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Abstract

In this paper, we study different aspects of Exponential Intervened Geometric (EIG) distribution.
EIG distribution arises as the distribution of random minimum and is a generalization of extended
exponential distribution. The shape properties of the probability density function and hazard rate
function of EIG are studied, along with structural properties such as moments, moment generating
function, skewness and kurtosis, mean deviation about mean and median. Expression for various
reliability measures corresponding to EIG distribution are derived along with stochastic ordering
property. Expression for quantiles are obtained and random number generation is discussed. The dis-
tributions of order statistics are derived and limit distributions of sample extrema are obtained. Four
characterizations of EIG distribution are proved. The parameters of EIG are estimated through the
method of maximum likelihood (ML) and a simulation study is conducted to show the performance
of ML estimates. The existence and uniqueness of ML estimates are proved. The EIG model is fitted
to areal data set and is showed that the model performs better as compared to ten competitive models.
Also, the adequacy of the model for the data set is established using parametric bootstrap approach.

Keywords: characterizations, limit distribution of extremes, maximum likelihood, parametric boot-
strap, stochastic ordering.

1. Introduction

Recently there has been growing interest in developing new distributions that have capability of
modeling real data sets more appropriately as compared to existing models (see, Dey et al. (2019),
Lemonte (2013), Lemonte (2014) and Nadarajah et al. (2013)). Intervened type distributions have
found many applications in several areas such as epidemiological studies, life testing problems etc.
In epidemiological study, like cholera cases, various preventive actions are taken by health service
agency. The information regarding the effect of such actions taken by health service agency can be
obtained by Intervened Poisson distribution (IPD) considered by Shanmugam (1985). An advantage
of the IPD is that it provides information on how effective various preventive actions taken by health
service agents, where Poisson fails. The IPD is applicable in several areas such as reliability analysis,
queuing problems, epidemiological studies, etc. In life testing experiments, during the observational
period, the failed units are either replaced by new units or rebuilt. This kind of replacement changes
the reliability of a system as only some of its components have longer life. Quality engineer is
always interested in improving the quality and hence he keeps on making changes in the incidence
of defective items in the remaining observational period. A manager of supermarket, for instance,
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might decide to provide additional assistance at a service counter to speed up its service rate, and it
is of interest to study the impact of such decision on the queuing mechanism. IPD and Intervened
Geometric distribution (IGD) provide stochastic models to study the effect of such actions as they are
closer to real life situations.

The intervened type distributions such as intervened Poisson distribution, intervened Geometric
distribution and modified intervened Geometric distribution (MIGD) has been studied by several au-
thors. For example, see Shanmugam (1985), Shanmugam (1992), Huang and Fung (1989), Scollinik

(2006), Dhanavanthan (1998), Dhanavanthan (2000), Kumar and Sreejakumari (2016), etc.

Jayakumar and Sankaran (2019) introduced a new family of distributions using zero truncated
power series distribution. In this article, we consider a special sub-model in the new family of distribu-
tions, generated through compound intervened geometric distribution called Exponential Intervened
Geometric (EIG) distribution and is a generalization of extended exponential distribution studied in
Marshall and Olkin (1997) and Adamidis and Loukas (1998). We consider exponential distribution
as the base distribution due to its simplicity and popularity in life testing problems. In Section 2, we
discuss Intervened Geometric compounded family of distributions. In Section 3, Exponential Inter-
vened Geometric distribution is introduced. The shape properties of pdf and hazard rate are proved,
along with the compounding property. In Section 4, we derive various properties of the EIG dis-
tribution, such as moments, moment generating function (mgf), quantile function, random number
generation, skewness, kurtosis, mean deviation, Bonferroni curve and Lorenz curve. Also, some reli-
ability properties of the new model are discussed in Section 5. The distribution of order statistics is
investigated in Section 6. Various characterizations of EIG distribution are obtained in Section 7. In
Section 8, stochastic ordering property is proved for EIG random variables. Limiting Distributions of
Sample Extremes are obtained in section 9. The estimates of the model parameters are obtained using
maximum likelihood method in Section 10. The existence and uniqueness of maximum likelihood
estimates (MLEs) are proved. Simulation studies are carried out to show the performance of MLEs in
Section 11. In Section 12, we analyze a real data set to illustrate the use of the proposed distribution.

2. Intervened Geometric Compounded Family of Distributions

Let Y be the number of trials performed for some life testing experiment. Since the event Y = 0
is not observable, we consider a zero truncated geometric distribution for a positive integer valued
random variable Y with probability function

PY=y)=01-0)0;y=1,2,3,.., 0<0<1,

where 6 is interpreted as an incidence parameter. If failed unit is replaced by a new unit or rebuilt, it
is reasonable to assume that 6 changes. We assume that 6 changes to pf for 0 < p < % < oo where
p is an intervention parameter.

Let Z be the number of trials after some over hauling or servicing the mechanism. Hence Z
will have a geometric distribution with parameter pf, 0 < pf < 1 and Y and Z are stochastically
independent. Assuming that X = Y + Z represents the total number of trials, then the probability
function of X is given by

z—1

P(X=z)=> PY=x-)P(Z=IY =z-1),

= A=A =p0) ) et

(1=p)
Now the probability generating function of X is
(1- 0 0 T\ n—
J(s) _y =00 -p9) =20 = e,

z=1

_ (- )(1 - P9)
(1 —0s)(1 — phs)’
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Therefore, ~
(1 —_9)(1 — p@)F(_x)
(1— 6F(x))(1 - pbF(x))’

The corresponding cumulative distribution function (cdf) is given by

J(F(a)) =

- (1-0)(1 — pb) F(x)
G = = T GF @) ( — piF(@)) v

The survival function is given by

. (1—6)(1 - ph)F(a)

C) = TG (1 - P ) @
The probability density function (pdf) is given by
— _ 0252
o) = (1=0)(1 = pb) f(z)(1 = po~F (w));0<9<170<p<1. 3

(1= 0F(x))(1 = pfF(x))]? 0
3. [Exponential Intervened Geometric Distribution

Here, we study one member of intervened geometric compounded family of distributions namely
Exponential Intervened Geometric (EIG) distribution in detail.

Let X ~ Exponential(\) distribution, A > 0. Then F'(z) = e~**. Hence from (2) the survival
function of the new family of distributions is given by

- (1 —0)(1 — ph)e?*

G(z) = 4
() (1 —fe=>=)(1 — pfe=A=)’ @
whereO<9<1,0§p<%<oo,)\>0;x>0.
3.1. Probability density function
The pdf of the new distribution is given by
1—60)(1— pf)(1 — ph2e=22%) \e™ A2
9(@;p,0,A) = Sl 1] Coud ) Q)

(1= e~ 27)(1 = pe—r)]2 7

where A\ >0,0<0<1,0<p< % < o00. We refer to this new distribution as EIG with parameters
p, 0 and \. When p = 0 this distribution reduces to exponential geometric distribution introduced
and studied in Adamidis and Loukas (1998).

3.2. Compounding property

Compounding of distributions gives a method for deriving new families of distributions in terms
of the existing models. Let H(x|§),—0o < = < oo, be the conditional survival function of a con-
tinuous random variable X given a continuous random variable A. Let A follows a distribution with
the pdf m(d). A distribution with the survival function

H(x) = /_00 H(z|6)m(8) db, —oo <z < o0,

is called a compound distribution with mixing density m(¢). The following theorem shows that EIG
distribution can be expressed as compound distribution.
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Theorem 1 Let the conditional survival function of a continuous random variable X given A = §

be expressed as

(1— e ) (1 — pﬁefkm)])
(1—6)(1—phle=r= 7

H(z|6) = exp(§[1 — x> 0;

where 6,A > 0,0 < 0 < 1,0 < p < %. Let A follows an Exponential distribution with the pdf
m(8) = e~% & > 0. Then the compound distribution of X is EIG distribution.

Proof:
For all z > 0, the unconditional survival function of X is given by

H(z) :/I_{(xw)m(é)dé,
oo _ (1—0e= ) (1—phe=AT)
:/ ST a e e ]e—éd(s,
0
oo 5[_(1795“)(17;)96;—”)]
= e (1=0)(1—po)e=2=  “d§,
0

(1—0)(1— phle?®
(1 —Be=*)(1 — pfe=A=)’

which is the survival function of a random variable with EIG distribution.

3.3. Hazard rate
The hazard rate of EIG distribution is given by

)\(1 _ p02672)\m)

h(w; p,6,A) = (1 —fe=22)(1 — phe—2=)

(6)

Proposition 1 If F is a mixture of exponential survival function, then it has a decreasing hazard rate.
For proof, (see in Marshall and Olkin , 2007, p. 117).
Theorem 2 The hazard rate of EIG distribution is always decreasing.
Proof:
According to Theorem 1, EIG di stributiog can be written as a mixture of exponential survival function
with mean 1. Also by Proposition 1, if F' is a mixture of exponential survival function, then it has a
decreasing hazard rate. Therefore EIG distribution has decreasing hazard rate.
Proposition 2 Suppose that F(0) = 0 and F has a decreasing hazard rate, then F' has a density
except possibly for positive mass at the origin. There is a version [ of the density that is decreasing
and satisfies f(x) > 0, Vo > 0.
For proof, (see in Marshall and Olkin , 2007, p. 117).
Theorem 3 The density of EIG distribution is always decreasing.

Proof:
Proof follows easily from Theorem 2 and Proposition 2.
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4. Statistical Properties
4.1. Moments
Theorem 4 If X be a random variable having pdf in (5), then the " moment about origin of X is

ry_ TP =0)(1 = p8) [~ 0" <= (p0)"
E(X") = ) [ > ]

k=1 k=1
Proof:

(1—6)(1— phe>=
1 —0e=22)(1 — phe—>x)

By = [ " a1 G a)dr = /  pgr1 (

Using Partial fraction

1 1 p

(L= 0e ) (1—poe ) (1—p)(L—0e )  (L—p)(I— phe )’

T =0) (1 —p0) [ [ I 0 pmAzpr—l
poe) = " [ e [ eyt

(=) —p0) [ [ 2t . oo -l .
=y et [ et

r1—60)(1—pf) [ Tr SN0 pr S (ph)F
_r(d=0)(1—pf) p Z(p)].

(1-p) =t pOAT kT

k=0

> gp! I'p o ¢*
/ (7@ =—> 17 (seein Gradshteyn and Ryzhik , 2007, p. 354, 1039 ).
0

4.2. Mean and variance
The mean and variance of EIG are respectively given by

(1 =0)(1—p0) 1—pb
w00 = B (5]
V(X) = E(X?) - [B(X)]*,

E(Xz)_m—em—pw[“ m_i(w)k}

0X2(1 = p)

Table 1 Mean,variance,skewness and kurtosis of EIG distribution for different values of 8

(P, \) 0 3 4 5 6 7

p=.bA=1 mean 0.7701522  0.690437  0.6081977  0.5223081  0.4307772
p=.5\A=1 variance 0.7562818 0.6670369 0.5738593 0.4765803 0.3746623
p=.5A=1 skewness 3.346367 3.031433 2.665296 2.247382 1.777472
p=.5\A=1  Kkurtosis 8.833981 10.34129 12.37098 15.26324 19.76921

From Tables 1, 2 and 3, it can be seen that when A, p and 6 increasing, mean and variance are
decreasing.
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Table 2 Mean,variance,skewness and kurtosis of EIG distribution for different values of p

(6, ) P 5 7 9 1.1 13

0=51=1 mean 0.6081977  .5684559  0.524206 0.4741223 0.4161208
0 =.5\=1 variance 0.5738593 0.5246078 0.471465 0.413462  0.3491419
0 =.5\=1 skewness 2.665296 2442578  2.198364  1.927617 1.623032
0 =.5\=1 kurtosis 12.37098 13.65685  15.33012 17.6219 21.00731

Table 3 Mean,variance,skewness and kurtosis of EIG distribution for different values of \

(6, p) A 1 2 3 4 5
0=5p=.5  mean 06081977 03040988 02027326  0.1520494  0.1216395
0=5p=.05 varance 05738593 0.1434648 0.06376214  0.0358662  0.02295437
0=5p=.05 skewness 2665296  .166581  0.03290489 0.01041131 0.004264474
0=5p=.5 kurtosis 1237098 1237098  12.37098  12.37098 12.37098

4.3. Moment generating function
Theorem 5 If X ~ EIG(p,0, \), then the moment generating function of X is

n—1n—1

Mx() = (=01 =p) Y (e e e | 2]

n
|

nt = \y

provided n\ > t.

Proof:
If Xq) = Min(X1, X2, ...,Xn), where N ~ IG and each X; are independent and identically
distributed as Exponential(A) and X; is independent of N, then X (1) ~ EIG.

where gx ,, is the pdf of YV = Min(X1, X2, ..., Xn)-

We know that since N ~ IG ,

97171 n—1 n
P(N =n)=(1-0)(1- pb) py Z (y)F(n —y+ DT (y+ 1)pY.
s
Also 9x, (2) = ng(x) [1 - G(z)]""", where g(z) is the pdf of X;.
gx, () = nie ",
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My () = | S -0y - p0)° Z(Z) (n—y+ 1y +1)p / e nie” " dx
n=1 y=0 0
(- k&iemm "V -y + D0y + 1) |
- o) 2 2y y y+Dp" | S|

provided nA > ¢.

4.4. Quantile function and random number generation
For a non-negative continuous random variable X that follows the EIG distribution, the quantile
function x), is given by

.’,Up:

=1y | =pb +p0 — pb% — 1) — \/(ppd + p — p6> — 1)* — 4p0°(1 — p)°
X 2p60%(1 — p) ’

In particular, the median is

1 _(w —ph% —1) — \/(9(P2+1) — p02 —1)2 — pb?
= —log
p0?

T1
2

The random number generation from X that has EIG distribution can be done using the following
relation

(1 _ e—/\w)(l _ pQQe—kz)

(1 —fe=22)(1 — phe—>7)

= u, where u ~ U(0,1).

Thus

fll —(upl + ub — pf? — 1) — /(upf + uf — p6% — 1)2 — 4p0%(1 — u)?
x=—Ilo

XY 2002(1 — u)

One can use this to generate random numbers from EIG distribution when the parameters p, 6, A are
known.

4.5. Mean deviation about mean and median
The mean deviation of X about the mean p

Di(w = [ lo = lgla)ds = 2u6(0) ~ 2min).

where m(z) = [ zg(z)dx and G(.) denote the proposed cdf.
The mean dev1at10n of X about the median M
Dy(M)=pn— 2/ xg(x)dx = p — 2m(M).
M

Theorem 6 For the EIG(\, p,0) distribution, m(z) is given by

(1—-6)(1—ph) 1 1 e~
") =) [AZ (s~ =) oo ()

e N 1—p6
—log (1;)0@’\2‘) +log< 10)1.
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/Z x(l —0)(1 — pf)(1 — ph2e=2 %) e
0 [(1 = fe*)(1 — phle=A*)]2

A (19)_(;) ) UO I _xzeiz)gdﬂﬂ - p/oz (1_33;92_170)2(1:1:]

o _ 1—fe=N* ;ll 1—uq lfpee_’\“c lllog 1-up
100 U SIC S P Hoo (552)
1 1

0(1—p) —6 ui —p6 u3

where u; =1 —fe * and uy = 1 — p@e*)‘x.
Hence

U T A G /S
m(Z) = )\(1 — p) [/1 (1 _ ewl)Qd 1 p[ (1 — p9w2)2d 2‘| ’

1—“2

where w; = % and wy = 5

Also we have the result

/ logz dr — —logx +il / T
(a + bx)? :E_b(aerx) ab P\ )

(see in Gradshteyn and Ryzhik , 2007, p.239 ). Using this

e =i [M <<1 o= ele—w) 1o (W>
— log (%) +log (11_’;9> ]

4.6. Bonferroni and Lorenz curves
The Bonferroni curve B[F(x)] for the EIG distribution is defined by

1 xT
m/o y9(y)dy,

BlG(z)] =

_ 1 (-6 —ph) x( 1 - 1 )
pG(z)  OA1 —p) (1 — phe=>7) (1 — fe—>7)

l e~ l e\ L 1— p9
I\T = gee I\1= phe—>z Y9\1-¢ )|
where p is the mean and G(.) is the cdf of EIG distribution.

Also, the Lorenz curve of G(.) that follows EIG distribution is the graph of

L[G(z)] = B|G(2)]G ().

Theorem 7 The scaled total time on test transform of EIG distribution is

1 b 1 (1-6)(1—pb) (1 —0e=™) (1 - ph)
SIG0) = 5y, G0 = 5 ) [“)g ((1 ~ o0 (1= 0) ﬂ ‘
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Proof:

[ o= [ G TG ey
_a _(?)Elp; o0) :/Ot ’ %ka)dz _ p/Ot ufez_wdx} ,
0, (o) (1)

(L=0)(1—p) [, ( (1—6e) (1= ph)
S Taa-p ¥ ((1 = phe ) (1-6) )

5. Reliability Measures of EIG

5.1. Mean inactivity and strong mean inactivity time functions
Let X be a lifetime random variable with distribution function G(.). Then the mean inactivity
time (MIT) and strong mean inactivity time (SMIT) are defined by

1

¢ 1 ¢
G(t)/o G(z)dz;t > 0and Isprrr(t) = G(t)/o 2zG(x)dx;t > 0.

Carr(t) =

The next two theorems give expressions of MIT and SMIT for the EIG distribution.
Theorem 8 The MIT function of a lifetime random variable X with EIG distribution is
L[, =0)(1—ph) (L—0e™) (1= ph)
t) = t— l it>0
) =G { ni-p) T ppe (1-0) )]0
where G(.) is the cdf of the EIG distribution.

Theorem 9 The SMIT function of a lifetime random variable X with EIG distribution is
2(1—0)(1—pb) [ At 1— e
p 200 p8) (M) (1 e
A2(1—p) 0 1 — phe—>t

+e M (p@(pfe™,2,1) — B(Be M, 2,1)) + ®(0,2,1) — p®(pb, 2, 1))1 .

Ysmrr(t) =

G(t)

Proof:

/Ot 2xG(x)dx = /Ot 2z(1 — G(x))dx,

Az
=t2—-2(1-6 )(1 = pb) dx
( P /0 1796 Az) 17,096 Az)

2(1 - 1 — pb) b ogee
=12 - dx — —d
U = ee-m 2 || T ey
2 1 _ 1 _ 1—6fe™ t —1 1 1—uq
— t2 ( ,09 [/ Og( [ )dU1
1

9)\1—
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¢ 2(1—0)(1 — ph) e log w < logw
2T 1 — _0gW2
/0 2xG(x)dx =t (=) /1 T dw p/l dws | .

We have a result | (i‘sz)dz = %IOg‘zlog(a + bz) — % I log(‘;+bx) do.

1 b br . —b
Also /de —logalogz + gé(%,z,l),

where ® is known as the Lerch function.

O(z,s,0) = Z(v +n)7%2", |zl < 1;u#£0,-1, ...

n=0
(see in Gradshteyn and Ryzhik , 2007, p. 239, 1039 ).
Using this result we have

_ _ et
2 2(1 = 0)(1 —pb) [ At log 1—0e
A2(1 - p) 6 1 — ple—>t

Ysmrr(t) = Gtt)

+e M (p@(phe™,2,1) — d(he M, 2,1)) + ©(0,2,1) — p®(pb, 2, 1))] .

5.2. Residual life and reversed residual life functions
5.2.1 Residual lifetime function

The residual life is the period from time t until the time of failure and defined by the conditional
random variable R(;) = X —t|X > t,t > 0.

Theorem 10 Survival function of the residual lifetime Ry for the EIG distribution is
e~ (1 — e M) (1 — phe=t)

GR, (@) = (1= e 20 (1 — phe—ra+0)
Proof: - ~ -
The proof follows from the identity G g, (z) = Gg(:r)t), where G(.) is the survival function of EIG
distribution.

Corollary 1 The pdf and hazard rate function of R ;) are respectively given as

=)A= ppe ), ! p
me(x) = (1-)p) Ae (1— gefA(acht))Q - (1— pgefA(w+t))2
and
A (1 _ pee—)\(x-i-t)) p(l _ 96—)\(;8+t))
hie, (¥) = =— —Po—Matt) (1 — HPe—A(z+t)
D (1= phe+0)
Theorem 11 The mean of R ) for the EIG distribution is
I 1 ¢
E(R :_7/ x—tfxdxz_[EX—/xfzdx}—t,
(Ro) = g5 [ @=0@he = 5o B - [ ar@)
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5.2.2 Reversed residual life function
The reversed residual life is the time elapsed from the failure of a component given that its life
X <t and defined as the conditional random variable R(;) =t — X|X < t.

Theorem 12 The survival function of the reversed residual lifetime R(t) for the EIG distribution is

(1 _ efA(tfz))(l _ p9267>\(t71)) (1 _ 967)‘75)(1 _ p967>‘t)

G (@) = (1 — e AE=2)) (1 — phleMEt=2) (1 — e M)(1 — pf2e M)’

Corollary 2 The pdf and hazard rate function of R(t) are respectively given as

(1= =) (1 = phe) Ae A=) (14 p8%) — (1 + p) [1 = pB%e=2~)]

fre, () =

(1 — e 2)(1 — ph2e—At) [(1 = fe—2t=0))(1 — pgef)\(tfa:))]2
and
he (2) = Ae AE=D)((1 4 pf2) — O(1 + p)) [1 — ph2e=2A(E=2)]
Ry\T) = (1 — fe—At=2))(1 — pheAt=2))(1 — e AE=2))(1 — pf2e-A(t—2))"

Theorem 13 The mean of R(t) for the EIG distribution is

B(Ro) = g5 | (6= obfwyto =t = T,

Bl (T )
~log <1_€p;_kt> + log (11_”99> ]

6. Order Statistics

Let X1, Xo, ..., X, be a random sample of size n, from the EIG distribution and
X(1), X(2), --» X (n) denote the corresponding order statistics. It is well known that the pdf gr(x) of
rth (for r = 1,2, ..., n) order statistics Xy, when the population cdf G(z) is given by

G (o Z_j() 21— G

j=r

S )1

j=rl

Note that we can express the cdf of EIG distribution as

1—0)(1—pf) | & AE—Da)™ (1 1\
o) =1~ A= ’”[ZZ((W” (pee) ]

k=1m=0

Hence
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7. Characterization Results

This section deals with the characterizations of the EIG distribution based on hazard function,
reverse hazard function and conditional expectation of certain function of the random variable. These
characterizations employ theorems of Glanzel and Hamedani (2001) and Hamedani and Safavi-
manesh (2017).

7.1. Characterization based on hazard function
Theorem 14 Let X : Q — (0, 00) be a continuous random variable. The pdf of X is (5) if and only
if its hazard function hg(x) satisfies the differential equation

2X\p2e 22" A20e A (1 — pB2e A7) (p + 1 — 2pfe™ A"
hG(x)_—p e_ () =— i Pre )(p 2p€ );:E>0,
(1 — pf2e=2A7) [(1 — Be=2%)(1 — phe—>7)]
A(1—p6?)

with boundary condition lim,_,o hg(z) = I

Proof:

If X has pdf (5), then clearly the above differential equation holds.

Now, if the differential equation holds, then we have to show that the solution is the hazard function
he(z) of EIG distribution. Consider the differential equation

2\ 92 —2\x A29 -z 1— 92 —2\x +1-2 0 — Az
hb(x)—% c(r) =~ < ( e )(p 2'06 >;$>0-
(1 — pt2e=2A7) [(1 = Ge=2)(1 — phe—7)]
The solution of the differential equation hy, (x) + a(z)hg(z) = f(x) is
d
ha(z) = / u(a:)fgx; s C, where u(z) = e/ “®)9* is the integrating factor.
u(z

Here integrating factor, u(x) = m. Then

—>\(E Az
/ (@) f( d:c—)\29/ (2pbe™™* = (p+1) ~dz.
(1= fe=>o)(1 — phe—=)]?

Using partial fraction

1 ef)\x p2 e*/\x
/u(:z:)f(x)dx =% [(,0 9 / = 96_)@)2(1:0 "o / = p96_)‘$)2d$ )
A

T (1= e ) (1 — phe—rr)’
Then the solution is
A(L — pf2e=2\)
(1 — fe=27)(1 — ple—Ar=)’

which is the hazard function of EIG distribution.

ha(z) =

7.2. Characterization in terms of the reverse (or reversed) hazard function
Theorem 15 Ler X : Q — (0, 00) be a continuous random variable. The pdf of X is (5) if and only
if its reverse hazard function r¢(x) satisfies the following differential equation
, 3)\92—2Ax_)\ M1 =0)(1—=p0 -z _ 92—3A:t
TG(Z‘)—( 14 62 — )TG({E):— 7( )( 7/) )(e 7P € ) — .
(1 — pf2e=2A7) [(1—fe22)(1 — phe=22) (1 — e=2*)(1 — ph2e—7)]

(1—0e )1 —e ) (Ap@(l +0)e M — 2)\p203672)\z)

+ (1= pfe™")(1 — po?e ™) (A(l +0)e™ ™ — 2/\96*2*1') } ,
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with the boundary condition lim,_,o r¢(z) = 0.

Proof:

If X has pdf (5), then clearly the above differential equation holds.

Now, if the differential equation holds, then we have to show that the solution is the reverse hazard
function ¢ () of EIG distribution. Consider the above differential equation.

1
T (e AT — ph2e—3AT)

Here integrating factor, u(x)

)\9267/\z

Then/u(x)f(x)dx =A(1-0)(1 — ph) l/ —dx

(1=0)(1 = p)(1 = pf)(1 — fe=+)?
e e
- | T
B ML= 0)(1 = ph)
(1= fe22)(1 — e A7) (1 — pf2e—2)(1 — phe—>z)’

Then the solution is,

_ A1 —0)(1 — pf)e= (1 — ph2e=2 )
TG(I) - (1 — He—ka:)(l — e—)\l)(l _ p926—kx)(1 _ p9€_>‘z),

which is the reverse hazard function of EIG distribution.

7.3. Characterization based on the conditional expectation of certain function of the random
variable

Theorem 16 Let X : Q — (0,00) be a continuous random variable with cdf G(.). Let )(x) be a

differentiable function on (0, 00) such that

-1

1— e—)\m 1— 026—)\$ ﬁ
Y(z) =4 [1 - (El — 06)“13(1 —ppHeM%) ] , where § > 1.

Then E [(¥(2))°|X < z] = §(¥(x))°*; 2€(0,00), if and only if X ~ EIG distribution.

Proof: We have E [(1(2))°|X < z] = §(¢ ()%~

[ @) gtydn = soi@) - 6(a)
Taking derivatives on both sides of the above equation

($(@)°g(z) = 8 [(6 = D' () (4 (2))° G () + ((2))° g ()],

i@ )
o V@ wa 8

()¢

Using partial fraction
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Integrating both sides of the above equation and applying the limit x — oo

Glz) = {1 - w?:v)r_l'

-1

— e -1
We have ¢(z) = ll — (8 —96/\33()11 zee M;) 1 , where 0 > 1.

(1— e *)(1 — po?e”27)
(1 —0e=27)(1 — pe=r=)’

Then G(z)=

That is, X follows EIG distribution.

Theorem 17 Let X : Q@ — (0,00) be a continuous random variable with cdf G(.). Let ¢(x) be a
differentiable function on (0, 00) such that

-1

(1—6)(1— phle=?= L=
1.
1+((166”)(1p06“) , where § >

Then E [(¢(x))5|X >z] = 5(p(x))° L 2e(0,00), if and only if X ~ EIG distribution.

¢(r) =0

Proof:

We have E [(¢(2))°|X > z] = d(¢(z))° "

Taking derivatives on both sides of the above equation

($(@))g(x) = 8 [ — 1) () ($(x))P2Cla) — (6(2)) " g(@)] .
@) P
& V@G - @)

Using partial fraction

@) [ e HE
(0 ”{ ¢<x>+5_¢(x>]~

Integrating both sides of the above equation from 0O to =, we get

G(r) = [1+¢(§$)r 1.

-1

1—0)(1— phle " T
We have ¢(z) =6 |1+ <(1 (— Ge—lgc)(l [i )pge—xm)> 1 , where § > 1.
Then G(x) = (1—6)(1— p)eA=

(1 — fe=22)(1 — phe—Az)’

That is, X follows EIG distribution.
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8. Stochastic Ordering

Stochastic ordering of positive continuous random variables is an important tool for judging the
comparative behavior. A random variable X is said to be smaller than a random variable Y in the
following contexts:

* stochastic order (X < Y)if Fx(x) > Fy(z) forall z ;
* hazard rate order (X <p, Y)if hx(x) > hy(x) forall z ;

* mean residual life order (X <,,,; V) if Kx(x) < Ky () forall z ;

» likelihood ratio order (X <, Y) if ﬁf EB decreasing in z.
The four stochastic orders defined above are related to each other have the following implications
X<pY) =2 (X< Y)=> (X < Y).
Also (X <p V)= (X <4 Y).

Theorem 18 Let X ~ EIG(0,p1,)\) andY ~ EIG(0,p2, \). If p1 < p2 and 03 < 0 < 0y, then
X >, Yand hence (X >3, Y),(X 2 V), (X > V).

Proof:
The density ratio is given by

9z () [1 - ,019} [1 - p192€_2>@:| [1 - p296_>‘$:| 2

gy () 1—p20] [1— pa62e=222| |1 — p1fe=>=
It follows that

d . gx(z) a p2 pafe
—1 =2\~ -
dz 08 gy (z) c 1— pofle=r= 1 — pyfh2e—2Xr=

_ 1 pre=>*

— 2)\e ™" — .
€ (1 _ plge—)\m 1— p192e—2)\m>

Also we can show that

P1 _ pife™ < p2 _ pable
1— plgef)\z 1— p192672)\z 1— ,02067>‘x 1— p292€72)\m '

Then % log % > 0, which implies that (X >;. Y') and hence the remaining statements

follow from the above implication, which completes the proof.

9. Limiting Distributions of Sample Extremes

Let X1, X5, ..., X,, be a random sample of size n from an absolutely continuous distribution
with pdf g(z) and cdf G(z). Limiting distributions of sample minima X ;) = min(X1, Xo, ..., Xp)
and maxima X,y = max (X1, Xs, ..., X,,) can be derived by using the asymptotic results for X 1)
and X, given in Arnold et al. (1992) and Kotz and Nadarajah (2000).

For the minimum X ;) we have

lim P(X() <a, +b,2)=1— e x> 0,e> 0,

n—oo
of Weibull type, where a}, = G~(0) and b, = G~*(1) — G~%(0), if and only if G~*(0) is finite
and forall z > Oand ¢ > 0,

G(G1(0) + €t)

lm ——F——~ =2

o0t G(G1(0) +¢)

(6]
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For the maximum X ,,) we have

lim P(X(,) < an +byx) = e~ e4); —00 < x < 00,

n—oo

of Extreme value type, where a,, = G™'(1 — +) and b, = [n.f(a,)] " if lim,_,g-1(1) % (%) =0.
The following theorem gives the limiting distributions of the smallest and largest order statistics
from EIG distribution.

Theorem 19 Let X (1) and X ) be representing the smallest and largest order statistics from
EIG(p,0, \) distribution. Then

I lim P(Xqy <al+biz)=1—e "2 >0,¢>0,
n—roo
=G H0)and b, = G~ (1) - G71(0)

where a n
and G~1(.) is the quantile function of EIG distribution.

2. lim P(X(,) < an+byx) =) —00 <z < 00,

n—oo

where a, = G~ (1 — L) and b, = [nf(a,)] ™"
Here G=1(.) and g(.) are the quantile and pdf of EIG distribution.
Proof:

1. For EIG distribution G~*(0) = —1 log ( ) is finite.

G(GH0) + et
By using L Hospitals rule, we have lim ( 0 +et) =t

e—0t G(G=1(0) +¢€)
Hence statement 1 holds.

2. For the EIG distribution, we have

. d 1 1 .. 1 2 _2xx Az 2 —2xz
1 — [ —— =<1 ——— (1 — pb A0(1 — 2Xp0
m—»gzllu) dx (h(m)) X w00 (1 — ph2e—2r=)2 (1=pbe ) ( (1+p)e e )

_ (2Ap92672>\z) (1 _ 9(1 +p)67>\z + p02672)\z)

Hence the statement 2 also holds.

10. Estimation

Let X1, Xo, ..., X, be a random sample with observed values x1, x2, ..., x,, from EIG distribu-
tion with parameters 6, p and X\. Let © = (0, p, \)” be the parameter vector. The log-likelihood
function is given by

log L =n[log(l—0) +log(1 — pf) + log A] — A Z x; + Z log(1 — ph2e=2A%)

-2 Zlog(l —fe A1) — 2 Z log(1 — pfe™277).
i=1

i=1
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Partial derivatives of the log likelihood function with respect to the parameters are

OlogL n np = 2pfe 2 i Az
0~ 1-0 1—pe+g (1= pe—2ne) T2 Z T y 2 Z (1= phe 1)’

OlogL no f2e2 =i fe i
= —_—— + 2
Op 1—p9+§ (1 — pf2e—2rxi Z 1—p96 Awi)’
dlogL n "L 2p0 xiefz’\’“‘ "L Qzie M "L pOxie T
=2_%u R A A D s
ox A ;‘C + ; (1 — po2e—22m1) Z; (1 — ge—ro) ; (1 = phe o)

Blgg L _ 0,
81§§L = (0 and 61§§L = 0. The solutions of the three equations above has not a closed form. So a
numerical technique such as Newton Raphson method can be employed to get the MLEs. It deserves
mentioning that the maximization of log likelihood equation may be performed by using maxLik
package in R language, see Henningsen and Toomet (2011).

Now, we can study the existence and uniqueness of the MLEs when the other parameters are
known.

The MLEs of (0, p, \), say (0, j, \) are the solutions of simultaneous equations

Theorem 20 Let g1 (6; A, p, z) denote the function 813# where )\ and p are the true values of

the parameters. Then there exist at least one root solution for g1(0; A, p, ) = 0 for 0¢(0,1) when
Dy 277 > n and the solution is unique if

Z —2)\9c, + i 2p26—2>\x1~ _ n N np2 N i 2p672)\wi (6‘% 4 p672/\zi)
_ )\x _ —Az; )2 _ 2 _ 2 _ N2

P (1 —0e~ p (1 — pbe ) (1-29) (1—ph) — (3 — phe—2rai)

Proof:

‘We have

n np " 2pfe2ATi " e AT " Az;
0: \ - - Y ey 2y
91(65 A, p, ) 1—-0 1-—pb + : (1- p92e—2)“’“)+ «(1- fe—Awi) + —~ (1- phe—Azi

Now, lim g1(6; A, p,z) = (1 + p)
6—0

n

—n—i-g 2e A |
i=1

Also

—2Ax; n 26—>\x,L n —Az;

éﬂgl(e;Avpvx):_oo_ Z 1,pe—2>\z +Z(1,e—>\z +Z 1,pe—Az <0.

i=1 i=1 i=1

Hence there exist at least one root say, 06(0, 1) when Y7, 2e~*% > n. The root is unique when

W < 0, where

n

2672)\% 2672)\931- 2

2p n np
2 T g T2 T g < T8 T (= 07

i=1 i=1

n —2Az; ( —2/\11-)

2pe 0% + pe

i=1 (5 - P9€_2’\”)2

algiiL where \ and 0 are the true values of

_|_

Theorem 21 Let g2(p; N\, 0, x) denote the function

the parameters. Then there exist at least one root solution for g2(p; A, 60,x) = 0 for pe(0, %) when
S e A% (2 — fe 1) > n and the solution is unique if

i 2672)\17; _ n N zn: 92674>\zi
(1= pbe=rei)2 = (1= pf)? = (1= ph2e2An)2

=1
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Proof:

né - f2e—2Awi " fewi
We h N0, 1) = — —_——— 2 _
¢ have 92(/)7 ’ ,.I‘) 1— pg + ; (]_ _ p92672)\xi) + ; (1 _ pgef)\mi)
Now hm gg(p,)\ 0,2) =0 |—n+ Ze"\“ 2 — e~ )
i=1
—2)\z; n 20 Ti

Also hm g2(p; N, 0,2) = —o0 — Z i _96—2Ml +Z A=) < 0.

Hence there exist at least one root say, pe(0, 3) when .7 | e=**1(2 — §e=*¥) > n . The root is

. A0
unique when %’),,m) < 0, where

zn: 2e—2Awi _ n N z": §2e— 4z
(1= pher)2 = (1—pf)? £ (1 - pf2e=2rwi)2
dlog L

Theorem 22 Let g3(\; p, 0, 1) denote the function =55~ where p and 0 are the true values of the
parameters. Then there exist at least one root solution for gs(\; p,0,x) = 0 for \e(0,00) and the
solution is unique if

i 20x2e i n zn: 2,0911 + zn: 4p02x2eAei
P (e)\wi _ 9)2 — (e)\:m _ — 62)@, _ p92
Proof:
n " " 2pt921:1-672>‘f’” "L fpie T " pﬁzq-efmi
A5 p, 0, - — ; —_— 2 —_— =2 —_
93X p, 0, 2) = 3 le + Z (1— pf2e—22ar) Z (1— e Z (1 — phe—rer)
=1 =1 =1
We have

. 2p62%x; " 20z, "L 2p0x;
Now 1 A;p, 6 i — — =
ow /\E)I})g:i( e ax =00 — Z.’If +Z p02 1221170 Zzzllfpa
Also hm g3(X;p, 0, 2) sz < 0.

Hence there exist at least one root say, Ae(0, 00) such that g3(); p,0,2) = 0. The root is unique
when W < 0, where
n n n
29z26)‘“"1 2p0x;e 4p02x2eAei
Z Az + Z f - + Z 2p)\
(erwi — (e“—p@ (e Zb—p92
=1 =1

=1

11. Simulation

We have conducted simulation studies to verify the performance of MLEs for different sample
sizes and different parameter values for the proposed EIG distribution. We can apply inverse trans-
formation method to simulate EIG random sample.

Different sample sizes considered in the simulation are n = 50, 100, 150 and 200. We have
used max Lik package in R language to find the estimate. We replicated the process 1000 times and
report the average estimates and the associated mean squared errors (MSE) in Table 4. As the sample
size increases the average bias and the mean squared errors decreases which indicates the consistency
property of the MLEs.
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Table 4 Simulation results for different values of the parameters 6, p and A

0,p,)) n 6, MSE(H) P MSE(p) N, MSE())
(5,1,1) 50  0.5052(0.0079)  1.0259(0.3259) 0.9985(0.2573)
(5,1,1) 100  0.4931(0.0052) 1.0123(0.2748) 1.0073(0.2629)
(5,1,1) 150  0.4944(0.0035)  1.0069(0.2657) 1.0059(0.2598)
(5,1,1) 200 0.4967(0.0027)  1.0067(0.2634) 1.0039(0.2570)
(5,1.5,1) 50  0.4964(0.0025)  1.4954(1.0015) 1.0063(0.2574)
(5,1.5,1) 100  0.4969(0.0012)  1.4963(0.9981) 1.0052(0.2559)
(5,1.5,1) 150 0.49903(0.0008) 1.4974(0.9965) 1.0025(0.2528)
(5,1.5,1) 200  0.4988(0.0005)  1.4995(0.9944) 1.0025(0.2527)
(8,.5,2) 50 0.78814(0.0067) 0.5561(0.1843) 1.9673(1.4987)
(.8,.5,2) 100 0.7860(0.00470) 0.5275(0.1058)  1.9914(1.464)
(.8,.5,2) 150  0.7914(0.0025)  0.5170(0.0911) 1.9971(1.4634)
(.8,.5,2) 200 0.7944(0.0014)  0.5118(0.0909) 2.0005(1.4623)
(8,1,2) 50  0.7979(0.0014)  0.9947(0.0399)  2.0108(1.469)
(8,1,2) 100 0.7989(0.00075) 0.9972(0.0399) 2.0038(1.4501)
(8,1,2) 150 0.7994(0.00045) 0.9983(0.0399) 2.0011(1.4429)
(8,1,2) 200 0.8001(0.00034) 0.9992(0.0201) 2.0001(1.4359)

12. Application to Real Data
Here we present applications to real data sets for illustrating the potentiality of the new distribu-

tion. We compare the fit of the distribution with the following continuous lifetime distributions.

Exponential (E) distribution with cdf

Flz)=1—e"; a>0.

Gamma (G) distribution with cdf

F(z)

xr Hp
/ —aP e %%z 6, p > 0.
0

I'p

Weibull (W) distribution with cdf

F(z)=1-

—(0x)"

e ;a0

> 0.

Generalized Exponential (GE) distribution with cdf

(-

e 9 o > 0.

Exponential Geometric (EG) distribution with cdf

F(x)

|

1—e 9

—=C 1.9
1;)6‘)9“}7 ’

p > 0.

Exponential Logarithmic (EL) distribution with cdf

F(z) =

1_1og[17(17

p)eféx]

logp

;0>0,0<p<l1.

349
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* Marshall Olkin Exponential (MOE) distribution with cdf

1— e (02)

P = A —e o)

;0,p>0.

¢ Marshall Olkin Weibull (MOW) distribution with cdf

1— e (02

H = )

; 0,8, p>0.

¢ Weibull Geometric (WG) distribution with cdf

1 — g~ (Bx)"
;s a, 3>0,0<p<1.

F@) = T pe e

¢ New Extended Weibull (NEW) distribution with cdf
Fla)=1—e ") 4>0,5>0, ¢>0.

In order to identify the shape of the hazard rate function of the data, we consider a graphical
method based on the Total Time on Test (TTT) plot. As we know, the empirical TTT plot is given by

(i Xy +(n =) X))
> im1 X (i) ’ o
where X ;) denote the it" order statistic of the sample. If the empirical TTT transform is convex,

concave, convex then concave and concave then convex, the shape of the corresponding hazard rate
function is respectively, decreasing, increasing, bathtub-shaped and upside-down bathtub.

G(r/n) =

Tiiin)

00 02 04 06 08 10

in

Figure 1 The empirical TTT plot of coal mining data

The following real data set represents intervals in days between 109 successive coal mining dis-
asters in Great Britain, for the period 1875-1951 taken from Maguire et al. (1952). This data set
was used by Adamidis and Loukas (1998), Kus (2007), Madhavi and Kundu (2017). The data set is
given in Table 5.
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Table S Coal Mining Data set

1 4 4 7 11 13 15 15 17 18

19 19 20 20 22 23 28 29 31 32
36 37 47 48 49 50 54 54 55 59
59 o6l 61 66 72 72 75 78 78 81
93 9% 99 108 113 114 120 120 120 123
124 129 131 137 145 151 156 171 176 182
188 189 195 203 208 215 217 217 217 224
228 233 255 271 275 275 275 286 291 312
312 312 315 326 326 329 330 336 338 345
348 354 361 364 369 378 390 457 467 498
517 566 644 745 871 1312 1357 1613 1630

Table 6 Descriptive statistics of Coal mining data set

Min Median Mean Max SD Skewness  Kurtosis
1 145 233.3 1630 296.43 2.957 12.998

From Figure 1, we can see that, the hazard rate of the data set is decreasing. Also from Table 6,
the distribution is positively skewed and leptokurtic. Hence we fit EIG distribution for the data. For
this data set, we estimate the unknown parameters of each distribution by the maximum likelihood
method. To compare the models, we used three other criterions:

* Kolmogorov Smirnov test statistics (K-S) - small value is good;
* The p-value from the chi-square goodness-of-fit test - large value is good;
* Negative log-likelihood (-Log L) - small value is good.

The values of estimates, -log L, K-S and P- value for all the models are listed in Table 7.
From Table 7 we can see that EIG distribution fits better to coal mining data set.

Table 7 Parameter estimates and goodness of fit statistics for various models fitted to coal mining
data

Model Estimates -logL K-S p-value
E o = 0.0042 703.3133  0.0786  0.5107
G (p = 0.8555,6 = 0.0037) 702.4007 0.0823 0.4517
w (a0 = 0.8848, 60 = 0.0046) 701.7724 0.0784 0.5135
GE (e =0.8598,0 = 0.0039) 702.5523 0.0833 0.4364
( )

( )

EG 6 = 0.0030,p = 0.4927 701.3731 0.0791 0.5033
EL 0 =0.0032,p = 0.3255 701.5532  0.0810 0.4717
MOE (0 = 0.0028,p = 0.4836) 701.3831 0.0778 0.5252
MOW (8 =1.0945,0 = 0.0023,p = 0.3169) 701.2538 0.0761  0.5527
WG (¢ =1.0901, 8 = .0023,p = .6783)  701.2543  .0766 .5452
NEW  (a =0.0098,b = 0.8627,c = 1.4698) 701.2478 0.078  0.5223
EIG (A =0.0026,p =1.0078,0 = 0.3751) 701.1524 0.0760 0.5544
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We now follow the approach used by Balakrishnan and Ristic (2016). We derive the MLEs of the
parameters of EIG distribution. We obtain MLEs of EIG distribution as 6= 0.3751, p = 1.0078, A=
0.0026 . Now we use the obtained estimates to derive the 95 percent bootstrap confidence intervals
for the parameters 0, p and A. We simulate 10000 samples of size 109 from EIG distribution with true
values of the parameters taken as 6= 0.3751, p = 1.0078, A = 0.0026. For each obtained sample,
we have estimated the MLEs éi*, pi* and ):1* , where i€l, 2, ..., 10000 and we used true values of
estimates as starting values for the MLE. For the 95 percent bootstrap confidence interval we took
the 250" and 9750*" ordered estimates and obtained the 95 percent bootstrap confidence interval for
parameters 0, p and \ as [.0489, .5171],[.6806, 1.3710] and [.0019, .0050] respectively.

For testing the adequacy of the model, we use Kolmogrov Smirnov test. First we obtain the value
of the Kolmogrov Smirnov statistic D, = max,, |Gy (z;) —G%(z;)| for the random variable X based
on the sample (1,29, ..., Z109). The function G,, is the empirical cumulative distribution function
and G’% 1is the cumulative distribution function whose true parameters are the estimates é, p and A
obtained as MLEs based on sample data (z1, 22, ..., Z109). For deriving the p value of the statistic,
we simulated 10000 samples 27, 22, ...x109 of size 109 having EIG distribution with true values
6 = 0.3751, p = 1.0078 and A = 0.0026. For each simulated sample, we obtain the MLEs 0, 0, A
and then obtain the values of Kolmogrov Smirnov statistic D, ; = ma,, |Gy () — Gx(x:)],5 =
1,2, ...,10000, where G,, is the empirical distribution function based on the simulated sample and Gx
is the cumulatlve distribution function whose true parameters are the estimates 0 , P, A respectively.

M. We have obtained the p value as .5922.

The p value is calculated as p = =i

Histogram of coal-mine data

0.0030

0.0020

Density

0.0010

|
)

=3

500 1000 1500

data

Figure 2 Histogram with fitted pdf’s

Empirical Vs EIGD

Empirical cdf

00 02 04 06 08 10

S B — EIGD

0 500 1000 1500

Figure 3 Empirical cdf with fitted cdf’s for the coal mining data set

The fitted density and the empirical cdf plot of the EIG distribution are presented in Figure 2 and
Figure 3 respectively. It indicates a satisfactory fit for the data.
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13. Conclusion

In this paper, a new distribution called EIG distribution is developed using intervened Geomet-
ric distribution. The shape properties of the density function and hazard rate function are studied.
Expression for moment generating function, moments, quantile function, mean deviation, Bonferroni
curve and Lorenz curve are derived. Also some reliability properties of EIG distribution are studied.
Distribution of order statistics are derived, various characterization results and stochastic ordering
properties are proved. Also limiting distribution of sample extremes are obtained. To understand the
performance of MLE, simulation studies are carried out. The obtained result are validated using a real
life data set, which shows EIG distribution gives better fit to the data than other competitive models.
Using parametric bootstrap method the adequacy of the model is established.
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