GMO-E) distribution for some parameter values (see Table 1, for details). The
quantiles for the selected parameter values are also given under Table 2. Figure 1 presents the 3D
plots of skewness and kurtosis for the EHL-GMO-Exponential (EHL-GMO-E) distribution for some
selected parameter values. The degree of decay for skewness and kurtosis measures depend on the
values of the shape parameters.

It can be noted that the skewness and kurtosis measures for the new family of distributions are
highly influenced by the choice of parameters.
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Table 1 Moments of the EHL-GMO-E distribution for some parameter values

(1.5,0.5,0.5,1) (0.5,1.5,1,1.5) (0.5,1.5,1,1.5) (1,1.5,1,0.5) (1.3,1.5,1.5,0.5)
E(X) 0.21647 0.12609 0.12609 0.07205 0.06673
E(X2) 0.11029 0.08889 0.08889 0.05116 0.04793
E(X3) 0.07156 0.06851 0.06851 0.03963 0.03739
E(X4) 0.05229 0.05568 0.05568 0.03233 0.03065
E(X5) 0.04096 0.04687 0.04687 0.02729 0.02597

SD 0.25186 0.27017 0.27017 0.21442 0.20851
CV 1.16350 2.14262 2.14262 2.97566 3.12473
CS 1.26552 1.97237 1.97237 2.97447 3.13211
CK 3.66481 5.41474 5.41474 10.60725 11.58278

Table 2 Quantiles for selected parameters of the EHL-GMO-E distribution

u (1,0.5,0.5,1.5) (0.5,1,0.5,2.5) (1.5,0.5,1.5,1) (1.5,1.5,1,1.5) (1,1.5,1,0.5)
0.1 0.02720 0.19420 0.07901 0.31675 1.42540
0.3 0.06287 0.31982 0.17546 0.42877 1.92946
0.4 0.11623 0.46804 0.30758 0.54065 2.43295
0.5 0.19178 0.64377 0.47535 0.65897 2.96538
0.6 0.29754 0.85602 0.68276 0.79107 3.55987
0.7 0.44889 1.12268 0.94215 0.94855 4.26849
0.8 0.68110 1.48543 1.28705 1.15571 5.20078
0.9 1.10714 2.07939 1.83110 1.48861 6.69878

Figure 1 3D plots of the skewness (above) and kurtosis (below) measures for the EHL-GMO-E
distribution for selected parameter values
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4. Order Statistics
Consider a random sampleX1, X2, ..., Xn from the EHL-GMO-G family of distributions. Using

the binomial series expansion

(1− F (x))n−w =

n−w∑
z=0

(
n− w

z

)
(−1)z[F (x)]z,

we can express the pdf of the wth order statistic as

fw:n(x) =
n!f(x)

(w − 1)!(n− w)!
[F (x)]w−1[1− F (x)]n−w

=
n!f(x)

(w − 1)!(n− w)!

n−w∑
z=0

(−1)z
(
n− w

z

)
[F (x)]z+w−1. (12)

Using Eqns. (7) and (8), we can write f(x)[F (x)]z+w−1 as:

f(x)F (x)z+w−1 = 2αβ

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β(z+w)−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2 .
(13)

Following the same procedure used to establish Eqn. (10), we get

f(x)F (x)z+w−1 =

∞∑
p=0

w∗
p+1gp+1(x;ψ), (14)

where g
p+1

(x;ψ) = (p+1) (G(x;ψ))
p
g(x;ψ) is the exponentiated-G (E-G) distribution with power

parameter p+ 1 > 0 and parameter vector ψ, and

w∗
p+1 = 2αβ

∞∑
k,i,q

δα(k+i+1)δ
q
(−1)k+q+p

(
β(z + w)− 1

k

)
Γ(β + 1 + i)

Γ(β + 1)i!

(
1

p+ 1

)

×
(
−α(k + i+ 1)− 1

q

)(
α(k + i+ 1)− 1 + q

p

)
. (15)

By substituting Eqn. (14) into (12), we obtain

fw:n(x) =
n!

(w − 1)!(n− w)!

∞∑
p=0

n−w∑
z=0

(−1)z
(
n− w

z

)
w∗
p+1gp+1

(x;ψ), (16)

where g
p+1

(x;ψ) = (p + 1)[G(x;ψ)]pg(x;ψ) is the exponentiated-G (E-G) pdf with the power
parameter p+1 > 0 and parameter vector ψ. The density function of the EHL-GMO-G order statistics
is therefore a linear combination of E-G densities.

4.1. Rényi Entropy
Consider the two commonly known entropies used a measure of variation for the random vari-

able X, being Shannon entropy (Shannon , 1951) and Rényi entropy (Rényi , 1961). Rényi entropy is
defined to be
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IR(v) =
1

1− v
log

(∫ ∞

0

[f(x;α, δ, β, ψ)]vdx

)
, v ̸= 1, v > 0.

Note that

[f(x;α, δ, β, ψ)]v = (2αβ)v

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
v(β−1)(

δG(x;ψ)

1− δG(x;ψ)

)v(α−1)

× δvgv(x;ψ)(
1− δG(x;ψ)

)2v (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2v
= (2αβ)v

[
1−

(
δG(x;ψ)

1− δG(x;ψ)

)α]v(β−1) (
δG(x;ψ)

)v(α−1)

×

[
1 +

(
δG(x;ψ)

1− δG(x;ψ)

)α]−v(β+1) (
1− δG(x;ψ)

)−v(α+1)
δvgv(x;ψ)

= (2αβ)v
∞∑

k,i=0

(−1)k
(
v(β − 1)

k

)
Γ(v(β + 1 + i))

Γ(v(β + 1))i!

(
δG(x;ψ)

)α(k+i+v)−v
×

(
1− δG(x;ψ)

)−α(k+i+v)−v
δvgv(x;ψ)

= (2αβ)v
∞∑

k,i,q=0

δα(k+i+v)δ
q
(−1)k+q

(
v(β − 1)

k

)
Γ(v(β + 1 + i))

Γ(v(β + 1))i!

×
(
−α(k + i+ v)− v

q

)(
G(x;ψ)

)α(k+i+v)−v+q
gv(x;ψ)

= (2αβ)v
∞∑

k,i,q,p=0

δα(k+i+v)δ
q
(−1)k+q+p

(
v(β − 1)

k

)
Γ(v(β + 1 + i))

Γ(v(β + 1))i!

×
(
−α(k + i+ v)− v

q

)(
α(k + i+ v)− v + q

p

)
(G(x;ψ))

p
gv(x;ψ).

Finally, the Rényi entropy for the EHL-GMO-G family of distributions is given by

IR(v) =
1

1− v
log

[
(2αβ)v

∞∑
k,i,q,p

δα(k+i+v)δ
q
(−1)k+q+p

(
v(β − 1)

k

)
Γ(v(β + 1 + i))

Γ(v(β + 1))i!

×
(
−α(k + i+ v)− v

q

)(
α(k + i+ v)− v + q

p

)
1[

p
v + 1

]v
×

∫ ∞

0

([p
v
+ 1
]
(G(x;ψ))

p
v g(x;ψ)

)v
dx

]

=
1

1− v
log

[ ∞∑
p=0

τp exp((1− v)IREG)

]
,

for v > 0, v ̸= 1, where IREG = 1
1−v log

[∫∞
0

([
p
v + 1

]
(G(x;ψ))

p
v g(x;ψ)

)v
dx

]
is the Rényi

entropy of E-G distribution with power parameter qv + 1, and
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τp = (2αβ)v
∞∑
k,i,q

δα(k+i+v)δ
q
(−1)k+q+p

(
v(β − 1)

k

)
Γ(v(β + 1 + i))

Γ(v(β + 1))i!

×
(
−α(k + i+ v)− v

q

)(
α(k + i+ v)− v + q

p

)
1[

p
v + 1

]v .
4.2. Stochastic Ordering

In this section, we present the three commonly applied orders for the EHL-GMO-G family of
distributions being; the usual stochastic order, the hazard rate order and the likelihood ratio order
(Shaked and Shanthikumar , 2007).

Let X and Y be the two random variables with cdfs FX(t) and FY (t), respectively, with the
survival function given by FX(t) = 1 − FX(t). A random variable, say X is stochastically smaller
than the random variable Y if FX(t) ≤ FY (t) for all t or FX(t) ≥ FY (t) for all t. This is denoted
by X <st Y. The hazard rate order and likelihood ratio order are stronger and are given by X <hr Y

if hX(t) ≥ hY (t) for all t, and X <ℓr Y if fX(t)
fY (t) is decreasing in t. It holds that X <ℓr Y =⇒

X <hr Y =⇒ X <st Y.

SupposeX1 andX2 are two independent random variables followingEHL−GMO−G(α, δ, β1, ψ)
and EHL−GMO −G(α, δ, β2, ψ) distributions, then the pdfs of X1 and X2 are

f1(x) = 2αβ1

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β1−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2
and

f2(x) = 2αβ2

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β2−1(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2 .
The ratio, f1(x)f2(x)

takes the form

f1(x)

f2(x)
=

β1
β2

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β1−β2

, (17)

and differentiating Eqn. (17) with respect to x, we obtain
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d

dx

(
f1(x)

f2(x)

)
=

β1
β2

(β1 − β2)

1−
(

δG(x;ψ)

1−δG(x;ψ)

)α
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α
β1−β2−1

×
(

δG(x;ψ)

1− δG(x;ψ)

)α−1

× δg(x;ψ)(
1− δG(x;ψ)

)2 (
1 +

(
δG(x;ψ)

1−δG(x;ψ)

)α)2 .
Consequently, if β1 ≤ β2, then

(
f1(x)
f2(x)

)
is decreasing and therefore, the likelihood ratio order

X1 <ℓr X2 exists. As a result, the random variables X1 and X2 are stochastically ordered.

5. Maximum Likelihood Estimation
In this section, the maximum likelihood estimation technique is used to estimate the parameters

for the EHL-GMO-G family of distributions. If we let X ∼ EHL − GMO − G(α, δ, β, ψ) and
∆ = (α, δ, β, ψ)T be the vector of model parameters, then the log-likelihood function ℓn = ℓn(∆)
based on a random sample of size n from the EHL-GMO-G family of distributions is given by

ℓn(∆) = n ln(2αβ) + (β − 1)

n∑
i=1

ln

1−
(

δG(xi;ψ)

1−δG(xi;ψ)

)α
1 +

(
δG(xi;ψ)

1−δG(xi;ψ)

)α
+ δ

n∑
i=1

ln (g(xi;ψ))

+ (α− 1)

n∑
i=1

ln
(
δG(xi;ψ)

)
− (α− 1)

n∑
i=1

ln
(
1− δG(xi;ψ)

)
− 2

n∑
i=1

ln
(
1− δG(xi;ψ)

)
− 2

n∑
i=1

ln

(
1 +

(
δG(xi;ψ)

1− δG(xi;ψ)

)α)
.

We obtain the maximum likelihood estimates (MLEs) by differenting the log-likelihood function
with respect to α, δ, β, ψ, and solving the nonlinear equation (∂ℓn∂α ,

∂ℓn
∂δ ,

∂ℓn
∂β ,

∂ℓn
∂ψk

)T = 0. The
corresponding elements of a score vector U(∆) = (∂ℓn∂α ,

∂ℓn
∂δ ,

∂ℓn
∂β ,

∂ℓn
∂ψk

)T are given under appendix
9. Since these system of non-linear equations has no closed form, numerical methods such as Newton-
Raphson procedure can be used obtain the maximum likelihood estimates for the parameters for
specified baseline cdf G(xi;ψ). The multivariate normal distribution Nq+3(0, J(∆̂)−1), where the
mean vector 0 = (0, 0, 0, 0)T and J(∆̂)−1 is the observed Fisher information matrix evaluated at ∆̂,
is critical in the construction of confidence intervals and regions for the model parameters.

6. Some Special Cases
We consider some special cases by changing the baseline distribution function G(x;ψ) to flex-

ible distributions. The parameter vector space is limited to atmost 2 component vector to avoid over
parametrization and redundancy.

6.1. EHL-GMO-Exponential (EHL-GMO-E) distribution
Let an exponential distribution be the baseline distribution with paramter a > 0 having cdf and

pdf given by G(x; a) = 1− e−ax and g(x; a) = ae−ax, respectively. If we let t1 =
(

δe−ax
1−(1−δ)e−ax

)
,

then the cdf and pdf of EHL-GMO-E distribution are given by
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F (x;α, δ, β, a) =

[
1− tα1
1 + tα1

]β
, (18)

and

f(x;α, δ, β, a) = 2αβ

[
1− tα1
1 + tα1

]β−1

tα−1
1

δae−ax

(1− (1− δ)e−ax)2 (1 + tα1 )
2 , (19)

respectively, for α, δ, β, a > 0. The corresponding hrf is given by

hF (x;α, δ, β, a) = 2αβ

[
1− tα1
1 + tα1

]β−1

tα−1
1

δae−ax

(1− (1− δ)e−ax)2 (1 + tα1 )
2

×

(
1−

[
1− tα1
1 + tα1

]β)−1

,

for α, δ, β, a > 0.
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Figure 2 Plots of the pdf and hrf for the EHL-GMO-E distribution

Figure 2 demonstrates the flexibility of the EHL-GMO-E distribution for selected parameter
values. The pdfs of the EHL-GMO-E distribution can adopt various shapes that include reverse-J,
uni-modal, left or right skewed shapes. Furthermore, the EHL-GMO-E distribution hrf plots reveal
decreasing, increasing, bathtub and upside down bathtub shapes.

6.2. EHL-GMO-Log-Logistic (EHL-GMO-LLoG) distribution
Consider the log-logistic distribution as the baseline distribution with parameter c > 0 having

cdf and pdf G(x; c) = 1 − (1 + xc)−1 and g(x; c) = cxc−1(1 + xc)−2, respectively. Let t2 =(
δ(1+xc)−1

1−(1−δ)(1+xc)−1

)
, then the cdf, pdf and hrf of EHL-GMO-LLoG distribution are given by
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F (x;α, δ, β, c) =

[
1− tα2
1 + tα2

]β
, (20)

f(x;α, δ, β, c) = 2αβ

[
1− tα2
1 + tα2

]β−1

tα−1
2

δcxc−1(1 + xc)−2

(1− (1− δ)(1 + xc)−1)
2
(1 + tα2 )

2 (21)

and

hF (x;α, δ, β, c) = 2αβ

[
1− tα2
1 + tα2

]β−1

tα−1
2

δcxc−1(1 + xc)−2

(1− (1− δ)(1 + xc)−1)
2
(1 + tα2 )

2

×

(
1−

[
1− tα2
1 + tα2

]β)−1

,

respectively, for α, δ, β, c > 0.
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Figure 3 Plots of the pdf and hrf for the EHL-GMO-LLoG distribution

Figure 3 illustrates the efficacy and flexibility of the EHL-GMO-LLoG distribution for selected
parameter values. The pdfs of the EHL-GMO-LLoG distribution exhibits various shapes that include
reverse-J, uni-modal, left or right skewed shapes. Additionally, the EHL-GMO-LLoG distribution
hrf plots give decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside
down bathtub shapes.

6.3. EHL-GMO-Kumaraswamy (EHL-GMO-K) distribution
Let the Kumaraswamy distribution be the baseline distribution with paramters a, λ > 0 having

cdf and pdf G(x; a, λ) = 1 − (1 − xa)λ, 0 ≤ x ≤ 1, and g(x; a, λ) = aλxa−1(1 − xa)λ−1,
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respectively. If we let t3 =
(

δ(1−xa)λ
1−(1−δ)(1−xa)λ

)
, then the cdf and pdf of EHL-GMO-K distribution are

given by

F (x;α, δ, β, a, λ) =

[
1− tα3
1 + tα3

]β
, (22)

and

f(x;α, δ, β, a, λ) = 2αβ

[
1− tα3
1 + tα3

]β−1

tα−1
3

δaλxa−1(1− xa)λ−1

(1− (1− δ)(1− xa)λ)
2
(1 + tα3 )

2
, (23)

respectively, for α, δ, β, a, λ > 0, and the corresponding hrf is given by

hF (x;α, δ, β, a, λ) = 2αβ

[
1− tα3
1 + tα3

]β−1

tα−1
3

δaλxa−1(1− xa)λ−1

(1− (1− δ)(1− xa)λ)
2
(1 + tα3 )

2

×

(
1−

[
1− tα3
1 + tα3

]β)−1

,

for α, δ, β, a, λ > 0.
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Figure 4 Plots of the pdf and hrf for the EHL-GMO-K distribution

From Figure 4, the flexible nature of the EHL-GMO-K distribution for selected parameter values
can be noted clearly. The pdfs of the EHL-GMO-K distribution can take different shapes namely;
reverse-J, uni-modal, left or right skewed shapes. Also, the hrf plots for the EHL-GMO-K distribution
yields decreasing, increasing, bathtub, upside down bathtub and bathtub followed by upside down
bathtub shapes.
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6.4. EHL-GMO-Weibull (EHL-GMO-W) distribution
Let the one parameter Weibull distribution be the baseline distribution with pdf and cdf given

by g(x;λ) = λxλ−1 exp(−xλ) and G(x;λ) = 1 − exp(−xλ), for λ > 0, respectively. Let t4 =(
δe−x

λ

1−(1−δ)e−xλ

)
, then the cdf, pdf and hrf of the EHL-GMO-W distribution are given by

F (x;α, δ, β, λ) =

[
1− tα4
1 + tα4

]β
, (24)

f(x;α, δ, β, λ) = 2αβ

[
1− tα4
1 + tα4

]β−1

tα−1
4

δλxλ−1 exp(−xλ)(
1− (1− δ)e−xλ

)2
(1 + tα4 )

2
(25)

and

hF (x;α, δ, β, λ) = 2αβ

[
1− tα4
1 + tα4

]β−1

tα−1
4

δλxλ−1 exp(−xλ)(
1− (1− δ)e−xλ

)2
(1 + tα4 )

2

×

(
1−

[
1− tα4
1 + tα4

]β)−1

,

respectively, for α, δ, β, λ > 0.
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Figure 5 Plots of the pdf and hrf for the EHL-GMO-W distribution

Figure 5 depicts the efficacy of the EHL-GMO-W distribution for selected parameter values. The
pdfs of the EHL-GMO-W distribution easily adopt diiferent shapes which are; reverse-J, uni-modal,
left or right skewed shapes. The EHL-GMO-W distribution hrf plots in addition show decreasing,
increasing, bathtub and upside down bathtub shapes.
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7. Monte Carlo Simulations
In this section, we conduct a simulation study to evaluate consistency of the maximum likelihood

estimators for the EHL-GMO-E distribution using different parameter values. The simulation study is
repeated for N = 1000 times with sample size n = 25, 50, 100, 200, 400, 800 and 1000. The simulation
results (mean of the MLEs, average bias and root mean square error (RMSE)) are presented under
Tables 3 and 4. The results shows that as the sample size n increases, the mean estimates of the
parameters tend to be closer to the true parameter values, with Average Bias and RMSEs converging
towards zero. The Average Bias and RMSEs are given by:

Bias(θ̂) =
∑n
i=1 θ̂i
n

− θ and RMSE(θ̂) =

√∑n
i=1(θ̂i − θ)2

n
,

respectively.

Table 3 Monte Carlo simulation results for EHL-GMO-E distribution; mean, average bias and RMSE

Parameter n
Set I: α=0.2, δ=0.9 , β=0.2 , a=0.1 Set II: α=0.2, δ=0.9, β=0.5, a=0.1

Mean RMSE Bias Mean RMSE Bias

α

25 0.66625 5.23912 0.46625 0.44175 0.48371 0.24175
50 0.29894 0.24941 0.09894 0.40053 0.40940 0.20054
100 0.27965 0.23442 0.07965 0.36965 0.39124 0.16965
200 0.23655 0.14971 0.03655 0.27968 0.24713 0.07968
400 0.22035 0.08213 0.02035 0.24927 0.17159 0.04927
800 0.21167 0.05458 0.01167 0.23074 0.13250 0.03074

1000 0.20774 0.04394 0.00774 0.22152 0.11644 0.02152

δ

25 1.74884 1.35600 0.84884 1.85934 1.97100 0.95934
50 1.45707 1.01096 0.55707 1.46470 1.24845 0.56470
100 1.17498 0.66699 0.27498 1.22148 0.85211 0.32148
200 1.10518 0.51033 0.20518 1.07599 0.51057 0.17599
400 1.04635 0.40970 0.14635 0.99248 0.31528 0.09248
800 0.96037 0.23090 0.06037 0.93752 0.16406 0.03752

1000 0.95550 0.20945 0.05550 0.94218 0.17327 0.04218

β

25 5.31205 9.36909 5.11205 2.26455 10.70787 1.76455
50 0.74386 5.00047 0.54386 2.17964 15.04179 1.67964
100 0.31318 0.57434 0.11318 0.86686 2.76489 0.36686
200 0.23054 0.23680 0.03054 0.54116 0.65306 0.04116
400 0.22952 0.21147 0.02952 0.53115 0.50329 0.03115
800 0.22064 0.14027 0.02064 0.51896 0.30809 0.01896

1000 0.21204 0.11559 0.01204 0.49852 0.23610 -0.00147

a

25 0.13541 0.17772 0.03541 0.14360 0.21317 0.04360
50 0.12945 0.15372 0.02945 0.13654 0.23489 0.03654
100 0.12891 0.14580 0.02891 0.11799 0.14876 0.01799
200 0.12062 0.10274 0.02062 0.13712 0.13829 0.03712
400 0.10623 0.05578 0.00623 0.12589 0.11360 0.02589
800 0.10152 0.02906 0.00152 0.11970 0.08388 0.01970

1000 0.10166 0.02453 0.00166 0.11786 0.07927 0.01786
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Table 4 Monte Carlo Simulation Results for EHL-GMO-E Distribution; Mean, Average Bias and
RMSE

Parameter n
Set III: α=0.2, δ=0.5 , β=0.2 , a=0.1 Set IV: α=0.2, δ=0.5 , β=0.5 , a=0.1

Mean RMSE Bias Mean RMSE Bias

α

25 0.29669 0.25762 0.09669 0.36223 0.43629 0.16223
50 0.28085 0.22814 0.08085 0.32617 0.34017 0.12617

100 0.27038 0.20741 0.07038 0.31511 0.31597 0.11511
200 0.23797 0.14967 0.03797 0.30242 0.54929 0.10242
400 0.21594 0.07806 0.01594 0.24079 0.17368 0.04079
800 0.20632 0.04605 0.00632 0.22525 0.15190 0.02525
1000 0.20935 0.03910 0.00935 0.23022 0.12253 0.03022

δ

25 0.69097 0.45776 0.19097 0.69165 0.49501 0.19165
50 0.60502 0.26614 0.10502 0.61064 0.33128 0.11064

100 0.57487 0.18832 0.07487 0.58058 0.21031 0.08058
200 0.56144 0.147247 0.06144 0.55771 0.14698 0.05771
400 0.54455 0.09381 0.04455 0.54418 0.09736 0.04418
800 0.52862 0.05939 0.02862 0.52777 0.05730 0.02777
1000 0.52901 0.05705 0.02901 0.52512 0.05167 0.02512

β

25 8.48860 8.41746 8.28860 5.38985 5.42071 4.88985
50 0.35967 1.05267 0.15967 1.29991 3.35774 0.79991

100 0.22805 0.27960 0.02805 0.79437 2.06739 0.29437
200 0.19922 0.14511 -0.00077 0.54331 1.23260 0.04331
400 0.18764 0.12563 -0.01235 0.44746 0.29238 -0.05253
800 0.18106 0.07412 -0.01893 0.44194 0.16817 -0.05805
1000 0.18212 0.07145 -0.01787 0.45742 0.17024 -0.04257

a

25 0.14926 0.18698 0.04926 0.13954 0.16824 0.03954
50 0.13620 0.18577 0.03620 0.15183 0.18996 0.05183

100 0.11534 0.10377 0.01534 0.12788 0.12769 0.02788
200 0.11234 0.07653 0.01234 0.13412 0.13227 0.03412
400 0.10667 0.07117 0.00667 0.12245 0.09951 0.02244
800 0.10320 0.02525 0.00320 0.11956 0.08799 0.01956
1000 0.10019 0.02114 0.00019 0.10895 0.06019 0.00895

8. Applications
This section presents some model fittings and applications using two real life data sets. We

compare the performance of the applied special case distribution with other existing equal parameter
non-nested models namely; the New Modified Weibull (NMW) distribution introduced by Doost-
moradi et al. (2014), the Exponentiated Modified Weibull (EMW) distribution by Elbatal (2011),
the Weibull-Lomax (WLx) distribution by Tahir et al. (2015), the Gamma Exponentiated Lindley
log-logistic (GELLLoG) distribution by Oluyede et al. (2020) and the Odd log-logistic exponential
Weibull (OLLEW) distribution by Afify et al. (2017). We used several goodness-of-fit statistics to
compare the model performances and these include; -2 log-likelihood (−2 ln(L)), Akaike Informa-
tion Criterion (AIC = 2p − 2 ln(L)), Bayesian Information Criterion (BIC = p ln(n) − 2 ln(L))

and Consistent Akaike Information Criterion
(
AICC = AIC + 2 p(p+1)

n−p−1

)
, where L = L(∆̂) is

the value of the likelihood function evaluated at the parameter estimates, n is the number of observa-
tions, and p is the number of estimated parameters. We also obtained results on the Crameŕ-von Mises
(W ∗) and Anderson-Darling Statistics (A∗) (Chen and Balakrishnan , 1995), as well as Kolmogorov-
Smirnov (K-S) statistic and the associated p-values. The pdfs of the non-nested models used in
applicatiions are;

Gamma Exponentiated Lindley log-logistic (GELLLoG) distribution
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f(x;λ, c, α, δ) =
1

Γ(δ)

[
− log

(
1−

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α)]δ−1

× α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1

× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
,

for λ, c, α, δ > 0 and x > 0.

Exponentiated Modified Weibull (EMW) distribution

f(x; γ, δ, λ, θ) = γ
[
δ + λθαxλ−1

]
e−(δx+(θxλ)

[
1− e−(δx+(θx)λ)

]δ−1

,

for γ, δ, λ, θ > 0 and x > 0.

New Modified Weibull (NMW) distribution

f(x;α, γ, λ, β) =
(
αγxγ−1eαx

γ

+ λβxλ−1e−βx
λ
)
e−e

αxγ+e−βx
λ

,

for α, γ, λ, β > 0 and x > 0.

Weibull-Lomax (WLx) distribution

f(x; a, b, α, β) =
abα

β

[
1 +

(
x

β

)]bα−1{
1−

[
1 +

(
x

β

)]−α}b−1

× exp
{
− a

{
1 +

(
x

β

)α
− 1

}b}
,

for a, b, α, β > 0 and x > 0

and

Odd log-logistic exponential Weibull (OLLEW) distribution

f(x;α, β, γ, θ) =
θβγxβ−1 exp

{
−
(
x
α

)β}[
1− exp

{
−
(
x
α

)β}]γθ−1

αβ
{[

1− exp
{
−
(
x
α

)β}]γθ
+
{
1−

[
1− exp

{
−
(
x
α

)β}]}γ}2

×
{
1−

[
1− exp

{
−
(x
α

)β}]}θ−1

,

for α, β, γ, θ > 0 and x > 0.

8.1. Aircraft windshield failure times data
The first real data set represent the failure times of 84 aircraft windshields. This data was also

analyzed by El-Bassiouny et al. (2015). The data points are as follows:
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3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41,
3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97,
3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17,
2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17,
5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48,
0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65

The parameter estimates for the EHL-GMO-E distribution (with standard error in parentheses),
AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (KS) and its p-
value are given in Table 5. Plots of the fitted densities and the histogram, observed probability vs
predicted probability are given in Figure 6.

Table 5 The models estimates and goodness-of-fit statistics for failure times data

Estimates Statistics
Model α β δ a −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

EHL-GMO-E 42.796 2.660 23.550 0.299 282.5 290.5 290.9 300.9 0.0673 0.3970 0.0636 0.81
(6.032) (0.734) (12.510) (0.111)
a b α β

WLx 0.125 1.296 9.56×104 1.64×105 293.8 301.8 302.3 312.3 0.1350 1.0808 0.0910 0.34
(0.027) (0.093) (7.73×10−7) (4.51×10−7)
γ δ λ θ

EMW 7.788 1.013 1.701 1.11×10−4 292.4 300.4 300.8 310.8 0.2267 1.1860 0.1078 0.20
(1.496) (0.087) ( 6.49×10−16) (1.10×10−10 )
α γ λ β

NMW 0.005 3.314 3.477 0.023 318.2 326.2 326.2 336.6 0.1766 0.8980 0.1771 0.004
(0.006) ( 0.843) (0.451) (0.012)
λ c α δ

GELLLoG 3.664 0.008 0.047 12.287 283.1 291.1 291.6 301.6 0.9634 5.4083 1.0100 2.2×10−16

(1.357) (0.156) (0.250) (8.801)
α β γ θ

OLLEW 0.298 0.101 2.022 20.179 291.9 299.9 300.3 310.3 0.2303 1.1921 0.0904 0.39
(0.432) (0.012) (0.373) (0.003)

Figure 6 Fitted Densities and Probability Plots for the failure times data

From Figure 6, it is evident that the proposed model provides better fits compared to other equal
parameter models used for comparison. The fitted density of the EHL-GMO-E distribution remain
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closer to the sample histogram and similarly the fitted probability plot remains closer to the diagonal
line. This shows that the model is consistent in providing a better fit for both skewed and symmetric
data than other competing models used for comparison. From the results presented under Table 5, it
is also shown that the EHL-GMO-E distribution provides a better fit than the competing models since
it has the smallest values for the goodness-of-fit statistics: W ∗, A∗, K − S with a higher P-value
compared to other models.

8.2. COVID-19 data
The second data set relates to the number of deaths due to COVID-19 in China. This data is

reported in (https://www.worldometers.info/coronavirus/country/china/) which projects daily deaths
due to COVID-19 in China from 23 January to 28 March. The data set is also analyzed by Sindhu et
al. (2020) and is given as:

8, 16, 15, 24, 26, 26, 38, 43, 46, 45, 57, 64, 65, 73, 73, 86, 89, 97,
108, 97, 146, 121, 143, 142, 105, 98, 136, 114, 118, 109, 97, 150,
71, 52, 29, 44, 47, 35, 42, 31, 38, 31, 30, 28, 27, 22, 17, 22, 11, 7,
13, 10, 14, 13, 11, 8, 3, 7, 6, 9, 7, 4, 6, 5, 3, 5

Estimates of the parameters for the EHL-GMO-E distribution (with standard error in parenthe-
ses), AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (K-S) and its
p-value are given in Table 6. Plots of the fitted densities and the histogram, observed probability vs
predicted probability are given in Figure 7.

Table 6 The models estimates and goodness-of-fit statistics for Covid-19 data

Estimates Statistics
Model α β δ a −2 log L AIC AICC BIC W ∗ A∗ K − S P-value

EHL-GMO-E 1.33×10−2 0.6320 7.09×102 1.6853 639.81 647.81 648.47 656.57 0.0489 0.3903 0.0820 0.77
(5.58×10−2) ( 0.1479) (3.65×10−4) (0.7843)

a b α β
WLx 0.0381 2.3844 0.3539 0.5477 645.87 653.87 654.52 662.62 0.0873 0.6799 0.0912 0.64

(0.1392) (2.4473) (0.5006) (1.8881)
γ δ λ θ

EMW 6.0897 0.0305 0.0011 1.0128 664.81 672.81 673.47 681.57 0.2299 1.5623 0.1166 0.33
( 0.8440) (0.0033) (0.0065) (0.0024)

α γ λ β
NMW 2.46×10−2 0.8245 1.96×10−2 0.0112 646.78 654.78 655.43 663.54 0.1348 0.9143 0.0952 0.59

(1.03×10−2) (8.81×10−2) (2.4420) (3.33×10−10)
λ c α δ

GELLLoG 0.0344 1.2651 0.8159 5.4240 640.91 648.91 649.57 657.67 0.4143 2.4947 0.9794 2.2×10−16

(0.0131) (0.8121) (2.3723) (5.8394)
α β γ θ

OLLEW 5.5700 0.9713 33.4296 0.1526 643.36 651.36 652.02 660.12 0.0705 0.6942 0.1618 0.06
(2.4157) (0.2936) (0.2209) (0.0846)

Figure 7 shows that the model fits the data well compared to other competing non-nested models.
The goodness-of-fit statistics W ∗, A∗ and K-S presented under table 6 demonstrates that the EHL-
GMO-E distribution has better fits than other equal parameter models. Furthermore, the values of
AIC and BIC also show that the EHL-GMO-E distribution is better than other non-nested models
used in applications.

9. Concluding Remarks
In this study, we developed and studied in detail a new generalized family of distributions

called exponentiated half-logistic-generalized Marshall-Olkin-G (EHL-GMO-G). Some of the struc-
tural properties of this new family of distributions have been extensively derived and studied. We
discussed some of its special cases and applied EHL-GMO-Exponential to two real life data exam-
ples with other existing non-nested models for comparison. From the application results, the model
provides better fits and performs better than the other non-nested models in fitting real life data. Fur-
thermore, based on the simulation results, the consistency of the model estimators is indicated by
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Figure 7 Fitted Densities and Probability Plots for the Covid-19 data

bias and RMSE coverging towards zero as the sample size increases which conforms to the theoreti-
cal convergence properties of estimators. The newly generated family of distributions can fit various
forms of real life datasets as evident from its ability to adopt various shapes based on its pdf and hrf
plots.
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Appendix

A. Elements of the score vector

The elements of a score vector U(∆) = (∂ℓn∂α ,
∂ℓn
∂δ ,

∂ℓn
∂β ,

∂ℓn
∂ψk

)T = 0 are given by

∂ℓn
∂α

=
n

α
− (β − 1)

n∑
i=1

2
(

δG(xi;ψ)

1−δG(xi;ψ)

)α
ln
(

δG(xi;ψ)

1−δG(xi;ψ)

)
[

1−
(

δG(xi;ψ)

1−δG(xi;ψ)

)α
1+

(
δG(xi;ψ)

1−δG(xi;ψ)

)α
] [

1 +
(

δG(xi;ψ)

1−δG(xi;ψ)

)α]2
+

n∑
i=1

ln
(
δG(xi;ψ)

)
−

n∑
i=1

ln
(
1− δG(xi;ψ)

)

− 2

n∑
i=1

(
δG(xi;ψ)

1−δG(xi;ψ)

)α
ln
(

δG(xi;ψ)

1−δG(xi;ψ)

)
(
1 +

(
δG(xi;ψ)

1−δG(xi;ψ)

)α) ,

∂ℓn
∂δ

= −α(β − 1)

n∑
i=1

2
(

δG(xi;ψ)

1−δG(xi;ψ)

)α−1
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1−

(
δG(xi;ψ)
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1+

(
δG(xi;ψ)

1−δG(xi;ψ)

)α
] [

1 +
(

δG(xi;ψ)

1−δG(xi;ψ)

)α]2 +

n∑
i=1
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− 2
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B. R-Code for Applications

main_LL<- function(alpha,beta,delta,a) {
-sum(log(2*alpha*beta*(((1-((delta*exp(-a*x) )/
(1-(1-delta)*exp(-a*x) ))ˆalpha)/(1+((delta*
exp(-a*x))/(1-(1-delta)*exp(-a*x)))ˆalpha))ˆ
(beta-1))*(((delta*exp(-a*x))/(1-(1-delta)*exp(-a*x)))
ˆ(alpha-1))*((1+((delta*exp(-a*x) )
/(1-(1-delta)*exp(-a*x) ))ˆalpha)ˆ(-2))*((1-(1-delta)*
exp(-a*x) )ˆ(-2))*(delta* a*exp(-a*x))))
}
main.result<-mle2(main_LL,hessian = NULL,start=list
(alpha=2.18118,beta=0.0000090,delta=0.0001,a=0.091),
optimizer="nlminb",lower=0)summary(main.result)

###############################################Weibull Lomax

WL<- function(a,b,alpha,beta) {
-sum(log(((a*b*alpha)/beta)*((1+(x/beta))ˆ(alpha*b-1))*
((1-(1+(x/beta))ˆ(-alpha))ˆ(b-1))*exp((-a)*(((1+(x/beta))
ˆalpha)-1)ˆb)))}
WL.result<-mle2(WL,hessian = NULL,start=list(a=0.61519,
b=0.000000002756,alpha=0.2771,beta=0.96774),
optimizer="nlminb",lower=0)summary(WL.result)

###############################Exponentiated Modifed Weibull

BW<- function(gamma,delta,lambda,theta) {
-sum(log(gamma*(delta+lambda*(thetaˆlambda)*(xˆlambda-1))

*exp(-(delta*x+(theta*x)ˆlambda))*(1-exp(-(delta*x+(theta*x)ˆ
lambda)))ˆ(gamma-1)))}

BW.result<-mle2(BW,hessian=NULL,start=list(gamma=20.11,
delta=10.001,lambda=17.001,theta=0.0001),optimizer="nlminb"
,lower=0)summary(BW.result)

###############################################NMW

NMW <- function(alpha,gamma,lambda,beta){
-sum(log(alpha*gamma*xˆ(gamma-1)+lambda*beta*(xˆ(lambda-1))

*exp(-beta*xˆlambda))-exp(alpha*xˆgamma)+exp(-beta*xˆlambda)
)}NMW.result<-mle2(NMW,hessian=NULL,start=

list(alpha=1.09,gamma=1.0987,lambda=1.0,beta=1.0),
optimizer="nlminb",lower=0)
summary(NMW.result)

##################################################GELLLoG

main_LL<- function(lambda,c,alpha,delta) {
-sum(log((1/gamma(delta))*((-log(1-(1-
(((1+lambda+lambda*x)*(exp(-lambda*x)))/((1+lambda)

*(1+xˆc))))ˆalpha))ˆ(delta-1))*alpha*((1-



802 Thailand Statistician, 2024; 22(4): 779-802

(((1+lambda+lambda*x)*(exp(-lambda*x)))/((1+lambda)

*(1+xˆc))))ˆ(alpha-1))*(((1+xˆc)ˆ-1)*(exp(-lambda*x))
/(1+lambda))*((lambdaˆ2)*(1+x)+((1+lambda+lambda*x)*
(c*xˆ(c-1))/(1+xˆc)))))}

main.result<-mle2(main_LL,hessian = NULL,start=list
(lambda=0.18118,c=1.0090,alpha=1.001,delta=1.091),
optimizer="nlminb",lower=0)
summary(main.result)

#################################################OLLEW

OLLEW_LL<-function(alpha,beta,gamma,theta){-sum(log
((theta*beta*gamma*(xˆ(beta-1))*(exp(-(x/alpha)ˆbeta))

*((1-exp(-(x/alpha)ˆbeta))ˆ(gamma*theta-1))*
((1-(1-exp(-(x/alpha)ˆbeta))ˆgamma)ˆ(theta-1)))/
((alphaˆbeta)*(((1-exp(-(x/alpha)ˆbeta))ˆ(gamma*theta))
+(1-(1-exp(-(x/alpha)ˆbeta))ˆgamma)ˆtheta)ˆ2)))}

mle.result<-mle2(OLLEW_LL,hessian = NULL,
start=list(alpha=0.006,beta=0.000000021,gamma=0.6644,
theta=0.9454),optimizer="nlminb",lower=0)
summary(mle.result)
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