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Abstract
It is a common practice to monitor or control a process with control charts. The Shewhart X̄- and

R- or S-charts are the most common in use for monitoring process location and dispersion respec-
tively. The literature reveals that until lately, the tradition has been to apply the charts for location
and dispersion independently, but now, some works considered them jointly. The use of three-sigma
limits, estimated parameter, and multiple charting have been shown to affect the joint chart schemes
by deteriorating the performance. In the literature, works exist on joint charts for X̄- and R-charts
when the process parameters are known and the process is in a state of control, on X̄- and R-charts
when the process parameters are unknown and the process is in a state of control and on X̄- and
S-charts (here, S-chart has one-sided control limit) for both when the process parameters are known
and unknown and the process is in a state of control. For the works so mentioned, the in-control av-
erage run length was used as the sole index for measuring the charts performance. Similar works on
such joint charts for both the in-control and out-of-control states with estimated parameters where the
performance is evaluated in terms of the average run and the median run lengths lack in the literature
and this work will fill the gap. Therefore, in this work, a joint X̄ and S2-charts will be extensively
considered when the S2-chart is with both one-sided and two-sided control limits using the informa-
tion from the unconditional run length (RL) cumulative distribution function (cdf) and its percentiles
(mainly the median). New control limit constants will be provided to guarantee the desired in-control
performance for the joint chart.

Keywords: Joint chart, multiple charting, parameter estimation, average run length (ARL), median
run length (MRL).

1. Introduction
Control charts are indispensable tools for monitoring process quality in firms and industries as

they detect special causes of variations in the process, Jardim et al. (2018). The process parameters
like the mean and standard deviation are used to determine the control limits of the charts, however,
in practical situations, these process parameters are unknown and have to be estimated from the
in-control Phase I samples(m), Loureiro et al. (2017). It is well known in the literature that when
estimated limits are used instead of the known control limits values, the behavioral properties of the
control charts both the in- and out-of-control situations are substantially negatively affected. This
effect is especially large when a small to moderate number of Phase I samples, m is used for the
parameter estimation, Goedhart et al. (2017). Goedhart et al. (2016), Quesenberry (1993), Chen
(1997), Chakraborti (2000) and Chakraborti (2006) are some of the several works in the literature that
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have studied the effect of the estimated parameter(s) on the performance of control charts especially
as it concerns its probability of alarm and the run length distribution.

It is a common practice to measure the performance of a control chart in terms of the run-length
(RL) distribution, that is, the distribution of the number of observations (or samples) until an alarm.
This is often done either by its mean, that is, the average of the run-length distribution (ARL), or in
terms of the entire (RL) distribution and other associated measures, Moskowitz et al. (1994). But it
is well known in the literature that the RL distribution is right-skewed and in a right-skewed distri-
bution, the mean is in error larger than the measure of the center of the distribution, (see in Gupta,
2013, p.510), therefore, the median is a better measure of the central tendency in such distributions.
In line with this remark,Chakraborti (2006) noted that one might prefer the median run length (MRL)
or some other quantiles instead of the ARL as a measure of typical chart performance. Chakraborti
(2007) also noted that since the RL random variable takes on only positive integer values, the dis-
tributional shape is significantly right-skewed and advocated the use of other more representative
measures of location other than the ARL for the assessment of charts performance and suggested the
percentile of the RL distribution. Han (2019) stated that the MRL is the 50th percentage point of the
RL distribution which denotes the median number of samples drawn by the control chart until it issues
an alarm and which as well means that the fifty percents of the RLs lie below the observed point. The
percentiles provide wider information about the (RL) distribution and hence about the performance
of a control chart not provided by the mean or the expected value and the choice of assessing charts
performance using the percentiles is becoming a common one now. In this regard, see Shmueli and
Cohen (2003), Khoo (2004), Radson and Boyd (2005), Chakraborti (2006) and Chakraborti (2007)
on the RL distribution and its percentiles of the Shewhart X̄-chart, Shu et al. (2012) for similar
work on CUSUM control chart under changes in variances, Boone and Chakraborti (2012) on the
Hotelling’s chi-square and two simple Shewhart multivariate non-parametric control charts based on
sign and singed-rank tests for known and estimated parameters and Diko et al. (2019) on the adjusted
Shewhart, CUSUM and EWMA control charts for sustained shifts in the process mean.

The vast majority of control charts existing in the literature are designed to monitor a single
process parameter, such as the mean or the variance at a time, McCracken and Chakraborti (2013).
They can either be location charts to monitor changes in the process mean or dispersion charts to
monitor the process variability. However, changes can occur simultaneously in both the location and
variability parameters of the quality of interest, therefore, controlling for both the process location
and variability at the same time is ideal, Zaman and Lee (2016). Gan et al. (2004), specifically
stated that it is more reasonable to combine the mean and variance information on joint monitoring
charts scheme when special causes in the process can cause both the mean and variance to shift
simultaneously. Here, the process is considered to be in control (IC) whenever the charting statistics
of both charts display randomness and equally plot within their respective limits but out-of-control
(OOC) whenever either or both the charting statistics of the charts display non-randomness or at least
one of the charts signals OOC, Diko et al. (2015). Of late, there are growing cases in the literature
where the process mean and the variance are simultaneously monitored via the use of joint charts of
location and dispersion. For instance, under unconditional perspective, Diko (2014) considered the
design and performance of the X̄- and R- charts as they are applied jointly when the process is IC
and the process parameters are known (Case KK). Diko et al. (2015) under the same perspective also
looked at the design and the performance of the X̄- and R-charts as they are applied jointly when
the process is IC still but the parameters are unknown and estimated from m Phase I samples (Cases
KU and UU) using R̄

d2
as the Phase I estimator of the process standard deviation. Here, Case KU

stands for the situation where the process mean is known but the variance is unknown while Case
UU stands for the situation where both process mean and the variance are unknown. Therefore, the
work of Diko et al. (2015) is basically on studying the effects of parameter estimation on the X̄- and
R- charts applied jointly and the provision of new control charting constants expected to take into
cognizant the effects of the use of the three-sigma control limits, the multiplicity effect of the joint
charting scheme and the effects of parameter estimation to deliver the desired in-control performance.
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Loureiro et al. (2017) under the conditional perspective studied the effects of parameter estimation
on the performance of X̄- and S-charts applied jointly when the process is IC using probability limits
and the square root of the pooled variance (Sp) used as the Phase I estimator of the process standard
deviation. The choice of the Phase I estimator is based on the recommendation of Mahmoud et al.
(2010). This work will be different from the ones already in the literature in the sense that, even
though the unconditional perspective as in Diko (2014) and Diko et al. (2015) will be used to study
the effect of parameter estimation on X̄- and S2-charts applied jointly

(
X̄, S2

)
- when the process

mean is known and the variance is unknown (Case KU), the study will cover both the IC and OOC
conditions in the process using Sp and S̄

C4
as the Phase I estimators but like in Loureiro et al. (2017),

the probability limits will be used in this work. The study will also, unlike in others in the literature,
consider

(
X̄, S2

)
-chart when S2-chart has a one-sided upper limit and when it has two-sided limits.

To avoid using the ARL as the sole index in evaluating the performance of the chart, the distributions
of the RL percentiles of

(
X̄, S2

)
-chart under the two condition limits of S2-chart will be derived

and evaluated to furnish the work with the MRL. New control charting constants will be provided to
guarantee the traditionally desired in-control performance of 370 and 500 ARLs for the chart in the
said case also. All these objectives raised here which this work pursues to achieve are currently not
available in the literature and as such will be the contribution of the work.

The rest of the paper hereafter is ordered as follows: A review of the conditional probability of
alarm of X̄-chart for Case KU is presented in Section 2. Section 3 is the review of the conditional
probabilities of alarm of the one- and two-sided S2-control charts. We will present the unconditional
probability and average run length of the combined chart, (X̄, S2) in Section 4. In Section 5, we dis-
cuss the new control limits of the (X̄, S2)-chart corrected for parameter estimation and multiplicity
effects. Results, discussions, and a numerical example are presented in Section 6 while Section 7 is
the conclusion of the work.

2. Rview of the Conditional Probability of Alarm of X̄-chart for Case KU
To derive the conditional probability of alarm in this context, a situation is defined as, let the

mean standard µ = µ0 be given but the standard deviation σ0 is unknown, that is, the Case KU, the
process standard deviation is typically estimated from m Phase I samples each of size n when the
process is IC, Jardim et al. (2018). Then, with the estimates, the α estimated probability limits of the
chart become; µ0 ± Zα/2

σ̂0√
n

, where σ̂0 is the estimate of the process standard deviation and can be
obtained by using the square root of the pooled variance, Sp or the average of the sample standard

deviations, S̄
c4(n)

. When these estimated limits are plugged into the design of the chart, the RL

random variable (N) is no longer geometric, Quesenberry (1993), however, when conditioned on σ̂0,
N becomes geometric with the probability of success (alarm) of the chart given by 1− β (δ, n, σ̂0),
where

β (δ, n, σ̂0) = Φ

(
−δ

√
n+ Zα/2

σ̂0√
n

)
− Φ

(
−δ

√
n− Zα/2

σ̂0√
n

)
.

By using the fact that Y = m (n− 1)S2
p/σ

2
0 ∼ χ2

m(n−1) and by letting b0 = m(n − 1), the

conditional probability of alarm and the ARL of the X̄-chart can be rewritten as in Equations (1) and
(2),

1−
{
Φ

(
−δ

√
n+

a0Zα

2√
b0

√
Y

)
− Φ

(
−δ

√
n−

a0Zα

2√
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√
Y
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and [
1−

{
Φ

(
−δ

√
n+

a0Zα

2√
b0

√
Y

)
− Φ

(
−δ

√
n−

a0Zα

2√
b0

√
Y

)}]−1

(2)
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but bearing in mind that when σ̂0 is estimated with Sp, a0=1 and b0 = m(n−1) but when estimated

with S̄
c4(n)

, a0 =
√

V (T ) + 1 and b0 = 1
2

(
1 + 1

V (T )

)
, where V (T ) = 1−c24(n)

mc24(n)
. The values of

c4(n) is tabulated in many quality control textbooks, (see in Montgomery, 2013, p.720), the values
of a0 and b0 will be obtained according to the well-known Patnaik (1950) approximation of the S̄

c4(n)

estimator and Y is a chi-square variable from a chi-square distribution with b0 degrees of freedom.

3. Review of the Conditional Probabilities of Alarm of the One- and Two-sided S2-control
Charts

3.1. The one-sided upper S2-chart
Let m > 1 Phase I independent random samples each of size n with which to estimate the

unknown Phase I variance
(
σ2
0

)
be assumed available. The observations are, as well, assumed to

follow a normal distribution with mean u0 and variance σ2
0 , both unknown. Let the Phase II subgroup

samples each of size n be equally assumed to follow a normal distribution with unknown mean (µ1)
and variance

(
σ2

)
. Define the standard deviation ratio and the error factor of estimate as γ = σ/σ0

and W = σ̂0/σ0 respectively. The process is IC when σ = σ0 and γ = 1 and OOC when σ > σ0
and γ > 1. Let delta (δ) be the size of the shift in X̄-chart to cause an OOC in the process mean
and equally be the size of the shift in γ that makes it greater than one to cause an OOC in S2-chart.
According to Jardim et al. (2020), with these assumptions and definitions, the α estimated upper
probability limit of the one-sided upper S2-control chart is given by ÛCLOne−sided,S2−chart =
χ2

n−1,α

n−1 σ̂2
0 and the conditional probability of alarm (CPL) of the chart is given by

P (S2 > ÛCLOne−sided,S2−chart) = P

{
S2 >

σ̂2
0χ

2
n−1, α

n− 1

}
,

CPLOne−sided,S2−chart = P

{
(n− 1)S2

σ2
>

W 2

γ2
χ2
n−1, α

}
,

CPLOne−sided,S2−chart = 1− Fχ2
n−1

(
W 2

γ2
χ2
n−1, α).

When σ̂0 is estimated with Sp and S̄
c4(m) , W follows a scaled chi-square distribution, a0

√
χ2

√
b0

with b0 degrees of freedom where a0 and b0 are as defined already in Section 2 for the two estimators.
Therefore, the conditional probability of alarm of the one-sided S2-chart is given by

CPL1S2−chart (Y, γ) = 1− Fχ2
n−1

{
a20Y

γ2b0
χ2
n−1, α

}
. (3)

3.2. Two-sided S2-chart
By using the same assumptions, definitions and procedures considered above for the one-sided

S2-chart, theα estimated probability limits of the two-sidedS2-control chart are given by ÛCLtwo =

σ̂2
0χ

2
n−1,

α
2 /(n− 1) and L̂CLtwo = σ̂2

0χ
2
n−1, (1− α

2 )/(n− 1) and for σ > σ0 or σ < σ0 , the
conditional probability of alarm is given by

P (S2
i > ÛCL)orP (S2

i < L̂CL) = 1−
{
Fχ2

n−1

(
W 2

γ2
χ2
n−1, 1−

α

2

)
− Fχ2

n−1

(
W 2

γ2
χ2
n−1,

α

2

)}
,

CPLTwo−sided,S2−chart (Y, γ) = 1−
{
Fχ2

n−1

(
a2
0Y

γ2b0
χ2
n−1, 1−

α

2

)
− Fχ2

n−1

(
a2
0Y

γ2b0
χ2
n−1,

α

2

)}
. (4)

From henceforth, the subscripts 1, S2-chart and 2, S2-chart will be used for the one-sided upper
and two-sided limits of S2-chart.
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4. Unconditional Probability and Average Run Length of the Combined Chart (X̄, S2)
Diko (2014), Diko et al. (2015) and Loureiro et al. (2017) already reported that the charting

statistics of X̄-and R-charts, X̄-and S-charts are independent under normality, therefore, the charting
statistics of X̄-and S2-charts are equally independent under the same normality condition. Utilizing
these independence properties of the two charts, the nominal joint false-alarm rate of

(
X̄, S2

)
-chart

is a function of the nominal false-alarms of the X̄-and S2-charts and is written as

α ¯(X,S2) = 1− [(1− αX̄)(1− αS2)]

where αX̄ and αS2 are the respective nominal false-alarms for the X̄-and S2-charts being combined.
Therefore, if αX̄= αS2= 0.0027 which gives the usually desired 370 IC ARL performance of a control
chart, the nominal false-alarm of the

(
X̄, S2

)
-chart becomes, α(X̄,S2)= 1- [(1-0.0027)(1-0.0027)] =

0.0054 which yields an IC ARL performance of 185 approximated to the nearest whole number.
Since the control limits of the X̄- and S2- charts are functions of the estimators of the process pa-
rameters, their alarm probabilities are equally functions of those estimators. And since the estimators
are random variables, the probabilities of alarm of the individual charts as well as that of the joint,(
X̄, S2

)
-chart are random variables, therefore, taking the expectation of them over the distribution

of the estimators gives unconditional probabilities of the charts. Recall that the conditional prob-
abilities of alarms for the X̄- and S2- charts are given in Equations (1), (3), and (4). Therefore,
leveraging on the independence of X̄- and S2- charts, the conditional probability of alarm, CPL for
the

(
X̄, S2

)
-chart with the one-sided and two-sided S2-charts become as in Equations (5) and (6).

CPL(X̄,1,S2−chart)(Y, δ, γ,m, n) = 1− [(1− CPLX̄(Y, δ,m, n)][(1− CPL1,S2−chart(Y, γ,m, n)] (5)

and

CPL(X̄,2,S2−chart)(Y, δ, γ,m, n) = 1− [(1−CPLX̄(Y, δ,m, n)][(1−CPL2,S2−chart(Y, γ,m, n)], (6)

where Y , γ , m, and n are as defined before. As already hinted, the unconditional probability of
alarm, UPL, and the unconditional average run length, UARL for the joint chart is obtained by taking
the expectation of the conditional probability of alarms in Equations (5) and (6) over the distribution
of Y . Therefore, the UPLs and UARLs for the joint chart for Case KU in both one-sided upper and
two-sided S2-chart are given as

UPL(X̄,1,S2−chart) (δ, γ,m, n) =

∫ ∞

0

{1− [(1− CPLX̄(y, δ,m, n)]

[(1− CPL1,S2−chart(y, γ,m, n)]}fχ2
b0
(y)dy

UARL(X̄,1,S2−chart) (δ, γ,m, n) =

∫ ∞

0

{1− [(1− CPLX̄(y, δ,m, n)]

[(1− CPL1,S2−chart(y, γ,m, n)]}−1fχ2
b0
(y)dy (7)

UPL(X̄,2,S2−chart) (δ, γ,m, n) =

∫ ∞

0

{1− [(1− CPLX̄(y, δ,m, n)]

[(1− CPL2,S2−chart(y, γ,m, n)]}fχ2
b0
(y)dy

and

UARL(X̄,2,S2−chart) (δ, γ,m, n) =

∫ ∞

0

{1− [(1− CPLX̄(y, δ,m, n)]

[(1− CPL2,S2−chart(y, γ,m, n)]}−1fχ2
b0
(y)dy, (8)

respectively.
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Equations (7) and (8) will be evaluated at different values of δ, γ,m, n under each of the two
Phase I estimators of the process standard deviation; Sp and S̄

c4(m) with the view to study the uncon-
ditional performance of the

(
X̄, S2

)
-chart at both the IC and OOC conditions, look at the effect of

the sizes of m and n used in estimating the parameter and to study the effect of the different Phase
I estimators on the chart. It is important to note here that when δ = 0 and γ = 1,

(
X̄, S2

)
-chart

is operating under an IC state and the UARL will be written as UARLx̄,1,S2−chart (0, 1,m, n) or
UARLx̄,2,S2−chart (0, 1,m, n) from henceforth. The results of the evaluation are presented in Table
1.

4.1. Exact (unconditional) cumulative distribution functions of the run lengths of the
(
X̄, S2

)
-

chart

Recall that given W = σ̂0/σ0, and that W ∼ a0

√
χ2

√
b0

where χ2 = Y , a Chi-sqaure random
variable, the random variable, N has a geometric distribution with the probability of success (alarm)
given by

CPL(X̄,1,S2−chart)(Y, δ, γ,m, n) = 1− [(1− CPLX̄(Y, δ,m, n)][(1− CPL1,S2−chart(Y, γ,m, n)]

or

CPL(X̄,2,S2−chart)(Y, δ, γ,m, n) = 1− [(1− CPLX̄(Y, δ,m, n)][(1− CPL2,S2−chart(Y, γ,m, n)]

depending on whether S2 is a one-sided or a two-sided chart. Now, by using the conditioning-
unconditioning approach in Chakraborti (2000), the exact cumulative RL distribution for

(
X̄, S2

)
-

chart for when S2-chart is one-sided upper and two-sided limits are given as

P (N ≤ a) = 1−
∫ ∞

0

[(1− CPLX̄(y, δ,m, n)][(1− CPL1,S2−chart(y, γ,m, n)]afχ2
b0

(y)dy (9)

and

P (N ≤ a) = 1−
∫ ∞

0

[(1− CPLX̄(y, δ,m, n)][(1− CPL2,S2−chart(y, γ,m, n)]afχ2
b0

(y)dy. (10)

4.2. The RL percentiles of the
(
X̄, S2

)
-chart

One can study the statistical properties of the
(
X̄, S2

)
-chart including the various performance

characteristics by studying the behavior of the RL cdfs in Equations (9) and (10) through the shape of
the curves for the different values of m under an IC and OOC states. Another instance is to calculate
the 100pth RL percentiles using the idea that it is the smallest positive integer a so that the cdf at
“a” is at least equal to p Chakraborti (2007). The performance of the

(
X̄, S2

)
-chart is studied here

through this means. Based on these unconditional RL percentiles, Equations (9) and (10) can be
redefined as

1−
∫ ∞

0

[(1− CPLX̄(y, δ,m, n)][(1− CPL1,S2−chart(y, γ,m, n)]afχ2
b0
(y)dy ≥ p (11)

and

1−
∫ ∞

0

[(1− CPLX̄(y, δ,m, n)][(1− CPL2,S2−chart(y, γ,m, n)]afχ2
b0
(y)dy ≥ p (12)

for the
(
X̄, S2

)
-chart when S2-chart is with one-sided-upper and when it is with two-sided limits

respectively.
Equations (11) and (12) will be evaluated and presented in Tables 1 and 2 at different values of

δ, γ,m, n and at p = 50th (MRL) under each of the two Phase I estimators of the process standard
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deviation; Sp and S̄
c4(m) with the view to bringing in the percentiles in the study of the performance of

the
(
X̄, S2

)
-chart at both the IC and OOC conditions, to look at the effect of the sizes of m (number

of Phase-I-samples) and n used in estimating the parameter and to study the effect of the different
Phase-I-estimator on the chart. The presentation is of the form, ARL (MRL) in Tables 1 and 2. Note
that when the parameter is not estimated, the RL percentiles of the individual X̄ and S2-charts can
be defined to be the smallest positive integer ′a′ such that the cdf of the geometric distribution is at
least equal to p. That is,

1− (1− β)
a ≥ p

and

a =
In (1− p)

In (1− β)
(13)

where β is the nominal false alarm rate of any individual chart. Therefore, β = αX̄ = αS2= 0.0027
because this performance is desired in this work. As the usual nominal false alarm rate is 0.0027,
by setting p= 0.5, the result of the evaluation is 257 which is the MRL for the IC state of each chart.
However, recall that when the two charts, X̄ and S2- are combined into

(
X̄, S2

)
-chart, the nominal

false alarm rate is determined by α ¯(X−S2) = 1 − [(1 − αX̄)(1 − αS2)] . Therefore, for the usually
desired 0.0027 false alarm rate of a control chart,

(
X̄, S2

)
-chart has a nominal false alarm of 0.0054.

Substituting the 0.0054 in place of β in equation (13) evaluates it to be 128 to the nearest whole
number. Therefore, if the parameter is not estimated, either X̄ or S2-charts is expected to have an IC
MRL of 257 while

(
X̄, S2

)
-chart has an IC MRL of 128. This IC MRL of 128 is quite smaller than

the expected value of 257 for the usual control charts and as such, the control limits of component
charts should be adjusted to make the joint chart deliver the desired performance.

5. New Control Limits Corrected for Parameter Estimation and Multiplicity Effects
It is obvious from Tables 1 and 2 that while the number of Phase-I-samples are small to moderate

sizes; m = 20, 50, 100, and 500, the IC ARLs are all in error above the IC ARL of 185 expected of the(
X̄, S2

)
-chart when the IC nominal false alarm of 0.0027 is used for the component charts, however,

the value continues to approach the target as m grows larger. Therefore, like already has been pointed
out, there is a need to select the control limits of the components charts of the

(
X̄, S2

)
-chart in such

a way that at a given Phase I sample, the chart will not only deliver 185 expected of it but delivers
the traditionally desired IC performance of 370 and 257 ARL and MRL respectively after taking care
of the effects of parameter estimation and multiple charting. To do this, the conditioning technique
of the Chakraborti (2000) and the use of probability limits will be adopted to address the issue of the
parameter estimation and three-sigma limits respectively and there will be a correction for the effect
of multiple charting. This will be done by replacing α with α(m) in Equations (5) and (6) and solving
for it in the following system of equations. Therefore, for some given values of ICARL, m, and n,
we solve∫ ∞

0

{
1− [(1− CPLX̄(y, δ,m, n)][(1− CPL1,S2−chart(y, γ,m, n)]

}−1
fχ2

b0

(y)dy ≥ ICARL (14)

and∫ ∞

0

{
1− [(1− CPLX̄(y, δ,m, n)][(1− CPL2,S2−chart(y, γ,m, n)]

}−1
fχ2

b0

(y)dy ≥ ICARL (15)

for α(m) using R statistical software. Note that the expressions CPLX̄(Y, δ,m, n),
CPL1,S2−chart(Y, γ,m, n) and CPL2,S2−chart(Y, γ,m, n) as used in (5) and (6) are as already

defined in Equations (1), (3) and (4). Once α(m) is found, the corrected probability limits for the X̄-
and S2-charts are found from the corresponding percentiles of the standard normal distribution and
the chi-square distribution with b0 degrees of freedom.
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Table 1 ARLs and MRLs of
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Table 2 ARLs and MRLs of
(
X̄, S2

)
-chart in case KU when S2-chart at various values of m, δ, γ

and at α = 0.0027 for component charts and the standard deviation is estimated by S̄
C4(n)

When S2-chart has one-sided upper control limit in
(
X̄, S2

)
-chart

m

Shifts sizes XX L C D M X̄

0.00 in δ and γ 279.19(119) 217.40(124) 200.63(126) 185.35(128) 186.89(128) 185.58(128)
0.05 in δ 268.11(116) 210.10(120) 194.26(122) 182.64(124) 181.25(124) 180.01(124)
0.08 in δ 252.30(111) 199.50(115) 184.96(117) 174.26(118) 172.98(119) 171.83(119)
0.10 in δ 239.09(106) 190.48(110) 177.00(112) 167.06(114) 165.86(114) 164.80(114)
0.05 in γ 189.46(81) 147.09(84) 135.81(85) 127.61(87) 126.64(87) 125.77(87)
0.08 in γ 145.44(64) 113.99(66) 105.63(67) 99.55(68) 98.83(68) 98.18(68)
0.10 in γ 121.26(54) 95.97(56) 89.23(58) 84.31(59) 83.73(59) 83.20(59)

0.05 in δ and γ 184.29(80) 143.72(82) 132.87(84) 124.97(85) 124.03(85) 123.19(85)
0.08 in δ and γ 137.84(61) 108.92(64) 101.15(65) 95.49(67) 94.82(67) 94.21(67)
0.10 in δ and γ 113.14(51) 90.41(53) 84.28(54) 79.79(56) 79.26(56) 78.78(56)

When S2-chart has two-sided control limit in
(
X̄, S2

)
-chart

0.00 in δ and γ 188.39(113) 187.80(121) 186.92(124) 185.79(127) 185.62(128) 185.45(128)
0.05 in δ 183.43(110) 182.47(117) 181.47(121) 180.25(124) 180.06(124) 179.89124)
0.08 in δ 176.09(105) 174.61(112) 173.44(115) 172.11(118) 171.91(118) 171.73(118)
0.10 in δ 169.70(101) 167.82(108) 166.52(111) 165.09(113) 164.89(114) 164.70(114)
0.05 in γ 165.25(93) 158.40(99) 154.98(102) 151.66(103) 151.21(103) 150.29(103)
0.08 in γ 146.18(79) 136.39(84) 132.03(86) 128.07(87) 127.55(88) 127.07(88)
0.10 in γ 132.47(70) 121.44(75) 116.82(77) 112.26(80) 112.25(80) 111.78(80)

0.05 in δ and γ 161.50(91) 154.61(96) 151.21(99) 147.95(100) 147.51(100) 147.10(100)
0.08 in δ and γ 138.88(75) 129.33(87) 125.17(83) 121.43(85) 120.94(87) 120.49(87)
0.10 in δ and γ 123.24(66) 112.79(69) 108.52(82) 104.83(81) 104.35(81) 103.92(81)

6. Results and Discussions

First, note that the U -S2-chart and L-S2-chart as used in Tables 3-6 in order to manage the sizes
of the tables and have a more compact presentation of them stand for the upper control limits and the
lower control limits of the S2-chart respectively.

From Table 1, it can be seen that in each size of δ, γ , and m, the ARL is larger than the MRL.
This is a serious pointer to the fact the RL distribution is right-skewed and a reminder that other
better measures of chart performance be considered. Table 1 also shows that once the parameter is
estimated with small to moderate sizes of Phase-I-samples, the (X̄, S2)-chart could not deliver the IC
ARL and MRL of 185 and 128 expected of it, this is seen for an example as the IC ARL for m =5, 10,
which are 1667.27 and 500.25 are far larger in error than the expected value and the IC MRL for the
corresponding values of m are 94 and 106, which are also in error, far lower than the expected value
but as the number of the Phase-I-sample grows to at least 500, the chart is seen to deliver an expected
IC MRL of 128. However, even at this stage of increased number of the Phase-I-samples, the IC
ARL is still above the 185 expected of it when the parameter is not estimated. This means that in
(X̄, S2)-chart, the in-control MRL when the parameter is estimated converges to its expected value
faster than the ARL to its expected value at an increasing number of Phase-1-sample. Therefore,
to make the (X̄, S2)-chart operating under parameter estimation to deliver the expected values, the
control limits of the components charts that make up the (X̄, S2)-chart should be adjusted functional
on the Phase-I-samples. This was discussed in Section 5 and the results of the new limits for the
component charts necessary to deliver the desired IC performance for the (X̄, S2)-chart presented in
Tables 3-6. As expected of any chart, (X̄, S2)-chart continues raising more alarms as the sizes of
OOC grow. Similar observations are noted for the (X̄, S2

2,S2−chart)-chart in section two of Table 1,
however, (X̄, S2

1,S2−chart)-chart outperformed the later. For instance, considering the IC first row in
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Table 3 Corrected Limits of the X̄and S2-one sided-upper component charts in
(
X̄, S2

)
-chart for

case KU and standard deviation estimated by Sp to deliver the desired in-control average run length
of 370 and 500

ICARL0=CCCLXX ICARL0 =D
n m p X̄-chart U-S2-chart p X̄-chart U-S2-chart
V V 0.0063333 2.730 14.323 0.0053083 2.788 14.724

X 0.0033648 2.932 15.756 0.0027100 2.999 16.243
XX 0.0022348 3.057 16.675 0.0017304 3.133 17.247

XXX 0.0019134 3.103 17.023 0.0014612 3.182 17.624
L 0.0016846 3.141 17.307 0.0012656 3.224 17.944

LXXV 0.0015575 3.164 17.482 0.0011722 3.246 18.114
C 0.0015067 3.173 17.556 0.0011271 3.257 18.201
D 0.0013796 3.199 17.752 0.0010261 3.283 18.410

X V 0.0033987 2.929 15.733 0.0027100 2.999 16.243
X 0.0023154 3.046 16.596 0.0017874 3.123 17.175

XX 0.0018134 3.119 17.143 0.0013760 3.200 17.758
XXX 0.0016548 3.146 17.347 0.0012463 3.228 17.978

L 0.0015227 3.170 17.532 0.0011461 3.252 18.164
LXXV 0.0014699 3.181 17.611 0.0010960 3.265 18.264

C 0.0014435 3.186 17.651 0.0010735 3.271 18.310
D 0.0013642 3.202 17.777 0.0010146 3.286 18.435

Table 4 Corrected Limits of the X̄and S2-one sided-upper component charts in
(
X̄, S2

)
-chart for

case KU and standard deviation estimated by S̄
C4(n)

to deliver the desired in-control average run
length of 370 and 500

ICARL0=CCCLXX ICARL0 =D
n m p X̄-chart U-S2-chart p X̄-chart U-S2-chart
V V 0.0056514 2.767 14.582 0.0046865 2.828 15.007

X 0.0031099 2.957 15.933 0.0024645 3.028 16.456
XX 0.0021276 3.072 16.785 0.0016367 3.149 17.371

XXX 0.0018448 3.114 17.104 0.0014024 3.194 17.716
L 0.0016386 3.149 17.369 0.0012322 3.231 18.003

LXXV 0.0015385 3.167 17.510 0.0011522 3.250 18.153
C 0.0014915 3.176 17.579 0.0011113 3.261 18.233
D 0.0013804 3.199 17.751 0.0010230 3.284 18.416

X V 0.0033944 2.930 24.642 0.0026897 3.001 25.267
X 0.0023013 3.043 25.683 0.0017728 3.126 26.376

XX 0.0018048 3.121 26.328 0.0013684 3.201 27.058
XXX 0.0016486 3.147 26.567 0.0012402 3.229 27.315

L 0.0015285 3.169 26.766 0.0011401 3.253 27.535
LXXV 0.0015285 3.169 26.766 0.0011431 3.254 27.529

C 0.0014394 3.187 26.925 0.0010701 3.271 27.701
D 0.0013694 3.201 27.055 0.0010150 3.286 27.838
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Table 5 Corrected Limits of the X̄and S2-Two-sided component charts in
(
X̄, S2

)
-chart for case KU

and the standard deviation is estimated by Sp to deliver the desired in-control average run length of
370 and 500

ICARL0=CCCLXX ICARL0 =D
n m p X̄-chart U-S2-chart L-S2-chart p X̄-chart U-S2-chart L-S2-chart
V V 0.0012399 3.230 19.524 0.071 0.0009198 3.314 20.181 0.061

X 0.0013219 3.211 19.383 0.074 0.0009823 3.296 20.037 0.063
XX 0.0013571 3.204 19.325 0.075 0.0010096 3.288 19.976 0.064

XXX 0.0013649 3.202 19.312 0.075 0.0010135 3.287 19.968 0.064
L 0.0013649 3.202 19.312 0.075 0.0010135 3.287 19.968 0.064

LXXV0.0013649 3.202 19.312 0.075 0.0010096 3.288 19.976 0.064
C 0.0013649 3.202 19.312 0.075 0.0010096 3.288 19.976 0.064
D 0.0013671 3.201 19.308 0.075 0.0010018 3.298 19.993 0.064

X V 0.0011072 3.262 29.405 0.996 0.0008183 3.347 30.198 0.926
X 0.0012165 3.235 29.163 1.019 0.0008764 3.327 30.003 0.941

XX 0.0012829 3.220 29.026 1.033 0.0009471 3.306 29.805 0.959
XXX 0.0013063 3.215 28.980 1.037 0.0009667 3.300 29.752 0.964

L 0.0013258 3.210 28.942 1.041 0.0009701 3.299 29.743 0.965
LXXV0.0013336 3.209 28.927 1.042 0.0009842 3.295 29.707 0.968

C 0.0013375 3.208 28.919 1.043 0.0009878 3.294 29.697 0.969
D 0.0013492 3.205 28.897 1.045 0.0009881 3.294 29.696 0.969

Table 6 Corrected Limits of the X̄ and S2-Two-sided component charts in
(
X̄, S2

)
-chart for case

KU and the standard deviation is estimated by S̄
C4(n)

to deliver the desired in-control average run
length of 370 and 500

ICARL0=CCCLXX ICARL0 =D
n m p X̄-chart U-S2-chart L-S2-chart p X̄-chart U-S2-chart L-S2-chart
V V 0.0013220 3.211 19.382 0.074 0.0009829 3.295 20.035 0.063

X 0.0013725 3.201 19.230 0.075 0.0010193 3.285 19.955 0.065
XX 0.0013865 3.197 19.277 0.075 0.0010291 3.282 19.934 0.065

XXX 0.0013837 3.198 19.282 0.075 0.0010277 3.283 19.937 0.065
L 0.0013767 3.199 19.283 0.075 0.0010235 3.284 19.946 0.065

LXXV 0.0013712 3.201 19.302 0.075 0.0010165 3.286 19.961 0.064
C 0.0013669 3.202 19.309 0.075 0.0010137 3.287 19.967 0.064
D 0.0013556 3.204 19.327 0.075 0.0010025 3.289 19.992 0.064

X V 0.00114825 3.251 29.311 1.005 0.0008483 3.337 30.086 0.933
X 0.0012421 3.230 29.110 1.002 0.0009198 3.314 29.880 0.952

XX 0.0012982 3.216 28.996 1.036 0.0009619 3.301 29.765 0.963
XXX 0.0013178 3.212 28.957 1.040 0.0009759 3.297 29.728 0.966

L 0.0013318 3.209 28.930 1.042 0.0009857 3.295 29.703 0.968
LXXV 0.0013388 3.207 28.916 1.043 0.0009913 3.293 29.688 0.969

C 0.0013430 3.207 28.904 1.044 0.0009941 3.292 29.681 0.970
D 0.0013501 3.205 28.895 1.046 0.0009999 3.291 29.666 0.972
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each sections of the Table 1, it is discovered that the IC MRL is larger in (X̄, S2
1,S2−chart)-chart than

in (X̄, S2
2,S2−chart)-chart which implies a better performance in the former than in the later. Also,

the (X̄, S2
1,S2−chart)-chart raised more OOC alarms (smaller MRL) than the (X̄, S2

2,S2−chart) which
still makes the former a chart with a better performance than the later. This is seen when one considers
the shift-rows with 0.10 in δ, 0.10 in γ, and 0.10 in both δ and γ which represents a substantial shift
in the IC states of the chart in both sections of Table 1, all these rows show (X̄, S2

1,S2−chart)-chart
with smaller OOC MRL than (X̄, S2

2,S2−chart)-chart and it is expected that a better chart in terms of
performance should raise more alarms (smaller OOC MRL) when a shift from IC state is introduced.

To look at the performance of the (X̄, S2)-chart under the Sp and S̄
C4(n)

Phase-1-estimators of
the process standard deviation, the IC rows of Tables 1 and 2 for the two estimators respectively are
selected and examined. From Table 1, the IC MRL of the (X̄, S2

1,S2−chart)-chart for m = 20, 50,
100, 500, 1000 and 10,000 are 115, 122, 125, 128, 128, and 128 and the corresponding values in Table
2 are 119, 124, 126, 128, 128, and 128 which are almost the same. Also, in Table 1, the IC MRL
of the (X̄, S2

2,S2−chart)-chart for the same values of m are 108, 119, 123, 127, 128, and 128 while
the corresponding values in Table 2 are 113, 121, 124, 127, 128, and 128 which are also almost the
same too. Therefore, the (X̄, S2)-chart performs almost the same under the two Phase-I-estimators
considered and the use of any of them should be a matter of choice and perhaps on the basis of the
easier one to apply.

The drastic fall-short of the provision of the 370 and 257 traditionally desired IC ARL and MRL
performance of a control chart by the joint charts has been attributed to the effects of the use of
the three-sigma control limits, the multiplicity effects of the joint charting scheme and the effects
of parameter estimation. Therefore, for (X̄, S2)-chart to be of this desired performance, the control
limits of the component charts involved have been adjusted to guarantee such performance in the
presence of these setbacks of the joint charts. In this work, the probability limits are used instead of
the three-sigma limits, therefore, the provision of the new charting constants for the X̄- and S2-charts
to enable (X̄, S2)-chart deliver the desired 370 or 257 in-control ARL or MRL as presented in Tables
3, 4, 5 and 6 will be the ones based on taking into cognizant of the multiplicity effects of the joint
charting scheme and that of the parameter estimation.

It suffices to mention here that the design of the
(
X̄, S2

)
− chart can be applied in Case UU

by making use of the appropriate control limits of the X̄-chart for when both process parameters are
unknown while combining the charts,

(
X̄, S2

)
. This is because Case UU involves variance estimation

since it is unknown. However, the chart can’t be applied in Case UK since, here, the process variance
is not to be estimated here but known already and it was defined that W = σ̂0/σ0 and that W follows

a scaled chi-square distribution, that is, W ∼ a0

√
χ2

√
b0

with b0 degrees of freedom. This is because the
expression of W involves estimating the process variance.

6.1. Numerical application of the
(
X̄, S2

)
-control chart with the corrected limits

This subsection demonstrates the application of the chart based on the real-life data set concern-
ing the semiconductor measurements as described and reported in (Montgomery, 2009, p.240). Here,
the quality characteristic of interest to be controlled is the flow width of the resist. It was reported that
the flow width measurement follows a normal distribution with an IC mean (µ0) of 1.5 microns and
an IC standard deviation (σ0) of 0.15 microns. However, oftentimes, these parameters are unknown
and should be estimated.

To demonstrate the application of the chart, let us assume that the in-control standard deviation
(σ0) is unknown and must be estimated. We chose the first 20 subgroups, each of size 5 of the flow
width measurements for the estimation of the unknown σ0 and the remaining five subgroups each of
the same size will be used in Phase-II-analysis. With the data, the application of the chart follows the
following steps:
1. Calculate the sample variance and the sample standard deviation for each sample and denote them
by s2i and si respectively, for i= 1,2,...,m like
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Subgroups Observations Sample Variance Sample Standard deviation

I x1,1 x1,2 . . .. . . x1,n s21 = 1
n−1

Σn
j=1

(
X1,j − X̄1

)2
s1 =

√
1

n−1
Σn

j=1

(
X1,j − X̄1

)2
II x2,1 x2,2 . . .. . . x2,n s22 = 1

n−1
Σn

j=1

(
X2,j − X̄2

)2
s2 =

√
1

n−1
Σn

j=1

(
X2,j − X̄2

)2
III x3,1 x3,2 . . .. . . x3,n s23 = 1

n−1
Σn

j=1

(
X3,j − X̄3

)2
s3 =

√
1

n−1
Σn

j=1

(
X3,j − X̄3

)2
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

m xm,1xm,2 . . .. . .xm,ns
2
m = 1

n−1
Σn

j=1

(
Xm,j − X̄m

)2
sm =

√
1

n−1
Σn

j=1

(
Xm,j − X̄m

)2
2. With the data, the variance and standard deviation formulas, obtain Sp and S̄

c4(n)
estimators of σ0

as Sp =
√
Σm

i=1 (s
2
i ) /m and S̄

c4(n)
= Σm

i=1 (si) /mc4(n) respectively.

3. For this illustrative example, we consider the
(
X̄,S2

)
-chart when S2-chart has one-sided upper

limit, S̄
c4(n)

used as the in-control Phase-I-estimator of the process standard deviation for m=20,
n = 5. Recall that the control limits of the X̄ and S2

1 -charts when the process standard deviation is not

given are µ0 ±Zα/2
σ̂0√
n

and
χ2
n−1,α

n−1 σ̂2
0 respectively and it has been provided in Table 4 that to use the

charts jointly and for the joint chart to deliver an IC ARL of 370, Zα/2 = 3.072 and χ2
n−1,α=16.785.

Therefore, the control limits of the X̄-component chart are obtained as 1.5 ± 3.072×0.1511√
5

= 1.7076

or 1.2924, for the S2-component chart, the control limit is 16.785×(0.1511)2

5−1 = 0.0958.
4. Using the control limits estimated in 3, at any point that either the sample mean of any of the re-
maining samples for the Phase-II-analysis goes above 1.7066 or 1.2934 or that the sample variance of
any of the remaining samples for the Phase-II-analysis goes above 0.0958, the

(
X̄,S2

)
-chart declares

the process out-of-control. In the case of the example from (see in Montgomery, 2009, p.240), none
of the sample observation was out-of-control.

7. Conclusion(
X̄, S2

)
-chart even without parameter estimation can’t deliver the desired IC ARL of 370 when

the nominal false alarm rate of 0.0027 is used in the component charts but 185 due to the multi-
ple charting issue. Under parameter estimation with small to moderate values of Phase-I-sample,(
X̄, S2

)
-chart perform poorly, returning in errors IC ARL values larger than the expected 185 in the

case where S2-chart is one-sided and values smaller when S2-chart is two-sided. (X̄, S2
1,S2−chart)-

chart is found to have longer IC MRL values than the (X̄, S2
2,S2−chart)-chart, therefore, outperformed

the latter and equally raised more OOC alarms in the presence of shifts from the IC states of the com-
ponent charts.

(
X̄, S2

)
-chart performed almost equally well when Sp and S̄

C4(n)
are used as the Phase

I estimators and the authors remarked that the use of any should be based on choice and easiness of
application. New control limits for the component charts are provided to guarantee the provision of
the desired IC performance of 370 and 500 at various values of Phase I samples.
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