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Abstract
In survival analysis it is assumed that every individual in the study population will eventually

experience the event of interest if followed-up for a long period of time. However, there are some
occasions in which a proportion of the population will never experience the event of interest. Hence,
cure fraction models are used in modelling such type of data. The present paper introduces the
Nadarajah-Haghighi distribution in the presence of cure fraction, right censored data and covariates.
Comprehensive statistical properties of the model were explored. Inferences for the proposed model
were obtained under the maximum likelihood and Bayesian approaches. Simulation study was pro-
vided in order to ascertain the performance of the maximum likelihood estimates. Illustrations of
the proposed methodology were made by considering medical data sets using maximum likelihood
and Bayesian methods. Results of the applications showed that the proposed methodology is a good
competitor.

Keywords: Nadarajah-Haghighi distribution, long-term non-mixture model, censoring and Col-
orectal cancer.

1. Introduction
Cure fraction models are widely used in modelling survival data with a surviving fraction. Cure

fraction models are used in modelling time-to-event data from a population in which the population
consists of sampling units that are non-susceptible to the occurrence of the event of interest, which
is caused by the improvement in the field of medicine. There are basically two major types of cure
fraction models in the literature: mixture and non-mixture cure fraction models. The mixture cure
fraction model also known as the standard cure fraction model was first introduced by Boag (1949)
and further developed by Berkson and Gage (1952). The model was later studied extensively by
several authors including Farewell (1986); Meeker (1987); Gamel et al. (1990); Ng and McLachlan
(1998); Peng et al. (1998); Sy and Taylor (2000); Shao and Zhou (2004); Kannan et al. (2010);

Achcar et al. (2012); Mazucheli et al. (2013); Usman et al. (2021) among many others. The mixture
cure fraction model is the most popular type of cure fraction model. In the mixture cure fraction
model, the study population assumed that a certain fraction of the population is non-susceptible to
the event of interest while the remaining fraction is susceptible. Parametric, semi-parametric and
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non-parametric statistical methods have been used by different researchers in order to estimate the
proportion of non-susceptible.

On the other hand, the non-mixture cure fraction model also referred to as the promotion time
cure model or bounded cumulative hazard model was first introduced by Yakovlev et al. (1993)
and further discussed by Yakovlev et al. (1996); Chen et al. (1999); Tsodikov et al. (2003).
According to Chen et al. (1999) the non-mixture cure fraction model was motivated by the underlying
biological mechanism and was developed based on the assumption that the number of cancer cells
that remain active after cancer treatment follows poison distribution. The non-mixture cure fraction
model was shown to have distinct advantages over the mixture cure fraction model. For instance,
it is easy to compute due to its simple structure for the survival function which provides certain
technical advantage when developing maximum likelihood estimation procedures, it has proportional
hazard model structure and it presents a much more biologically meaningful interpretation of the
results of the data analysis Chen et al. (1999); Uddin et al. (2006). It is important to note that
the non-mixture model has a mathematical relationship with the standard cure fraction model. That
is, the non-mixture model can be written as the standard cure model and vice versa Uddin et al.
(2006). Uddin et al. (2006) estimate the parameters of the non-mixture cure fraction model using
maximum likelihood estimation procedure considering the data to be uncensored. A non-parametric
maximum likelihood method of estimation was also considered by Uddin et al. (2006) to estimate the
parameters of the non-mixture cure fraction model assuming uncensored data. Liu and Shen (2009)
developed a semi-parametric maximum likelihood estimation procedure for the non-mixture model
for interval censored time-to-event data. Lopes and Bolfarine (2012) estimate the parameters of the
non-mixture cure model via classical and non-classical method of estimations. Herring and Ibrahim
(2002) introduced a parametric method for estimating the parameters of the non-mixture model for a
non-ignorable missing covariates.

In the present paper, a non-mixture cure fraction model called Nadarajah-Haghighi non-mixture
cure fraction model was studied. The model was introduced in the presence of right censored data
and covariates. Some of the statistical properties of the model were studied and applications of the
model to some medical data sets were provided. The rest of the paper is organized as follows: In
Section 2, we introduced the Nadarajah-Haghighi non-mixture cure fraction model, Section 3 study
the statistical properties of the introduced model. Simulation study and real life applications are given
in Sections 4 and 5 respectively and we finally conclude in Section 6.

2. Model
Nadarajah and Haghighi (2011) introduced an extension of the well-known exponential distri-

bution called Nadarajah-Haghighi exponential distribution. The distribution was shown to serve as an
alternative to the Weibull, gamma and generalized exponential distributions in modeling survival data.
The probability density function (pdf), cumulative distribution function (cdf) and survival function
for the Nadarajah-Haghighi exponential (NH) distribution with parameters ϕ and ψ are respectively
given by

fu (t/ϕ, ψ) = ϕψ (1 + ϕt)
ψ−1

exp
(
1− (1 + ϕt)

ψ
)
, (1)

Fu (t/ϕ, ψ) = 1− exp
(
1− (1 + ϕt)

ψ
)
, (2)

and

Su (t/ϕ, ψ) = exp
(
1− (1 + ϕt)

ψ
)
, (3)

where ϕ > 0 and ψ > 0 are the scale and shape parameters, respectively. Similar to the Weibull,
gamma and generalized exponential distributions, the hazard rate function of the NH distribution
could be constant, decreasing or increasing. Also, the hazard rate function of the NH distribution
reduces to the hazard rate function of the exponential distribution when the shape parameter assumes
the value one.
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The non-mixture cure fraction model defined an asymptote for the cumulative hazard and for the
cure fraction. The non-mixture model is developed as follows:

LetN be the number of cancer cells for an individual after treatment. Assume that the number of
cancer cells is Poisson distributed with parameter µ since the number of cancer cells may grow rapidly
and produce a detectable cancer disease. Also, let Zk denote the random time for the kth cancer cell
to produce a detectable cancer mass. Assuming Zk are independently and identically distributed (iid)
with a common distribution function and survival function (F (t) and S (t)). Assume further, that
Zk are independent of N . Then, the time to relapse of cancer is defined by the random variable
T = min {Zk, 0 6 k 6 N}, where P (Z0 = ∞) = 1. Hence, the survival function of T is given by

S (t) = P ( number of cancer by time t)
= P (N = 0) + P (Z1 > t, Z2 > t, . . . , ZN > t,N > 1)

= exp (−µ) +
∞∑
N=1

SN (t)
µN

N !
exp (−µ)

= exp (−µ+ µSu (t))

= exp (−µFu (t))
S (t) = pFu(t), (4)

where p = exp (−µ) is the proportion of non-susceptibles that lies in the interval [0, 1]. The corre-
sponding cdf, pdf and hazard function are given by

F (t) = 1− pFu(t), (5)
f (t) = − log (p) fu (t) p

Fu(t) (6)

and

h (t) = − log (p) fu (t) , (7)

respectively, where Su (t) is the survival function for the susceptible group. Consequently, con-
sidering the Nadarajah-Haghighi distribution, the survival function of the Nadarajah-Haghighi non-
mixture cure fraction model is

S (t/ϕ, ψ, p) = p1−exp(1−(1+ϕt)ψ). (8)

The corresponding probability density function, cumulative distribution function and hazard
function for the model are

f (t/ϕ, ψ, p) = −ϕψ log(p) (1 + ϕt)
ψ−1

exp
(
1− (1 + ϕt)

ψ
)
p1−exp(1−(1+ϕt)ψ) (9)

F (t/ϕ, ψ, p) = 1− p1−exp(1−(1+ϕt)ψ) (10)

and

h (t/ϕ, ψ, p) = − log (p)ϕψ (1 + ϕt)
ψ−1

exp
(
1− (1 + ϕt)

ψ
)

(11)

respectively, where ϕ > 0, ψ > 0 and 0 < p < 1, ϕ is scale parameter, ψ is shape parameter and p
is the proportion of non-susceptible. It should be mentioned that, S(t) and F (t) in Equations (8) and
(10) respectively are improper survival and cumulative distribution functions since lim

t→∞
S(t) = p < 1

and lim
t→∞

F (t) = 1 − p < 1. Also, the survival function in Equation (8) reduces to the survival
function of the exponential non-mixture cure fraction model when the shape parameter ψ assume the
value one.
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2.1. Maximum likelihood estimation of the NHNMCF model
Consider a random sample of lifetimes (ti, δi) , for i = 1, 2, . . . , n under the assumption of right

censored lifetime. The likelihood function of (ti, δi) , i = 1, 2, . . . , n is defined by

L (Θ/t, δ) =

n∏
i=1

f (ti)
δi [S (ti)]

1−δi =

n∏
i=1

h(ti)
δiS(ti)

substituting Equations (8) and (11), the likelihood function becomes

n∏
i=1

[
− log (p)ϕψ (1 + ϕt)

ψ−1
exp

(
1− (1 + ϕt)

ψ
)]δi

· p1−exp(1−(1+ϕt)ψ) (12)

and taking natural logarithm gives the full log-likelihood function as

ℓ(Θ/t, δ) = z log(− log(p)) + z log(ϕ) + z log(ψ) + (1− ψ)
∑

δiB
1
ψ

i

+z −
∑

δiBi + n log(p)− log(p)
∑

Ci, (13)

where z =
∑
δi, Bi = (1 + ϕti)

ψ and Ci = exp(1−Bi).
Differentiating (13) partially with respect to ϕ, ψ and p gives the score function as

∂ℓ (Θ/t, δ)

∂ϕ
=

z

ϕ
− (ψ − 1)

∑
δitiB

− 1
ψ

i − ψ
∑

δitiDi + ψ log(p)
∑

CiDiti (14)

∂ℓ (Θ/t, δ)

∂ψ
=

z

ψ

∑
δi log(Bi)−

1

ψ

∑
δiBi log(Bi) +

log(p)

ψ

∑
BiCi log(Bi) (15)

and
∂ℓ (Θ/t, δ)

∂p
=

z

p log(p)
+
n

p
− 1

p

∑
Ci. (16)

The MLE of p can easily be obtain algebraically as

p̂(ϕ, ψ) = exp

(
z∑
Ci − n

)
. (17)

However, the estimates of ϕ̂ and ψ̂ can be obtain by substituting p̂(ϕ, ψ) into Equations (14)
and (15) and numerical methods can be used to solve for ϕ and ψ. Statistical package such as fitdist
package in R can be used in maximizing these equations. In order to find interval estimates and to
test for hypothesis, the observed information matrix I (Λ) is used. This is given by

I (Λ) = −

 Vψψ Vψϕ Vψp
Vϕϕ Vϕp

Vpp

 ,

where the elements of the matrix are obtained as: Vψψ = ∂2ℓ
∂ψ2 , Vϕϕ = ∂2ℓ

∂ϕ2 , Vpp = ∂2ℓ
∂p2 , Vϕψ =

∂2ℓ
∂ϕ∂ψ , Vψp =

∂2ℓ
∂ψ∂p and Vϕp = ∂2ℓ

∂ϕ∂p .
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These elements are given as

∂2ℓ

∂ψ2
= − 1

ψ2

∑
δiBi (log (Bi))

2 +
log (p)

ψ2

∑
BiCi (log (Bi))

2 − log (p)

ψ2

∑
(Bi log (Bi))

2 Ci,

∂2ℓ

∂ϕ2
= − z

ϕ2
+ (ψ − 1)

∑
δit

2
iB

− 2
ψ

i − ψ (ψ − 1)
∑

δit
2
iB

ψ−1
ψ

i

+ψ log (p)
∑

t2iB
ψ−2
ψ

i Ci [ψ (1−Bi)− 1] ,

∂2ℓ

∂p2
= − z

p2 log (p)
− z

p2 (log (p))2
− n

p2
+

1

p2

∑
Ci,

∂2ℓ

∂ϕ∂ψ
= log (p)

∑
CiDiti [1 + log (Bi) +Bi log (Bi)]−

∑
δiti

[
B

− 1
ψ

i +Di +Di log (Bi)

]
,

∂2ℓ

∂p∂ψ
=

1

ψp

∑
Bi log (Bi)Ci,

∂2ℓ

∂p∂ϕ
=

ψ

p

∑
CiDiti.

The variances of the parameters ψ, ϕ and p are the diagonal elements of I(Λ)−1 while the off-
diagonal elements are the covariances. The asymptotic distribution of

√
n
(
Λ̂− Λ

)
is multivariate

normalN3

(
0, J

(
Λ̂
)−1

)
, where J

(
Λ̂
)

is the total observed information matrix evaluated at Λ̂. The

asymptotic 100 (1− τ)% confidence interval for the parameters ϕ, ψ and p are ϕ̂ ± Z τ
2

√
var

(
ϕ̂
)

,

ψ̂±Z τ
2

√
var

(
ψ̂
)

and p̂±Z τ
2

√
var (p̂) respectively, where Z τ

2
is the 100 (1− τ)% quantile of the

standard normal distribution.

2.2. Bayesian technique
In this section, Bayesian method of estimation based on Markov Chain Monte Carlo (MCMC)

technique was considered. The methodology was used to get the approximate posterior summaries of
the parameters of the NHNMCF model.

Consider the NHNMCF model, assume the vector of unknown parameters be Φ. For the Bayesian
method not assuming covariates, let the prior density for the parameters ψ, ϕ and p respectively be
π(ψ), π(ϕ) and π(p) such that

π(ψ) =
1

Γ(a)ba−1
ψa−1e−

ψ
b , (18)

π(ϕ) =
1

Γ(c)dc−1
ϕc−1e−

ϕ
d , (19)

π(p) =
1

B(e, f)
pe−1(1− p)f−1, (20)

where a, b, c, d, e and f are hyper-parameters, B(e, f) is referred to as beta function which is defined
as B(e, f) = Γ(e)Γ(f)

Γ(e+f) . The hyper-parameters are assumed to be specified and non-negative. Prior
independence among the parameters is also assumed. Hence, the joint prior distribution is given by

π(Φ) = ωψa−1ϕc−1pe−1(1− p)f−1e−(ψb +
ϕ
d ), (21)

where ω = 1
Γ(a)Γ(c)ba−1dc−1B(e,f) . The joint posterior density of the model parameters ψ, ϕ and p is

obtain as the product of the joint prior distributions in (21) and the likelihood function in (12). This
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is given as

π(Φ/t, δ) ∝ (−ℓn(p))mψm+a−1ϕm+c−1pe−1(1− p)f−1 ×
∏

(1 + ϕti)
δi(ψ−1)

× exp

(∑(
1− (1 + ϕti)

ψ
)
(δi + ℓn(p))− ψ

b
− ϕ

d

)
. (22)

However, the prior distribution of the proportion of non-susceptible is assumed to have parameters
e = 1 and f = 1 since 0 < p < 1, hence, π(p) = 1 and the joint posterior density reduces to

π(Φ/t, δ) ∝ (−ℓn(p))mψm+a−1ϕm+c−1exp

(∑(
1− (1 + ϕti)

ψ
)
(δi + ℓn(p))− ψ

b
− ϕ

d

)
×
∏

(1 + ϕti)
δi(ψ−1). (23)

Observe that, the joint posterior distribution in (22) becomes more complex when covariates
are present and may not be possible to compute the estimates of the parameters analytically. Hence,
MCMC simulation techniques can be used to generate samples from the joint posterior distribution. A
great computational simplification in simulating these samples can be achieved using the OpenBUGS
software, where only the distribution of the data and the prior distributions of the parameters are
required.

In the presence of r covariates x = (x1, x2, . . . , xr)
′ affecting the parameters of the NHNMCF

model, a link function for the parameters ϕ, ψ and p is assumed. That is,

log (ϕ) = ϕ0 + ϕ1xi + · · ·+ ϕrxr,

log (ψ) = ψ0 + ψ1xi + · · ·+ ψrxr,

and

log

(
pi

1− pi

)
= η0 + η1xi + · · ·+ ηrxr,

for ϕ, ψ and p respectively. To be specific, assume the NHNMCF model with shape parameter ψ,
scale parameter ϕ and a cure fraction parameter p are affected by the presence of two covariate x1i
and x2i for i = 1, 2, · · · , n, then the link function

log (ϕ) = ϕ0 + ϕ1x1i + ϕ2x2i,

log (ψ) = ψ0 + ψ1x1i + ψ2x2i,

and

log

(
pi

1− pi

)
= η0 + η1x1i + η2x2i,

are assumed for the scale parameter ϕ, shape parameter ψ and cure fraction parameter p respec-
tively. All inferences considering covariate effect are obtain by replacing ϕ, ψ and p with these link
functions. Furthermore, in the Bayesian analysis for the models with covariates, normal prior distri-
bution is assumed for the effect of covariates. That is, N

(
g, h2

)
is assumed for each ψk, ϕk and pk

k = 1, . . . r present in the model, where g and h are known mean and standard deviation for each
parameter present.

3. Statistical Properties
In this section, statistical properties of the model such as quantile function, median and moments

of the NHNMCF model were discussed.
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3.1. Quantile function
To obtain random realizations from a given model, the quantile function can be employed. The

quantile function for the NHNMCF model is given by

Q (u) =
1

ϕ

[
1− log

[
1− log (1− u)

log (p)

]] 1
ψ

− 1

ϕ
, (24)

where u is a random number generated from uniform distribution within the interval (0, 1). The first,
second and third quantiles of the NHNMCF model are obtain by letting u = 0.25, 0.50 and 0.75
respectively. For instance, the median is obtain by letting u = 0.50. This gives

Q2 =
1

ϕ

[
1− log

[
log (2p)

log (p)

]] 1
ψ

− 1

ϕ
. (25)

Observe that the quantile function of the NHNMCF model is in closed form. Hence, the inverse
transform method can easily be used in simulating random realizations from this model.

3.2. Moments
Following Ibrahim et al. (2001), the pdf of the NHNMCF model in (9) can be written in the

mixture form as
f (t) = − log (p) e−θFu(t)fu (t) (26)

where p = exp (−θ) is the proportion of non-susceptible. Hence, the pdf of the NHNMCF model
can be written as

f (t) = −ϕψp log (p) exp
(
θe(1−(1+ϕt)ψ)

)
(1 + ϕt)

ψ−1
e(1−(1+ϕt)ψ)

using the relation eθt =
∑∞
j=0

θjtj

j! yields

f (t) = −ϕψp log (p)
∞∑
j=0

θj

j!
(1 + ϕt)

ψ−1
exp

((
1− (1 + ϕt)

ψ
)
(j + 1)

)
.

Hence, the rth moment of the NHNMCF model is as follows

E (T r) = −ϕψp log (p)
∞∑
j=0

θj

j!

∫ ∞

0

tr (1 + ϕt)
ψ−1

ej+1

exp
(
− (j + 1) (1 + ϕt)

ψ
)
(j + 1) dt (27)

let m = (1 + ϕt)
ψ , then E (T r) becomes

E (T r) =
−p log (p)

ϕr

∞∑
j=0

θj

j!
ej+1

∫ ∞

1

(
m

1
ψ − 1

)r
e−(j+1)mdm (28)

but
(
m

1
ψ − 1

)r
= (−1)

r
(
1−m

1
ψ

)r
and applying binomial expansion to

(
1−m

1
ψ

)r
yields

E (T r) =
−p log (p)

ϕr

∞∑
j=0

θj

j!
ej+1

r∑
k=0

(−1)
r+k rCk

(j + 1)
k
ψ+1

∫ ∞

j+1

m
k
ψ e−mdm.

Hence, the rth moment of the NHNMCF model is

E (T r) =
−p log (p)

ϕr

∞∑
j=0

(− log (p))
j

j!
ej+1

r∑
k=0

(−1)
r+k rCk

(j + 1)
k
ψ+1

Γ

(
k

ψ
+ 1, j + 1

)
, (29)
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where Γ
(
k
ψ + 1, j + 1

)
=

∫∞
j+1

m
k
ψ e−mdm is the complementary incomplete gamma function. To

obtain the first moment, let r = 1 in (29). This gives

E (T ) =
−p log (p)

ϕ

∞∑
j=0

(− log (p))j

j!
ej+1

1∑
k=0

(−1)1+k 1Ck

(j + 1)
k
ψ

+1
Γ

(
k

ψ
+ 1, j + 1

)

=
−p log (p)

ϕ

∞∑
j=0

(− log (p))j

j!
ej+1

−Γ (1, j + 1)

(j + 1)
+

Γ
(

1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1


=

−p log (p)
ϕ

∞∑
j=0

(− log (p))j

j!

− −1

(j + 1)
+
ej+1Γ

(
1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1


since Γ (1, j + 1) =

∫∞
j+1

m0e−mdm = e−(j+1). The second moment is obtain as

E
(
T 2) =

−p log (p)
ϕ2

∞∑
j=0

(− log (p))j

j!
ej+1

2∑
k=0

(−1)2+k 2Ck

(j + 1)
k
ψ

+1
Γ

(
k

ψ
+ 1, j + 1

)

=
−p log (p)

ϕ2

∞∑
j=0

(−log (p))j

j!
ej+1

Γ (1, j + 1)

(j + 1)
−

2Γ
(

1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1

+
Γ
(

2
ψ
+ 1, j + 1

)
(j + 1)

2
ψ

+1


=

−p log (p)
ϕ2

∞∑
j=0

(− log (p))j

j!

 1

(j + 1)
−

2ej+1Γ
(

1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1

+
ej+1Γ

(
2
ψ
+ 1, j + 1

)
(j + 1)

2
ψ

+1

 .
Following the same procedure, the third and fourth moments are given by

E
(
T 3) =

−p log (p)
ϕ3

∞∑
j=0

(− log (p))j

j!
ej+1

3∑
k=0

(−1)3+k 3Ck

(j + 1)
k
ψ

+1
Γ

(
k

ψ
+ 1, j + 1

)

=
−p log (p)

ϕ3

∞∑
j=0

(− log (p))j

j!
ej+1

−Γ (1, j + 1)

(j + 1)
+

3Γ
(

1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1

−
3Γ

(
2
ψ
+ 1, j + 1

)
(j + 1)

2
ψ

+1
+

Γ
(

3
ψ
+ 1, j + 1

)
(j + 1)

3
ψ

+1


and

E
(
T 4) =

−p log (p)
ϕ4

∞∑
j=0

(− log (p))j

j!
ej+1

4∑
k=0

(−1)4+k 4Ck

(j + 1)
k
ψ

+1
Γ

(
k

ψ
+ 1, j + 1

)

=
−p log (p)

ϕ4

∞∑
j=0

(− log (p))j

j!
ej+1

Γ (1, j + 1)

(j + 1)
−

4Γ
(

1
ψ
+ 1, j + 1

)
(j + 1)

1
ψ

+1

+
6Γ

(
2
ψ
+ 1, j + 1

)
(j + 1)

2
ψ

+1
−

4Γ
(

3
ψ
+ 1, j + 1

)
(j + 1)

3
ψ

+1
+

Γ
(

4
ψ
+ 1, j + 1

)
(j + 1)

4
ψ

+1

 ,
respectively.
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4. Simulation Study
Simulation studies was considered in this section in order to ascertain the performance of the

NHNMCF model. The performance of the MLE of the parameters ϕ, ψ and p of the NHNMCF model
discussed in section 2 were checked using simulation studies. The simulation study was carried out
using the following algorithm:

1. Generate a random sample ui ∼ U(0, 1) for i = 1, 2, · · · , n.

2. For the cure fraction parameter p, return t = 1
ϕ

[
1− log

[
1− log(1−u)

log(p)

]] 1
ψ − 1

ϕ for ui < 1− p

otherwise ti is infinity.

3. Generate a sample of the censoring times ci ∼ NH(ψ, ϕ, p) for i = 1, 2, · · · , n.

4. Compute zi = min (ti, ci) , δi = I (ti ≤ ci) , i = 1, 2, · · · , n

5. The observed data set D = {(zi, δi), i = 1, 2, · · · , n} are realizations from the NHNMCF
model with right censoring.

Table 1 Summary statistics with 0.05 non-susceptible proportion value

n parameters estimates bias SE MSE
ϕ = 1.5, ψ = 0.5

100 ϕ 1.5094 0.0094 0.8727 1.4943
ψ 0.6599 0.4099 0.3792 0.4682
p 0.0495 -0.0005 0.0327 0.002

200 ϕ 1.5032 0.0032 0.5784 1.1147
ψ 0.5560 0.3060 0.1884 0.2298
p 0.0500 0.0000 0.0228 0.0012

300 ϕ 1.4986 -0.0014 0.4475 0.4196
ψ 0.5335 0.2835 0.1359 0.1351
p 0.0502 0.0002 0.0183 0.0007

400 ϕ 1.4974 -0.0026 0.3826 0.3113
ψ 0.5264 0.2764 0.1111 0.1163
p 0.0500 0.0000 0.0157 0.0005

500 ϕ 1.4984 -0.0016 0.3391 0.2344
ψ 0.5189 0.2689 0.0956 0.0978
p 0.0501 0.0001 0.0104 0.0004

ϕ = 0.75, ψ = 0.25

100 ϕ 0.6929 -0.0571 0.3997 0.3907
ψ 0.5551 0.3051 0.2630 0.6936
p 0.0542 0.0042 0.0550 0.0044

200 ϕ 0.6835 -0.0665 0.2689 0.1994
ψ 0.5390 0.2890 0.1609 0.8084
p 0.0501 0.0001 0.0399 0.0034

300 ϕ 0.6824 -0.0676 0.2189 0.1511
ψ 0.4249 0.2749 0.1211 0.6923
p 0.0483 -0.0017 0.0328 0.0023

400 ϕ 0.6871 -0.0629 0.1914 0.1270
ψ 0.3140 0.2640 0.1010 0.6667
p 0.0475 -0.0025 0.0290 0.0017

500 ϕ 0.6942 -0.0558 0.1706 0.1072
ψ 0.2846 0.2346 0.0830 0.5567
p 0.0470 -0.0030 0.0267 0.0016
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Samples of different sizes viz: n = 100, n = 200, n = 300, n = 400 and n = 500 from the
NHNMCF model were generated assuming some arbitrary values for the shape, scale and proportion
of non-susceptible parameters. Furthermore, the censoring indicator was assumed to follow the NH
distribution.

All simulation results were replicated 5000 times. These results were obtained considering the
maximum likelihood estimators. Additionally, bias, standard error (SE) and mean square error (MSE)
were the performance measures used in assessing the performances of the estimates.

Table 2 Summary statistics with 0.10 non-susceptible proportion value

n parameters estimates bias SE MSE
ϕ = 1.5, ψ = 0.5

100 ϕ 1.5176 0.0176 0.8256 1.5437
ψ 0.6262 0.3762 0.3074 0.3804
p 0.0994 -0.0006 0.0436 0.0039

200 ϕ 1.5053 0.0053 0.5420 0.6388
ψ 0.5456 0.2956 0.1555 0.1736
p 0.0998 -0.0002 0.0299 0.0018

300 ϕ 1.5021 0.0021 0.4321 0.3878
ψ 0.5275 0.2775 0.1134 0.1075
p 0.1001 0.0001 0.0242 0.0012

400 ϕ 1.4944 -0.0056 0.3692 0.2795
ψ 0.5212 0.2712 0.0948 0.0933
p 0.1001 0.0001 0.0208 0.0009

500 ϕ 1.5021 0.0021 0.3291 0.2205
ψ 0.5149 0.2649 0.0822 0.0848
p 0.1000 0.0000 0.0186 0.0007

ϕ = 0.75, ψ = 0.25

100 ϕ 0.7088 -0.0412 0.4125 0.3969
ψ 0.5262 0.2762 0.2289 0.6883
p 0.0958 -0.0042 0.0768 0.0114

200 ϕ 0.7113 -0.0387 0.2810 0.2058
ψ 0.4647 0.2147 0.1399 0.5427
p 0.0927 -0.0073 0.0566 0.0055

300 ϕ 0.7128 -0.0372 0.2285 0.146
ψ 0.3535 0.2035 0.1109 0.5322
p 0.0912 -0.0088 0.0490 0.0013

400 ϕ 0.7131 -0.0369 0.1965 0.117
ψ 0.3312 0.1812 0.0914 0.4515
p 0.0919 -0.0081 0.0427 0.004

500 ϕ 0.7174 -0.0326 0.1748 0.096
ψ 0.3138 0.1638 0.0897 0.6257
p 0.0927 -0.0073 0.0389 0.0027

Table 1 gives the simulation result based on 5000 replications for the parameter settings ϕ =
1.5, ψ = 0.5, p = 0.05 and ϕ = 0.75, ψ = 0.25, p = 0.05 while, Table 2 gives the simulation results
for 5000 replications for the parameter settings ϕ = 1.5, ψ = 0.5, p = 0.10 and ϕ = 0.75, ψ =
0.25, p = 0.10 and finally, Table 3 gives the simulation results for the settings ϕ = 1.5, ψ = 0.5, p =
0.30 and ϕ = 0.75, ψ = 0.25, p = 0.30.

These tables give the mean estimates of the parameters together with bias, SE and MSE of the
estimates. On average, the estimates gets closer to the true parameter values as sample size increases
for all the parameters in the different settings.
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Table 3 Summary statistics with 0.30 non-susceptible proportion value

n parameters estimates bias SE MSE
ϕ = 1.5, ψ = 0.5

100 ϕ 1.5080 0.0080 0.8625 1.7506
ψ 0.6477 0.3977 0.2916 0.5928
p 0.2999 -0.0001 0.0619 0.0079

200 ϕ 1.4992 -0.0008 0.5736 0.7285
ψ 0.5519 0.3019 0.1402 0.1434
p 0.3003 0.0003 0.0428 0.0037

300 ϕ 1.5045 0.0045 0.4617 0.4535
ψ 0.5288 0.2788 0.1040 0.1025
p 0.2996 -0.0004 0.0349 0.0025

400 ϕ 1.5158 0.0158 0.4016 0.3445
ψ 0.5192 0.2692 0.0869 0.0892
p 0.3002 0.0002 0.0302 0.0018

500 ϕ 1.5085 0.0085 0.3559 0.2661
ψ 0.5165 0.2665 0.0764 0.0839
p 0.3000 0.0000 0.0270 0.0015

ϕ = 0.75, ψ = 0.25

100 ϕ 0.7829 0.0329 0.5156 0.6758
ψ 0.3413 0.0913 0.2097 0.4862
p 0.2741 -0.0259 0.1515 0.0527

200 ϕ 0.7773 0.0273 0.3463 0.2756
ψ 0.2791 0.0291 0.1178 0.0611
p 0.2820 -0.0180 0.1132 0.0597

300 ϕ 0.7759 0.0259 0.2794 0.1781
ψ 0.2598 0.0098 0.0878 0.0215
p 0.2835 -0.0165 0.0887 0.0223

400 ϕ 0.7722 0.0222 0.2386 0.1285
ψ 0.2571 0.0071 0.0739 0.0144
p 0.2876 -0.0124 0.0745 0.0132

500 ϕ 0.7713 0.0213 0.2121 0.1006
ψ 0.2539 0.0039 0.0642 0.0097
p 0.2906 -0.0094 0.0641 0.0114

As expected also, the estimates of the bias, SE and MSE for each of the examined parameter
value in the different simulation settings gets closer to zero as sample size increases. Hence, these
results show that based on the method of estimation, the NHNMCF model has a good performance
overall.

5. Applications
In this section, some real life data sets were used in demonstrating the applicability of the pro-

posed NHNMCF model. Three medical data sets were used: Diabetic retinotophy data, colorectal
cancer data and Gastric cancer data. The Diabetic retinotophy data and colorectal cancer data sets
were used in demonstrating the applicability of the proposed methodology in comparison to some
competing models. On the other hand, the Gastric cancer data was used in comparing between the
fits of the proposed methodology and that of Nadarajah-Haghighi mixture cure fraction (NHMCF)
model.
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5.1. Diabetic retinopathy data
The diabetic retinopathy data was presented by Huster et al. (1989). The study consists of

follow-up times for 197 diabetic patients that were under the age of 60 years. The main purpose of
the study is to assess the efficacy of photocoagulation treatment for proliferative retinopathy. The eye
of each patient was randomized to laser treatment and the other eye received no treatment. The main
event of interest is severe visual loss in each eye. Let T be random variable for the time up to visual
loss for the left eye. Death, dropout and termination were the causes of censoring in the study.
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Figure 1 Kaplan-Meier survival curve of the Diabetic retinotophy data

We first assessed the presence of long-term survivors in the data. This is done by plotting Kaplan-
Meier survival curve of the data. Figure 1 gives the Kaplan-Meier survival curve of the data. It is
observed from the Kaplan-Meier survival curve in Figure 1 that after about 60-months follow-up,
some patients have not experienced any recurrence after treatments. That is, the curve level off at a
value between 0.56 and 0.60.

According to Corbière et al. (2009); Martinez et al. (2013), the presence of long-term survivors
in a data set is seen whenever the Kaplan-Meier survival curve level-off. We therefore conclude
that, there is presence of long-term survivors in the data. We then fitted the data to the NHNMCF
model in the presence of cure fraction and right censoring and compared its performance with the
fits of Rayleigh non-mixture cure fraction (RNMCF), Weibull non-mixture cure fraction (WNMCF),
generalized exponential non-mixture cure fraction (GENMCF), modified Weibull non-mixture cure
fraction (MWNMCF) and generalized modified Weibull non-mixture cure fraction (GMWNMCF)
models.

Assuming whether the covariates: type of treatment and age have effect on the parameters of
the model, five(5) different models were fitted. The first, second and third models assumed that the
covariates (type of treatment and age) have effect on ϕ, ψ, and p respectively. While the fourth and
fifth models assumed that the covariates have effect on ϕ & p and ψ & p respectively.
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Figure 2 Kaplan-Meier survival curve overlaid with the fits of the MLE estimates for the Diabetic
retinotophy data

Table 4 Maximum likelihood estimates for models with cure fraction - Diabetic Retinotophy data

Model
parame-

ters
estimate SE 95% CI AIC BIC CAIC

NHN ϕ 0.0377 0.0220 (-0.0054,0.0808) 778.7998 788.6494 772.9242
MCF ψ 0.2909 0.5058 (-0.7005,1.0291)

p 0.2214 0.5321 (-0.8215,1.2643)
RNM ϕ 19.8360 1.8116 (16.2853,23.3867) 820.4488 827.0152 816.5107

CF p 0.5935 0.0394 (0.5162,0.6708)
WNM ψ 0.9497 0.1663 (0.6237,1.2757) 779.2234 789.073 773.3478

CF ϕ 0.0227 0.0127 (-0.0021,0.0476)
p 0.4563 0.1969 (0.0705,0.8422)

GEN ψ 0.9555 0.2021 (-0.4034,0.4415) 779.1828 789.0324 773.3072
MCF ϕ 0.0191 0.0176 (0.9423,0.9688)

p 0.4727 0.1656 (0.4233,0.5221)
MWN ϕ 1.0558 0.0344 (0.9884,1.1232) 781.1994 794.3322 773.4077
MCF ψ 0.0026 0.0058 (-0.0139,0.0087)

α 0.0237 0.0135 (-0.0028,0.0502)
p 0.4718 0.1117 (0.2529,0.6907)

GMWN ϕ 0.0082 0.0018 (2.4131,3.912) 878.7926 895.2086 869.1067
MCF ψ 3.1625 0.3824 (0.0046,0.0117)

α 2.5380 0.6465 (1.2708,3.8052)
γ 0.0340 0.0168 (0.0011,0.0668)
p 0.3649 0.0587 (0.2498,0.4800)
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Table 4 gives the MLE results for the fitted NHNMCF model together with the fits of RNMCF,
WNMCF, GENMCF, MWNMCF and GMWNMCF models. Standard error and 95% confidence
interval (95% CI) were given. The information criteria: AIC, BIC and CAIC for the fitted non-
mixture cure fraction models were also provided. The information criteria values for these fitted
non-mixture cure fraction models indicates that the NHNMCF model is the best fitted model. The
Kaplan-Meier survival curve of the fitted diabetic retinopathy data was compared with the fits of the
aforementioned models. Careful observation of the curves in Figure 2 also showed that the NHNMCF
model is closer to the Kaplan-Meier curves in comparison to all the fitted models.

In analyzing the diabetic retinopathy data via the non-classical method of estimation, gamma
priors were assumed for both ϕ and ψ while, beta prior was assumed for the cure fraction parameter.
To be specific, ϕ ∼ Gamma(1, 1), ψ ∼ Gamma(1, 1) and p ∼ Beta(1, 1). We further assumed
prior independence among the parameters included in the model. MCMC technique was applied in
obtaining posterior summaries from the joint posterior distribution. We generated 1,100,000 samples
for each parameter of interest from the posterior distribution. However, the first 100,000 samples were
discarded as burn-in-samples in order to reduced the effect of initial values. To have an uncorrelated
value, samples were taken at every 100th sample. Hence, all posterior summaries of interest were
based on 10,000 samples.

Table 5 Posterior summaries assuming models with cure fraction - Diabetic Retinotophy data

Model Parameters median sd 95% CrI DIC
NHNMCF ϕ 0.0368 0.0273 (0.0089, 0.1125) 766.8

ψ 0.4250 0.4528 (0.1072, 1.7640)
p 0.3439 0.1555 (0.0329, 0.5858)

RNMCF ψ 0.0026 0.0004 (0.0018, 0.0034) 821.3
p 0.5926 0.0387 (0.5146, 0.6651)

WNMCF ϕ 0.0212 0.0101 (0.0074, 0.0462) 777.7
ψ 0.9206 0.1231 (0.7065, 1.1900)
p 0.4399 0.1380 (0.0864, 0.6110)

MWNMCF α 0.0171 0.0088 (0.0016, 0.0351) 778.3
ϕ 0.0088 0.0100 (0.0003, 0.0372)
ψ 0.6302 0.3447 (0.0371, 1.2760)
p 0.4965 0.0949 (0.2474, 0.6194)

GMWNMCF α 0.1563 0.1613 (0.0116, 0.6158) 773.4
ϕ 1.9460 1.1170 (0.7859, 5.0450)
γ 0.5213 0.2011 (0.2586, 1.0430)
ψ 0.0057 0.0058 (0.0002, 0.0212)
p 0.5115 0.1229 (0.1552, 0.6359)

GENMCF ϕ 1.0020 0.1673 (0.7330, 1.3820) 778.0
ψ 0.0218 0.0109 (0.0042, 0.0456)
p 0.4933 0.1147 (0.1667, 0.6251)

Table 5 gives the posterior summaries of the fits of NHNMCF, RNMCF, WNMCF, MWNMCF,
GMWNMCF and GENMCF models. The table gives the estimates of the posterior median, standard
deviation, 95% credible interval (95% CrI) and DIC value for each fitted model. In this method
also, the DIC value for the NHNMCF model shows that the proposed NHNMCF model is a strong
competitor.

We further compared the fits of the NHNMCF, RNMCF, WNMCF, GENMCF, MWNMCF and
GMWNMCF parametric curves together with the Kaplan-Meier survival curve. Careful observation
of the curves in Figure 3 showed that, the curve for the NHNMCF model is the most closet to the
Kaplan-Meier survival curve in comparison to the fits of other parametric curves.
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Figure 3 Kaplan-Meier survival curve overlaid with the fits of the Bayesian estimates for the Diabetic
retinotophy data

Table 6 Maximum likelihood estimates for models assuming covariates - Diabetic retinopathy data

Model Parameters estimate SE 95% CI AIC BIC CAIC
Model I ϕ0 -3.9943 1.1198 (-6.1891,-1.7996) 759.7190 776.1350 750.0331

ϕ1 0.0087 0.0108 (-0.0125,0.0299)
ϕ2 -1.6376 0.3764 (-2.3755,-0.8998)
ψ 0.1743 1.4712 (-2.7092,3.0579)
p 0.0033 0.1503 (-0.2912,0.2979)

Model II ϕ 0.0162 0.0246 (-0.0319,0.0643) 758.0024 774.4184 748.3165
ψ0 -0.1306 1.7408 (-3.5425,3.2813)
ψ1 0.0080 0.0095 (-0.0107,0.0267)
ψ2 -1.3705 0.3143 (-1.9865,-0.7545)
p 0.2797 0.2259 (-0.163,0.7225)

Model III ϕ 0.0529 0.0279 (-0.0017,0.1076) 759.4818 775.8978 749.7959
ψ 0.3900 0.1965 (0.0048,0.7752)
η0 -0.8378 0.7288 (-2.2662,0.5906)
η1 -0.0145 0.0139 (-0.0417,0.0126)
η2 1.9727 0.4751 (1.0416,2.9039)

Model IV ϕ0 -2.2138 0.9103 (-3.9979,-0.4297) 767.8086 790.7910 754.4012
ϕ1 -0.0331 0.0263 (-0.0847,0.0185)
ϕ2 -0.2771 1.1346 (-2.5008,1.9466)
ψ 0.2718 0.0932 (0.089,0.4545)
η0 -0.9813 1.2460 (-3.4235,1.4608)
η1 -0.0395 0.0356 (-0.1093,0.0303)
η2 2.2989 1.1720 (0.0017,4.596)

Model V ϕ 0.0080 0.0027 (0.0026,0.0133) 763.8370 786.8194 750.4296
ψ0 -0.6293 0.5164 (-1.6414,0.3829)
ψ1 -0.0112 0.0150 (-0.0406,0.0182)
ψ2 -1.7809 0.3956 (-2.5563,-1.0055)
η0 -2.3417 1.3723 (-5.0313,0.3479)
η1 -0.1274 0.0984 (-0.3201,0.0654)
η2 -2.4522 2.0084 (-6.3886,1.4843)



56 Thailand Statistician, 2025; 23(1): 41-63

Considering the type of treatment and age as covariates, five different models were fitted as
mentioned earlier. Table 6 gives the results of the fits for these models via MLE method of estimation.
The AIC, BIC and CAIC values from this table showed that model II is the best fitted model.

Table 7 Posterior summaries for models assuming covariates - Diabetic retinopathy data

Model Parameters median sd 95% CrI DIC
model I ϕ0 -3.0880 0.6618 (-4.4190, -1.8330) 758.7

ϕ1 -0.0012 0.0119 (-0.0255, 0.0211)
ϕ2 -1.5800 0.3727 (-2.3390, -0.8700)
ψ 0.3746 0.2884 (0.1133, 1.2210)
p 0.2073 0.1182 (0.0191, 0.4454)

model II ϕ 0.02586 0.02187 (0.0031, 0.0848) 753.6
ψ0 -0.6193 0.8071 (-1.8990, 1.3710)
ψ1 0.0071 0.0093 (-0.0114, 0.0249)
ψ2 -1.3300 0.3032 (-1.9640, -0.7690)
p 0.2329 0.1175 (0.0263, 0.4548)

model III ϕ 0.0301 0.0235 (0.0072, 0.0949) 746
ψ 0.5768 0.5278 (0.1755, 2.2120)
n0 -0.9317 0.7329 (-2.7650, 0.1076)
n1 -0.0093 0.0144 (-0.0384, 0.0182)
n2 1.8450 0.4474 (1.0390, 2.8180)

model IV ϕ0 -2.5730 0.7296 (-4.0580, -1.2260) 747
ϕ1 -0.0294 0.0206 (-0.0657, 0.0149)
ϕ2 -0.5972 0.9592 (-2.2640, 1.2250)
ψ 0.3900 0.3123 (0.0980, 1.2700)
n0 -0.4616 0.7824 (-2.2520, 0.7869)
n1 -0.0478 0.0721 (-0.2682, 0.0088)
n2 1.3900 1.0560 (-1.2250, 2.9040)

model V ϕ 0.0274 0.0228 (0.0037, 0.0898) 734
ψ0 -0.5648 0.8626 (-2.1300, 1.2750)
ψ1 -0.0142 0.0203 (-0.0477, 0.0301)
ψ2 -1.2490 0.7615 (-2.2890, 0.6526)
n0 -0.8354 0.9896 (-3.1010, 0.7354)
n1 -0.0533 0.1543 (-0.4810, 0.0324)
n2 0.0923 1.4200 (-2.6970, 2.6140)

On the other hand, the procedure mentioned earlier in this section for the Bayesian method was
also followed in this case. However, we further assumed normal prior distribution (N(1, 0.5)) for the
regression parameters. Table 7 gives the posterior summaries for the fitted models. The DIC value of
each fitted model is also provided. Unlike the result of the MLE method, the best fitted model using
the Bayesian method of estimation is the model that considered covariates effect on ψ and p.

5.2. Colorectal cancer data
Colorectal cancer has been ranked the third most commonly diagnosed malignancy Naishadham

et al. (2011) and the second and third most frequent cancer in women and men respectively Naishad-
ham et al. (2011); Magaji et al. (2014). It is also ranked the fourth leading cause of cancer related
death in the world Magaji et al. (2014, 2017). Medical records of 166 patients diagnosed of col-
orectal cancer who underwent treatment in University of Malaya medical center (UMMC) between
January 2001 and December 2010 were obtained. The record included 86 patients who were treated
by surgery alone and 80 patients who were treated by surgery and chemotherapy/radiotherapy. The
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survival time was defined to be the time from the date of commencement of treatment to death, loss
to follow-up or end of the study.

Table 8 Maximum likelihood estimates for models with cure fraction - colorectal cancer data

Model Parameters estimate SE 95% CI AIC BIC CAIC
NHN ϕ 0.0721 0.0478 (-0.0216,0.1658) 408.0324 417.3684 402.1805
MCF ψ 0.9430 0.2479 (0.4571,0.558)

p 0.0150 0.0025 (0.0124,0.0199)
RNM ϕ 2.7348 0.2631 (2.2193,3.2504) 489.7586 495.9826 485.8322

CF p 0.1339 0.0404 (0.0549,0.213)
WNM ψ 0.9537 0.0904 (0.7765,1.1308) 408.4104 417.7464 402.5585

CF ϕ 0.0678 0.0421 (-0.0147,0.1503)
p 0.0114 0.0286 (-0.0447,0.0675)

GEN ψ 0.9373 0.1311 (-0.178,0.3261) 408.5790 417.9150 402.7272
MCF ϕ 0.0741 0.1201 (0.8392,1.0354)

p 0.0299 0.1241 (-0.3324,0.3921)
MWN ϕ 3.5742 0.9864 (1.6408,5.5076) 412.9170 425.3650 405.1654
MCF ψ 0.0003 0.0004 (-0.0004,0.0010)

α 0.1663 0.0451 (0.0779,0.2546)
p 0.1792 0.0780 (0.0263,0.3321)

GMWN ϕ 0.0755 0.0462 (0.1352,3.5796) 411.8884 427.4483 402.2634
MCF ψ 1.8574 0.8787 (-0.0151,0.1660)

α 0.3674 0.2921 (-0.2051,0.9400)
γ 0.4897 0.1956 (0.1064,0.8730)
p 0.0066 0.0140 (-0.0209,0.0340)

Table 9 Posterior summaries for models with cure fraction - colorectal cancer data

Model median sd 95% CrI DIC
NHN ϕ 0.1327 0.1030 (0.0331, 0.4216) 400.4
MCF ψ 0.8887 0.7126 (0.2744, 3.0640)

p 0.0672 0.0573 (0.0034, 0.2142)
RNM ψ 0.1386 0.0256 (0.0934, 0.1930) 489.7

CF p 0.1417 0.0398 (0.0729, 0.2275)
WNM ϕ 0.1201 0.0448 (0.0542, 0.2283) 408.3

CF ψ 0.9609 0.0903 (0.7956, 1.1490)
p 0.0733 0.0577 (0.0046, 0.2188)

MWN α 0.0960 0.0513 (0.0096, 0.2070) 408.5
MCF ϕ 0.0311 0.0414 (0.0010, 0.1516)

ψ 0.8851 0.4151 (0.2070, 1.9580)
p 0.0975 0.0597 (0.0112, 0.2379)

GMWN α 0.1962 0.2040 (0.0134, 0.7711) 403.9
MCF ϕ 1.2700 0.7994 (0.5015, 3.5500)

γ 0.6557 0.3495 (0.2713, 1.6280)
ψ 0.0880 0.0541 (0.0093, 0.2176)
p 0.0968 0.0584 (0.0075,0.2261)

GEN ϕ 0.9606 0.1042 (0.7754, 1.1810) 408.4
MCF ψ 0.1125 0.0520 (0.0396, 0.2395)

p 0.0779 0.0569 (0.0053, 0.2178)
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Table 10 Maximum likelihood estimates for models assuming covariates - colorectal cancer data

Model
Param-
eters

esti-
mates

SE 95% CI AIC BIC CAIC

Model I ϕ0 -2.7257 1.3794 (-5.4292, -0.0221) 405.7418 418.1898 397.9902
ϕ1 0.5809 0.2654 (0.0608, 1.1010)
ψ 0.7783 1.8583 (-2.8639, 4.4206)
p 0.0133 0.0821 (-0.1477, 0.1742)

Model ϕ 0.1013 0.1242 (-0.1420, 0.3446) 406.2462 418.6942 398.4946
II ψ0 -0.8561 3.3429 (-7.4081, 5.6960)

ψ1 0.4785 0.2342 (0.0195, 0.9375)
p 0.0043 0.0620 (-0.1172, 0.1259)

Model ϕ 0.0949 0.1190 (-0.1382, 0.3281) 406.3150 418.7630 398.5634
III ψ 0.4075 0.4240 (-0.4236, 1.2386)

η1 -6.1142 1.4079 (-8.8737, -3.3547)
η2 -3.3766 0.6998 (-4.7483, -2.0050)

Model ϕ0 -2.8583 3.1862 (-9.1031, 3.3864) 407.3478 422.9078 397.7228
IV ϕ1 1.1899 3.7591 (-6.1778, 8.5576)

ψ0 -0.1299 3.1202 (-6.2454, 5.9856)
ψ1 -0.5867 3.3879 (-7.2269, 6.0535)
p 0.0106 0.0271 (-0.0426, 0.0638)

Model ϕ0 -2.8280 0.6095 (-4.0226, -1.6334) 407.3490 422.9089 397.7240
V ϕ1 1.4681 0.1975 (1.0811, 1.8551)

ψ 0.4258 0.2211 (-0.0077, 0.8592)
η1 -8.5804 1.7960 (-12.1004, -5.0604)
η2 4.4249 1.7253 (1.0435, 7.8064)

Model ϕ 0.1113 0.1401 (-0.1633, 0.3859) 408.2252 423.7851 398.6002
VI ψ0 -2.2207 1.0823 (-4.3420, -0.0994)

ψ1 1.3957 0.3751 (0.6606, 2.1309)
η1 -19.6073 1.9508 (-23.4309, -15.7838)
η2 11.8385 3.4740 (5.0297, 18.6473)

Model ϕ0 -13.7274 0.4424 (-14.5945, -12.8602) 408.7100 427.3819 397.2383
VII ϕ1 12.2391 0.9591 (10.3593, 14.1189)

ψ0 9.5010 0.6265 (8.2731, 10.7289)
ψ1 -10.6311 0.7854 (-12.1704, -9.0918)
η1 -13.6472 7.4300 (-28.2097, 0.9153)
η2 7.6831 5.2795 (-2.6645, 18.0306)

Different statistical methods have been used to analyzed medical information of patients suffer-
ing from colorectal cancer. These include: Magaji et al. (2014) provides an analysis on colorectal
cancer patients who underwent treatment in the University of Malaya Medical Center from 2001 to
2010, the rates of survival and its predictors among colorectal cancer patients in Malaysia was stud-
ied by Magaji et al. (2017), also in Malaysia, survival analysis and prognostic factors for colorectal
cancer patients was studied by Hassan et al. (2016). While Ghazali (2018) modelled the survival
time and incidence for colorectal cancer patients. In Thai, Kittrongsiri et al. (2020) assess the overall
and stage-specific colorectal cancer survival and identify the prognostic factors among the patients.



Yakubu Aliyu and Umar Usman 59

Table 11 Posterior summaries for models assuming covariates considering colorectal cancer data

Model Parameters median sd 95% CrI DIC
Model I ϕ0 -1.9940 0.5706 (-3.1740, -0.9393) 404.4

ϕ1 0.5724 0.2764 (0.0468, 1.1320)
ψ 0.6410 0.4620 (0.2158, 1.9620)
p 0.0599 0.0513 (0.0031, 0.1931)

Model II ϕ 0.0863 0.0925 (0.0094, 0.3540) 398.6
ψ0 -0.0124 0.8654 (-1.3500, 2.1020)
ψ1 0.4841 0.2279 (0.0362, 0.9288)
p 0.0677 0.0492 (0.0050, 0.1871)

Model III ϕ 0.1376 0.1041 (0.0370, 0.4273) 392.5
ψ 0.9089 0.6960 (0.3085, 3.0150)
η0 -1.8630 0.7464 (-3.6210, -0.7426)
η1 -1.2810 0.6196 (-2.6380, -0.2058)

Model IV ϕ0 -2.1030 0.7105 (-3.6330, -0.8077) 405.2
ϕ1 0.2096 0.8870 (-1.6320, 1.8330)
ψ0 -0.3088 0.6708 (-1.5240, 1.0840)
ψ1 0.3073 0.7662 (-1.0560, 1.9790)
p 0.0695 0.0506 (0.0049, 0.1918)

Model V ϕ0 -1.8300 0.5886 (-3.0330, -0.7250) 404.2
ϕ1 0.2581 0.4489 (-0.6129, 1.1320)
ψ 0.7828 0.5142 (0.2983, 2.2740)
η0 -1.8730 0.7768 (-3.6370, -0.6270)
η1 -0.7385 0.8858 (-2.5530, 0.9680)

Model VI ϕ 0.0942 0.0944 (0.0110, 0.3586) 395.3
ψ0 0.2015 0.8385 (-1.1130, 2.1700)
ψ1 0.1355 0.3973 (-0.6419, 0.9123)
η0 -1.9340 0.8143 (-3.8190, -0.6799)
η1 -0.9873 1.0020 (-3.1130, 0.8886)

Model VII ϕ0 -2.0330 0.7082 (-3.5480, -0.7837) 405.8
ϕ1 0.0765 0.9077 (-1.8440, 1.7320)
ψ0 -0.0881 0.6804 (-1.2900, 1.3760)
ψ1 0.0821 0.8194 (-1.4380, 1.8160)
η0 -1.9130 0.8273 (-3.8430, -0.6273)
η1 -1.0190 1.0110 (-3.1210, 0.9041)

The Kaplan-Meier survival curve of the data was plotted and it was observed that, the curve
level-off after about 3,000 days follow-up at a value close to 0.15, this suggest the presence of cure
fraction in the data. Hence, the data was used in fitting the proposed NHNMCF model and compared
its performance with that of RNMCF, WNMCF, GENMCF, MWNMCF and GMWNMCF models
using MLE and Bayesian methods of estimation in the presence of right censoring and covariates.
Table 8 gives the MLE estimates for the colorectal cancer data. The SE, 95% CI, AIC, BIC and CAIC
values of the fitted models were also given. From the information criteria values, it was observed that
the NHNMCF model fits the colorectal cancer data better than the RNMCF, WNMCF, MWNMCF,
GMWNMCF and GENMCF models.

On the other hand, the Bayesian posterior summaries were given in Table 9. The DIC value for
the NHNMCF model is the least among the DICs of other fitted non-mixture cure fraction models.
Hence, the fit of NHNMCF model to the colorectal cancer data is more efficient than the fits of
RNMCF, WNMCF, MWNMCF, GMWNMCF and GENMCF models.

We further analyzed the data taking type of treatment as covariate. Tables 10 and 11 gives
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respectively the MLE estimates and Bayesian posterior summaries of the NHNMCF model taking
type of treatment as covariate. Seven models were fitted: model I, II and III assumed that the covariate
have effect on ϕ, ψ and p respectively. The models assuming covariate effect on ϕ and ψ, ϕ and p, ψ
and p are respectively models IV, V and VI while model VII assumed that the covariate have effect
on all of the parameters of the NHNMCF model. The AIC, BIC and CAIC values of the fitted models
indicates that overall, the model that assumed covariate effect on ϕ is the best model. While the fits of
the Bayesian method indicates that the best fitted model is the model that assumed covariate effects
on the cure fraction parameter.

5.3. Gastric cancer data
Gastric cancer is the fifth leading cause of cancer related death despite its decrease in incidence

and mortality in the world Ferlay et al. (2019); Talebi et al. (2020). However, the 5-year survival rate
following all type of resections has increased significantly. According to Zare et al. (2013), the best
treatment of gastric cancer at the initial stage is surgery. Radiotherapy and chemotherapy are used
as renewed treatment, if necessary. However, most gastric cancer patients are diagnosed at a stage
when common treatments such as gastrectomy, chemotherapy or radiotherapy may not be effective
in increasing the survivorship of patients Sadighi et al. (2005). Retrospective study of patients with
gastric adenocarcinoma who underwent curative resection between January 2002 to December 2007
at the Barretos Cancer Hospital was conducted by Jácome et al. (2013). The study consists of two
hundred and one (201) patients with different clinical stages of gastric adenocarcinoma. One hundred
and twenty-five (125) patients received resection only while the remaining seventy-six (76) received
adjuvan chemoradiotherapy (CRT). The event of interest was defined as the time (in months) from
the date of surgery until death. The data was used in comparing between the performances of the
NHMCF and NHNMCF models.

Overall, 53.2% of the survival time of the patients are censored. While 50.4% and 57.9% of
those patients treated with surgery alone and CRT respectively are censored.

Table 12 Maximum likelihood estimates of Gastric cancer data

Model Parameter estimate SE 95% CI AIC BIC CAIC
NHMCF ϕ 0.0359 0.0137 (0.0090, 0.0628) 900.0038 909.9137 894.0647

ψ 1.3184 0.5279 (0.2836, 1.0706)
p 0.4079 0.0903 (0.2309, 0.5848)

NHNMCF ϕ 0.0007 0.0001 (0.0004, 0.0010) 898.6282 908.5381 892.6891
ψ 0.5420 5.3575 (43.7495, 10.5011)
p 0.4700 0.0520 (0.3684, 0.5723)

Table 13 Posterior summary results of Gastric cancer data

Model Parameter median sd 95% CrI DIC
NHMCF ϕ 0.0241 0.0310 (0.0045, 0.1145) 829.6

ψ 1.9510 2.6770 (0.4153, 10.3800)
p 0.4214 0.1218 (0.0597, 0.5346)

NHNMCF ϕ 0.0100 0.0161 (0.0013, 0.0633) 812.7
ψ 3.0460 6.0340 (0.3358, 23.0100)
p 0.3911 0.1269 (0.0583, 0.5314)
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Tables 12 and 13 respectively gives the MLE estimates and the Bayesian posterior summaries
of the gastric cancer data. From these fits, the non-mixture model fits the data better than the mixture
model. That is, The NHNMCF model is more efficient than the NHMCR model since it has the
lowest AIC, BIC CAIC and DIC values. This confirms the results of Coelho-Barros et al. (2017) and
Kutal and Qian (2018).

6. Conclusions
In survival analysis, the population of study may contain individuals that are susceptible to the

event of interest and those individuals that are non-susceptible. To analyze data of such type, the cure
fraction models are used. In this article, a non-mixture cure fraction model was studied using the NH
distribution. The model was studied in the presence of right censoring and covariates. We studied
some statistical properties of the model and estimated its parameters via MLE and Bayesian meth-
ods of estimation. Simulation study was carried out under different parameter settings. The results
showed that, the proposed methodology has a good performance. Furthermore, two medical data
sets were used in comparing the performance of the proposed methodology with the fits of RNMCR,
WNMCR, GENMCR, MWNMCR and GMWNMCR models. The results of the fits showed that the
proposed methodology fits the data better than the other models. The data sets were then fitted to the
proposed methodology in the presence of covariate. For the diabetic retinotophy data, it was found
that, age and type of treatment have effect on the shape parameter when MLE was used while it was
observed that the covariates have effect on the shape and cure fraction parameters when the data was
fitted using Bayesian method. On the other hand, the results for the colorectal cancer data showed
that the type of treatment have effect on the scale parameter when the data was fitted via MLE while
the covariate was shown to have effect on the shape parameter when Bayesian method.
was used. Finally, gastric cancer data was used to compare between the performance of the mixture
and non-mixture cure fraction models. It was found that, the non-mixture model is more efficient
than the mixture cure fraction model.
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