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Abstract 

In probability and statistics, reliable modeling of bivariate continuous characteristics remains a 
real insurmountable consideration. During the analysis of bivariate data, we have to deal with 
heterogeneity that is present in data. Therefore, for dealing with such a scenario, we investigate a 
novel technique based on a Farlie-Gumbel-Morgenstern (FGM) copula and the inverse Topp-Leone 
(ITL) model in this study. The idea is to use the oscillating functionalities of the FGM copula and the 
flexibility of the ITL model to propose a serious bivariate solution for the modeling of bivariate 
lifetime phenomena to counter the heterogeneity present in data. Both theory and practice are 
developed. In particular, we determine the main functions related to the model, like the cumulative 
model function, probability density function, and various useful dependence measures for bivariate 
modeling. The model parameters are estimated using the maximum likelihood method and Bayesian 
framework of the Markov Chain Monte Carlo (MCMC) methodology. Following that, model 
comparison methods are used to compare models. To explain the findings and show that better models 
are recommended, the famous Drought and Burr data sets are used. 

 
Keywords: Bivariate continuous model, copula, dependence, FGM, modeling, inference, inverse Topp-Leone, 
Bayesian, MCMC.   

 
1. Introduction  

Classical probability models are important throughout many domains of applied research, 
including reliability, economics, medical sciences, and other advanced disciplines. For assessing 
lifetime data, the gamma and exponential distributions are often used in probability distributions. In 
the literature, several extensions of the gamma and exponential distributions, as well as their mixtures, 
have been proposed and explored, and have been effectively used for modeling and understanding 
different lifespan phenomena (see Johnson et al. 1994; Sarhan and Kundu 2009; Sen et al. 2018). The 
classical distributions have constraints when dealing with a large range of real-world data, which 
motivates the development of new flexible distribution families. Various methods for creating bivariate 
distributions from conventional univariate distributions have been demonstrated in recent times. 
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Numerous distributions have been suggested for the study of bivariate lifetime data, which extend 
several prominent univariate distributions including exponential, Weibull, Pareto, gamma, log-
normal, xgamma, inverse Lindley, Burr XII, and Teissier distributions. (see, for example, Gumbel 
1960; Marshall and Olkin 1967; Sankaran and Nair 1993; Kundu and Gupta 2009; Sarhan et al. 2011; 
Abulebda et al. 2022; Abulebda et al. 2023; Tyagi et al. 2023; Tyagi 2024). The formation of bivariate 
distributions employing conditional and marginal distributions is a suitable strategy that has received 
a lot of attention in recent years. Several magnificent approaches for generating bivariate distributions 
through order statistics have recently been presented and researched, which contain both absolutely 
continuous and singular components and may be advantageous in circumstances when data ties exist. 
For some recent references, one can refer to Dolati et al. (2014), Mirhosseini et al. (2015), and Kundu 
and Gupta (2017). Copula models have lately been used to describe the dependency between random 
variables, in addition to current methodologies. A copula is a function that connects the marginals to 
the joint distribution and has been widely utilized in finance, biology, engineering, hydrology, and 
geophysics to explain dependency among random variables. On the unit interval [0,1], a copula is a 
multivariate distribution function with uniform one-dimensional margins. In this paper, we restrict 
our study to a bivariate copula. A formal definition of the bivariate copula is as follows: 

A function :[0,1] [0,1] [0,1]C    is a bivariate copula if it satisfies the following properties: 

i. For every   0 1u,v ,  

( ,0) 0 (0, ),C u C v   ( ,1) 1C u   and (1, ) .C v v  

ii. For every 1 2 1 2, , , [0,1]u u v v   such that 1 2u u  and 1 2v v    

2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0.C u v C u v C u v C u v     

 Let X  and Y  be random variables with joint distribution function ,F  and marginal 1F  and 2F ,  

respectively, then Sklar (1959) says that there exists a copula function C  which connects marginals 

to the joint distribution via the relation 1 2( , ) ( , ) ( ( ), ( )).F x y P X x Y y C F x F y     If X  and Y  are 

continuous, then the copula C  is unique; otherwise, it is uniquely determined on 

1 2Range( ) Range( ).F F  The associated joint density is 1 2 1 2( , ) ( ( ), ( )) ( ) ( ),f x y c F x F y f x f y  where 

c  is copula density. The copula approach provides a powerful tool for constructing a large class of 

multivariate distributions based on marginals from different families. Any joint distribution function 
may be represented through copula in which dependence structure and marginals are separately 
specified. For a good source on copulas, one may refer to Nelsen (2006) and Joe (2014). Copula 
methods could be a flexible approach for constructing a large class of bivariate lifetime distributions 
with the ability to cope with different kinds of data and perceive the two lifetimes of the same patient. 
For example, it may be of interest in the study of human organs associated with kidneys or eyes, and 
the times between the first and second hospitalization for a particular disease (see Rinne 2008; 
Bhattacharjee and Mishra 2016). 

The aim of this paper is to introduce a new bivariate inverse Topp-Leone (BITL) model and 
explore its various statistical properties with an application in real data. This paper is organized as 
follows: In Section 2, we review some basics of the univariate ITL model. With the help of the 
univariate ITL model, we define a new family of BITL model using the FGM copula. In Section 3, 
we derive the expressions for joint survival function, joint hazard rate, and joint reversed hazard rate 
for the proposed BITL model. In Section 4, we present some concepts of dependence measures alike, 
orthant dependence, and hazard gradient function their important properties for the BITL model. In 
Sections 5 and 6 we estimate parameters of the BITL model using maximum likelihood estimation 
and Bayesian estimation paradigm as well as construct the confidence intervals for parameters under 
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respective methods. Section 7, demonstrate data generation and several numerical experiments. 
Finally, an application to real data is demonstrated in Section 8. Essence and deliberation are done 
regarding the complete study in Section 9. 
 
2. Bivariate Inverse Topp-Leone Model  

Topp and Leone (1955) illustrated the Topp-Leone (TL) model with minimal support as a 
conceptual model in reliability assessments. The density function of the TL model is J-shaped, 
whereas the hazard function is bathtub-shaped. Numerous scholars have done groundbreaking 
disquisition due to the relevance of the TL model. Hassan et al. (2020) acquired an inverse modified 
form of the TL model specified on the IR+ domain, named the Inverted Topp-Leone model, due to 
the importance and relevance of inverted models with distribution function (DF), probability density 
function (pdf), and survival function: 

 2 + +( ) 1 ( 1) (2 1) ; IR , IR ,XF x x x x         (1) 

 (2 1) 1 + +( ) 2 ( 1) ( ,2 1) ; IR , IRXf x x x x x          (2) 

 2 + +( ) ( 1) (2 1) ; IR , IR ,X x x x x        (3) 

respectively. FGM copula is one of the most popular parametric families of copulas and has been 
widely used in literature due to its simple structure. Morgenstern (1956) proposed the FGM family 
and was later studied by Gumbel (1958, 1960) using normal and exponential marginals, respectively. 
Farlie (1960) extended this family and derived its correlation structure, hence termed the FGM family 
of distributions. The bivariate FGM copula is given by 

 ( , ) [1 (1 )(1 )], [ 1,1].C u v uv u v        (4) 

In order to achieve wider applications of the FGM copula in real applications, a large number of 
generalized FGM copulas have been proposed and studied in the literature. Some of the recent 
references include Amblard and Girard (2009) and Pathak and Vellaisamy (2016). 

The bivariate distribution determined by FGM copula is 

 1 2 1 2( , ) ( ) ( )[1 (1 ( ))(1 ( ))]; [ 1,1].F x y F x F y F x F y        (5) 

A new family of BITL model via FGM copula is given by 

  
1 2

1 1 2 2

1 2

2 2
( , ) 2 2

2(2 1) 2(2 1)
( , ) 1 ( 1) (2 1) 1 ( 1) (2 1) 1 .

( 1) ( 1)X Y

x y
F x y x x y y

x y

 
   

  
     
                   

 (6) 

A random vector ( , )X Y  is said to have a bivariate inverted Topp-Leone (BITL)  model with 

parameters 1 2,   and  if, its distribution function is given by (5), and is denoted by BITL 1 2 , ).( , 
This family includes a mixture of exponential and gamma distributions and may be useful in a wide 
class of real data. The joint density of the BITL model ( , )f x y  defined in (5) is 

 

1 1 2 2

1 2

1 2

(2 1) 1 (2 1) 1
( , ) 1 2

2 2

( , ) 4 ( 1) (2 1) ( 1) (2 1)

2(2 1) 2(2 1)
1 1 1 .

( 1) ( 1)

X Yf x y xy x x y y

x y

x y

   

 

 

 



         

     
             

   (7) 

 
3. Reliability Properties 

Statistical properties are essential in influencing whether such a bivariate distribution can be 
implemented to a certain type of data. The bivariate model BITL established in this study is 
significant because it may be used to conduct an investigation of the reliability of a system consisting 
of two components. As a consequence, numerous reliability functions, such as the survival function, 
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hazard function, reversed hazard rate, and conditional distribution must be constructed. The above-
mentioned reliability characteristics for the bivariate distribution are derived in the ensuing subsections. 

 
3.1. Survival function 

There are several ways to construct the reliability function for the bivariate distribution; we prefer 
to use the copula approach to express the reliability function for the BITL model by using the marginal 

survival function ( )x  and ( )y  where X  and Y  the random variable and selection dependence 

structure.  
 

Theorem 1.  The joint survival function for the copula is as follows 

( , ) ( ( ), ( )),x y C x y    

where the marginal survival function ( )u x  and  ( ).v y   The reliability function of FGM-BITL 

based on Equation (8) 

 

 1 2

1 2

1 2

1 2

2 2

2 2

(2 1) (2 1)
(2 1) (2 1) 1

( 1) ( 1)
( , ) .

( 1) ( 1)

x y
x y

x y
x y

x y

 
 

 

 





  
   

  
 
 

 (8) 

 
3.2.  Hazard function 
 
Theorem 2.  Let ( , )X Y  be a bivariate random vector with joint density ( , )f x y and survival 

function ( , ) ( ( , ), ( , )).x y P X x Y y       Then the bivariate hazard rate function is defined as 

   
 

1 1 2 2

1 1 2 2

2 2
1 2

2 2

4 2( 1) (2 1) 1 2( 1) (2 1) 1 1( , )
( , ) .

( , ) ( 1)(2 1)( 1)(2 1) (2 1) ( 1) ( 1) (2 1) 1

xy x x y yf x y
H x y

x y x x y y x x y y

   

   

  

 

 

 

      
 

        
 

 
3.3.  Reversed hazard rate function 

 

Theorem 3.  Let ( , )X Y  be a bivariate random vector with joint density ( , )f x y  and distribution 

function ( , ) ( (0, ), (0, )).F x y P X x Y y    Then the bivariate reversed hazard rate function is 

defined as 

( , )
( , )

( , )

f x y
m x y

F x y
  

   
   

1 2 1 1 2 2 1 2

1 1 2 2 1 2 1 2

1 1 2 2 2 2
1 2

2 2 2 2

4 (2 1) (2 1) ( 1) 2(2 1) ( 1) 2(2 1) ( 1) ( 1)
( , ) .

( 1)( 1) ( 1) (2 1) ( 1) (2 1) (2 1) (2 1) ( 1) ( 1)

xy x y x x y y x y
m x y

x y x x y y x y x y

       

       

  



           


            
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Figure 1 PDF BITL model 

 

 
Figure 2 Survival BITL model  and hazard BITL model 

 
4. Constructive Dependence Measure 
4.1. Orthant dependence 

In the existing research, there are already several formulations of positive and negative 
dependency for multivariate distributions of varying degrees of strength; see, for example, Joe (1997). 

A random vector ( , )X Y  is said to be positive upper orthant dependent (PUOD) iff, 

 +( ( , ), ( , )) ( ( , )) ( ( , )); , IR ,P X x Y y P X x P Y y x y              (9) 

and negative upper orthant dependent (NUOD) iff, 

 +( ( , ), ( , )) ( ( , )) ( ( , )); , IR .P X x Y y P X x P Y y x y              (10) 

Similarly, the second is; A random vector ( , )X Y  is said to be positive lower orthant dependent 

(PLOD) iff, 

 +( (0, ), (0, )) ( (0, )) ( (0, )); , IR ,P X x Y y P X x P Y y x y          (11) 

and negative upper orthant dependent (NLOD) iff, 

 +( (0, ), (0, )) ( (0, )) ( (0, )); , IR .P X x Y y P X x P Y y x y          (12) 

We already have the joint survival function of the BITL model given in Equation (8) as well as 
the marginal survival function given in Equation (3). By using these equations, we can easily verify 
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that ( , )X Y  satisfy (8). Using the joint DF of BITLD given in Equation (6) and the marginal DFs of 

X  and ,Y  we can easily verify that ( , )X Y satisfies (11). Therefore, the random vector ( , )X Y  is 

PUOD as well as PLOD if 0.   Consequently, the random vector ( , )X Y  with BITLD is POD, if

0.   Similarly, the random vector ( , )X Y  is NUOD as well as NLOD if 0.   Thus, BITL 

satisfies both NUOD and NLOD, and hence, we can say that BITL is NOD. 
 
4.2.  Hazard gradient function 

Consider a bivariate random vector ( , )X Y  with joint density ( , )f x y  and survival function  

( , ),x y  then the hazard components are defined as (see Johnson and Kotz 1975) 

1 2( , ) ln ( , ), ( , ) ln ( , ).x y x y x y x y
x y

    
   

 
 

The vector 1 2( ( , ), ( , ))x y x y   is termed the hazard gradient of a bivariate random vector ( , ).X Y  

Note that 1( , )x y  is the failure rate of X  with given information .Y y  Similarly, 2 ( , )x y  is the 

failure rate of Y  given .X x  Hence, for the BITL model, the hazard gradient is in Proposition 1. 

 
Proposition 1 

 
 

 
1 2 1 2

1 2 1 2

2 2
1

1 2 2

2 2 (2 1) (2 1) ( 1) ( 1)
( , ) .

( 1)(2 1) (2 1) (2 1) ( 1) ( 1)

x x y x y
x y

x x x y x y

   

   

 




    


      
   (13) 

 
 

 
1 2 1 2

1 2 1 2

2 2
2

2 2 2

2 2 (2 1) (2 1) ( 1) ( 1)
( , ) .

( 1)(2 1) (2 1) (2 1) ( 1) ( 1)

y x y x y
x y

y y x y x y

   

   

 




    


      
   (14)  

 
5. Estimation Strategies 
5.1. Maximum likelihood estimation  

This section describes the estimation of the unknown parameters of the BITL model through the 
maximum likelihood method.  Based on MLE, estimators are obtained by maximizing the 
loglikelihood function with respect to each parameter separately.  Let consider 

1 1 2 2( , ), ( , ), , ( , )n nx y x y x y  be a bivariate random sample of size n  from the BITL model.  Then, the 

likelihood function is given as  

  1 1 2 2(2 1) 1 (2 1) 1
1 2

1

( , ) 4 ( 1) (2 1) ( 1) (2 1)
n

n n n
i i i i i i

i

L x y x x y y           



         (15)  

   
1 2

1 22 2
1

2(2 1) 2(2 1)
1 1 1 ,

( 1) ( 1)

n
i i

i i i

x y

x y

 

 


     
             

  

where 1 2( , ).    

  1 2 1 1
1 1

log ( , ) log 4 log log (1 2 ) log(1 ) ( 1) log(1 2 )
n n

i i
i i

L n x x    
 

            

 2 2
1 1

(1 2 ) log(1 ) ( 1) log(1 2 )
n n

i i
i i

y y 
 

        
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1 2

1 22 2
1

2(2 1) 2(2 1)
log 1 1 1 .

( 1) ( 1)

n
i i

i i i

x y

x y

 

 


     
              

  

  2 22

1 11 1

ln ( , )
2 log(1 ) log(1 2 ) 2( 1) (2 1) 1

n n

i i
i i

L n
x x y y  

 


 

 
       

    

 
 

  
1 1 1 1

1 1 2 2

2 2

2 2

2( 1) (2 1) log(2 1) 4( 1) (2 1) log( 1)
.

2( 1) (2 1) 1 2( 1) (2 1) 1 1

x x x x x x

x x y y

   

   

 

 

      


      
 

  1 12

1 12 2

ln ( , )
2 log(1 ) log(1 2 ) 2( 1) (2 1) 1

n n

i i
i i

L n
y y x x  

 


 

 
       

    

 
 

   
2 2 2 2

1 1 2 2

2 2

2 2

2( 1) (2 1) log(2 1) 4( 1) (2 1) log( 1)
.

2( 1) (2 1) 1 2( 1) (2 1) 1 1

y y y y y y

x x y y

   

   

 

 

      


      
 

 
  
   

1 1 2 2

1 1 2 2

2 2

2 2

2( 1) (2 1) 1 2( 1) (2 1) 1ln ( , )
.

2( 1) (2 1) 1 2( 1) (2 1) 1 1

x x y yL

x x y y

   

   


 

 

 

      


       
 

The MLE 1 2
ˆ ˆ ˆ( , , )    can be obtained by solving simultaneously the likelihood equations 

 
1 1 2 2

ˆ

1 2

ln ( , ) ln ( , ) ln ( , )
0, 0, 0.

L L L
     

  
    

     
  

  
∣ ∣ ∣  

Since the estimators based on likelihood equations are not in a close standard form. So, we 
perform the parameter estimation using a non-linear optimization algorithm through R software. 
 
5.2.  Bayesian estimation strategies via MCMC techniques 
5.2.1. Methodology  

In this section, the Bayesian paradigm for unknown parameters of both models is derived using 
left censoring in the case of both informative and flat priors. Three different loss functions are 
considered: the squared error loss function (SELF), modified (quadratic) squared error loss function 
(MQSELF), and precautionary loss function (PLF). The following is a brief description of these loss 
functions, priors, and credible intervals: 

 
5.2.2. Square error loss function (SELF)  

The loss function 2ˆ ˆ( , ) ( )L       is called SELF, which is the simplest symmetric loss 

function.  The Bayes estimator of   under SELF is ˆ ( , ),SELF E X Y  ∣  with risk ( , )Var X Y∣  

where the expectation and variance are taken with respect to posterior PDF. It was originally used in 
estimation problems when an unbiased estimator of   is being considered.  Another reason for 
SELF’s popularity is its relationship to classical least squares theory.  SELF is neither bound nor 
concave.  The convexity is particularly distressing because large errors are severely penalized.  The 
SELF gives equal weightage to overestimation and underestimation due to its symmetric nature, 
which is not always true. As a result, we consider two asymmetric loss functions, MQSELF and PLF.  
 
5.2.3. Modified quadratic square error loss function (MQSELF)  

The modified quadratic squared error loss function (MQSELF) is an alternative loss function of 
SELF with form,  
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where the expectation is taken with respect to posterior PDF. 
 
5.2.4. Precautionary loss function (PLF)  

Norstrom (1996) described an alternative asymmetric precautionary loss function with quadratic 
loss function as a special case. This loss function approaches infinity near the origin to prevent 
underestimation and thus given a conservative estimation. It is very useful when underestimation may 
lead to serious consequences. The PLF is defined as  

2ˆ( )ˆ( , ) .
ˆ

L
 

  


 

The Bayes estimator of   under PLF is    
2ˆ ( , ) ,PLF E X Y   ∣  

with risk 
2ˆ( , ) 2 ( , ) ( , ) ,PLFR E X Y E X Y        
∣ ∣  

where the expectation is taken with respect to posterior PDF. 
 
5.2.5. Flat prior  

The choice of the prior distribution is often dependent on the type of prior information available 
to us. If we have little information or no information about the parameter, a flat prior should be used. 
A lot of practitioners earlier utilized flat priors (see Ibrahim et al. 2001; Santos and Achcar 2010). 

Under flat priors, we use the gamma distribution for baseline parameters ˆ ,   and the uniform 

distribution for .  That is, the considered priors PDFs are 

1 2

2

1

1 2

1 1
( ) , ( ) .

( )
g e g

b a
 

 
 




   
 

 

Here, 1 2 0.0001, 1,b     and  1.a    

 
5.2.6. Informative prior  

In terms of informative priors, the hyper parameters are chosen in such a way that the expectation 
of the prior distribution of each unknown parameter equals the true value. This method has been used 
by several researchers, including Chacko and Mohan (2018).  

This section studies the Bayesian estimation to achieve the estimates of BITL model parameters. 
As we see the maximum likelihood estimates (MLEs) method has crucial importance and is 
inappropriate when a high dimensional optimization problem is there. So, Bayesian estimation can 
be better to estimate the parameter than MLEs. In the BITL model, we have a three-dimensional 
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optimization problem. In that scenario, it is not possible to compute posterior distribution in a close 
form. To apply the Bayesian approach, we consider the assumption of independence in the parameters 
(see Ibrahim et al. 2001; Santos and Achcar 2010). Under this assumption, the joint posterior density 
function of parameters for given variables   and   is obtained as 

1 1 2 2 3( , ) ( , ) ( ) ( ) ( ),X Y L X Y g g g      ∣ ∣  

where (.)ig  indicates the prior density function with known hyper parameters of the corresponding 

argument for parameters, and the likelihood function is ,L  defined in Section 5.1. We consider both 

informative and flat priors for better outcomes. 
Due to the high-dimensions integration of joint posterior distributions, it is problematic to 

integrate out. So, we adopt the most popular MCMC technique. In the MCMC technique, the 
Metropolis-Hastings algorithm and Gibbs samplers have been used. Heidelberger-Welch test has 
been used to monitor the convergence of a Markov chain to a stationary distribution. For that, it has 
been considered that full conditional distributions can be obtained as proportional to the joint 

distribution of the parameter of the model. The full conditional distribution for the parameter 1  is 

1 1 1 1 1 1 1( , , ) ( , , ) ( ) . X Y L X Y g          ∣ ∣  

Similarly, full conditional distributions for other parameters can be obtained. 
 
6. Confidence Intervals 
6.1. Asymptotic Confidence Intervals 
 Because although the MLEs of   are not in compact structures, possessing accurate confidence 
intervals for   is problematic. As a possible consequence, we can employ the asymptotic behavior of 
the maximum likelihood estimator to ascertain asymptotic confidence intervals (CIs) for the model 
parameters. 
 Because the specific sampling distributions of the MLEs cannot be derived explicitly, we 
employ a large sample theory to construct asymptotic confidence intervals for the model parameters. 

By using the general theory of MLEs, the asymptotic distribution of ˆ( , )   is 1
3(0, ),N    where ( )   

is the Fisher’s information matrix having elements as 

 
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which may be numerically obtained. The Fisher information matrix ( )   can be approximated by 
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6.2. Construction of highest posterior density credible interval 
 A credible interval is a range of values inside the region of a posterior probability distribution in 
Bayesian statistics. The 100 (1 )   equal tail credible interval for appropriate posterior distribution can 

be determined as (Eberly and Casella 2003).  



190                                                                   Thailand Statistician, 2025; 23(1): 181-198 

 

1 1 1 1 1 1( , ) ( , )
( ) ( , ) ;   ( ) ( , ) ,

2 2x L x U
P L X Y d P U X Y d

        
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      ∣ ∣  

where 1( , )X Y  ∣  is the posterior density of 1  and ( , )L U  are the lower and upper limit of the 

credible interval. Subsequently, we can find credible intervals for parameters 2  and .   

 
7. Simulation Analysis 
7.1. Classical simulation 
 In this section, we report a simulation study for the BITL model derived using the FGM copula. 
First, we describe the random sample generation from the BITL model. We employ the conditional 
procedure for random sample generation which has been reported in Nelsen (2006). Let X  and Y  

be a random sample having the BITL model determined by the FGM copula .C  The copula C  is a 

joint distribution of a bivariate vector ( , )U V with marginals as uniform (0,1).U  The conditional 

distribution of the vector ( , )U V  is given as 1( | ) ( , ) [1 (1 )(1 2 )].P V v U u C u v v v u
u


      


 

Using the conditional distribution approach, random numbers ( , )x y  from the BITL can be generated 

using the following algorithm: 

 1) From uniform (0,1)U  generate two independent samples u  and .t    

 2) Set ( , )t C u v
u





 and solved for .v  

 3) Find  1
1( ; )x F u   and 1

2( ; ),y F v   where 1F   is the inverse of ITL. 

 4) Finally, the desired random sample is ( , ).x y    

 For parameter estimation, we use maximum likelihood and Bayesian paradigm methods. A 
simulation study is carried out based on the following data generated from the BITL model. The value 

of the parameters 1  and 2  is chosen with different values of the copula parameter   and different 

sizes of the sample ( 20,50,100),n   as shown for the following cases for the random variables 

generated from the BITL model: 

 Case 1: 1 2( 0.5, 1.5, 0.1);         

 Case 2: 1 2( 1.5, 0.5, 0.1);      

 Case 3: 1 2( 2, 5, 0.6);         

 Case 4: 1 2( 5, 2, 0.6).      

 The simulations in this study are repeated 1,00,000 times. The estimate of parameters by MLE 
methods along with the mean squared error (MSE) are summarized in Table 1.  From the reported 
table, we conclude the following: 
 In the simulation study, if the sample size increases, the value of mean squared error decreases 
in the considered method i.e., MLE. In the simulation table, when the initial value of parameters 
increases, the corresponding mean square error increases for the small sample, and after that it 
decreases gradually by increasing the sample size as observed from the corresponding MSE for 
different values of the parameters. In general, the effect of marginal parameters has little effect on 
estimating the copula parameters as shown in the table. The simulation study was carried out using 
the R software (R 3.5.3). 
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7.2.  Bayesian simulation 
 The main objective of the simulation study is to evaluate the performance of the Bayesian 
estimation procedure. For the simulation purpose, we have generated data ( , )X Y  from the BITL 

using the algorithm as explained in subsection (7.1). Since we do not have any information about the 
parameters model, we select prior distributions. We take the sample of different sizes 20, 50, and 100 
and iterate the chain of Metropolis-Hasting algorithm and Gibbs sampling 1,00,000 times, neglecting 
the first 10,000 iterations to remove the effect of the initial values and to avoid the autocorrelation 

problems.  The estimates of ( , ),  the corresponding risk under different error LFs with informative 

and vague priors, HPD intervals, and the Heidelberger-Welch test are shown in Tables 3 and 4. From 
these tables, we can observe the following points: 
 1) The performance of Bayes estimates based on the informative priors is better than that of 
vague priors estimates. 
 2) As n  increases, the risks of all Bayes estimates decrease. 

 3) Bayes estimates under SELF perform better in the aspect of risks. 
 4) As n  increases, HPD intervals become narrow for all Bayes estimates. 

 5) The p-values of the Heidelberger-Welch test are large enough ( 0.05)  to say that the chain 

reached stationary distribution. 

 Under various combinations of ( , ),  the Bayesian approach with informative prior is found 

to be the best approach for point estimation. 
  
8. Illustration of Real-Life Data 
8.1. Drought data 

To study the proposed model BITL and elucidate the MLE estimation procedure, we consider 
the drought data for (Panhandle) climate division of Nebraska state; the real drought data set is 
demonstrated for the 83 drought events in climate division (Panhandle), we got the data from 
Nadarajah (2009). The data comprises of the monthly modified Palmer Drought Severity Index 
(PDSI) for the period from January 1895 to December 2004. The PDSI is often used to measure 
droughts depending on recent precipitation and temperature; see Alley (1984) for details; when the 
PDSI is less than zero, then drought is said to have been occurring; see Yevjevich (1967). We applied 
the K-S test to check the goodness of fit. The goodness of fit was assessed using the K-S test. The 
fitted and empirical distribution lines are near enough in Figure 4 to indicate that the model fits the 
data effectively. Nadarajah (2009) used the bivariate Pareto model to analyze this data and discussed 
the estimation of three parameters. The bivariate data set x  and y  represent the drought duration 

and the non-drought duration, respectively. The model of BITL was determined by fitting the model 
to the observed values. 
 
8.2. Burr data 
 There are 50 observations on the burr in this data collection. The first component has a hole 
diameter of 12 mm and a sheet thickness of 3.15 mm. The second component’s hole diameter is 9 
mm, and the sheet thickness is 2 mm. Two completely different computers create these two-
component datasets. This data collection was used by Dasgupta (2011). Before even being processed, 
every data is multiplied by 10. These transitions will have no influence on our research and are 
entirely computational. To determine the goodness of fit, we used the K-S test. Figure 5 illustrates 
that the fitted and empirical distribution lines are near enough to indicate that the model fits the data 
effectively. 
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 For both data sets, Tables 4 and 5 adduce the estimated values of BITL model parameters 
employing MLE and Bayesian paradigms. Table 6 gesticulates the result of various model selection 
criteria for the BITL model, such as AIC, BIC, AICc, and HQIC, and allows us to compare the BITL 
model to other models available in the literature for drought and Burr data sets. In aspects of AIC, 
BIC, AICc, and HQIC, we find that the BITL model outperforms the bivariate exponential and 
bivariate Weibull distributions for drought data, while the BITL model outperforms the bivariate 
generalized exponential under FGM and Clayton copula, bivariate inverse Lindley, bivariate Pareto, 
and bivariate Gumbel distributions for Burr data.  
 
9. Essence and Deliberation 
 In this paper, we have introduced a new BITL model derived from the FGM copula whose 
univariate marginals follow the ITL model. We derive the expressions for survival function, 
conditional model, and some concepts related to reliability for the BITL model. Some dependence 
measures alike, orthant dependence, hazard gradient function measure of dependence are derived and 
is also studied. For the copula parameter ,  it has been seen that for  0,   the BITL model exhibits 

POD property as well as for 0,   the BITL model exhibits POD property, which is a powerful 

property of dependence. Parameters were estimated using two different methods namely MLE and 
Bayesian paradigm. Several numerical experiments are also reported in this study. Finally, an 
application to two real data shows that the BITL model works well and we anticipate that the BITL 
model may be useful in various piratical applications.  
 

Table 1 Average estimate and MSE for the BITL model parameters under MLE 

Parameter 
EST MSE EST MSE EST MSE 

n = 20 n = 50 n = 100 

ξ1(0.5) 0.44994 0.03359 0.49124 0.00837 0.51038 0.00460 

ξ2(1.5) 1.63961 0.24579 1.55581 0.11947 1.55320 0.05628 

δ(−0.1) 0.09708 0.04566 0.12210 0.04269 0.12190 0.04144 

ξ1(1.5) 1.64941 0.17353 1.45219 0.11205 1.51292 0.04259 

ξ2(0.5) 0.53654 0.01896 0.51677 0.01064 0.50434 0.00738 

δ(0.1) 0.07519 0.05621 0.11985 0.04653 0.11018 0.04459 

ξ1(2) 1.94253 0.3322 2.05297 0.17844 2.04146 0.08243 

ξ2(5) 4.83367 1.59106 5.22028 0.85143 4.98964 0.38134 

δ(−0.6) 0.62794 0.03291 0.59653 0.02988 0.60825 0.02935 

ξ1(5) 5.24843 0.89470 4.98720 0.75524 4.99912 0.45281 

ξ2(2) 2.16860 0.27556 2.14914 0.19582 2.02598 0.07480 

δ(0.6) 0.59641 0.03518 0.59953 0.03201 0.59807 0.03089 
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Table 2 Average estimate and risk for the BITL parameters under non-informative prior 

Parameter 
SELF MQSELF PLF 

LCL UCL H.B. 
EST Risk EST Risk EST Risk 

n = 20 

 ξ1(0.5) 0.42107 0.00908 0.37677 0.05580 0.43172 0.02130 0.23422 0.60198 0.448 

ξ2(1.5) 1.53472 0.10189 1.40187 0.04484 1.56756 0.06568 0.91744 2.10160 0.861 

δ(−0.1) 0.09987 0.00068 0.08296 0.08099 0.10398 0.40984 0.14252 0.05135 0.337 

ξ1(1.5) 1.65066 0.04755 1.59217 0.01810 1.51735 0.01381 1.23037 1.81192 0.625 

ξ2(0.5) 0.45284 0.00734 0.42265 0.03348 0.46087 0.01606 0.30173 0.60399 0.514 

δ(0.1) 0.09942 0.00090 0.07842 0.11979 0.10385 0.00885 0.05251 0.15960 0.491 

ξ1(2) 2.44687 0.07089 1.82431 0.01876 1.91073 0.03398 1.82135 2.66279 0.475 

ξ2(5) 6.04350 0.57561 4.33909 0.03998 5.58181 0.05708 4.42050 6.67669 0.886 

δ(−0.6) 0.59628 0.0288 0.48703 0.10227 0.61996 2.43249 0.89707 0.27508 0.253 

ξ1(5) 5.67176 0.97718 5.56884 0.04338 5.69730 0.19517 3.16635 6.93249 0.207 

ξ2(2) 1.79167 0.13556 1.75400 0.03831 1.80080 0.06663 1.26823 2.67085 0.580 

δ(0.6) 0.61615 0.01794 0.54971 0.05834 0.63054 0.02878 0.38023 0.84927 0.377 

n = 50 

 ξ1(0.5) 0.58105 0.00624 0.55919 0.01927 0.58640 0.01070 0.44830 0.75402 0.335 

ξ2(1.5) 1.41767 0.04037 1.35996 0.02086 1.43184 0.02834 1.02782 1.80458 0.701 

δ(−0.1) 0.09676 0.00064 0.08495 0.07254 0.10322 0.40617 0.14623 0.05757 0.311 

ξ1(1.5) 1.48602 0.02127 1.45784 0.00952 1.49316 0.01428 1.22031 2.05042 0.690 

ξ2(0.5) 0.55119 0.00673 0.52630 0.02320 0.55726 0.01214 0.41437 0.73473 0.728 

δ(0.1) 0.10044 0.00088 0.08026 0.11359 0.10474 0.00860 0.04492 0.15362 0.262 

ξ1(2) 1.89375 0.06463 2.37306 0.01656 2.46132 0.02889 1.91699 2.79402 0.188 

ξ2(5) 4.70126 0.84814 5.83884 0.01758 4.79061 0.17871 2.79050 6.36473 0.539 

δ(−0.6) 0.62881 0.01611 0.57190 0.04835 0.64150 2.54063 0.84829 0.40908 0.832 

ξ1(5) 5.20537 0.55873 4.54858 0.02105 5.25876 0.10679 3.65126 6.57042 0.325 

ξ2(2) 1.87603 0.07470 1.79371 0.02272 1.89584 0.03961 1.34756 2.42086 0.088 

δ(0.6) 0.59734 0.01443 0.54560 0.04575 0.6093 0.02445 0.35118 0.76468 0.737 

n = 100 

 ξ1(0.5) 0.54272 0.00312 0.53136 0.01054 0.54558 0.00573 0.44095 0.65700 0.982 

ξ2(1.5) 1.51035 0.02269 1.48039 0.01000 1.51784 0.01499 1.23924 1.79996 0.587 

δ(−0.1) 0.10094 0.00062 0.08741 0.07643 0.10000 0.39353 0.14179 0.05078 0.761 

ξ1(1.5) 1.51045 0.02091 1.48244 0.00940 1.66500 0.02868 1.23038 1.78819 0.838 

ξ2(0.5) 0.48965 0.00273 0.47856 0.01144 0.49244 0.00556 0.3783 0.57855 0.767 

δ(0.1) 0.10214 0.00086 0.08218 0.11120 0.10627 0.00827 0.04797 0.15669 0.529 

ξ1(2) 2.24066 0.05009 2.19633 0.00996 2.25181 0.02230 1.39123 2.39339 0.808 

ξ2(5) 5.55327 0.31777 5.43900 0.01039 6.09093 0.09487 4.69648 7.48499 0.912 

δ(−0.6) 0.62945 0.01570 0.57359 0.04752 0.64180 2.54250 0.84895 0.41285 0.918 

ξ1(5) 4.95800 0.29036 4.99059 0.00916 5.05558 0.05108 4.59938 6.61254 0.672 

ξ2(2) 2.01799 0.03279 1.87250 0.01072 2.05131 0.01825 1.43346 2.11660 0.784 

δ(0.6) 0.56235 0.01390 0.51283 0.04550 0.57458 0.02392 0.35183 0.79372 0.377 
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Table 3   Average estimate and risk for the BITL parameters under informative prior 

Parameter 
SELF MQSELF PLF 

LCL UCL H.B. 
EST Risk EST Risk EST Risk 

n = 20 
 ξ1(0.5) 0.43249 0.00686 0.40417 0.03235 0.44035 0.01571 0.30116 0.58144 0.612 

ξ2(1.5) 1.60513 0.05361 1.53043 0.02456 1.62174 0.03323 1.18865 1.99847 0.601 

δ(−0.1) 0.10609 0.00078 0.08406 0.08948 0.10453 0.41051 0.14691 0.05360 0.255 

ξ1(1.5) 1.54243 0.0583 1.42217 0.02779 1.55468 0.03854 1.06090 1.93147 0.783 

ξ2(0.5) 0.52736 0.00798 0.48353 0.03302 0.53487 0.01503 0.36722 0.68984 0.551 

δ(0.1) 0.09680 0.00113 0.07207 0.14207 0.10690 0.01135 0.04035 0.15248 0.159 

ξ1(2) 2.22012 0.04563 2.17301 0.01118 2.23037 0.02396 1.79964 2.49816 0.568 

ξ2(5) 5.95027 0.66921 5.86365 0.0282 5.97126 0.13155 3.64046 6.72753 0.273 

δ(−0.6) 0.58369 0.01211 0.56601 0.03557 0.61755 2.45043 0.79959 0.42806 0.254 

ξ1(5) 5.42905 0.73468 5.15778 0.02927 5.49630 0.13449 3.85847 6.91938 0.504 

ξ2(2) 1.96534 0.05999 1.90552 0.01529 1.98054 0.03041 1.50254 2.39927 0.337 

δ(0.6) 0.56500 0.01251 0.52761 0.03685 0.57491 0.02066 0.40270 0.75940 0.150 

n = 50 

 ξ1(0.5) 0.46177 0.00461 0.44236 0.02122 0.46674 0.00994 0.32832 0.58832 0.823 

ξ2(1.5) 1.62633 0.03699 1.57672 0.01591 1.63767 0.02267 1.28794 1.99558 0.560 

δ(−0.1) 0.09771 0.00062 0.08455 0.07190 0.10081 0.39704 -0.13873 0.05036 0.117 

ξ1(1.5) 1.51784 0.03796 1.46678 0.01727 1.53006 0.02451 1.14212 1.89147 0.286 

ξ2(0.5) 0.52129 0.00446 0.49433 0.01794 0.52549 0.00885 0.36995 0.62674 0.474 

δ(0.1) 0.10277 0.00092 0.07749 0.12006 0.10313 0.00915 0.05095 0.15784 0.371 

ξ1(2) 1.88604 0.04534 1.84002 0.01214 1.89802 0.0205 1.50542 2.25897 0.454 

ξ2(5) 5.35037 0.41773 4.77927 0.01556 5.38927 0.07779 4.22675 6.65756 0.774 

δ(−0.6) 0.59271 0.01105 0.55494 0.03269 0.60196 2.38933 0.77121 -0.40705 0.297 

ξ1(5) 5.21843 0.20412 5.12841 0.00840 5.23349 0.04118 4.45937 5.97864 0.863 

ξ2(2) 1.97120 0.05172 1.95366 0.01326 1.97561 0.02550 1.73943 2.25417 0.337 

δ(0.6) 0.62428 0.01129 0.58554 0.03308 0.63302 0.01982 0.43793 0.79810 0.465 

n = 100 

 ξ1(0.5) 0.56471 0.00287 0.55451 0.00912 0.56725 0.00506 0.46440 0.67427 0.630 

ξ2(1.5) 1.48149 0.02339 1.45013 0.01067 1.48936 0.01574 1.19773 1.79059 0.943 

δ(−0.1) 0.10073 0.00061 0.09231 0.07161 0.10899 0.43016 0.14961 0.06307 0.276 

ξ1(1.5) 1.50301 0.03727 1.49107 0.01711 1.52228 0.02445 1.12757 1.86213 0.764 

ξ2(0.5) 0.50123 0.00440 0.50384 0.01717 0.50566 0.00841 0.40135 0.65058 0.465 

δ(0.1) 0.09856 0.00087 0.08194 0.11693 0.10248 0.00826 0.04312 0.15224 0.688 

ξ1(2) 1.93326 0.03340 1.89848 0.00909 1.94188 0.01724 1.60638 2.32037 0.491 

ξ2(5) 5.05434 0.25025 5.18832 0.00740 5.12012 0.04198 5.08042 6.91515 0.166 

δ(−0.6) 0.60767 0.01000 0.54959 0.02977 0.59219 2.35176 0.75216 0.40035 0.806 

ξ1(5) 4.94692 0.15733 4.86442 0.00586 4.96751 0.0301 4.07424 5.82884 0.456 

ξ2(2) 2.02179 0.01739 1.96920 0.00446 2.03454 0.00881 1.58973 2.42693 0.672 

δ(0.6) 0.60069 0.01098 0.55783 0.03270 0.61102 0.01747   0.40657 0.77996 0.971 
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Figure 4 K-S Plots for the BITL model for drought data 

 

 
Figure 5   K-S Plots for the BITL model for Burr data 

 
Table  4  MLE and Bayes estimates for the parameters of the BITL model for the drought data set 

Estimator  Method 1  
2     

Classical 
 MLE  1.0120 0.8920 0.4607 

 SE  0.1108 0.0984 0.4037 

NIP 

 SELF (Risk)   1.0424 (0.0083)   0.9132 (0.0051)   0.7896 (0.0067)  

 MQSELF (Risk)   1.0264 (0.0073)   0.8954 (0.0063)   0.9463 (0.0080)  

 PLF 
(Risk)  

 1.0463 (0.0080)   0.9159 (0.0055)   0.7938 (0.0085)  

 HPD Interval  (0.8573, 1.2208)  (0.7906, 1.0528)  (0.6505, 0.9268)  

Heidelberg test  0.4540 0.3810 0.8510 

IP 

 SELF 
(Risk)  

 1.0363 (0.0090)   0.9044 (0.0051)   0.7882 (0.0063)  

 MQSELF (Risk)   1.0209 (0.0086)   0.8864 (0.0065)   0.7695 (0.0105)  

 PLF 
(Risk)  

 1.0406 (0.0086)   0.9072 (0.0056)   0.7921 (0.0080)  

 HPD Interval  (0.8666, 1.2281)  (0.7615, 1.0350)   0.6516, 0.9220)  

Heidelberg test  0.6450 0.8950 0.5220 
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Table  5  MLE and Bayes estimates for the parameters of the BITL model for the Burr data set 

Estimator  Method 1  
2     

Classical 
 MLE   45.4087   50.8509   0.6622  

 SE   5.9351   5.9316   0.4057  

NIP 

 SELF (Risk)   44.7918 
(22.1932)  

 43.7812 
(0.0115)  

 45.0389 
(0.4941)   MQSELF (Risk)   50.5703 

(24.5617)  
 49.5712 
(0.0100)  

 50.8126 
(0.4845)   PLF 

(Risk)  
 0.6839 

(0.0230)  
 0.6125 

(0.0551)  
 0.7006 

(0.0333)   HPD Interval   (35.1194,  52.3941)   (41.8500, 59.5972)   (0.4191 0.9353)  

Heidelberg test   44.7918 
(22.1932)  

 43.7812 
(0.0115)  

 45.0389 
(0.4941)  

IP 

 SELF 
(Risk)  

 45.2191 
(16.4116)  

 44.4838 
(0.0082)  

 45.4002 
(0.3622)   MQSELF (Risk)   50.0103 

(18.3992)  
 49.2706 
(0.0075)  

 50.1939 
(0.3672)   PLF 

(Risk)  
 0.6721 

(0.0231)  
 0.6002 

(0.0562)  
 0.6891 

(0.0339)   HPD Interval   (38.1260, 53.1879)   (42.1901, 58.3946)   (0.4125, 0.9259)  

Heidelberg test   0.6470   0.2600   0.5850  

 
Table 6 Model selection for the drought and Burr data sets 

Data Copula Model -LogL AIC BIC AICc HQIC 

I 
FGM 

BITL BE 
477.0847 

503.3512 
960.1694 967.4259 960.4732 963.0847 

FGM 1012.702 1019.959 1013.006 1015.618 

 FGM BW 491.9845 993.969 1006.063 994.7482 998.8278 

II 

FGM BITL 110.6555 215.311 209.5749 214.7893 213.1267 

FGM BGE 106.936 203.872 194.312 202.5084 200.2315 

Clayton BGE 106.116 202.231 192.671 200.8564 198.5795 

FGM BIL 87.565 169.130 163.3939 168.6083 166.9457 

 FGM BP 84.524 163.048 157.312 162.5263 160.8637 

  FGM BG 84.453 164.906 161.082 164.6507 163.4498 
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