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Abstract

Acceptance sampling provides a mid-way between zero and 100% inspection, which can
provide a statistically reliable inference on deciding whether or not to accept the entire lot based on a
sample inspection. If the prior information is available then according to experts, Bayesian approach
is the best approach to reach a correct decision. Based on the Bayesian approach, this study proposes
a Bayesian modified group chain sampling plan (BMGChSP) to estimate the average number of
defectives. The Poisson distribution is used to estimate the average number of defectives and gamma
as a prior distribution for the average probability of acceptance. Instead of basing a sampling plan
one point-wise description of quality like the conventional plans, the proposed plan uses quality
range for a wider coverage and offers better protection to both consumer’s and producer’s. In this
paper by considering consumer’s risk and producer’s risk, quality regions are estimated for the
average probability of acceptance. For all quality regions, acceptable quality level (AQL) and
limiting quality level (LQL) are used to find design parameters for BMGChSP. Where AQL is
associated with consumer’s risk and LQL is associated with producer’s risk. The values based on all
possible combinations of design parameters for BMGChSP are tabulated and inflection points are
found. Based on the minimum number of defective the finding exposes that BMGChSP is a better
substitute for industrial practitioners. In comparison study by OC curves, it is concluded that the
proposed BMGChSP plan gives a smaller number of defective than the existing BGChSP.

Keywords: Acceptance sampling, gamma, Poisson, prior distribution

1. Introduction

Quality is not just an option or aim for companies, but also a necessity for businesses in the
world market. There are two important techniques for quality assurance: one is statistical process
control and the other is acceptance sampling. Acceptance sampling is a very common technique in
which a decision is made about a lot under inspection to either accept or reject based on
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representative samples (Montgomery 2009). During World War II, the US military introduced
acceptance sampling to test the reliability of bullets. If no bullets were tested in advance (zero
inspection), then there may be a possibility of providing malfunctioned bullets to the army.
However, such testing is destructive, thus making it impossible to test each bullet (100% inspection)
and owing to the urgency in supplying the bullets, only a representative sample of the bullets were
tested. Acceptance sampling provides a mid-way between zero and 100% inspection, which can
provide a statistically reliable inference on deciding whether or not to accept the entire lot based on a
sample inspection.

Experimenters cannot carry out an almost 100 percent inspection because it is more expensive
and time consuming than inspecting several units (sample). Thus, acceptance sampling provides the
tools to deal with such situations. For instance, it is extremely destructive to test each object when
electro-product is tested (bulbs, fans, tube lamps and mobiles). It is therefore not feasible for the
manufacturer to check the quality and reliability of all products. In such situation, acceptance
sampling is helpful in inspection or testing of some products. Over the decades multiple sampling
plans have been proposed in literature. The development of these plans is driven by three factors, the
first being a smaller sample size, n. The smaller sample size reduces the inspection time and hence
minimizes the cost. The second factor is the probability of lot acceptance (PA). The sampling plan
with a lower PA for bad lots is always the consumer’s priority as it reduces their risk of receiving
defective products. The third factor is a platform for multiple inspections, where the number of
products is placed into groups and inspections for each group are constructed simultaneously. This
technique of group chain reduces the cost and inspection time.

Some studies consider another factor in developing a sampling plan called product quality
variation. Their studies employed prior information to construct Bayesian sampling plans for SSP
and ChSP only, without considering the platform for multiple inspections. If past information about
the product is available, then Bayesian plans can be used to make a decision. An efficient quality
improvement program can increase productivity at a reduced cost (Latha and Arivazhagan 2015).

The first time Dodge (1955) introduced a chain sampling plan for inspection by considering cost
as a linear function of p. To reduce the average cost, Hald (1964) developed a single sampling plan

(SSP) for attribute. Latha and Suresh (2002) defined the plan for construction and performance
measure by using gamma prior in advance for the BChSP. For construction and performance
assessment for the quality region, Latha and Arivazhagan (2015) addressed the Bayesian double
sampling plan by using beta prior.

For the Pareto distribution, the efficient group acceptance sampling plan (GASP) was
introduced by Mughal and Aslam (2011). If for inspection multiple testers are available, then group
acceptance sampling plans are used to inspect more than one product at once. In group sampling
plans, total sample size is divided into equal groups. The evaluation of the design parameters for the
economic reliability group acceptance sampling plan was carried out by Mughal and Aslam (2011).
For the given sample size, producer’s risk and acceptance numbers, they obtained a small
termination time. It showed that the less test termination time required in the proposed plan was
shorter than that of the plan established by Rao (2009). Various combinations of design parameters
were used to make comparisons between Poisson and the weighted Poisson distributions. A more
suitable selection of OC curve tables was also presented. Moreover, Aslam et al. (2011) proposed
group sampling plan for the Rayleigh distribution. The findings in all these studies, group sampling
plans perform much better than the old SSP in aspects of reducing inspection time and cost.

Jamaludin et al. (2016) developed a modified group chain sampling plan (MGChSP) for
truncated life test when the lifetime of a product follows Rayleigh distribution. Small numbers of
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groups and OC curve values are found for pre-specified consumer’s risk, mean ratio and test
termination time. Mughal (2018) worked on MGChSP by considering several values of the
proportion of defectives and for pre-specified consumer’s risk. He reports the PA and the small
number of groups to reduce sample size. Aziz et al. (2017) considered the generalized MGChSP for
Pareto distribution of second kind based on non-symmetrical data and compare the performance with
Mughal and Aslam (2011).

Based on Mughal and Aslam (2011), a BGChSP was proposed for binomial distribution for the
average PA with beta as a prior distribution (Hafeez and Aziz 2019). With the growing demands on
customer quality and new product technology innovation, many current quality assurance methods
and strategies need to be updated. Many researchers work on MGChSP for the proportion of
defectives, but they consider only binomial distribution and estimate pointwise quality measures
based on current information. Hafeez and Aziz (2019) plan was extended for BMGChSP by Hafeez
and Aziz (2022). For same design parameters, their proposed plan gives less proportion of defectives
then existing plan. This study is limited to the average number of defectives and a BMGChSP is
developed to estimate the average proportion of defectives. By using quality region approach four
quality regions are estimated in this paper that satisfy both risks. For each quality region acceptable
quality level (AQL) and limiting quality level (LQL) are defined. Where AQL is associated with
consumer’s risk and LQL is associated with producer’s risk. To designs BMGChSP, indexed

parameters are consumer’s risk (&), producer’s risk (f), prior shape parameter (s), preceding lots

(i), and available testers (7).

2. Methodology

2.1. Operating procedure
The modified group chain sampling plan (MGChSP) procedure is based on the following steps:
1. Inspect a sample of size n from current lot and divide it to an optimal number of g groups

and allocate r items to each group, that is the required sample size n = rg.

2. Count the number of defective d.

3. Accept the lot if d =0 in current sample and immediately preceding ; samples have no
defective, i.e., d, =0.

4. Accept the lot if ¢ = 0 in current sample and preceding i samples have only one defective,

ie, d =L

5. Reject the lot if more than zero defectives are found in the current lot d >1.
All the above steps can be summarized in a flow chart, as shown in Figure 1.
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‘ Inspect a sample of size n = r * g, from current lot ‘

I

| Count number of defectives, d |

\

Figure 1. Operating procedure of MGChSP for i =2

For MGChSP, the procedure can be illustrated through a tree diagram for i=2 in Figure 2,

where defective and non-defective products are denoted by D and D, respectively.
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Figure 2. Tree diagram of MGChSP for i =2

From Figure 2, the outcomes that meet acceptance criteria for i =2 in chain sampling are
{DEE,EDZ_),EEI_)}. From the tree diagram, we can observe that MGChSP has three acceptance

criteria (AC) that is tighter than the existing BGChSP. The PA for MGChSP can be written in the
following form.

L(p)MGChSP = Pl,(r*g)PO,(r*g)PO,(r*g) + P(),(r*g)E,(r*g)PO,(r*g) + E),(r*g)E),(r*g)R),(r*g) > (1)
3 2
L(P)vcense = (B),(r*g)) + ZE,(r*g) (Po,(r*g)) : @)

The usual expression of the PA for MGChSP based on (2) for i =2 is

L(P)ucersr = (Po,(r*@ )Hl +IB (g (Poxr*g) )[ : 3)
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When developing the procedures, L(p) can be calculated for the chain acceptance sampling
plans, with the assumption that the underlying distribution for the plan is following either binomial
or Poisson distribution (Latha and Arivazhagan 2015, Hafeez and Aziz 2019, Rosaiah and Kantam
2005, Suresh and Sangeetha 2005). The Poisson distribution is applicable for the proposed plans
with the following conditions:

[ The experiment has a smaller probability of defectives, i.e., np <0.10.

[ The sample fraction is less than 10%.
[J The outcomes of the lot consist of identical and independent products.
The Poisson distribution has sample size n, and parameter x=np be the average number of

defectives. In group chain n =rg, therefore Poisson distribution function can be written as

rep d
P(d) = %- “
By substituting d =0 and d =1, the PA from (4) is obtained as follows:
B=e, 5)
R =rgpe™. (6)

Therefore n=rg and p=np =rgp, PA can be written by putting (5) and (6) in (3), after solving we

obtain
L(P)yeensy = € ) +irgpe . @)
As Poisson distribution and gamma distribution belongs to exponential family therefore, we can
use gamma as a prior distribution. Hence the PDF of the gamma distribution for unknown parameter
pis
ts
O

with s >0 shape parameter, ¢ >0 rate parameter and mean x=s/¢t. For BMGChSP, the general

f(p)= e, ®)

equation used in Bayesian approach is

P= IL(p)MGChSPf(p)dp' )

After replacing (7) and (8) in (9), we obtain

tS

P — ° efrgp(Hl) + irgpefrgp(iﬂ) psflefzpdp (10)
I Iy
P t F(s) _tirg [(s+1) _ (1)
F(S) (rg(i+l)+t)‘ (rg(i+l)+t)‘

s

( - ! j +irg St —
rg(i+1)+t (rg(i+1)+t)

Replace mean p=s/t in (12) then, we get

s s+l
s s
P=|———| +irgyy| ——| . 13
(rg,u(i+1)+sj gﬂ(rg,u(i+l)+sj (13)
After simplifying (13) for s =1,2,3, we get

(12)
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P:

=—+ir,
rgu(i+1)+1 g4

(reu(i+1)+2)’

27

(rg,u(i+ D+3

+irgu

+irgu
)3

(rgy(i+1)+l)2

(reu(i+1)+2)

81

(rg,u(i +1)+ 3)4 .
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(14)

(15)

(16)

By using Newton’s approximation, Equations (14)-(16) are used in simulation of BMGChSP,
where reducing P to the limited values and x is used as a point of control. Then the generated

average number of defectives are shown in Table 1.

Table 1. The generated average number of defectives for specified values of P certain gu values

in BMGChSP

s r i 0.99 0.95 0.90 0.50 0.25 0.10
1 2 1 0.0050 0.0252 0.0515 0.4045 1.1615 3.4147
2 0.0049 0.0229 0.0446 0.3114 0.8732 2.5428

3 0.0047 0.0204 0.0383 0.2500 0.6927 2.0076

4 0.0045 0.0182 0.0333 0.2081 0.5724 1.6544

3 1 0.0033 0.0168 0.0343 0.2697 0.7743 2.2765

2 0.0032 0.0153 0.0297 0.2076 0.5822 1.6952

3 0.0031 0.0136 0.0256 0.1667 0.4618 1.3384

4 0.0030 0.0122 0.0222 0.1387 0.3816 1.1029

4 1 0.0025 0.0126 0.0257 0.2022 0.5807 1.7073

2 0.0024 0.0115 0.0223 0.1557 0.4366 1.2714

3 0.0023 0.0102 0.0192 0.1250 0.3463 1.0038

4 0.0023 0.0091 0.0167 0.1040 0.2862 0.8272

2 2 1 0.0050 0.0251 0.0508 0.3376 0.7670 1.5987
2 0.0049 0.0231 0.0447 0.2600 0.5715 1.1714

3 0.0047 0.0210 0.0389 0.2086 0.4509 0.9169

4 0.0046 0.0189 0.0341 0.1734 0.3713 0.7516

3 1 0.0033 0.0168 0.0339 0.2250 0.5113 1.0658

2 0.0033 0.0154 0.0298 0.1733 0.3810 0.781

3 0.0032 0.0140 0.0260 0.1390 0.3006 0.6113

4 0.0030 0.0126 0.0227 0.1156 0.2475 0.501

4 1 0.0025 0.0126 0.0254 0.1688 0.3835 0.7993

2 0.0025 0.0116 0.0224 0.1300 0.2858 0.5857

3 0.0024 0.0105 0.0195 0.1043 0.2255 0.4585

4 0.0023 0.0095 0.0170 0.0867 0.1857 0.3758
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Table 1. (Continued)

s r i 0.99 0.95 0.90 0.50 0.25 0.10
2 1 0.0050 0.0251 0.0506 0.3189 0.6736 1.2659
2 0.0049 0.0233 0.0449 0.2458 0.5000 0.9212

3 0.0047 0.0212 0.0392 0.1971 0.3936 0.7183

4 0.0046 0.0192 0.0345 0.1638 0.3236 0.5874

3 1 0.0033 0.0167 0.0338 0.2126 0.4491 0.8440
2 0.0033 0.0155 0.0299 0.1638 0.3333 0.6141

3 0.0032 0.0141 0.0262 0.1314 0.2624 0.4789

4 0.0031 0.0128 0.023 0.1092 0.2158 0.3916

4 1 0.0025 0.0126 0.0253 0.1595 0.3368 0.6330
2 0.0025 0.0117 0.0224 0.1229 0.2500 0.4606

3 0.0024 0.0106 0.0196 0.0985 0.1968 0.3592

4 0.0023 0.0096 0.0172 0.0819 0.1618 0.2937

2.2. Designing of quality regions for BMGChSP
2.2.1 Quality decision region (QDR)

In QDR, the product is accepted between two probabilities that are a maximum 0.95 associated
with AQL represented by z4 and a minimum 0.90 associated with LQL represented by . Figure 3

explains that QDR is defined as g4 < u < g, and range is denoted by d, = s — 44;.

~ ; s+ir ; s+l
rgu+1)+s s reu(+0)+s)

The mean of gamma g =s/¢ is the approximate average quality of product.

Py <p<p)

095~ NI @
090771 B
0.50
p
005 | |
H1 4, He

Figure 3. OC curve with the corresponding points for QDR

2.2.2 Probabilistic quality region (PQR)
In PQR, the product is accepted between two probabilities that are a minimum probability of
0.10 and a maximum probability of 0.95. Figure 4 explains that PQR is defined as g < < g, and

its range is denoted by d, = p, — .
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Figure 4. OC curve with the corresponding points for PQR

2.2.3 Limiting quality region (LQR)
In LQR, the product is accepted between two probabilities that are a minimum probability of 0.1
and a maximum of 0.9. Figure 5 explains that LQR is defined as g, < ¢ < 4, and range is denoted

by d; = p, — ..

s+1

Pl <m<p)|— ) virgu —
rgu(+1)+s rgu(+1)+s

0.90

0.50

0.10

P

ds
Figure 5. OC curve with the corresponding points for LQR
2.2.4 Indifference quality region (IQR)

In IQR, the product is accepted between two probabilities that are a minimum probability of
0.50 and a maximum of 0.9. Figure 6 explains that IQR is defined as g < u# < g, and range is

denoted by d, =y, — 14,
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Figure 6. OC curve with the corresponding points for IQR

2.3. Selection of sampling plan
In Table 2, the ranges of QDR (gd, ), PQR(gd,), LQR(gd;) and IQR(gd, ), are shown with

corresponding  design parameters s, and i. Where the operating ratios are

Tzﬂ*_ﬂlzgﬂ*_g/ﬁ’ leﬂ*_ﬂl and Tzzﬂ*_ﬂ]
=t SH, —8H Hy = Hs Hy—Hy
sampling plan. For any given values of QDR (d1 ), PQR(a’2 ), LQR(d3) and IQR(a’0 ), We can find

, which are used to characterize the

d
the operating ratio T =%, A :d_l and T, = % In Table 2, find the value under the columns 7,7,
2 3 0

and T,, which is approximately equal to the specified ratio and note the value of design parameters.
From this ratio, we can determine the small value of g and other design parameters for the
BMGChHSP.

2.3.1 Numerical examples
Given that g4 =0.01,r=2,5s=2 and i =4 compute the respective values of QDR, PQR, LQR,

IQR, 7,7, and T, from Table 2. The nearest values are gd, =0.0152, gd, =0.7326, gd, =0.7175,
gd, = 0.1545 with operating ratios 7' =0.02071, 7, =0.02115 and 7, =0.09822. From Table 1, the
corresponding value of gz =0.0189 from which the required smallest number of groups can obtain
g=gu, /1,=00189/0.01=1.89=2. Thus, the selected parameters for BMGChSP are
g=2,r=2,5s=2 and i=4. Also, the values of QDR d, =0.0080, PQR d, =0.3876, LQR
d,=0379, IQR d,=0.0817, with the operating ratios 7 =0.02071, 7, =0.02115 and
T, =0.09822.
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Table 2. Range of quality regions and operating ratios for specified s, » and i

s g gl gy &M gd, gd, gd; gd, T T T

1 2 1 00252 00515 04045 34147 00263 33895 33632 03793 0.00776 0.00782  0.06932

2 00229 00446 03114 25428 00217 25199 24982 02885  0.0086 0.00867 0.07510

300204 00383 02500 20076 00179 19871 19692  0.2296  0.0090 0.00909  0.07794

4 00182 00333 02081 1.6544 00151 16362 16211 0.1898 0.00922 0.00931  0.07947

31 00168 00343 02697 22765 00175 22596 22421 02529 0.00776 0.00782  0.06932

200153 00297 02076 1.6952 0.0144 16799  1.6655 0.1924 0.00860 0.00867  0.07509

300136 00256  0.1667 13384 00119 13247 13128 01530 0.00901  0.00910  0.07802

4 00122 00222 01387 11029 0010 10908 1.0807 0.1265 0.00920 0.00929  0.07935

4 1 00126 00257 02022 17073 00131 16947 1.6816 0.1896 0.00775 0.00781  0.06929

2 00115 00223 01557 12714 00108 12599 12491  0.1442  0.00859 0.00867  0.07504

300102 00192 01250 1.0038 00090 09936 09846  0.1148 0.00902 0.00910  0.07808

4 00091 00167 0.1040 08272 0.0075 08181  0.8106 0.0949 0.00921 0.00929 0.07936

2 2 1 00251 00508 03376 15987 00257 15735 15478 03124 001633 0.01660 0.08224

200231 00447 02600 1.1714 00216 11483  1.1267 0.2368 0.01881 0.01917  0.09120

300210 00389 0208 09169 00179 08959 0.8780  0.1876 0.02003  0.02044  0.09569

4 00189 00341 01734 07516 00152 07326 07175  0.1545 0.02071  0.02115  0.09822

3 1 00168 00339 02250 10658 00171 1.0490 10319 02083 001632 0.01659 0.08220

2 00154 00298 01733 07810 00144 07656 07511  0.1579 0.01883 0.01919  0.09126

300140 0026 01390 06113 00120 05973 05853  0.1251 0.02006 0.02047  0.09579

4 00126 00227 0.1156 05010 00101 04884 04783  0.1030 0.02069 0.02112  0.09809

4 1 00126 00254 01688 07993 00128 07867 07739 0.1562 0.01631 0.01658 0.08214

2 00116 00224 01300 05857 00108 05741 05634 0.1184 001878 0.01914 0.09103

300105 00195 0.1043 04585 0.0090 04480 04390  0.0938  0.02003 0.02044  0.09568

4 00095 00170 00867 03758 00076 03663 03587  0.0772 0.02071  0.02114  0.09819

3 21 00251 00506 03189 12659 00255 12408 12153 02938 0.02057 0.02101  0.08688

200233 00449 02458 09212 0.0216 08979 0.8763  0.2225 0.02403 0.02463  0.09699

300212 00392 01971 07183 00180 0.6971 06791  0.1759 0.02589  0.02658  0.10262

4 00192 00345 0.1638 05874 00153 05682 05529  0.1446 002691  0.02765 0.10573

3 1 00167 00338 02126 08440 00170 08272 08102 0.1959 0.02057 0.02101  0.08688

200155 00299 0.1638 06141 00144 05986 05842  0.1483  0.02403  0.02462  0.09698

300141 00262 0.1314 04789 00120 04647 04527  0.1172  0.02589  0.02658  0.10261

4 00128 0023 01092 03916 00102 03788 03686 0.0964  0.0269 0.02764 0.10569

4 1 00126 00253 01595 06330 00128 0.6204 06076 0.1469 0.02056 0.02100  0.08684

2 00117 00224 01229 04606 00108 04489 04382  0.1112 00240 0.02459  0.09687

300106 00196 00985 03592 00090 03486 03396  0.0879 0.02579 0.02647 0.10227

4 0009 00172 00819 02937 0.0076 02841 02765 0.0723 002672 0.02745  0.10503

2.3.2 For specified QDR and PQR
When QDR and PQR are specified, then Table 2 is used to construct the plan for any values of

d, and d, we can find ratio, T =d,/d,. Find the value which is approximately equal to the

specified ratio under column 7" in Table 2 and note the corresponding values of s,7 and i. By this

procedure, we can find the parameter values for BMGChSP.
Let in a manufacturer company required QDR d, =0.002 and PQR d, =0.075, then the

calculated operating ratio is 7 =0.02667. The value from Table 2, is obtained to be 7' =0.02589,
with design parameters s=3,r=3 and i=3. So, for this operating ratio gd, =0.0120 and
gd, =0.4647, then the value of g=gd,/d =0.0120/0.002=6. Hence for the required QDR
d, =0.002 and PQR d, =0.075, design parameters of BMGChSP are s =3,g=6,r=3 and i=3.
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2.3.3 For specified QDR and LQR

Let a manufacturer required QDR d, =0.001 and LQR d, =0.09, then the calculated operating
ratio is 7; = 0.0222. From Table 2, the value is found to be 7; =0.01919, with design parameters
s=2,r=3 and i=2. So, for this operating ratio gd, =0.0144 and gd, =0.7511, then the value of
g=gd /d =0.0144/0.001=14.4=15. Hence for the required QDR d,=0.001 and LQR
d, =0.05, design parameters of BMGChSP are s =2,g =15,r=3 and i =2.

2.3.4 For specified QDR and IQR
Let in a manufacturer company required QDR d, =0.01 and IQR d,=0.09, then the

calculated operating ratio is 7, =0.1111. From Table 2, the value is found to be 7, =0.10573, with
design parameters s=3,r=2 and i=4. So, for this operating ratio gd, =0.0153 and
gd, =0.1446, then the value of g =gd, /d, =0.0153/0.01=1.53=2. Hence for the required QDR
d, =0.01 and IQR d, =0.09 design parameters of BMGChSP are s =3,g=2,7 =2 and i=4.

3. Results
3.1. Graphs and discussion

Consider shape parameter s=2 and number of testers »=3, then for changed value of
i=1,2,3,4 the OC curves are presented in Figure 7.

0.9
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0.6
0.5
0.4

0.3

8H

Figure 7. OC curves of each value of i for s =2 and »=3.

OC curves for s =2,i =3 and more than one number of testers » =2,3,4, are presented in Figure 8.
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Figure 8. OC curves of each value of r for s =2 and i=3.

OC curves for » =4,i =3 and changed in shape parameters s =1,2,3 are shown in Figure 9.
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Figure 9. OC curves of each value of § for » =4 and i=3.

It can be noted from Figures 7 to 9, that as the values of 7,7 and s increase, the ideal OC curve
can be achieved and approach to the less proportion of defectives for the same value of PA.

3.2. Comparison study

For comparison purposes, we consider a plan BGChSP proposed by (Hafeez et al. 2022). The
proposed BMGChSP and existing BGChSP both consider Poisson distribution for the average
number of defective with gamma prior. For the same design parameters in Figure 10, OC curves for
both plans are represented. The average number of defectives for both plans is represented for
s=2,r=3 and i=2.
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Figure 10. OC curves of BMGChSP and BGChSP for s =2,7 =3 and i=2.

From Figure 10, it can be observed that the proposed BMGChSP gives more ideal OC curve
than the existing BGChSP. This explains that for the same design parameters, BMGhSP gives a
smaller number of defectives than BGChSP. When values of design parameters increase, their effect
on AQL, LQL, range of quality region and the probability of acceptance of a defective item is
indicated in Table 3.

Table 3. The effect of increasing parameter on AQL, LQL, range of quality region, and the
probability of acceptance of a defective product

Range of Probability of acceptance
Parameter AQL LQL . & . .
quality region defective product
Ky decrease decrease - decrease
decrease decrease - decrease
r decrease decrease - decrease
i decrease decrease - decrease
a increase no effect decrease decrease
p no effect decrease decrease decrease

We can observe from Table 3, that as values of s,g,r and i are increase, the AQL, LQL, range

of quality region and the probability of acceptance of a defective item are decreased. As the value of
«a increases, the value of AQL increase but it does not affect LQL because LQL does not depend on
a. AQL is the left-hand limit of quality region, hence the increase in the value of AQL is in fact
decrease in the range of quality region. As the value of S increase, the value of LQL decrease but it

does not affect the value of AQL because AQL does not depend on f.

4. Conclusions

The presented work in this paper is limited to the construction and selection of BMGChSP for
quality regions. For the specified consumer’s and producer’s risks, four quality regions are
estimated. This research presents the idea to estimate quality regions that are acceptable for both
parties. By considering the quality level of the lots and uses a criterion to reduce the risk for
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consumer and producer. All four quality regions are estimated for the possible combinations of
design parameters s,7,i,a and f. From OC curves, as the values of design parameters s,7 and i

increase, the average number of defective decreases. The effect of increase the value of @ and S

cause to decrease the range of quality region because AQL and LQL become close to each other. By
considering both risks this plan provide the acceptance regions for a lot. With small sample and for
different mean ratio, this plan has the ability to provide a more precise PA. Hence this study extends
the knowledge boundary in this area of research and gives benefit to both researchers and
practitioners. In future many other quality reliability characteristics with other distributions can be
discovered.
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