

Thailand Statistician October 2024; 22(4): 909-925 http://statassoc.or.th Contributed paper

# Precise Average Run Length of an Exponentially Weighted Moving Average Control Chart for Time Series Model Suvimol Phanyaem\*

Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.

\*Corresponding author; e-mail: suvimol.p@sci.kmutnb.ac.th

Received: 26 January 2024 Revised: 18 April 2024 Accepted: 7 May 2024

# Abstract

This study aims to develop a precise formula for calculating the average run length in the context of an exponentially weighted moving average (EWMA) control chart, specifically in the presence of a seasonal autoregressive with exogenous variable (SARX(P,r)<sub>L</sub>) model. The research also introduces a novel method for estimating the average run length using numerical integral equations, facilitating a comparison between the outcomes derived from the formula and those obtained through the numerical integral equation method. Additionally, control charts are applied to real-world data across diverse domains. The explicit formula is evaluated based on the absolute percentage difference and CPU time. The results show that the average run length calculated using the proposed method precisely corresponds to the findings from the numerical integral equation method. In addition, it's important to mention that the explicit formulas demonstrated a significant improvement in computational efficiency, requiring much fewer computations than the NIE approach.

Keywords: Average run length, SARX model, explicit formulas, numerical integral equation.

# 1. Introduction

Statistical process control is a widely used method of monitoring processes, which involves the use of control charts. The Shewhart control chart was introduced by Shewhart in 1931 (Shewhart 1931). This was followed by the Cumulative Sum (CUSUM) control chart, which was initially proposed by Page in 1954 (Page 1954). Another type of control chart is the exponentially weighted moving average (EWMA) control chart, which was first reported by Roberts in 1959 (Roberts 1959). The Shewhart control chart is most suitable for detecting large shifts in the mean or variance of a process when the observations follow a normal distribution. On the other hand, CUSUM and EWMA control charts are more effective for detecting small shifts in the statistic parameter, as well as complex patterns. In a recent study, Areepong and Sunthornwat (2021) utilized an EWMA control chart to monitor COVID-19 outbreaks in Thailand, Singapore, Vietnam, and Hong Kong. They employed a quantitative and probabilistic approach and compared two methods for estimating the expected value and variance of cases. The study established alert levels with the help of the EWMA control chart.

The goal of this research is to manage process variability through the use of statistical quality control tools. In general, the efficiency of control chart studies often assumes an initial agreement that data follows a normal distribution. However, in many real-world situations, data tends to exhibit a time-series pattern. Therefore, the selection of an appropriate control chart is crucial for effective monitoring of process changes. EWMA control chart can be applied to correlated random events in hospitals, stock prices, or daily rainfall volumes. As a result, the researchers are interested in developing an explicit formula and estimation method for the average run length (ARL) of EWMA control charts.

The ARL is a significant metric used to assess the effectiveness of control charts when it comes to detecting shifts in process mean. Displays average subgroups needed before control chart indicates out-of-control process. ARL comprises two vital components: the in-control ARL (ARL<sub>0</sub>) and the out-of-control ARL (ARL<sub>1</sub>). ARL<sub>0</sub> represents the average number of samples taken from a stable process before a false out-of-control signal is generated. On the other hand, an alarm indicating that the process is out of control is signaled by an average number of samples falling within control limits, or ARL<sub>1</sub>.

Methods for estimating ARL include Monte Carlo simulations (MC), Markov Chain approach (MCA), and Integral Equation approach (IE). The MC technique may require considerable computing time, despite being useful for validating analytical findings. Roberts (1959) employed the MC technique to compute the ARL for the EWMA control chart. Crowder (1987) presents a numerical procedure for calculating run length in EWMA control chart based on normal distribution and extends to non-normal cases and one-sided EWMA control chart. Lucas and Saccucci (1990) studied the EWMA control scheme for monitoring the mean of a process. A design MCA procedure is provided, with parameter values as well for small shifts. However, due to the limitations of the MCA and MC methods, researchers have started to investigate the integral equation method. In the EWMA control chart for exponential distribution observations, Areepong (2009) suggested analytical solutions for the average delay (AD) and ARL. Recently, Mititelu et al. (2010) use the Fredholm integral equations method to derive explicit formulas for the ARL in special control charts, including CUSUM and EWMA control charts, which require fewer computations.

Control charts are typically designed with the assumption of independent and identically distributed observations. However, in cases where processes exhibit autocorrelation, specialized control charts are required. Integral Equation methods have been introduced for evaluating ARL for control charts when processes are serially correlated. When there is an AR(1) model with extra random error, Vanbrackle and Reynolds (1997) suggest using IE techniques for finding the ARL of EWMA and CUSUM control charts. Subsequently, Busaba et al. (2012) provided analytical ARL solutions for CUSUM control chart in the context of stationary AR(1) models. Additionally, Petcharat et al. (2013) developed explicit ARL formulas for EWMA and CUSUM control charts using a moving average (MA) model. Sunthornwat et al. (2018) compared analytical and numerical EWMA ARL, and analytical CUSUM ARL. They proposed a method to estimate optimal parameters for EWMA and AFRIMA processes. Results showed analytical EWMA ARL is an alternative to measure chart efficiency due to good performance. Phanthuna et al. (2021) introduced a technique to compute the ARL of a modified EWMA control chart under trend AR(1) mode. They compared the NIE method with an explicit formula, finding that the latter is more accurate and faster. They also found that the modified EWMA chart is more effective than the conventional scheme in detecting small to moderate shifts. Phanthuna and Areepong (2021) proposed an explicit formula for calculating the ARL on a modified EWMA control chart for observations generated by a SAR(p)<sub>L</sub> with exponential residuals. They validated the accuracy of the explicit formulas, which are applicable to various real-world

datasets. They also compared the modified EWMA control chart with the conventional EWMA scheme and concluded that the former is more effective in detecting small shifts. Silpakob et al. (2021) have developed explicit formulas for the ARL with a modified EWMA control chart based on an ARX(p,r) to detect changes in the process mean. They also conducted a comparative analysis of the performance between the modified EWMA control chart and EWMA control charts, utilizing the Relative Mean Index (RMI). Their findings indicate that the explicit formulas for the ARL of the modified EWMA control chart outperformed those of the EWMA control chart in monitoring process mean shifts. Later, Phanyaem (2022) developed the explicit formula and numerical integral equation (NIE) of the ARL for the CUSUM control chart based on the SARX(P,r)<sub>L</sub> model. The Fredholm integral equation was employed, and numerical methods like the midpoint rule, the trapezoidal rule, Simpson's rule, and the Gaussian rule were used to approximate the ARL. Petcharat (2022) constructs the ARL for a CUSUM control chart using the Fredholm integral equation approach and Banach's Fixed Point theorem to ensure the solution's existence and uniqueness based on SAR(P)<sub>L</sub> with the trend process. Furthermore, Peerajit (2023) compares analytical integral equations (ARL) derived from Banach's fixed-point theorem to the numerical integral equation (NIE) method for a fractionally integrated moving average with exogenous variables (FIMAX) model with underlying exponential white noise.

In this paper, an explicit formula for the ARL of the EWMA control chart under the seasonal autoregressive with exogenous variable; the SARX(P,r)<sub>L</sub> model is introduced. This is a novel contribution that has not been explored previously. The ARL obtained from the proposed method is compared with numerical integral equation approaches. The paper is organized as follows: Section 2 describes the materials utilized; Sections 3 and 4 describe the methods used; Section 5 presents the results of the proposed method; and Section 6 provides concluding views.

## 2. Characteristics of the SARX Model and the EWMA Control Chart

In this section, we describe the characteristics of an SARX model featuring exponential white noise. We define the SARX model employed on the EWMA control chart for efficient monitoring of process mean shifts. The final subsection delves into ARL features integral to the assessment of control chart performance.

### 2.1. The seasonal autoregressive with exogenous variable model

The SARX(P,r)<sub>L</sub> model is a time series model that combines autoregressive components with seasonality and exogenous variables. P represents the autoregressive order, while r represents the exogenous variable order in the model. The SARX(P,r)<sub>L</sub> model can be generalized as

$$Y_{t} = \sum_{j=1}^{r} \beta_{j} X_{jt} + \mu + \phi_{1} Y_{t-L} + \dots + \phi_{p} Y_{t-PL} + \varepsilon_{t},$$

where  $\mu$  is a constant, the initial values of  $Y_i$  are represented by  $\{Y_{i-L}, Y_{i-2L}, ..., Y_{i-PL}\}$ ,  $\phi_i$ , i = 1, 2, ..., P, refers to the autoregressive coefficient parameters,  $X_{ji}$  are exogenous variables of  $Y_i$ ,  $\beta_j$  are exogenous coefficient parameters,  $\varepsilon_i$  is a white noise process assumed to be exponentially distributed.

#### 2.2. EWMA control chart characteristics

The EWMA control chart was initially introduced by Robert (1959). It is widely accepted that the EWMA control chart outperforms the Shewhart control chart when it comes to detecting small-to-medium shift sizes in the process mean.

The prevalent form of the EWMA control chart relies on the sequence

$$E_t = (1 - \lambda)E_{t-1} + \lambda Y_t; t = 1, 2, ...,$$

where  $E_t$  is the EWMA statistic,  $E_{t-1}$  denotes the previous value of the EWMA statistic ( $E_0$  is set to *u* and  $Y_t$  is the sequence of the SARX(P,r)<sub>L</sub> model with exponential white noise), and  $\lambda$  is an exponential smoothing parameter with of EWMA control chart with  $0 < \lambda < 1$ . EWMA control chart stopping time definition:

$$T_{b} = \inf \{t > 0; E_{t} > b\},\$$

where *b* is a constant parameter representing the upper control limit. The ARL for SARX(P,r)<sub>L</sub> model with an initial value  $E_0 = u$ , the expectation under density function  $f(x, \alpha)$  that the change-point occurs at point  $\theta$ , where  $\theta < \infty$ , denoted by  $\mathbb{E}_{\infty}(.)$ .

$$ARL = H(u) = \mathbb{E}_{\infty}(\tau_b) < \infty.$$

## 3. Explicit Formulas for ARL of EWMA Control Chart Based on SARX(P,r)L model

In this section, explicit formulas are employed to calculate the average run length (ARL) of the EWMA control chart for a seasonal autoregressive model with an exogenous variable SARX(P,r)<sub>L</sub> Specifically, we derive analytical formulas for ARL by utilizing the Fredholm Integral Equation of the second kind. The lower and upper control limits are assumed to be zero and *b*, respectively, and the function H(u) is defined as the ARL of the EWMA chart for the SARX(P,r)<sub>L</sub> model. Let  $\mathbb{P}_E$  represent the probability measure and  $\mathbb{E}_E$  represent the expectation corresponding to initial value  $E_0 = u$ . Finally, we extend the function into the Fredholm Integral Equations of the second kind.

$$H(u) = 1 + \mathbb{E}_{E} \left[ I\{0 < E_{1} < b\} L(E_{1}) \right] + \mathbb{P}_{E} \{E_{1} = 0\} L(0).$$

Thus,  $E_1$  represents an in-control state if  $0 \le E_1 \le b$ , it can be written as

$$0 \le (1-\lambda)E_0 + \lambda\mu + \lambda\phi_1 Y_{t-L} + \dots + \lambda\phi_p Y_{t-PL} + \lambda \sum_{j=1}^r \beta_j X_{jt} \le b.$$
(1)

If  $Y_1$  gives the out-of-control state for  $E_1$ , it can be written as

$$(1-\lambda)E_0 + \lambda\mu + \lambda\phi_1Y_{t-L} + \dots + \lambda\phi_PY_{t-PL} + \lambda\sum_{j=1}^r \beta_jX_{jt} > b,$$
  
$$(1-\lambda)E_0 + \lambda\mu + \lambda\phi_1Y_{t-L} + \dots + \lambda\phi_PY_{t-PL} + \lambda\sum_{i=1}^r \beta_iX_{it} < 0.$$

or

After assigning the initial value of  $E_0 = u$ , (1) can be represented as

$$0 \leq (1-\lambda)u + \lambda\mu + \lambda\phi_1Y_{t-L} + \dots + \lambda\phi_pY_{t-PL} + \lambda\sum_{j=1}^{j}\beta_jX_{jt} \leq b.$$

Following Champ and Rigdon's method (1991), the initial value of the EWMA statistics is set to  $E_0 = u$ , with  $\mathcal{E}_t \sim Exp(\alpha)$ . Then, the function H(u) can be rewritten

$$H(u) = 1 + \int_{0}^{b} H(E_1) f(\varepsilon_1) d\varepsilon_1.$$

To obtain the function H(u),  $\mathcal{E}_t$  is substituted with z.

$$H(u) = 1 + \int_0^b H\left\{ (1-\lambda)u + \lambda\mu + \lambda\phi_1 Y_{t-L} + \dots + \lambda\phi_p Y_{t-PL} + \lambda \sum_{j=1}^r \beta_j X_{jt} \right\} f(z) dz.$$

Let  $v = (1 - \lambda)u + \lambda\mu + \lambda\phi_1Y_{t-L} + \dots + \lambda\phi_pY_{t-PL} + \lambda\sum_{j=1}^r \beta_jX_{jt}$ . To clarify, the function H(u) can be

expressed by changing the integration variable.

$$H(u) = 1 + \frac{1}{\lambda} \int_{0}^{b} H(v) f\left(\frac{v - (1 - \lambda)u}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right) dv.$$
(2)

As a result, the following integral equation is obtained:

$$H(u) = 1 + \frac{1}{\lambda \alpha} \int_{0}^{b} H(v) e^{-\frac{v}{\lambda \alpha}} \cdot e^{\frac{(1-\lambda)u}{\lambda \alpha} + \frac{\mu + \phi_{l}Y_{l-L} + \dots + \phi_{p}Y_{l-pL} + \sum_{j=l}^{p} \beta_{j}X_{jl}}}{\alpha} dv.$$
(3)

In this section, Banach's Fixed Point Theorem will be presented. It guarantees the existence and uniqueness of the results of an integral equation. The theorem applies to a metric space consisting of continuous functions on a closed interval  $(C(I), || ||_{\infty})$  where *I* denote the compact interval. The norm  $||H||_{\infty} = Sup_{u \in I}|H(u)|$  and the operator *T* are defined on this space. If there exists a number  $0 \le q < 1$  such that the operator *T* is a contraction, then the theorem holds true

$$\|T(H_1) - T(H_2)\|_{\infty} \le q \|H_1 - H_2\|$$
 for all  $H_1, H_2 \in I$ .

Let  $C(I_1)$  as a continuous function over a range  $I_1 = [0, b]$  and define the operator T as

$$T(H(u)) = 1 + \frac{e^{\frac{(1-\lambda)u}{\lambda\alpha} + \frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{\infty} \beta_{j}X_{jt}}}{\lambda\alpha} \int_{0}^{b} H(v) e^{-\frac{v}{\lambda\alpha}} dv.$$
(4)

According to the Banach Fixed Point Theorem, if the operator T is a contraction, then fixed point equations T(H(u)) = H(u) have a unique solution. So, in this case, if T is a contraction, then the integral equation can be written as T(H(u)) = H(u), and it will have a unique solution.

**Theorem 1.** (Banach's Fixed-point Theorem) In the complete metric space (X,d) where  $T: X \to X$  is a mapping satisfying the criteria of a contraction mapping with contraction constant q < 1 such that  $||T(H_1) - T(H_2)||_{\infty} \le q ||H_1 - H_2||$ , there is a unique function  $H(\cdot) \in X$  for which T(H(u)) = H(u) has a unique fixed point in X.

**Proof:** For any given  $u \in I$  and  $H_1, H_2 \in C(I)$ , we have the inequality  $||T(H_1) - T(H_2)||_{\infty} \le q ||H_1 - H_2||$  where q < 1. According to (4), we obtain

$$\|T(H_1) - T(H_2)\|_{\infty} = Sup_{u \in [0,b]} |H_1(v) - H_2(v)|$$

$$= Sup_{u \in [0,b]} \left| \frac{e^{\frac{(1-\lambda)u}{\lambda \alpha} + \frac{\mu + \phi_{i}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{r} \beta_{j}X_{jt}}}{\lambda \alpha} \int_{0}^{b} (H_{1}(v) - H_{2}(v))e^{-\frac{v}{\lambda \alpha}}dv \right|$$
$$\leq Sup_{u \in [0,b]} \left\{ \frac{e^{\frac{(1-\lambda)u}{\lambda \alpha} + \frac{\mu + \phi_{i}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{r} \beta_{j}X_{jt}}}{\lambda \alpha} \left| \int_{0}^{b} e^{-\frac{v}{\lambda \alpha}}dv \right| \right\} \|H_{1} - H_{2}\|_{\infty}$$

$$\leq \sup_{u \in [0,b]} \left[ e^{\frac{(1-\lambda)u}{\lambda\alpha} + \frac{\mu + \phi_{i}Y_{i-L} + \dots + \phi_{p}Y_{i-pL} + \sum_{j=1}^{r}\beta_{j}X_{ji}}{\alpha}} (1 - e^{-\frac{b}{\lambda\alpha}}) \right] \|H_{1} - H_{2}\|_{\infty}$$

$$\leq q \|H_{1} - H_{2}\|_{\infty},$$
where  $q = \sup_{u \in [0,b]} \left[ e^{\frac{(1-\lambda)u}{\lambda\alpha} + \frac{\mu + \phi_{i}Y_{i-L} + \dots + \phi_{p}Y_{i-pL} + \sum_{j=1}^{r}\beta_{j}X_{ji}}{\alpha}} (1 - e^{-\frac{b}{\lambda\alpha}}) \right] < 1.$  Thus, the function  $H(u)$  can be defined

as an existence and unique solution.

The explicit formula of the ARL for the EWMA control chart based on the  $SARX(P,r)_L$  model was derived using the Fredholm integral equation. First, let's take into consideration

$$H(u) = 1 + \frac{e^{\frac{(1-\lambda)u}{\lambda\alpha} + \frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{k}\beta_{j}X_{jt}}}{\lambda\alpha} \int_{0}^{b} H(v)e^{-\frac{v}{\lambda\alpha}}dv.$$

Let  $C(u) = e^{\frac{(1-\lambda)u}{\lambda\alpha} + \frac{\mu+\phi_{Y_{t-L}} + \dots + \phi_{P}Y_{t-PL} + \sum_{j=1}^{r}\beta_{j}X_{jr}}{\alpha}}$ , then we can rewrite the (3) as follows:

$$H(u) = 1 + \frac{C(u)}{\lambda \alpha} \int_{0}^{b} H(v) e^{-\frac{v}{\lambda \alpha}} dv, \quad 0 \le u \le b.$$

Let  $k = \int_{0}^{b} H(v)e^{-\frac{v}{\lambda\alpha}}dv$ . Consequently, we obtain

$$H(u) = 1 + \frac{C(u)}{\lambda \alpha} k.$$
 (5)

The next step is to find the value of k as follows:

$$\begin{aligned} k &= \int_{0}^{b} H(v) e^{-\frac{v}{\lambda \alpha}} dv, \\ &= \int_{0}^{b} \left( 1 + \frac{C(v)}{\lambda \alpha} k \right) e^{-\frac{v}{\lambda \alpha}} dv, \\ &= \int_{0}^{b} e^{-\frac{v}{\lambda \alpha}} dv + \int_{0}^{b} \frac{C(v)}{\lambda \alpha} k e^{-\frac{v}{\lambda \alpha}} dv, \\ &= \int_{0}^{b} e^{-\frac{v}{\lambda \alpha}} dv + \frac{k}{\lambda \alpha} \int_{0}^{b} e^{\frac{(1-\lambda)v}{\lambda \alpha} + \frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{r} \beta_{j}X_{jj}}}{\alpha} \cdot e^{-\frac{v}{\lambda \alpha}} dv, \\ &= \int_{0}^{b} e^{-\frac{v}{\lambda \alpha}} dv + \frac{k}{\lambda \alpha} \cdot e^{\frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{r} \beta_{j}X_{jj}}}{\alpha} \int_{0}^{b} e^{\frac{(1-\lambda)v}{\lambda \alpha} - \frac{v}{\lambda \alpha}} dv, \\ &= -\lambda \alpha (e^{-\frac{b}{\lambda \alpha}} - 1) + \frac{k}{\lambda \alpha} \cdot e^{\frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{j=1}^{r} \beta_{j}X_{jj}}}{\alpha} \int_{0}^{b} e^{-\frac{v}{\alpha}} dv, \end{aligned}$$

$$= -\lambda\alpha(e^{-\frac{b}{\lambda\alpha}}-1) - \frac{k}{\lambda}e^{\frac{\mu+\phi_{i}Y_{i-L}+\ldots+\phi_{p}Y_{i-pL}+\sum_{j=1}^{r}\beta_{j}X_{ji}}{\alpha}}.(e^{\frac{-b}{\alpha}}-1).$$

Consequently, the following formula can be used to find a constant k:

$$k = \frac{-\lambda \alpha (e^{-\frac{b}{\lambda \alpha}} - 1)}{1 + \frac{1}{\lambda} \cdot e^{\frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-PL} + \sum_{j=1}^{r} \beta_{j}X_{jt}}}{\alpha} \cdot (e^{-\frac{b}{\alpha}} - 1)}$$

When we substitute a constant k into (5), we can obtain the function H(u). This solution of H(u) is the explicit formulas for the ARL of EWMA control chart for SARX(P,r)<sub>L</sub> model,

$$H(u) = 1 - \frac{\lambda e^{\frac{(1-\lambda)u}{\lambda\alpha}} (e^{-\frac{b}{\lambda\alpha}} - 1)}{\lambda e^{-\frac{\mu+\phi_{Y_{t-L}} + \dots + \phi_{P}Y_{t-PL} + \sum_{j=1}^{r}\beta_{j}X_{ji}}} + (e^{-\frac{b}{\alpha}} - 1)}$$

The explicit formula for ARL<sub>0</sub> of EWMA control chart for SARX(P,r)<sub>L</sub> model in the in-control state with an exponential parameter  $\alpha = \alpha_0$  is

$$ARL_{0} = 1 - \frac{\lambda e^{\frac{(1-\lambda)u}{\lambda \alpha_{0}}} (e^{-\frac{b}{\lambda \alpha_{0}}} - 1)}{\lambda e^{-\frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-PL} + \sum_{i=1}^{r}\beta_{j}X_{ji}}{\alpha_{0}}} + (e^{-\frac{b}{\alpha_{0}}} - 1)$$

On the other hand, the explicit formula for ARL<sub>1</sub> of EWMA control chart for SARX(P,r)<sub>L</sub> model in the out-of-control state with an exponential parameter  $\alpha_1 = \alpha_0 (1+\delta)$  is

$$ARL_{1} = 1 - \frac{\lambda e^{\frac{(1-\lambda)u}{\lambda a_{1}}} (e^{-\frac{b}{\lambda a_{1}}} - 1)}{\lambda e^{-\frac{\mu + \phi_{1}Y_{t-L} + \dots + \phi_{p}Y_{t-pL} + \sum_{i=1}^{r} \beta_{j}X_{ji}}} + (e^{-\frac{b}{a_{1}}} - 1)},$$

where  $\alpha$  is a parameter of exponential white noise, *b* is upper control limit,  $Y_{t-L}$  are the initial values of SARX model,  $\phi_i$ ; i = 1, 2, ..., P is an autoregressive coefficient;  $0 \le \phi_i \le 1$ .

## 4. Numerical Integration of ARL of EWMA Control Chart for SARX(P,r)L

In this section, we will explain how to calculate the numerical integration of the ARL of the EWMA control chart for the SARX(P,r)<sub>L</sub> model, considering exponential distribution for the white noise processes. To solve the integral equation of ARL, we will be using Gauss-Legendre Quadrature as an approximation technique for integration. As a result, the integral equation in (2) can be expressed in the following  $\tilde{H}(u)$ .

$$\tilde{H}(u) = 1 + \frac{1}{\lambda} \int_{0}^{b} H(v) f\left(\frac{v - (1 - \lambda)u}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right) dv.$$

The quadrature rule is the foundation for numerical integration of integral equations, allowing for the estimation of integrals with finite sums. The approximation for an integral has the following form:

$$\int_{0}^{b} W(z)f(z)dz \approx \sum_{j=1}^{m} w_{j}f(a_{j}),$$

where  $w_j = \frac{b}{m}$  and  $a_j = \frac{b}{m} \left( j - \frac{1}{2} \right); j = 1, 2, ..., m$ . The integral equation is approximated

numerically as  $\tilde{H}(a_i)$ , and its solution can be found using a method of solving linear algebraic equations.

$$\tilde{H}(a_{i}) \approx 1 + \frac{1}{\lambda} \sum_{j=1}^{m} w_{j} \tilde{H}(a_{j}) f\left(\frac{a_{j} - (1 - \lambda)a_{i}}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right).$$

Thus,

$$\begin{split} \tilde{H}(a_{1}) &= 1 + \frac{1}{\lambda} \sum_{j=1}^{m} w_{j} \tilde{H}(a_{j}) f\left(\frac{a_{j} - (1 - \lambda)a_{1}}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right), \\ \tilde{H}(a_{2}) &= 1 + \frac{1}{\lambda} \sum_{j=1}^{m} w_{j} \tilde{H}(a_{j}) f\left(\frac{a_{j} - (1 - \lambda)a_{2}}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right), \\ \vdots \\ \tilde{H}(a_{m}) &= 1 + \frac{1}{\lambda} \sum_{j=1}^{m} w_{j} \tilde{H}(a_{j}) f\left(\frac{a_{j} - (1 - \lambda)a_{m}}{\lambda} - \mu - \phi_{1}Y_{t-L} - \dots - \phi_{p}Y_{t-PL} - \sum_{j=1}^{r} \beta_{j}X_{jt}\right), \end{split}$$

or as a matrix  $\mathbf{H}_{m \times 1} = \mathbf{1}_{m \times 1} + \mathbf{R}_{m \times m} \mathbf{H}_{m \times 1}$ ,

where l

$$\mathbf{H}_{m\times 1} = \begin{pmatrix} \widehat{H}(a_1) \\ \widehat{H}(a_2) \\ \vdots \\ \widehat{H}(a_m) \end{pmatrix}, \ \mathbf{1}_{m\times 1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix},$$

 $\left(\tilde{H}(a_{\cdot})\right)$  (1)

$$\left[\mathbf{R}\right]_{ij} \approx \frac{1}{\lambda} w_j f\left(\frac{a_j - (1 - \lambda)a_i}{\lambda} - \mu - \phi_1 Y_{t-L} - \dots - \phi_p Y_{t-PL} - \sum_{j=1}^r \beta_j X_{jt}\right),$$

and  $\mathbf{I}_m = \text{diag}(1, 1, ..., 1)$ . If  $(\mathbf{I}_m - \mathbf{R}_{m \times m})^{-1}$  there exist

$$\mathbf{H}_{m\times 1} = (\mathbf{I}_m - \mathbf{R}_{m\times m})^{-1} \mathbf{1}_{m\times 1}.$$

The integral equation in (2) can be roughly represented by the following (6), where  $\tilde{H}(u)$  indicates the numerical integration solution of H(u).

$$\tilde{H}(u) \approx 1 + \frac{1}{\lambda} \sum_{j=1}^{m} w_j \tilde{H}(a_j) f\left(\frac{a_j - (1 - \lambda)u}{\lambda} - \mu - \phi_1 Y_{t-L} - \dots - \phi_p Y_{t-PL} - \sum_{j=1}^{r} \beta_j X_{jt}\right).$$
(6)

# 5. Numerical Results

The study compared the performance of explicit formulas and NIE method in detecting changes in the process mean on an EWMA control chart for the SARX(P,r)<sub>L</sub> model. The precision and accuracy of ARL values that are obtained from explicit formulas are examined, and the results are compared with the results that are obtained by numerical integration. This assessment will specifically consider the absolute percentage difference; Diff(%) between the exact solution represented by H(u) using explicit formulas and the numerical integration solution denoted as

 $\tilde{H}(u)$ . The absolute percentage difference of ARL can be calculated by

$$Diff(\%) = \frac{\left|H(u) - \tilde{H}(u)\right|}{H(u)} \times 100.$$

For the numerical result, Table 1 presents the ARL of the SARX(1,1)<sub>12</sub>, SARX(2,1)<sub>12</sub>, SARX(1,2)<sub>12</sub>, and SARX(2,2)<sub>12</sub> models with different values of the autoregressive coefficient parameter ( $\phi_1 = 0.10, 0.20$  and  $\phi_2 = 0.10, 0.20$ ) and exogenous coefficient parameter ( $\beta_1 = 0.10, 0.50$  and  $\beta_2 = 0.60$ ). Exponential parameter of white noise process ( $\alpha_0$ ) is set to 1 in the in-control state. In the out-of-control state,  $\alpha_1$  can take values of 1.01, 1.03, 1.05, 1.10, 1.20, 1.30, and 1.40, respectively. The ARL<sub>1</sub> values of the EWMA control chart can be calculated using two methods: the explicit formula and the NIE method, both with the initial upper control limits *b* and the exponential smoothing parameter  $\lambda$  set to 0.10 and ARL<sub>0</sub> = 370. The results of both methods indicate that their ARL solutions are similar, with an absolute percentage difference *Diff*(%) of less than 0.001. However, the explicit formula approach outperforms the NIE method in terms of CPU time.

According to Table 2 shows the ARL of four different SARX models: SARX(1,1)<sub>12</sub>, SARX(2,1)<sub>12</sub>, SARX(1,2)<sub>12</sub>, and SARX(2,2)<sub>12</sub>. The models have different values of the autoregressive coefficient parameter ( $\phi_1 = 0.10, 0.20$  and  $\phi_2 = 0.10, 0.20$ ), the exogenous coefficient parameter ( $\beta_1 = 0.10, 0.50$  and  $\beta_2 = 0.60$ ). The ARL<sub>1</sub> of the EWMA control chart for the SARX(P,r)<sub>L</sub> models employed two distinct methodologies: the explicit formula and the NIE method. Both methods set the initial upper control limits *b* and an exponential smoothing parameter ( $\lambda = 0.10$ ) and ARL<sub>0</sub> = 500. Results indicate that both methods have similar ARL solutions, with an absolute percentage difference *Diff*(%) of less than 0.001. However, the explicit formula approach performs better than the NIE method in terms of CPU time.

The comparative analysis indicated a high degree of similarity between the ARL values obtained through the explicit formula and the NIE methods. Notably, the *Diff*(%) yielded a value of zero, leading to the conclusion that there was no discernible distinction between the ARL values derived from both methods. Particularly, the explicit formula method distinguishes itself with efficient computation, demonstrating a notably abbreviated processing time.

| Models                      | b        | Parameters      | ARL      | $\alpha_1$ |         |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
|-----------------------------|----------|-----------------|----------|------------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| Models                      | D        | Parameters      | AKL      | 1.01       | 1.03    | 1.05    | 1.10    | 1.20    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.40   |  |  |
|                             | 0.00363  | $\phi_1 = 0.1$  | Explicit | 334.560    | 274.864 | 227.465 | 145.930 | 67.000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.84  |  |  |
|                             |          | $\beta_1 = 0.1$ | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.010 |  |  |
|                             |          |                 | NIE      | 334.560    | 274.864 | 227.465 | 145.930 | 67.000  | 34.707           (2.247)           0.000           31.616           (0.010)           31.616           (2.340)           0.000           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           30.927           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           33.912           (0.010)           30.927           (0.010)           30.927           (2.355)           0.000           33.110           (0.010)           30.224           (0.010)           30.224           (2.340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19.84  |  |  |
|                             |          |                 | (Sec.)   | (2.247)    | (2.309) | (2.262) | (2.262) | (2.278) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2.262 |  |  |
| XX<br>)12                   |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000  |  |  |
| SARX<br>(1,1) <sub>12</sub> | 0.00242  | $\phi_1 = 0.1$  | Explicit | 333.273    | 271.597 | 223.023 | 140.524 | 62.559  | 31.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.73  |  |  |
| •1 -                        |          | $\beta_1 = 0.5$ | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.010 |  |  |
|                             |          |                 | NIE      | 333.273    | 271.597 | 223.023 | 140.524 | 62.559  | 34.707<br>(0.010)<br>34.707<br>(2.247)<br>0.000<br>31.616<br>(0.010)<br>31.616<br>(2.340)<br>0.000<br>33.912<br>(0.010)<br>33.912<br>(2.356)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.387)<br>0.000<br>33.912<br>(2.371)<br>0.000<br>33.912<br>(2.371)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927<br>(0.010)<br>30.927 | 17.73  |  |  |
|                             |          |                 | (Sec.)   | (2.371)    | (2.387) | (2.403) | (2.340) | (2.371) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2.37) |  |  |
|                             |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000  |  |  |
|                             | 0.00328  | $\phi_1 = 0.2$  | Explicit | 334.308    | 274.099 | 226.391 | 144.586 | 65.871  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.29  |  |  |
|                             |          | $\beta_1 = 0.1$ | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.010 |  |  |
|                             |          |                 | NIE      | 334.308    | 274.099 | 226.391 | 144.586 | 65.871  | 33.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.29  |  |  |
|                             |          |                 | (Sec.)   | (2.356)    | (2.418) | (2.356) | (2.402) | (2.403) | (2.356)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.40) |  |  |
| RX<br>)12                   |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00   |  |  |
| SARX<br>(1,1) <sub>12</sub> | 0.00219  | $\phi_1 = 0.2$  | Explicit | 333.354    | 271.115 | 222.197 | 139.376 | 61.573  | 30.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.26  |  |  |
|                             |          | $\beta_1 = 0.5$ | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.01  |  |  |
|                             |          |                 | NIE      | 333.354    | 271.115 | 222.197 | 139.376 | 61.573  | 30.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.26  |  |  |
|                             |          |                 | (Sec.)   | (2.309)    | (2.434) | (2.356) | (2.355) | (2.340) | (2.387)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.278 |  |  |
|                             |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00   |  |  |
|                             | 0.00328  | $\phi_1 = 0.1$  | Explicit | 333.308    | 274.099 | 226.391 | 144.586 | 65.871  | 33.912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.29  |  |  |
|                             |          | $\phi_2 = 0.1$  | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.01  |  |  |
|                             |          | $\beta_1 = 0.1$ | NIE      | 333.308    | 274.099 | 226.391 | 144.586 | 65.871  | 34.707<br>(0.010)<br>34.707<br>(2.247)<br>0.000<br>31.616<br>(0.010)<br>31.616<br>(2.340)<br>0.000<br>33.912<br>(0.010)<br>33.912<br>(2.356)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.387)<br>0.000<br>33.912<br>(2.371)<br>0.000<br>33.912<br>(2.371)<br>0.000<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>30.927<br>(0.010)<br>30.927<br>(2.355)<br>0.000<br>33.110<br>(0.010)<br>33.110<br>(0.010)<br>33.224<br>(0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.29  |  |  |
|                             |          |                 | (Sec.)   | (2.340)    | (2.309) | (2.325) | (2.293) | (2.340) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2.402 |  |  |
| SARX<br>(2,1) <sub>12</sub> |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000  |  |  |
| SA<br>(2,                   | 0.00219  | $\phi_1 = 0.1$  | Explicit | 333.354    | 271.115 | 222.197 | 139.376 | 61.573  | 30.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.26  |  |  |
|                             |          | $\phi_2 = 0.1$  | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.01  |  |  |
|                             |          | $\beta_1 = 0.5$ | NIE      | 333.354    | 271.115 | 222.197 | 139.376 | 61.573  | 30.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.26  |  |  |
|                             |          |                 | (Sec.)   | (2.356)    | (2.371) | (2.403) | (2.387) | (2.325) | (2.355)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.418 |  |  |
|                             |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000  |  |  |
|                             | 0.002962 | $\phi_1 = 0.1$  | Explicit | 333.798    | 273.128 | 225.151 | 143.146 | 64.714  | 33.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.75  |  |  |
|                             |          | $\phi_2 = 0.2$  | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.010 |  |  |
|                             |          | $\beta_1 = 0.1$ | NIE      | 333.798    | 273.128 | 225.151 | 143.146 | 64.714  | 33.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.75  |  |  |
|                             |          |                 | (Sec.)   | (2.387)    | (2.355) | (2.434) | (2.372) | (2.355) | (2.371)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.35  |  |  |
| <b>RX</b>                   |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00   |  |  |
| SARX<br>(2,1) <sub>12</sub> | 0.00198  | $\phi_1 = 0.1$  | Explicit | 333.077    | 270.344 | 221.138 | 138.091 | 60.541  | 30.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.79  |  |  |
|                             |          | $\phi_2 = 0.2$  | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.01  |  |  |
|                             |          | $\beta_1 = 0.5$ | NIE      | 333.077    | 270.344 | 221.138 | 138.091 | 60.541  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.79  |  |  |
|                             |          |                 | (Sec.)   | (2.324)    | (2.293) | (2.340) | (2.325) | (2.293) | (2.340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2.309 |  |  |
|                             |          |                 | Diff(%)  | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00   |  |  |

**Table 1** ARL results for the explicit formulas and the NIE method on EWMA control chart forSARX(P,r)<sub>L</sub> model with  $\alpha_0 = 1$ ,  $\lambda = 0.10$ , and  $ARL_0 = 370$ 

|                             |                                                         |                 | T                | Table 1 ( | Continue | d)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|-----------------------------|---------------------------------------------------------|-----------------|------------------|-----------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Models                      | b                                                       | Parameters      | ARL              |           |          |         | $\alpha_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Widdels                     | υ                                                       | 1 arameters     | AKL              | 1.01      | 1.03     | 1.05    | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.40    |
|                             | 0.002962                                                | $\phi_1 = 0.2$  | Explicit         | 333.798   | 273.128  | 225.151 | 143.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.714  | 33.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.752  |
|                             |                                                         | $\phi_2 = 0.1$  | (Sec.)           | (0.010)   | (0.010)  | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) |
|                             |                                                         | $\beta_1 = 0.1$ | NIE              | 333.798   | 273.128  | 225.151 | 143.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.714  | 33.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.752  |
|                             |                                                         |                 | (Sec.)           | (2.247)   | (2.278)  | (2.262) | (2.293)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2.277) | (2.231)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.356) |
| RX<br>)12                   |                                                         |                 | Dif(%)           | 0.000     | 0.000    | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   |
| SAI<br>(2,1                 | 0.001976                                                | $\phi_1 = 0.2$  | Explicit         | 332.382   | 269.781  | 220.679 | 137.806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.418  | 30.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.763  |
|                             | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | (0.010)         | (0.010)          |           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|                             |                                                         | $\beta_1 = 0.5$ | NIE              | 332.382   | 269.781  | 220.679 | 137.806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.418  | 30.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.763  |
|                             |                                                         |                 | (Sec.)           | (2.247)   | (2.231)  | (2.309) | (2.247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2.246) | (2.324)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.246) |
|                             |                                                         |                 | Dif(%)           | 0.000     | 0.000    | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   | 33.110         (0.010)         33.110         (2.231)         0.000         30.164         (0.010)         30.164         (2.324)         0.000         32.340         (0.010)         32.340         (0.010)         32.340         (0.010)         29.484         (2.278)         0.000         30.164         (2.278)         0.000         30.164         (2.278)         0.000         27.518         (2.309)         0.000         29.533         (0.010)         29.533         (2.277)         0.000         29.533         (2.277)         0.000         26.882         (0.010)         26.882         (2.356)                                                                                                                                                                                                                                                                                                                                                              | 0.000   |
|                             | 0.002676                                                | $\phi_1 = 0.2$  | Explicit         | 333.389   | 272.241  | 223.986 | 141.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.599  | 32.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.228  |
|                             |                                                         | $\phi_2 = 0.2$  | (Sec.)           | (0.010)   | (0.010)  | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) |
|                             |                                                         | $\beta_1 = 0.1$ | NIE              | 333.389   | 272,241  | 223.986 | 141.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.599  | 32.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.228  |
|                             |                                                         |                 | (Sec.)           | (2.293)   | (2.246)  | (2.293) | (2.309)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2.262) | (2.231)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.278) |
| RX<br>1)12                  |                                                         |                 | Dif(%)           | 0.000     | 0.000    | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   |
| SA<br>(2,1                  | 0.001787                                                | $\phi_1 = 0.2$  | Explicit         | 332.164   | 269.062  | 219.666 | 136.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59.418  | 29.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.310  |
|                             |                                                         |                 | (Sec.)           | (0.010)   | (0.010)  | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) |
|                             |                                                         | $\beta_1 = 0.5$ |                  | 332.164   | 269.062  | 219.666 | 136.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59.418  | 29.484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16.310  |
|                             |                                                         |                 |                  |           | . ,      | . ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . ,     | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2.262) |
|                             |                                                         |                 |                  |           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000   |
|                             | 0.001976                                                |                 | -                |           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.763  |
|                             |                                                         |                 |                  | . ,       |          | . ,     | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010) |
|                             |                                                         | $\beta_2 = 0.6$ |                  |           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 14         33.110           10)         (0.010)           111         33.110           10)         (2.231)           00         0.000           118         30.164           10)         (0.010)           118         30.164           10)         (0.010)           118         30.164           10)         (0.010)           118         30.164           10)         (0.010)           118         30.164           100         (0.010)           119         32.340           100         (0.010)           118         29.484           100         (0.010)           118         29.484           100         (0.010)           118         30.164           100         (0.010)           118         30.164           101         (0.010)           118         30.164           101         (0.010)           118         29.533           100         0.000           118         29.533           100         (0.010)           118         29.533 </td <td>16.763</td> | 16.763  |
| 5 V                         |                                                         |                 |                  | . ,       | , ,      | , ,     | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.262) |
| AR)<br>,2)1                 | 0.001221                                                | / 0.1           |                  |           |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000   |
| S2<br>(1                    | 0.001321                                                | $\phi_1 = 0.1$  | Explicit         | 331.160   | 266.636  | 216.434 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.016  |
|                             |                                                         | $\beta_1 = 0.5$ | (Sec.)           | (0.010)   | (0.010)  | (0.010) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.010) |
|                             |                                                         | $\beta_2 = 0.6$ | NIE              | 331.160   | 266.636  | 216.434 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.016  |
|                             |                                                         |                 | (Sec.)<br>Dif(%) | (2.262)   | (2.340)  | (2.293) | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · /     | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2.293) |
|                             | 0.001790                                                | $\phi_1 = 0.2$  | Explicit         | 332.740   | 269.527  | 220.046 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.336  |
|                             | 0.001790                                                | $\beta_1 = 0.1$ | (Sec.)           | (0.010)   | (0.010)  | (0.010) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.010) |
|                             |                                                         |                 |                  | . ,       | · ,      | . ,     | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ,     |
|                             |                                                         | $\beta_2 = 0.6$ | NIE              | 332.740   | 269.527  | 220.046 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.336  |
| 5 <b>X</b>                  |                                                         |                 | (Sec.)           | (2.246)   | (2.278)  | (2.371) | 293)         (2.309)         (2.262)         (2.231)           000         0.000         0.000         0.000           0066         136.562         59.418         29.484           010)         (0.010)         (0.010)         (0.010)           0.666         136.562         59.418         29.484           262)         (2.278)         (2.293)         (2.278)           000         0.000         0.000         0.000           0.679         137.806         60.418         30.164           010)         (0.010)         (0.010)         (0.010)           0.679         137.806         60.418         30.164           010)         (0.010)         (2.371)         (2.278)           000         0.000         0.000         0.000           0.434         132.765         56.466         27.518           010)         (0.010)         (0.010)         (0.010)           0.434         132.765         56.466         27.518           010)         (0.010)         (0.010)         (0.010)           0.446         136.796         59.518         29.533           010)         (0.010)         (0.010)         (0.010)< | (2.309) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| SARX<br>(1,2) <sub>12</sub> |                                                         |                 | Dif(%)           | 0.000     | 0.000    | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000   |
| S,<br>(1                    | 0.001194                                                | $\phi_1 = 0.2$  | Explicit         | 330.654   | 265.696  | 215.258 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.604  |
|                             |                                                         | $\beta_1 = 0.5$ | (Sec.)           | (0.010)   | (0.010)  | (0.010) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.010) |
|                             |                                                         | $\beta_2 = 0.6$ | NIE              | 330.654   | 265.696  | 215.258 | 131.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 33.110         (0.010)         33.110         (2.231)         0.000         30.164         (0.010)         30.164         (0.010)         30.164         (2.324)         0.000         32.340         (0.010)         32.340         (0.010)         32.340         (0.010)         29.484         (2.278)         0.000         30.164         (2.278)         0.000         27.518         (0.010)         27.518         (2.309)         0.000         29.533         (0.010)         29.533         (2.277)         0.000         29.533         (2.277)         0.000         26.882         (0.010)         26.882         (2.356)                                                                                                                                                                                                                                                                                                                                             | 14.604  |
|                             |                                                         |                 | (Sec.)           | (2.293)   | (2.355)  | (2.309) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2.277) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.372) |
|                             |                                                         |                 | Dif(%)           | 0.000     | 0.000    | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   |

 Table 1 (Continued)

|                               |          |                      |          |         | Continue | u)      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |
|-------------------------------|----------|----------------------|----------|---------|----------|---------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Models                        | b        | Parameters           | ARL      |         |          |         | $\alpha_{_{1}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         |
| 1104015                       | Ũ        | 1 uruniteteris       |          | 1.01    | 1.03     | 1.05    | 1.10            | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.30    | 1.40    |
|                               | 0.001787 | $\phi_1 = 0.1$       | Explicit | 332.164 | 269.062  | 219.666 | 136.562         | 59.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.484  | 16.310  |
|                               |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.1$      | NIE      | 332.164 | 269.062  | 219.666 | 136.562         | 59.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29.484  | 16.310  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.308) | (2.325)  | (2.355) | (2.294)         | (2.340)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.308) | (2.387) |
| <b>XX</b><br>() <sub>12</sub> |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
| SARX<br>(2,2) <sub>12</sub>   | 0.001195 | $\phi_1 = 0.1$       | Explicit | 330.941 | 265.926  | 215.443 | 131.571         | 55.536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.904  | 14.616  |
|                               |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.5$      | NIE      | 330.941 | 265.926  | 215.443 | 131.571         | 55.536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.904  | 14.616  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.308) | (2.387)  | (2.309) | (2.324)         | (2.371)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.340) | (2.293) |
|                               |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
|                               | 0.001615 | $\phi_{\rm l} = 0.1$ | Explicit | 331.688 | 268.137  | 218.490 | 135.226         | 58.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.801  | 15.859  |
|                               |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.1$      | NIE      | 331.688 | 268.137  | 218.490 | 135.226         | 58.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.801  | 15.859  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.309) | (2.293)  | (2.340) | (2.355)         | (2.293)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.262) | (2.309) |
| SARX<br>(2,2) <sub>12</sub>   |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
| SA<br>(2,2                    | 0.001080 | $\phi_1 = 0.1$       | Explicit | 330.38  | 264.944  | 214.237 | 130.255         | 54.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.279  | 14.213  |
|                               |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.5$      | NIE      | 330.38  | 264.944  | 214.237 | 130.255         | 54.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.279  | 14.213  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.355) | (2.325)  | (2.277) | (2.309)         | (2.324)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.309) | (2.293) |
|                               |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
|                               | 0.001614 | $\phi_1 = 0.2$       | Explicit | 331.476 | 267.965  | 218.351 | 135.140         | 58.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.783  | 15.850  |
|                               |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.1$      | NIE      | 331.476 | 267.965  | 218.351 | 135.140         | 58.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.783  | 15.850  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.293) | (2.262)  | (2.293) | (2.309)         | (2.324)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.262) | (2.372) |
| SARX<br>(2,2) <sub>12</sub>   |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | (2.293)         (2.262           0.000         0.000           54.568         26.27           (0.010)         (0.010)           54.568         26.27           (2.302)         (2.302)           0.000         0.000           54.568         26.27           (2.324)         (2.302)           0.000         0.000           58.355         28.78           (0.010)         (0.010)           58.355         28.78           (2.324)         (2.262)           0.000         0.000           54.517         26.25           (0.010)         (0.010)           54.517         26.25           (2.293)         (2.344)           0.000         0.000           57.437         28.16           (0.010)         (0.010) | 0.000   | 0.000   |
| SA<br>(2,                     | 0.001079 | $\phi_1 = 0.2$       | Explicit | 330.063 | 264.691  | 214.033 | 130.132         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.255  | 14.201  |
|                               |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.5$      | NIE      | 330.063 | 264.691  | 214.033 | 130.132         | 54.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.255  | 14.201  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.294) | (2.308)  | (2.293) | (2.340)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.340) | (2.309) |
|                               |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000   | 0.000   |
|                               | 0.001461 | $\phi_1 = 0.2$       | Explicit | 331.525 | 267.466  | 271.525 | 134.030         | 57.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.160  | 15.436  |
|                               |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.1$      | NIE      | 331.525 | 267.466  | 271.525 | 134.030         | 57.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28.160  | 15.436  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.340) | (2.371)  | (2.340) | (2.324)         | (2.309)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.262) | (2.340) |
| RX<br>2) <sub>12</sub>        |          |                      | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
| SARX<br>(2,2) <sub>12</sub>   | 0.000977 | $\phi_1 = 0.2$       | Explicit | 330.129 | 264.213  | 213.237 | 129.073         | 53.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.692  | 13.835  |
|                               |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010)  | (0.010) | (0.010)         | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.010) | (0.010) |
|                               |          | $\beta_1 = 0.5$      | NIE      | 330.129 | 264.213  | 213.237 | 129.073         | 53.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.692  | 13.835  |
|                               |          | $\beta_2 = 0.6$      | (Sec.)   | (2.356) | (2.371)  | (2.293) | (2.340)         | (2.262)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2.309) | (2.324) |
|                               |          | 1-2 510              | Dif(%)   | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000   | 0.000   |
|                               |          |                      | 2(/0)    | 0.000   | 0.000    | 0.000   | 0.000           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |

Table 1 (Continued)

| Models                      | b         | Parameters           | ARL      |         |         |         | $\alpha_{_1}$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|-----------------------------|-----------|----------------------|----------|---------|---------|---------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                             |           |                      |          | 1.01    | 1.03    | 1.05    | 1.10          | 1.20    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.40    |
| SARX<br>(1,1) <sub>12</sub> | 0.004861  | $\phi_{\rm l} = 0.1$ | Explicit | 451.959 | 371.155 | 307.014 | 196.727       | 90.048  | 46.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.394  |
|                             |           | $\beta_1 = 0.1$      | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010) |
|                             |           |                      | NIE      | 451.959 | 371.155 | 307.014 | 196.727       | 90.048  | 46.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.394  |
|                             |           |                      | (Sec.)   | (2.906) | (3.360) | (2.515) | (2.703)       | (3.984) | (2.656)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (4.156) |
|                             |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000   |
|                             | 0.003232  | $\phi_{\rm l} = 0.1$ | Explicit | 449.804 | 366.346 | 300.648 | 189.14        | 83.892  | 42.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.491  |
|                             |           | $\beta_1 = 0.5$      | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010  |
|                             |           |                      | NIE      | 449.804 | 366.346 | 300.648 | 189.14        | 83.892  | 42.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.491  |
|                             |           |                      | (Sec.)   | (3.078) | (4.766) | (2.812) | (3.000)       | (3.063) | (2.578)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3.282) |
|                             |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   | 3       46.445         )       (0.010)         3       46.445         )       (2.656)         0.000       2         2       42.181         )       (0.010)         2       42.181         )       (2.578)         0.000       3         3       45.343         )       (2.578)         0.000       3         3       45.343         )       (2.860)         0.000       7         41.174       (0.010)         7       41.174         )       (3.531)         0.000       3         3       45.354         )       (0.010)         3       45.354         )       (0.010)         3       41.217         )       (3.313)         0.000       5         44.264         )       (3.641)         0.000       5         44.264         )       (3.641)         0.000       5 | 0.000   |
|                             | 0.004389  | $\phi_1 = 0.2$       | Explicit | 451.511 | 370.019 | 305.468 | 194.835       | 88.478  | 45.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.637  |
|                             |           | $\beta_1 = 0.1$      | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010) |
|                             |           |                      | NIE      | 451.511 | 370.019 | 305.468 | 194.835       | 88.478  | 45.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.637  |
|                             |           |                      | (Sec.)   | (2.469) | (3.704) | (2.719) | (3.094)       | (2.938) | (2.860)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3.016  |
| SARX<br>(1,1) <sub>12</sub> |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000   |
| SA<br>(1,]                  | 0.002919  | $\phi_1 = 0.2$       | Explicit | 449.143 | 365.057 | 299.001 | 187.248       | 82.407  | 41.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.817  |
|                             |           | $\beta_1 = 0.5$      | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010  |
|                             |           |                      | NIE      | 449.143 | 365.057 | 299.001 | 187.248       | 82.407  | 41.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.81   |
|                             |           |                      | (Sec.)   | (2.656) | (2.734) | (3.156) | (2.703)       | (2.673) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4.095  |
|                             |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                             | 0.004390  | $\phi_{\rm l} = 0.1$ | Explicit | 451.618 | 370.107 | 305.54  | 194.881       | 88.498  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.642  |
|                             |           | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.010  |
|                             |           | $\beta_1 = 0.1$      | NIE      | 451.618 | 370.107 | 305.54  | 194.881       | 88.498  | 45.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.642  |
|                             |           |                      | (Sec.)   | (2.657) | (2.719) | (2.641) | (2.969)       | (4.703) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3.422  |
| SARX<br>(2,1) <sub>12</sub> |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
| SA<br>(2,                   | 0.002922  | $\phi_1 = 0.1$       | Explicit | 449.625 | 365.448 | 299.321 | 187.447       | 82.493  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.840  |
|                             |           | $\phi_2 = 0.1$       | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0.010) |
|                             |           | $\beta_1 = 0.5$      | NIE      | 449.625 | 365.448 | 299.321 | 187.447       | 82.493  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.840  |
|                             |           |                      | (Sec.)   | (3.031) | (2.938) | (3.250) | (3.359)       | (2.860) | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.938  |
|                             | 0.0000.00 |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000   |
|                             | 0.003963  | $\phi_1 = 0.1$       | Explicit | 450.982 | 368.823 | 303.877 | 192.931       | 86.926  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.900  |
|                             |           | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010) |
|                             |           | $\beta_1 = 0.1$      | NIE      | 450.982 | 368.823 | 303.877 | 192.931       | 86.926  | 44.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24.900  |
|                             |           |                      | (Sec.)   | (2.906) | (3.531) | (3.891) | (3.031)       | (3.125) | (3.641)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3.719  |
| RX<br>)12                   |           |                      | Diff(%)  | 0.000   | 0.000   | 0.000   | 0.000         | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000   |
| SARX<br>(2,1) <sub>12</sub> | 0.002640  | $\phi_1 = 0.1$       | Explicit | 449.072 | 364.25  | 297.754 | 185.619       | 81.055  | 40.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22.193  |
|                             |           | $\phi_2 = 0.2$       | (Sec.)   | (0.010) | (0.010) | (0.010) | (0.010)       | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.010  |
|                             |           | $\beta_1 = 0.5$      | NIE      | 449.072 | 364.25  | 297.754 | 185.619       | 81.055  | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.193  |
|                             |           | $P_1 = 0.5$          | (Sec.)   | (2.641) | (3.000) | (3.843) | (3.219)       | (3.281) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3.078  |
|                             |           |                      | (500.)   | (2.041) | (3.000) | (3.043) | (3.21)        | (3.201) | 46.445<br>(0.010)<br>46.445<br>(2.656)<br>0.000<br>42.181<br>(0.010)<br>42.181<br>(2.578)<br>0.000<br>45.343<br>(2.860)<br>0.000<br>41.174<br>(0.010)<br>41.174<br>(0.010)<br>41.174<br>(3.531)<br>0.000<br>45.354<br>(3.312)<br>0.000<br>45.354<br>(3.312)<br>0.000<br>41.217<br>(0.010)<br>41.217<br>(3.313)<br>0.000<br>41.217<br>(3.313)<br>0.000<br>44.264<br>(3.641)<br>0.000<br>40.245<br>(0.010)                                                                                                                                                                                                                                                                                                                                                                 | (3.076) |

**Table 2** ARL results for the explicit formulas and the NIE method on EWMA control chart forSARX(P,r)<sub>L</sub> model with  $\alpha_0 = 1$ ,  $\lambda = 0.10$ , and  $ARL_0 = 500$ 

| Madala                      | b        | Donomotono           | ARL      | $\alpha_1$ |         |         |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |
|-----------------------------|----------|----------------------|----------|------------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Models                      | D        | Parameters           | AKL      | 1.01       | 1.03    | 1.05    | 1.10    | 1.20    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40    |  |
|                             | 0.003962 | $\phi_1 = 0.2$       | Explicit | 450.864    | 368.726 | 303.798 | 192.881 | 86.903  | 44.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.894  |  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_1 = 0.1$      | NIE      | 450.864    | 368.726 | 303.798 | 192.881 | 86.903  | 44.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.894  |  |
|                             |          | , -                  | (Sec.)   | (3.875)    | (4.313) | (2.906) | (2.969) | (3.032) | (3.140)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4.734) |  |
| XX<br>)12                   |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |
| SARX<br>(2,1) <sub>12</sub> | 0.002639 | $\phi_1 = 0.2$       | Explicit | 448.894    | 364.106 | 297.637 | 185.546 | 81.024  | 40.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.184  |  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_1 = 0.5$      | NIE      | 448.894    | 364.106 | 297.637 | 185.546 | 81.024  | 40.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.184  |  |
|                             |          | , .                  | (Sec.)   | (2.890)    | (2.922) | (4.500) | (2.703) | (2.500) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4.406) |  |
|                             |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |
|                             | 0.003581 | $\phi_{\rm l} = 0.2$ | Explicit | 450.711    | 367.841 | 302.47  | 191.158 | 85.452  | 43.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.199  |  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_1 = 0.1$      | NIE      | 450.711    | 367.841 | 302.47  | 191.158 | 85.452  | 43.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24.199  |  |
|                             |          |                      | (Sec.)   | (4.672)    | (3.187) | (3.406) | (4.500) | (4.844) | (3.375)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.000) |  |
| XX<br>)12                   |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |
| SARX<br>(2,1) <sub>12</sub> | 0.002385 | $\phi_{\rm l} = 0.2$ | Explicit | 448.417    | 362.975 | 296.131 | 183.77  | 79.628  | 39.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.561  |  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_1 = 0.5$      | NIE      | 448.417    | 362.975 | 296.131 | 183.77  | 79.628  | 39.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.561  |  |
|                             |          |                      | (Sec.)   | (3.000)    | (4.406) | (4.234) | (2.719) | (2.734) | (3.062)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.781) |  |
|                             |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |
|                             | 0.002640 | $\phi_1 = 0.1$       | Explicit | 449.072    | 364.25  | 297.754 | 185.619 | 81.056  | 40.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.193  |  |
|                             |          | $\beta_1 = 0.1$      | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_2 = 0.6$      | NIE      | 449.072    | 364.25  | 297.754 | 185.619 | 81.056  | 40.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.193  |  |
|                             |          |                      | (Sec.)   | (2.844)    | (4.156) | (3.656) | (3.062) | (2.953) | (4.423)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.313) |  |
| RX<br>2)12                  |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   |  |
| SARX<br>(1,2) <sub>12</sub> | 0.001762 | $\phi_1 = 0.1$       | Explicit | 447.088    | 359.687 | 291.733 | 178.597 | 75.614  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.809  |  |
|                             |          | $\beta_1 = 0.5$      | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.010) |  |
|                             |          | $\beta_2 = 0.6$      | NIE      | 447.088    | 359.687 | 291.733 | 178.597 | 75.614  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.809  |  |
|                             |          |                      | (Sec.)   | (2.563)    | (3.156) | (3.125) | (3.500) | (2.609) | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2.781) |  |
|                             | 0.000205 | 1 0 0                | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000   |  |
|                             | 0.002385 | $\phi_1 = 0.2$       | Explicit | 448.417    | 362.975 | 296.131 | 183.77  | 79.628  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.561  |  |
|                             |          | $\beta_1 = 0.1$      | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (0.010) |  |
|                             |          | $\beta_2 = 0.6$      | NIE      | 448.417    | 362.975 | 296.131 | 183.77  | 79.628  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.561  |  |
|                             |          |                      | (Sec.)   | (2.734)    | (4.219) | (3.985) | (3.922) | (3.968) | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3.266) |  |
| SARX<br>(1,2) <sub>12</sub> |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |
| SA<br>(1,                   | 0.001593 | $\phi_1 = 0.2$       | Explicit | 446.601    | 358.563 | 290.255 | 176.893 | 74.319  | 35.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.259  |  |
|                             |          | $\beta_1 = 0.5$      | (Sec.)   | (0.010)    | (0.010) | (0.010) | (0.010) | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.010) |  |
|                             |          | $\beta_2 = 0.6$      | NIE      | 446.601    | 358.563 | 290.255 | 176.893 | 74.319  | 35.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.259  |  |
|                             |          |                      | (Sec.)   | (2.703)    | (2.843) | (2.938) | (2.516) | (3.468) | (0.010)<br>44.253<br>(3.140)<br>0.000<br>40.230<br>(0.010)<br>40.230<br>(2.562)<br>0.000<br>43.238<br>(3.375)<br>0.000<br>39.291<br>(3.062)<br>0.000<br>39.291<br>(3.062)<br>0.000<br>40.245<br>(4.423)<br>0.000<br>40.245<br>(4.423)<br>0.000<br>36.623<br>(0.010)<br>36.623<br>(2.563)<br>0.000<br>39.291<br>(0.010)<br>39.291<br>(4.250)<br>0.000<br>39.291<br>(4.250)<br>0.000<br>39.291<br>(4.250)<br>0.000<br>39.291<br>(4.250)<br>0.000<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>39.291<br>(0.010)<br>35.775<br>(0.010)<br>(0.010)<br>(0.010)<br>(0.010)<br>(0.010)<br>(0.010)<br>(0.000<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000)<br>(0.000) | (2.812) |  |
|                             |          |                      | Dif(%)   | 0.000      | 0.000   | 0.000   | 0.000   | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000   |  |

Table 2 (Continued)

Table 2 (Continued)

| Models                      | b        | Parameters           | ARL             |         |         |         | $\alpha_{1}$ |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|-----------------------------|----------|----------------------|-----------------|---------|---------|---------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Widdels                     | υ        | 1 arameters          | THE             | 1.01    | 1.03    | 1.05    | 1.10         | 1.20    | 1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.40    |
| SARX<br>(2,2) <sub>12</sub> | 0.002388 | $\phi_1 = 0.1$       | Explicit        | 449.008 | 363.452 | 296.519 | 184.009      | 79.730  | 39.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.587  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.1$      | NIE             | 449.008 | 363.452 | 296.519 | 184.009      | 79.730  | 39.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.587  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (0.406) | (0.297) | (0.344) | (0.297)      | (0.344) | (0.281)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.203) |
|                             |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000   |
| SAI<br>(2,2                 | 0.001595 | $\phi_{\rm l} = 0.1$ | Explicit        | 447.190 | 359.035 | 290.636 | 177.123      | 74.414  | 35.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.282  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.5$      | NIE             | 447.190 | 359.035 | 290.636 | 177.123      | 74.414  | 35.820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.282  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (0.234) | (0.453) | (0.328) | (0.188)      | (0.500) | (0.325)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.312) |
|                             |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | 39.340<br>(0.010)<br>39.340<br>(0.281)<br>0.000<br>35.820<br>(0.010)<br>35.820<br>(0.325)<br>0.000<br>38.381<br>(0.468)<br>0.000<br>34.941<br>(0.468)<br>0.000<br>34.941<br>(3.251)<br>0.000<br>34.941<br>(3.251)<br>0.000<br>38.452<br>(0.010)<br>38.452<br>(3.468)<br>0.000<br>34.941<br>(0.010)<br>34.941<br>(3.094)<br>0.000<br>34.941<br>(3.094)<br>0.000<br>37.510<br>(0.010)<br>37.510<br>(3.078)<br>0.000<br>34.160<br>(0.010)                                                                                                                                                                                                             | 0.000   |
|                             | 0.002156 | $\phi_{\rm l} = 0.1$ | Explicit        | 448.008 | 361.902 | 294.678 | 182.041      | 78.270  | 38.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.960  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.1$      | NIE             | 448.008 | 361.902 | 294.678 | 182.041      | 78.270  | 38.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.960  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (0.375) | (0.328) | (0.500) | (0.375)      | (0.375) | (0.468)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.296) |
| SARX<br>(2,2) <sub>12</sub> |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000   |
| SA<br>(2,2                  | 0.001440 | $\phi_{\rm l} = 0.1$ | Explicit        | 446.011 | 357.361 | 288.72  | 175.166      | 73.031  | 34.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.722  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.5$      | NIE             | 446.011 | 357.361 | 288.72  | 175.166      | 73.031  | 34.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.722  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (3.046) | (3.390) | (3.609) | (3.469)      | (3.187) | (3.251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.359) |
|                             |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000   |
|                             | 0.002160 | $\phi_1 = 0.2$       | Explicit        | 448.879 | 362.604 | 295.248 | 182.39       | 78.418  | 38.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.998  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.1$      | NIE             | 448.879 | 362.604 | 295.248 | 182.39       | 78.418  | 38.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.998  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (3.938) | (3.219) | (4.688) | (3.672)      | (3.360) | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.625) |
| SARX<br>(2,2) <sub>12</sub> |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000   |
| SA<br>(2,                   | 0.001440 | $\phi_1 = 0.2$       | Explicit        | 446.011 | 357.361 | 288.72  | 175.166      | 73.031  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.722  |
|                             |          | $\phi_2 = 0.1$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.010) |
|                             |          | $\beta_1 = 0.5$      | NIE             | 446.011 | 357.361 | 288.72  | 175.166      | 73.031  | 34.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.722  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (2.797) | (3.656) | (3.718) | (3.125)      | (3.031) | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3.016) |
|                             |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000   |
|                             | 0.001950 | $\phi_1 = 0.2$       | Explicit        | 447.794 | 360.99  | 293.361 | 180.407      | 76.971  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.386  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.1$      | NIE             | 447.794 | 360.99  | 293.361 | 180.407      | 76.971  | 37.510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.386  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (3.203) | (3.250) | (3.719) | (3.266)      | (2.875) | (3.078)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.375) |
| RX<br>!)12                  |          |                      | Dif(%)          | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000   |
| SARX<br>(2,2) <sub>12</sub> | 0.001303 | $\phi_{\rm l} = 0.2$ | Explicit        | 445.860 | 356.512 | 287.474 | 173.626      | 71.836  | 34.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.217  |
|                             |          | $\phi_2 = 0.2$       | (Sec.)          | (0.010) | (0.010) | (0.010) | (0.010)      | (0.010) | (0.010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.010) |
|                             |          | $\beta_1 = 0.5$      | NIE             | 445.860 | 356.512 | 287.474 | 173.626      | 71.836  | 34.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.217  |
|                             |          | $\beta_2 = 0.6$      | (Sec.)          | (2.906) | (2.812) | (3.453) | (3.688)      | (3.047) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (3.531) |
|                             |          | , 2                  | (211)<br>Dif(%) | 0.000   | 0.000   | 0.000   | 0.000        | 0.000   | <ol> <li>39.340</li> <li>(0.010)</li> <li>39.340</li> <li>(0.281)</li> <li>0.000</li> <li>35.820</li> <li>(0.010)</li> <li>35.820</li> <li>(0.325)</li> <li>0.000</li> <li>38.381</li> <li>(0.468)</li> <li>0.000</li> <li>34.941</li> <li>(3.251)</li> <li>0.000</li> <li>38.452</li> <li>(0.010)</li> <li>38.452</li> <li>(0.010)</li> <li>38.452</li> <li>(0.010)</li> <li>38.452</li> <li>(0.010)</li> <li>38.452</li> <li>(0.010)</li> <li>34.941</li> <li>(3.094)</li> <li>0.000</li> <li>34.941</li> <li>(3.094)</li> <li>0.000</li> <li>37.510</li> <li>(3.078)</li> <li>0.000</li> <li>34.160</li> <li>(0.010)</li> <li>34.160</li> </ol> | 0.000   |

# 6. Discussion and Conclusions

The study developed and calculated the ARL value using explicit formulas and the NIE method to detect process mean shifts in a  $SARX(P,r)_L$  model with exponential white noise. Moreover, the demonstration of the existence and uniqueness of the ARL has been established through the validation

of explicit formulas. A comparative analysis of the ARL using explicit formulas and the NIE method for monitoring mean shifts was made possible by the numerical investigation that determined the incontrol ARL under various parameter configurations and levels of process mean shift. In summary, the absolute percentage difference between the ARLs derived from explicit formulas and those obtained through the NIE method exhibited similarity. However, it is noteworthy that the explicit formulas demonstrated a notable advantage in computational efficiency, requiring significantly less processing time compared to the NIE method.

In conclusion, this study derived the ARL utilizing explicit formulas for a SARX(P,r)<sub>L</sub> model on an EWMA control chart. The primary emphasis was focused on the exogenous variable within the SARX(P,r)<sub>L</sub> model. Exogenous variable incorporation was emphasized, underscoring its propensity to improve forecasting models' accuracy in comparison to models without exogenous variables. In future research, it would be interesting to see if more than one criterion can be used to assess control chart performance.

## Acknowledgements

The authors gratefully acknowledge the editor and referees for their valuable comments and suggestions which greatly improve this paper. The research was funding by King Mongkut's University of Technology North Bangkok Contract no .KMUTNB-67-BASIC-08.

## References

- Areepong Y. An integral equation approach for analysis of control charts. PhD Thesis. Australia: University of Technology; 2009.
- Areepong A, Sunthornwat R. EWMA control chart based on its first hitting time and coronavirus alert levels for monitoring symmetric COVID-19 cases. Asian Pac J of Trop Med. 2021; 14(8): 364-374.
- Busaba J, Sukparungsee S, Areepong Y. Numerical approximations of average run length for AR(1) on exponential CUSUM. IMECS2012: Proceedings of the International MultiConference of Engineers and Computer Scientists; 2012 Mar 14-16; Hong Kong. 2012.
- Champ CW, Rigdon SE. A comparison of the markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts. Commun Stat Simul Comput. 1991; 20(1): 191-204.
- Crowder SV. A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics. 1987; 29(4): 401-407.
- Lucas JM, Saccucci MS. Exponentially weighted moving average control schemes: properties and enhancements. Technometrics. 1990; 32(1): 1-12.
- Mititelu G, Areepong Y, Sukparungsee S, Novikov AA. Explicit analytical solutions for the average run length of CUSUM and EWMA charts. East West J Math. 2010; Special edition: 253-265.
- Page ES. Continuous inspection schemes. Biometrika. 1954; 41(1/2): 100-115.
- Peerajit W. Statistical design of a one-sided CUSUM control chart to detect a mean shift in a FIMAX model with underlying exponential white noise. Thail Stat. 2023; 21(2): 397-420.
- Petcharat K, Areepong Y, Sukparungsee S. Exact solution of average run length of EWMA chart for MA(q) processes. Far East J Math Sci. 2013; 78(2): 291-300.
- Petcharat K. The effectiveness of CUSUM control chart for trend stationary seasonal autocorrelated data. Thail Stat. 2022; 20(2): 475-488.
- Phanyaem S. Explicit formulas and numerical integral equation of ARL for SARX(P,r)<sub>L</sub> model based on CUSUM chart. Math Stat. 2022; 10(1): 88-99.

- Phanthuna P, Areepong Y. Analytical solutions of ARL for SAR(p)L model on a modified EWMA chart. Math Stat. 2021; 9(5): 685-696.
- Phanthuna P, Areepong Y, Sukparungsee S. Detection capability of the modified EWMA chart for the trend stationary AR(1) Model. Thail Stat. 2021; 19(1): 69-81.
- Roberts SW. Control chart tests based on geometric moving average. Technometrics. 1959; 1(3): 239-250.
- Shewhart WA. Economic control of quality of manufactured product. New York: D. Van Nostrand Company, Inc; 1931.
- Silpakob K, Areepong Y, Sukparungsee S, Sunthornwat R. Explicit analytical solutions for the average run length of modified EWMA control chart for ARX(p,r) processes. Songklanakarin J Sci Technol. 2021; 43(5): 1414-1427.
- Sunthornwat R, Areepong Y, Sukparungsee S. Average run length with a practical investigation of estimating parameters of the EWMA control chart on the long memory AFRIMA process. Thail Stat. 2018; 16(2): 190-202.
- Vanbrackle LN, Reynolds MR. EVVMA and CUSUM control charts in the presence of correlation. Commun Stat Simul Comput. 1997; 26(3): 979-1008.