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Abstract 

This study aims to develop a precise formula for calculating the average run length in the context 

of an exponentially weighted moving average (EWMA) control chart, specifically in the presence of 

a seasonal autoregressive with exogenous variable (SARX(P,r)L) model. The research also introduces 

a novel method for estimating the average run length using numerical integral equations, facilitating 

a comparison between the outcomes derived from the formula and those obtained through the 

numerical integral equation method. Additionally, control charts are applied to real-world data across 

diverse domains. The explicit formula is evaluated based on the absolute percentage difference and 

CPU time. The results show that the average run length calculated using the proposed method 

precisely corresponds to the findings from the numerical integral equation method. In addition, it’s 

important to mention that the explicit formulas demonstrated a significant improvement in 

computational efficiency, requiring much fewer computations than the NIE approach. 

 

Keywords: Average run length, SARX model, explicit formulas, numerical integral equation. 

 

1. Introduction  

Statistical process control is a widely used method of monitoring processes, which involves the 

use of control charts. The Shewhart control chart was introduced by Shewhart in 1931 (Shewhart 

1931). This was followed by the Cumulative Sum (CUSUM) control chart, which was initially proposed 

by Page in 1954 (Page 1954). Another type of control chart is the exponentially weighted moving 

average (EWMA) control chart, which was first reported by Roberts in 1959 (Roberts 1959). The 

Shewhart control chart is most suitable for detecting large shifts in the mean or variance of a process 

when the observations follow a normal distribution. On the other hand, CUSUM and EWMA control 

charts are more effective for detecting small shifts in the statistic parameter, as well as complex 

patterns.  In a recent study, Areepong and Sunthornwat (2021) utilized an EWMA control chart to 

monitor COVID-19 outbreaks in Thailand, Singapore, Vietnam, and Hong Kong. They employed a 

quantitative and probabilistic approach and compared two methods for estimating the expected value 

and variance of cases. The study established alert levels with the help of the EWMA control chart. 
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The goal of this research is to manage process variability through the use of statistical quality 

control tools. In general, the efficiency of control chart studies often assumes an initial agreement 

that data follows a normal distribution. However, in many real-world situations, data tends to exhibit 

a time-series pattern. Therefore, the selection of an appropriate control chart is crucial for effective 

monitoring of process changes. EWMA control chart can be applied to correlated random events in 

hospitals, stock prices, or daily rainfall volumes. As a result, the researchers are interested in 

developing an explicit formula and estimation method for the average run length (ARL) of EWMA 

control charts.  

The ARL is a significant metric used to assess the effectiveness of control charts when it comes 

to detecting shifts in process mean. Displays average subgroups needed before control chart indicates 

out-of-control process. ARL comprises two vital components: the in-control ARL (ARL0) and the 

out-of-control ARL (ARL1). ARL0 represents the average number of samples taken from a stable 

process before a false out-of-control signal is generated. On the other hand, an alarm indicating that 

the process is out of control is signaled by an average number of samples falling within control limits, 

or ARL1. 

Methods for estimating ARL include Monte Carlo simulations ( MC) , Markov Chain approach 

(MCA), and Integral Equation approach (IE). The MC technique may require considerable computing 

time, despite being useful for validating analytical findings. Roberts (1959) employed the MC technique 

to compute the ARL for the EWMA control chart.  Crowder ( 1987)  presents a numerical procedure 

for calculating run length in EWMA control chart based on normal distribution and extends to non-

normal cases and one- sided EWMA control chart.  Lucas and Saccucci ( 1990)  studied the EWMA 

control scheme for monitoring the mean of a process.  A design MCA procedure is provided, with 

parameter values as well for small shifts.  However, due to the limitations of the MCA and MC 

methods, researchers have started to investigate the integral equation method. In the EWMA control 

chart for exponential distribution observations, Areepong ( 2009)  suggested analytical solutions for 

the average delay (AD) and ARL. Recently, Mititelu et al. (2010) use the Fredholm integral equations 

method to derive explicit formulas for the ARL in special control charts, including CUSUM and 

EWMA control charts, which require fewer computations. 

Control charts are typically designed with the assumption of independent and identically 

distributed observations. However, in cases where processes exhibit autocorrelation, specialized 

control charts are required. Integral Equation methods have been introduced for evaluating ARL for 

control charts when processes are serially correlated. When there is an AR(1) model with extra 

random error, Vanbrackle and Reynolds (1997) suggest using IE techniques for finding the ARL of 

EWMA and CUSUM control charts. Subsequently, Busaba et al. (2012) provided analytical ARL 

solutions for CUSUM control chart in the context of stationary AR(1) models. Additionally, Petcharat 

et al. (2013) developed explicit ARL formulas for EWMA and CUSUM control charts using a moving 

average (MA) model. Sunthornwat et al. (2018) compared analytical and numerical EWMA ARL, 

and analytical CUSUM ARL. They proposed a method to estimate optimal parameters for EWMA 

and AFRIMA processes. Results showed analytical EWMA ARL is an alternative to measure chart 

efficiency due to good performance. Phanthuna et al. (2021) introduced a technique to compute the 

ARL of a modified EWMA control chart under trend AR(1) mode. They compared the NIE method 

with an explicit formula, finding that the latter is more accurate and faster. They also found that the 

modified EWMA chart is more effective than the conventional scheme in detecting small to moderate 

shifts. Phanthuna and Areepong (2021) proposed an explicit formula for calculating the ARL on a 

modified EWMA control chart for observations generated by a SAR(p)L with exponential residuals. 

They validated the accuracy of the explicit formulas, which are applicable to various real-world 
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datasets. They also compared the modified EWMA control chart with the conventional EWMA 

scheme and concluded that the former is more effective in detecting small shifts. Silpakob et al. 

(2021) have developed explicit formulas for the ARL with a modified EWMA control chart based on 

an ARX(p,r) to detect changes in the process mean. They also conducted a comparative analysis of 

the performance between the modified EWMA control chart and EWMA control charts, utilizing the 

Relative Mean Index (RMI). Their findings indicate that the explicit formulas for the ARL of the 

modified EWMA control chart outperformed those of the EWMA control chart in monitoring process 

mean shifts. Later, Phanyaem (2022) developed the explicit formula and numerical integral equation 

(NIE) of the ARL for the CUSUM control chart based on the SARX(P,r)L model. The Fredholm 

integral equation was employed, and numerical methods like the midpoint rule, the trapezoidal rule, 

Simpson's rule, and the Gaussian rule were used to approximate the ARL. Petcharat (2022) constructs 

the ARL for a CUSUM control chart using the Fredholm integral equation approach and Banach’s 

Fixed Point theorem to ensure the solution’s existence and uniqueness based on SAR(P)L with the 

trend process. Furthermore, Peerajit (2023) compares analytical integral equations (ARL) derived 

from Banach's fixed-point theorem to the numerical integral equation (NIE) method for a fractionally 

integrated moving average with exogenous variables (FIMAX) model with underlying exponential 

white noise.  

In this paper, an explicit formula for the ARL of the EWMA control chart under the seasonal 

autoregressive with exogenous variable; the SARX(P,r)L model is introduced. This is a novel contribution 

that has not been explored previously. The ARL obtained from the proposed method is compared 

with numerical integral equation approaches. The paper is organized as follows: Section 2 describes 

the materials utilized; Sections 3 and 4 describe the methods used; Section 5 presents the results of 

the proposed method; and Section 6 provides concluding views. 

 

2. Characteristics of the SARX Model and the EWMA Control Chart  

In this section, we describe the characteristics of an SARX model featuring exponential white 

noise. We define the SARX model employed on the EWMA control chart for efficient monitoring of 

process mean shifts. The final subsection delves into ARL features integral to the assessment of 

control chart performance. 

 

2.1.  The seasonal autoregressive with exogenous variable model 

The SARX(P,r)L model is a time series model that combines autoregressive components with 

seasonality and exogenous variables. P represents the autoregressive order, while r represents the 

exogenous variable order in the model. The SARX(P,r)L model can be generalized as 

1

1

... ,
r

t j jt t L P t PL t

j

Y X Y Y 



              

where   is a constant, the initial values of 
tY  are represented by  2, ,..., ,t L t L t PLY Y Y    ,i i  = 1, 2,…, 

P, refers to the autoregressive coefficient parameters, jtX  are exogenous variables of ,tY j  are 

exogenous coefficient parameters, 
t  is a white noise process assumed to be exponentially 

distributed.  

 

2.2.  EWMA control chart characteristics 

The EWMA control chart was initially introduced by Robert ( 1959) .  It is widely accepted that 

the EWMA control chart outperforms the Shewhart control chart when it comes to detecting small-

to-medium shift sizes in the process mean. 
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The prevalent form of the EWMA control chart relies on the sequence 

 
1 =  (1 ) + ;t t tE E Y    =  1,2,....,t   

where 
tE  is the EWMA statistic, 

1tE 
 denotes the previous value of the EWMA statistic 

0(E  is set 

to u  and 
tY  is the sequence of the SARX( P,r) L model with exponential white noise) , and   is an 

exponential smoothing parameter with of EWMA control chart with 0 1.   EWMA control chart 

stopping time definition: 

   inf 0; ,b tt E b        

where b  is a constant parameter representing the upper control limit. The ARL for SARX(P,r)L model 

with an initial value 
0 ,E u   the expectation under density function ( , )f x  that the change-point occurs 

at point ,  where ,    denoted by (.).
 

 ARL = ( ) ( ) .bH u        

 

3. Explicit Formulas for ARL of EWMA Control Chart Based on SARX(P,r)L model 

In this section, explicit formulas are employed to calculate the average run length (ARL) of the 

EWMA control chart for a seasonal autoregressive model with an exogenous variable SARX(P,r)L 

Specifically, we derive analytical formulas for ARL by utilizing the Fredholm Integral Equation of 

the second kind. The lower and upper control limits are assumed to be zero and ,b  respectively, and 

the function ( )H u is defined as the ARL of the EWMA chart for the SARX(P,r)L model. Let 
E

 

represent the probability measure and 
E

 represent the expectation corresponding to initial value 

0 .E u  Finally, we extend the function into the Fredholm Integral Equations of the second kind. 

  1 1 1( ) 1 {0 } ( ) + { = 0} (0).H u I E b L E E L       

Thus, 
1E  represents an in-control state if 

10 ,E b   it can be written as  

 
0 1

1

0 (1 ) + ... .
r

t L P t PL j jt

j

E Y Y X b 



                (1) 

If 
1Y  gives the out-of-control state for

1,E  it can be written as 

  
0 1

1

(1 ) + ... ,
r

t L P t PL j jt

j

E Y Y X b 



               

or    
0 1

1

(1 ) ... 0.
r

t L P t PL i it

i

E Y Y X      



        

After assigning the initial value of
0 ,E u  (1) can be represented as 

    
1

1

0 (1 ) ... .
r

t L P t PL j jt

j

u Y Y X b      



         

Following Champ and Rigdon’s method (1991), the initial value of the EWMA statistics is set to 

0 ,E u  with ~t ( ).Exp   Then, the function ( )H u  can be rewritten  

1 1 1

0

( ) 1 ( ) ( ) .

b

H u H E f d     

To obtain the function ( ),H u  
t  is substituted with .z   

 1
0

1

( ) 1 (1 ) ... ( ) .
rb

t L P t PL j jt

j

H u H u Y Y X f z dz      



 
        

 
    
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Let 1

1

(1 ) ... .
r

t L P t PL j jt

j

v u Y Y X      



         To clarify, the function ( )H u can be 

expressed by changing the integration variable. 

 1

10

1 (1 )
( ) 1 ( ) ... .

b r

t L P t PL j jt

j

v u
H u H v f Y Y X dv


   

 
 



  
       

 
  (2) 

As a result, the following integral equation is obtained: 

 

1

1

...
(1 )

0

1
( ) 1 ( ) . .

r

t L P t PL j jt

j

Y Y X
b v u

H u H v e e dv

   


  



 



   


 



    (3) 

In this section, Banach’s Fixed Point Theorem will be presented. It guarantees the existence and 

uniqueness of the results of an integral equation. The theorem applies to a metric space consisting of 

continuous functions on a closed interval ( ( ),|| || )C I 
where I denote the compact interval. The norm 

|| || = | ( )|u IH Sup H u 
 and the operator T are defined on this space. If there exists a number 0 1q   

such that the operator T is a contraction, then the theorem holds true 

 
1 2 1 2( ) ( )T H T H q H H


  

 
for all 

1 2, .H H I
 

Let 
1( )C I  as a continuous function over a range  1 0,I b  and define the operator T  as  

1

1

...
(1 )

0

( ( )) 1 ( ) .

r

t L P t PL j jt

j

Y Y X
u

b v
e

T H u H v e dv

   


 




 



   







     (4) 

According to the Banach Fixed Point Theorem, if the operator T  is a contraction, then fixed point 

equations  ( ) ( )T H u H u  have a unique solution. So, in this case, if T  is a contraction, then the 

integral equation can be written as  ( ) ( ),T H u H u  and it will have a unique solution. 

 

Theorem 1. (Banach’s Fixed-point Theorem) In the complete metric space ( , )X d  where 

:T X X  is a mapping satisfying the criteria of a contraction mapping with contraction constant 

1q  such that 
1 2 1 2( ) ( ) ,T H T H q H H


    there is a unique function ( )H X   for which 

( ( )) ( )T H u H u  has a unique fixed point in .X   

 

Proof:  For any given u I and 
1 2, ( ),H H C I we have the inequality

1 2 1 2( ) ( )T H T H q H H


    where 1.q   According to (4), we obtain  

1 2( ) ( )T H T H


  
  1 20,

( ) ( )
u b

Sup H v H v


 

 
   

1

1

...
(1 )

1 20,

0

( ) ( )

r

t L P t PL j jt

j

Y Y X
u

b v

u b

e
Sup H v H v e dv

   


 




 



   









   

 
 

1

1

...
(1 )

1 2
0,

0

r

t L P t PL j jt

j

Y Y X
u

b v

u b

e
Sup e dv H H

   


 




 



   








 
 
 

  
 

  
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 

1

1

...
(1 )

1 2
0,

 (1 )

r

t L P t PL j jt

j

Y Y X
u b

u b

Sup e e H H

   


  

 



   


 




 
 

       

  
1 2 ,q H H


   

where  
 

1

1

...
(1 )

0,

(1 ) 1.

r

t L P t PL j jt

j

Y Y X
u b

u b

q Sup e e

   


  

 



   


 



 
 

       Thus, the function ( )H u can be defined 

as an existence and unique solution. 

 

The explicit formula of the ARL for the EWMA control chart based on the SARX(P,r)L model 

was derived using the Fredholm integral equation. First, let’s take into consideration  

1

1

...
(1 )

0

( ) 1 ( ) .

r

t L P t PL j jt

j

Y Y X
u

b v
e

H u H v e dv

   


 




 



   







    

Let 

1

1

...
(1 )

( ) ,

r

t L P t PL j jt

j

Y Y X
u

C u e

   


 

 



   






  then we can rewrite the (3) as follows: 

0

( )
( ) 1 ( ) ,

b v
C u

H u H v e dv





    0 .u b   

Let 
0

 = ( ) .

b v

k H v e dv


  Consequently, we obtain  

 
( )

( ) 1 .
C u

H u k


   (5) 

The next step is to find the value of k as follows:  

0

 = ( ) ,

b v

k H v e dv


   

   
0

( )
=  1 ,

b v
C v

k e dv
 

 
 
 


 

   
0 0

( )
=   + ,

b bv v
C v

e dv ke dv
 

  


 

   

1

1

...
(1 )

0 0

=   + . ,

r

t L P t PL j jt

j

Y Y X
b bv v v

k
e dv e e dv

 



   


  



 

   


   


 

   

1

1

...
(1 )

0 0

=   + . ,

r

t L P t PL j jt

j

Y Y X
b bv v v

k
e dv e e dv

 



   


 



 

   


   


 

   

1

1

...

0

=  ( 1)  . ,

r

t L P t PL j jt

j

Y Y X
bb v

k
e e e dv

 



   

 



   

   

  


 



Suvimol Phanyaem 915 

 

   

1

1

...

=  ( 1)  . .( 1).

r

t L P t PL j jt

j

Y Y X
b b

k
e e e

   

  


 



   






     

Consequently, the following formula can be used to find a constant :k  

 
1

1

...

( 1)
 =  .

1
1 . .( 1)

r

t L P t PL j jt

j

b

Y Y X
b

e
k

e e



   

 





 





   



 



 

  

When we substitute a constant k  into (5), we can obtain the function ( ).H u  This solution of ( )H u  

is the explicit formulas for the ARL of EWMA control chart for SARX(P,r)L model, 

  
1

1

(1 )

...

( 1)
( ) 1 .

( 1)

r

t L P t PL j jt

i

u b

Y Y X
b

e e
H u

e e



 

   

 





 






   

 


 



 

  

The explicit formula for ARL0 of EWMA control chart for SARX(P,r)L model in the in-control state 

with an exponential parameter 
0   is  

  
0 0

1

1

0 0

(1 )

0
...

( 1)
1 .

( 1)

r

t L P t PL j jt

i

u b

Y Y X
b

e e
ARL

e e



 

   

 





 






   

 


 



 

  

On the other hand, the explicit formula for ARL1 of EWMA control chart for SARX(P,r)L model in 

the out-of-control state with an exponential parameter 
1 0 (1 )     is 

 
1 1

1

1

1 1

(1 )

1
...

( 1)
= 1 ,

( 1)

r

t L P t PL j jt

i

u b

Y Y X
b

e e
ARL

e e



 

   

 





 






   

 






 

    

where   is a parameter of exponential white noise, b  is upper control limit, 
t LY 

 are the initial 

values of SARX model, ; 1,2,...,i i P   is an autoregressive coefficient; 0 1.i   

 

4. Numerical Integration of ARL of EWMA Control Chart for SARX(P,r)L 

In this section, we will explain how to calculate the numerical integration of the ARL of the 

EWMA control chart for the SARX(P,r)L model, considering exponential distribution for the white 

noise processes. To solve the integral equation of ARL, we will be using Gauss-Legendre Quadrature 

as an approximation technique for integration. As a result, the integral equation in (2) can be 

expressed in the following ( ).H u  

 1

10

1 (1 )
( ) = 1 ( ) ... .

b r

t L P t PL j jt

j

v u
H u H v f Y Y X dv


   

 
 



  
      

 
     

The quadrature rule is the foundation for numerical integration of integral equations, allowing 

for the estimation of integrals with finite sums. The approximation for an integral has the following 

form: 
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( ) ( ) ( ),

b m

j j

j

W z f z dz w f a


  

where  = j

b
w

m
 and 

1
 = ;  = 1,2,..., .

2
j

b
a j j m

m

 
 

 
 The integral equation is approximated 

numerically as ( ),iH a  and its solution can be found using a method of solving linear algebraic 

equations. 

  1

1 1

(1 )1
1 ( ) ... .

m r
j i

i j j t L P t PL j jt

j j

a a
H a w H a f Y Y X


   

 
 

 

  
       

 
   

Thus, 

 
1

1 1

1 1

(1 )1
 = 1 ( ) ... ,

m r
j

j j t L P t PL j jt

j j

a a
H a w H a f Y Y X 

 

  
      

 
 


   

 
 

 
2

2 1

1 1

(1 )1
 = 1 ( ) ... ,

m r
j

j j t L P t PL j jt

j j

a a
H a w H a f Y Y X 

 

  
      

 
 


   

   

 

  1

1 1

(1 )1
= 1 ( ) ... ,

m r
j m

m j j t L P t PL j jt

j j

a a
H a w H a f Y Y X 

 

  
      

 
 


   

   

or as a matrix 
1 1 1,m m m m m    H 1 R H  

where  

1

2

1

( )

( )
 = ,

( )

m

m

H a

H a

H a



 
 
 
 
 
 
 

H
 1

1

1
 = ,

1

m

 
 
 
 
 
 

1    

 1

1

(1 )1
[ ] ... ,

r
j i

ij j t L P t PL j jt

j

a a
w f Y Y X 



  
      

 
R


   

 

 
and   = diag 1,1,...,1 .mI  If 1( )m m m



I R
 
there exist  

 1

1 1( ) .m m m m m



   H I R 1                

The integral equation in (2) can be roughly represented by the following (6), where ( )H u  indicates 

the numerical integration solution of ( ).H u  

 1

1 1

(1 )1
( ) 1 ( ) ... .

m r
j

j j t L P t PL j jt

j j

a u
H u w H a f Y Y X 

 

  
       

 
 


   

 
   (6) 

 

5. Numerical Results  

The study compared the performance of explicit formulas and NIE method in detecting changes 

in the process mean on an EWMA control chart for the SARX(P,r)L model. The precision and 

accuracy of ARL values that are obtained from explicit formulas are examined, and the results are 

compared with the results that are obtained by numerical integration. This assessment will 

specifically consider the absolute percentage difference; Diff(%) between the exact solution 

represented by ( )H u  using explicit formulas and the numerical integration solution denoted as 

( ).H u  The absolute percentage difference of ARL can be calculated by 
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  
( ) ( )

%   100.
( )

H u H u
Diff

H u


      

For the numerical result, Table 1 presents the ARL of the SARX(1,1)12, SARX(2,1)12, 

SARX(1,2)12, and SARX(2,2)12 models with different values of the autoregressive coefficient 

parameter 
1 0.10,0.20(   and 

2 0.10, 0.20)   and exogenous coefficient parameter 

1 0.10,0.50(   and 
2 0.60).   Exponential parameter of white noise process 

0( )  is set to 1 in the 

in-control state. In the out-of-control state,
1  can take values of 1.01, 1.03, 1.05, 1.10, 1.20, 1.30, 

and 1.40, respectively. The ARL1 values of the EWMA control chart can be calculated using two 

methods: the explicit formula and the NIE method, both with the initial upper control limits b  and 

the exponential smoothing parameter   set to 0.10 and ARL0 = 370. The results of both methods 

indicate that their ARL solutions are similar, with an absolute percentage difference Diff(%) of less 

than 0.001. However, the explicit formula approach outperforms the NIE method in terms of CPU 

time. 

According to Table 2 shows the ARL of four different SARX models: SARX(1,1)12, 

SARX(2,1)12, SARX(1,2)12, and SARX(2,2)12. The models have different values of the 

autoregressive coefficient parameter 
1 0.10,0.20(  and

2 0.10, 0.20),   the exogenous coefficient 

parameter 
1 0.10,0.50(   and 

2 0.60).  The ARL1 of the EWMA control chart for the 

SARX(P,r)L models employed two distinct methodologies: the explicit formula and the NIE method. 

Both methods set the initial upper control limits b  and an exponential smoothing parameter 

( 0.10)   and ARL0 = 500. Results indicate that both methods have similar ARL solutions, with an 

absolute percentage difference Diff(%) of less than 0.001. However, the explicit formula approach 

performs better than the NIE method in terms of CPU time. 

The comparative analysis indicated a high degree of similarity between the ARL values obtained 

through the explicit formula and the NIE methods. Notably, the Diff(%) yielded a value of zero, 

leading to the conclusion that there was no discernible distinction between the ARL values derived 

from both methods. Particularly, the explicit formula method distinguishes itself with efficient 

computation, demonstrating a notably abbreviated processing time. 
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Table 1 ARL results for the explicit formulas and the NIE method on EWMA control chart for 

SARX(P,r)L model with 
0 1, 0.10,   and ARL0 = 370 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(1

,1
) 1

2
 

0.00363 1 = 0.1 Explicit 334.560 274.864 227.465 145.930 67.000 34.707 19.848 

 1 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 334.560 274.864 227.465 145.930 67.000 34.707 19.848 

  (Sec.) (2.247) (2.309) (2.262) (2.262) (2.278) (2.247) (2.262) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.00242 1 = 0.1 Explicit 333.273 271.597 223.023 140.524 62.559 31.616 17.735 

 1 = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 333.273 271.597 223.023 140.524 62.559 31.616 17.735 

  (Sec.) (2.371) (2.387) (2.403) (2.340) (2.371) (2.340) (2.371) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(1
,1

) 1
2
 

0.00328 1 = 0.2 Explicit 334.308 274.099 226.391 144.586 65.871 33.912 19.298 

 1 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 334.308 274.099 226.391 144.586 65.871 33.912 19.298 

  (Sec.) (2.356) (2.418) (2.356) (2.402) (2.403) (2.356) (2.402) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.00219 1 = 0.2 Explicit 333.354 271.115 222.197 139.376 61.573 30.927 17.267 

 1 = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 333.354 271.115 222.197 139.376 61.573 30.927 17.267 

  (Sec.) (2.309) (2.434) (2.356) (2.355) (2.340) (2.387) (2.278) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,1
) 1

2
 

0.00328 1 = 0.1 Explicit 333.308 274.099 226.391 144.586 65.871 33.912 19.298 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.1 NIE 333.308 274.099 226.391 144.586 65.871 33.912 19.298 

  (Sec.) (2.340) (2.309) (2.325) (2.293) (2.340) (2.371) (2.402) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.00219 1 = 0.1 Explicit 333.354 271.115 222.197 139.376 61.573 30.927 17.267 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 333.354 271.115 222.197 139.376 61.573 30.927 17.267 

  (Sec.) (2.356) (2.371) (2.403) (2.387) (2.325) (2.355) (2.418) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,1
) 1

2
 

0.002962 1 = 0.1 Explicit 333.798 273.128 225.151 143.146 64.714 33.110 18.752 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.1 NIE 333.798 273.128 225.151 143.146 64.714 33.110 18.752 

  (Sec.) (2.387) (2.355) (2.434) (2.372) (2.355) (2.371) (2.356) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.00198 1 = 0.1 Explicit 333.077 270.344 221.138 138.091 60.541 30.224 16.796 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.5 NIE 333.077 270.344 221.138 138.091 60.541 30.224 16.796 

  (Sec.) (2.324) (2.293) (2.340) (2.325) (2.293) (2.340) (2.309) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 
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Table 1 (Continued) 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(2

,1
) 1

2
 

0.002962 1 = 0.2 Explicit 333.798 273.128 225.151 143.146 64.714 33.110 18.752 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 333.798 273.128 225.151 143.146 64.714 33.110 18.752 

  (Sec.) (2.247) (2.278) (2.262) (2.293) (2.277) (2.231) (2.356) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001976 1 = 0.2 Explicit 332.382 269.781 220.679 137.806 60.418 30.164 16.763 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 332.382 269.781 220.679 137.806 60.418 30.164 16.763 

  (Sec.) (2.247) (2.231) (2.309) (2.247) (2.246) (2.324) (2.246) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(2
,1

) 1
2
 

0.002676 1 = 0.2 Explicit 333.389 272.241 223.986 141.766 63.599 32.340 18.228 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 333.389 272.241 223.986 141.766 63.599 32.340 18.228 

  (Sec.) (2.293) (2.246) (2.293) (2.309) (2.262) (2.231) (2.278) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001787 1 = 0.2 Explicit 332.164 269.062 219.666 136.562 59.418 29.484 16.310 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 332.164 269.062 219.666 136.562 59.418 29.484 16.310 

  (Sec.) (2.247) (2.340) (2.262) (2.278) (2.293) (2.278) (2.262) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(1

,2
) 1

2
 

0.001976 1 = 0.1 Explicit 332.382 269.781 220.679 137.806 60.418 30.164 16.763 

 1  = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 332.382 269.781 220.679 137.806 60.418 30.164 16.763 

  (Sec.) (2.262) (2.247) (2.277) (2.309) (2.371) (2.278) (2.262) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001321 1 = 0.1 Explicit 331.160 266.636 216.434 132.765 56.466 27.518 15.016 

 1  = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2 = 0.6 NIE 331.160 266.636 216.434 132.765 56.466 27.518 15.016 

  (Sec.) (2.262) (2.340) (2.293) (2.294) (2.262) (2.309) (2.293) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(1

,2
) 1

2
 

0.001790 1 = 0.2 Explicit 332.740 269.527 220.046 136.796 59.518 29.533 16.336 

 1  = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 332.740 269.527 220.046 136.796 59.518 29.533 16.336 

  (Sec.) (2.246) (2.278) (2.371) (2.247) (2.294) (2.277) (2.309) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001194 1 = 0.2 Explicit 330.654 265.696 215.258 131.458 55.489 26.882 14.604 

 1  = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 330.654 265.696 215.258 131.458 55.489 26.882 14.604 

  (Sec.) (2.293) (2.355) (2.309) (2.293) (2.277) (2.356) (2.372) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 

  



920                                                                   Thailand Statistician, 2024; 22(4): 909-925 

 

Table 1 (Continued) 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(2

,2
) 1

2
 

0.001787 1 = 0.1 Explicit 332.164 269.062 219.666 136.562 59.418 29.484 16.310 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 332.164 269.062 219.666 136.562 59.418 29.484 16.310 

 2 = 0.6 (Sec.) (2.308) (2.325) (2.355) (2.294) (2.340) (2.308) (2.387) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001195 1 = 0.1 Explicit 330.941 265.926 215.443 131.571 55.536 26.904 14.616 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 330.941 265.926 215.443 131.571 55.536 26.904 14.616 

 2 = 0.6 (Sec.) (2.308) (2.387) (2.309) (2.324) (2.371) (2.340) (2.293) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(2
,2

) 1
2
 

0.001615 1 =  0.1 Explicit 331.688 268.137 218.490 135.226 58.391 28.801 15.859 

 2 =  0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 =  0.1 NIE 331.688 268.137 218.490 135.226 58.391 28.801 15.859 

 2 =  0.6 (Sec.) (2.309) (2.293) (2.340) (2.355) (2.293) (2.262) (2.309) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001080 1 = 0.1 Explicit 330.38 264.944 214.237 130.255 54.568 26.279 14.213 

 2 =  0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 =  0.5 NIE 330.38 264.944 214.237 130.255 54.568 26.279 14.213 

 2 =  0.6 (Sec.) (2.355) (2.325) (2.277) (2.309) (2.324) (2.309) (2.293) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,2
) 1

2
 

0.001614 1 = 0.2 Explicit 331.476 267.965 218.351 135.140 58.355 28.783 15.850 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  =  0.1 NIE 331.476 267.965 218.351 135.140 58.355 28.783 15.850 

 2 =  0.6 (Sec.) (2.293) (2.262) (2.293) (2.309) (2.324) (2.262) (2.372) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001079 1 = 0.2 Explicit 330.063 264.691 214.033 130.132 54.517 26.255 14.201 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 330.063 264.691 214.033 130.132 54.517 26.255 14.201 

 2 =  0.6 (Sec.) (2.294) (2.308) (2.293) (2.340) (2.293) (2.340) (2.309) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,2
) 1

2
 

0.001461 1 = 0.2 Explicit 331.525 267.466 271.525 134.030 57.437 28.160 15.436 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  =  0.1 NIE 331.525 267.466 271.525 134.030 57.437 28.160 15.436 

 2  =  0.6 (Sec.) (2.340) (2.371) (2.340) (2.324) (2.309) (2.262) (2.340) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.000977 1 = 0.2 Explicit 330.129 264.213 213.237 129.073 53.667 25.692 13.835 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 330.129 264.213 213.237 129.073 53.667 25.692 13.835 

 2 = 0.6 (Sec.) (2.356) (2.371) (2.293) (2.340) (2.262) (2.309) (2.324) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 
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Table 2 ARL results for the explicit formulas and the NIE method on EWMA control chart for 

SARX(P,r)L model with 
0 1, 0.10,   and ARL0 = 500 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(1

,1
) 1

2
 

0.004861 1 = 0.1 Explicit 451.959 371.155 307.014 196.727 90.048 46.445 26.394 

 1 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 451.959 371.155 307.014 196.727 90.048 46.445 26.394 

  (Sec.) (2.906) (3.360) (2.515) (2.703) (3.984) (2.656) (4.156) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.003232 1 = 0.1 Explicit 449.804 366.346 300.648 189.14 83.892 42.181 23.491 

 1 = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 449.804 366.346 300.648 189.14 83.892 42.181 23.491 

  (Sec.) (3.078) (4.766) (2.812) (3.000) (3.063) (2.578) (3.282) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(1
,1

) 1
2
 

0.004389 1 = 0.2 Explicit 451.511 370.019 305.468 194.835 88.478 45.343 25.637 

 1 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 451.511 370.019 305.468 194.835 88.478 45.343 25.637 

  (Sec.) (2.469) (3.704) (2.719) (3.094) (2.938) (2.860) (3.016) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.002919 1 = 0.2 Explicit 449.143 365.057 299.001 187.248 82.407 41.174 22.817 

 1 = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

  NIE 449.143 365.057 299.001 187.248 82.407 41.174 22.817 

  (Sec.) (2.656) (2.734) (3.156) (2.703) (2.673) (3.531) (4.095) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,1
) 1

2
 

0.004390 1 = 0.1 Explicit 451.618 370.107 305.54 194.881 88.498 45.354 25.642 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.1 NIE 451.618 370.107 305.54 194.881 88.498 45.354 25.642 

  (Sec.) (2.657) (2.719) (2.641) (2.969) (4.703) (3.312) (3.422) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.002922 1 = 0.1 Explicit 449.625 365.448 299.321 187.447 82.493 41.217 22.840 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 449.625 365.448 299.321 187.447 82.493 41.217 22.840 

  (Sec.) (3.031) (2.938) (3.250) (3.359) (2.860) (3.313) (2.938) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,1
) 1

2
 

0.003963 1 = 0.1 Explicit 450.982 368.823 303.877 192.931 86.926 44.264 24.900 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.1 NIE 450.982 368.823 303.877 192.931 86.926 44.264 24.900 

  (Sec.) (2.906) (3.531) (3.891) (3.031) (3.125) (3.641) (3.719) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.002640 1 = 0.1 Explicit 449.072 364.25 297.754 185.619 81.055 40.245 22.193 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  = 0.5 NIE 449.072 364.25 297.754 185.619 81.055 40.245 22.193 

  (Sec.) (2.641) (3.000) (3.843) (3.219) (3.281) (4.484) (3.078) 

  Diff(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 
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Table 2 (Continued) 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(2

,1
) 1

2
 

0.003962 1 = 0.2 Explicit 450.864 368.726 303.798 192.881 86.903 44.253 24.894 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 450.864 368.726 303.798 192.881 86.903 44.253 24.894 

  (Sec.) (3.875) (4.313) (2.906) (2.969) (3.032) (3.140) (4.734) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.002639 1 = 0.2 Explicit 448.894 364.106 297.637 185.546 81.024 40.230 22.184 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 448.894 364.106 297.637 185.546 81.024 40.230 22.184 

  (Sec.) (2.890) (2.922) (4.500) (2.703) (2.500) (2.562) (4.406) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(2
,1

) 1
2
 

0.003581 1 = 0.2 Explicit 450.711 367.841 302.47 191.158 85.452 43.238 24.199 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 450.711 367.841 302.47 191.158 85.452 43.238 24.199 

  (Sec.) (4.672) (3.187) (3.406) (4.500) (4.844) (3.375) (3.000) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.002385 1 = 0.2 Explicit 448.417 362.975 296.131 183.77 79.628 39.291 21.561 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 448.417 362.975 296.131 183.77 79.628 39.291 21.561 

  (Sec.) (3.000) (4.406) (4.234) (2.719) (2.734) (3.062) (3.781) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(1

,2
) 1

2
 

0.002640 1 = 0.1 Explicit 449.072 364.25 297.754 185.619 81.056 40.245 22.193 

 1  = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 449.072 364.25 297.754 185.619 81.056 40.245 22.193 

  (Sec.) (2.844) (4.156) (3.656) (3.062) (2.953) (4.423) (3.313) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001762 1 = 0.1 Explicit 447.088 359.687 291.733 178.597 75.614 36.623 19.809 

 1  = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2 = 0.6 NIE 447.088 359.687 291.733 178.597 75.614 36.623 19.809 

  (Sec.) (2.563) (3.156) (3.125) (3.500) (2.609) (2.563) (2.781) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(1

,2
) 1

2
 

0.002385 1 = 0.2 Explicit 448.417 362.975 296.131 183.77 79.628 39.291 21.561 

 1  = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 448.417 362.975 296.131 183.77 79.628 39.291 21.561 

  (Sec.) (2.734) (4.219) (3.985) (3.922) (3.968) (4.250) (3.266) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001593 1 = 0.2 Explicit 446.601 358.563 290.255 176.893 74.319 35.775 19.259 

 1  = 0.5 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 2  = 0.6 NIE 446.601 358.563 290.255 176.893 74.319 35.775 19.259 

  (Sec.) (2.703) (2.843) (2.938) (2.516) (3.468) (2.453) (2.812) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 
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Table 2 (Continued) 

Models  b Parameters ARL 1  

1.01 1.03 1.05 1.10 1.20 1.30 1.40 

S
A

R
X

 
(2

,2
) 1

2
 

0.002388 1 = 0.1 Explicit 449.008 363.452 296.519 184.009 79.730 39.340 21.587 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.1 NIE 449.008 363.452 296.519 184.009 79.730 39.340 21.587 

 2 = 0.6 (Sec.) (0.406) (0.297) (0.344) (0.297) (0.344) (0.281) (0.203) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001595 1 = 0.1 Explicit 447.190 359.035 290.636 177.123 74.414 35.820 19.282 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 447.190 359.035 290.636 177.123 74.414 35.820 19.282 

 2 = 0.6 (Sec.) (0.234) (0.453) (0.328) (0.188) (0.500) (0.325) (0.312) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 

(2
,2

) 1
2
 

0.002156 1 =  0.1 Explicit 448.008 361.902 294.678 182.041 78.270 38.381 20.960 

 2 =  0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 =  0.1 NIE 448.008 361.902 294.678 182.041 78.270 38.381 20.960 

 2 =  0.6 (Sec.) (0.375) (0.328) (0.500) (0.375) (0.375) (0.468) (0.296) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001440 1 = 0.1 Explicit 446.011 357.361 288.72 175.166 73.031 34.941 18.722 

 2 =  0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 =  0.5 NIE 446.011 357.361 288.72 175.166 73.031 34.941 18.722 

 2 =  0.6 (Sec.) (3.046) (3.390) (3.609) (3.469) (3.187) (3.251) (3.359) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,2
) 1

2
 

0.002160 1 = 0.2 Explicit 448.879 362.604 295.248 182.39 78.418 38.452 20.998 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  =  0.1 NIE 448.879 362.604 295.248 182.39 78.418 38.452 20.998 

 2 =  0.6 (Sec.) (3.938) (3.219) (4.688) (3.672) (3.360) (3.468) (3.625) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001440 1 = 0.2 Explicit 446.011 357.361 288.72 175.166 73.031 34.941 18.722 

 2 = 0.1 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 446.011 357.361 288.72 175.166 73.031 34.941 18.722 

 2 =  0.6 (Sec.) (2.797) (3.656) (3.718) (3.125) (3.031) (3.094) (3.016) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

S
A

R
X

 
(2

,2
) 1

2
 

0.001950 1 = 0.2 Explicit 447.794 360.99 293.361 180.407 76.971 37.510 20.386 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1  =  0.1 NIE 447.794 360.99 293.361 180.407 76.971 37.510 20.386 

 2  =  0.6 (Sec.) (3.203) (3.250) (3.719) (3.266) (2.875) (3.078) (3.375) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.001303 1 = 0.2 Explicit 445.860 356.512 287.474 173.626 71.836 34.160 18.217 

 2 = 0.2 (Sec.) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

 1 = 0.5 NIE 445.860 356.512 287.474 173.626 71.836 34.160 18.217 

 2 = 0.6 (Sec.) (2.906) (2.812) (3.453) (3.688) (3.047) (3.234) (3.531) 

  Dif(%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note:  The results are expressed as an absolute percentage difference ( Diff% )  with the computational times in 

parentheses for the explicit formulas (seconds) and the NIE method (seconds). 

 

6. Discussion and Conclusions 

 The study developed and calculated the ARL value using explicit formulas and the NIE method 

to detect process mean shifts in a SARX(P,r)L model with exponential white noise. Moreover, the 

demonstration of the existence and uniqueness of the ARL has been established through the validation 
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of explicit formulas. A comparative analysis of the ARL using explicit formulas and the NIE method 

for monitoring mean shifts was made possible by the numerical investigation that determined the in-

control ARL under various parameter configurations and levels of process mean shift. In summary, 

the absolute percentage difference between the ARLs derived from explicit formulas and those 

obtained through the NIE method exhibited similarity. However, it is noteworthy that the explicit 

formulas demonstrated a notable advantage in computational efficiency, requiring significantly less 

processing time compared to the NIE method.  

In conclusion, this study derived the ARL utilizing explicit formulas for a SARX(P,r)L model on 

an EWMA control chart. The primary emphasis was focused on the exogenous variable within the 

SARX(P,r)L model. Exogenous variable incorporation was emphasized, underscoring its propensity 

to improve forecasting models' accuracy in comparison to models without exogenous variables. In 

future research, it would be interesting to see if more than one criterion can be used to assess control 

chart performance. 
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