



Thailand Statistician  
April 2025; 23(2): 258-268  
<http://statassoc.or.th>  
Contributed paper

## Mean Estimation in Presence of Measurement Errors Using Log Type Estimators

**Shashi Bhushan [a], Anoop Kumar [b]\* and Shivam Shukla [c]**

[a] Department of Statistics, University of Lucknow, Lucknow, U.P., India

[b] Department of Statistics, Central University of Haryana, Mahendergarh, India

[c] Department of Statistics, Amity School of Applied Sciences,  
Amity University Uttar Pradesh, Lucknow, India

\*Corresponding author; e-mail: anoop.asy@gmail.com

Received: 3 March 2022

Revised: 23 September 2022

Accepted: 30 September 2022

### Abstract

This article introduces some log type class of mean estimators in the case of measurement errors (ME) using simple random sampling (SRS). The mean square error of the proposed estimators is obtained when data on both the study and auxiliary variables are commingled with ME. The performance of the proposed estimators is compared with the existing estimators and the efficiency conditions are derived. Further, the performance of the proposed estimators is illustrated through numerical and simulation studies using some real and artificially generated populations. The results of numerical and simulation studies show that the proposed estimators dominate the usual mean estimator, classical ratio and product estimators.

---

**Keywords:** Mean square error, efficiency, simulation study.

### 1. Introduction

In survey sampling, it is well-known that the consideration of auxiliary information helps in improving the efficiency of estimation procedures. These estimation procedures include ratio, product, regression, exponential and logarithmic methods that consider information on an auxiliary variable. The ratio method of estimation provides a better estimate when the study and auxiliary variables are positively correlated, see Cochran (1940) and Bhushan and Kumar (2022a). The product method of estimation is best suited when study and auxiliary variables are negatively correlated, see Murthy (1964). The regression method of estimation is the most efficient procedure provided that the regression line passes through the origin, see Cochran (1977). The exponential estimators perform better when the exponential functions model a relationship in which a constant change in the independent variable gives the same proportional change in the dependent variable. Zaman (2021) considered an efficient exponential estimator of the mean under stratified random sampling. Zaman and Kadilar (2021a) suggested exponential ratio and product type estimators of population mean in stratified two-phase sampling, whereas Zaman and Kadilar (2021b) developed a new class of exponential estimators for finite population mean in two-phase sampling. The logarithmic estimators would work in situations when the study variable is logarithmically related to the auxiliary variable. Cekim and Kadilar (2020a, b) suggested ln-type variance estimators under SRS and stratified random sampling.

Bhushan et al. (2021) and Bhushan and Kumar (2022b) suggested some classes of log type estimators of population mean under ranked set sampling. Bhushan et al. (2022a) considered logarithmic type predictive estimators under SRS, whereas Bhushan et al. (2022b) developed some efficient logarithmic type imputation methods in the presence of missing data.

In sampling surveys, it is assumed that the data collected on the study variable  $y$  and the auxiliary variable  $x$  are the actual recorded values of observation. However, in practicality, the observation under study may be recorded with some errors known as ME. The ME is defined as the discrepancy between the observed and the actual values of the parameters. The impact of ME in survey sampling was studied by Cochran (1968) and Murthy (1967). Fuller (1987) also examined the effects of ME models in his text book. Cheng and Van Ness (1994) suggested the estimation of linear relationships when the study and auxiliary variables are recorded with ME. Carroll et al. (2006) studied the impact of ME in non-linear models. Various estimation procedures such as ratio, product and regression for estimating different parameters have been proposed by many prominent authors including Shalabh (1997), Manisha and Singh (2001), Allen et al. (2003), Sahoo et al. (2006), Kumar et al. (2011) to deal with the issue of ME. This article aims to propose some log type estimators of the population mean of study variable in the presence of ME. The impacts of ME on the performance of the proposed and existing estimators have been studied.

Consider a finite population of size  $N$  from which a sample of size  $n$  is drawn using simple random sampling without replacement. We consider the situation where data values may be recorded with ME. Let the observed values be denoted by  $(y_i, z_i)$ ;  $i = 1, 2, \dots, n$  and the true values be denoted by  $(Y_i, Z_i)$ . Let the observed values be expressible in additive forms as  $y_i = Y_i + U_i$  and  $z_i = Z_i + V_i$  such that  $U \sim N(0, \sigma_U^2)$  and  $V \sim N(0, \sigma_V^2)$ . It is assumed that the error variables  $U$  and  $V$  are uncorrelated to each other as well as uncorrelated to other combinations of  $X$  and  $Y$ , respectively. Let  $\mu_Y, \mu_Z$  be the population means and  $\sigma_Y^2, \sigma_Z^2$  be the population variance of study and auxiliary variables, respectively. In the presence of ME  $s_z^2 = (n-1)^{-1} \sum_{i=1}^n (z_i - \bar{z})^2$  and  $s_y^2 = (n-1)^{-1} \sum_{i=1}^n (y_i - \bar{y})^2$  are not unbiased estimators of the population variance  $\sigma_Z^2$  and  $\sigma_Y^2$ , respectively. Therefore, the expected values of  $s_z^2$  and  $s_y^2$  in the presence of ME are given by  $E(s_z^2) = \sigma_Z^2 + \sigma_U^2$  and  $E(s_y^2) = \sigma_Y^2 + \sigma_U^2$ , respectively.

To find the properties of the proposed estimators in the presence of ME, we assume that  $\bar{y} = \mu_Y(1 + e_0)$  and  $\bar{z} = \mu_Z(1 + e_1)$  such that  $E(e_0) = 0, E(e_1) = 0, E(e_0^2) = C_Y^2/n\phi_y, E(e_1^2) = C_Z^2/n\phi_z$  and  $E(e_0 e_1) = \rho C_Y C_Z/n$ .

where  $C_Y = S_y/\mu_Y$  and  $C_Z = S_Z/\mu_Z$  are the population coefficient of variations for study and auxiliary variables, respectively,  $\rho$  is the population correlation coefficient between study and auxiliary variables. Also,  $\phi_y = \sigma_Y^2/(\sigma_Y^2 + \sigma_U^2)$  and  $\phi_z = \sigma_Z^2/(\sigma_Z^2 + \sigma_V^2)$  are the reliability ratio of the study and auxiliary variables that lies between 0 and 1.

The variance of usual mean estimator  $\bar{y}$  in the presence of ME is given by

$$Var(\bar{y}) = \frac{\sigma_Y^2}{n} + \frac{\sigma_U^2}{n} \quad (1)$$

Shalabh (1997) developed the conventional ratio and product estimators in the case of ME using SRS as

$$t_r = \bar{y} \left( \frac{\mu_Z}{\bar{z}} \right) \quad (2)$$

$$t_p = \bar{y} \left( \frac{\bar{z}}{\mu_Z} \right) \quad (3)$$

The MSE of the estimators  $t_r$  and  $t_p$  is given by

$$MSE(t_r) = \mu_Y^2 \left[ \frac{C_Y^2}{n} + \frac{C_Z^2}{n} - \frac{2\rho C_Z C_Y}{n} \right] + \mu_Y^2 \left[ \frac{C_Y^2}{n} \frac{\sigma_U^2}{\sigma_Y^2} + \frac{C_Z^2}{n} \frac{\sigma_V^2}{\sigma_Z^2} \right] \quad (4)$$

$$MSE(t_p) = \mu_Y^2 \left[ \frac{C_Y^2}{n} + \frac{C_Z^2}{n} + \frac{2\rho C_Z C_Y}{n} \right] + \mu_Y^2 \left[ \frac{C_Y^2}{n} \frac{\sigma_U^2}{\sigma_Y^2} + \frac{C_Z^2}{n} \frac{\sigma_V^2}{\sigma_Z^2} \right] \quad (5)$$

where the first term in the expressions of the  $MSE(t_r)$  and  $MSE(t_p)$  represent the MSE of  $t_r$  and  $t_p$  estimator without ME whereas the last terms of the expressions of  $MSE(t_r)$  and  $MSE(t_p)$  represent the contribution of ME.

The article is designed in the following sections. Section 2 considers the proposed log type estimators of population mean along with their properties in the presence of ME. A comparative study is performed between the proposed and existing estimators in Section 3. The numerical and simulation studies are carried out in Section 4 and Section 5, respectively. The discussion of the results and concluding remarks are given Section 6.

## 2. Proposed Estimators

Motivated by the works of Bhushan and Kumar (2020, 2022c), we propose some log type estimators in the case of ME using SRS as

$$t_1 = \bar{y} \left[ 1 + \log \left( \frac{\bar{z}}{\mu_Z} \right) \right]^{\delta_1} \quad (6)$$

$$t_2 = \bar{y} \left[ 1 + \delta_2 \log \left( \frac{\bar{z}}{\mu_Z} \right) \right] \quad (7)$$

where  $\delta_i$ ,  $i = 1, 2$  are suitably chosen scalars to optimize the MSE.

**Theorem 1** *The minimum MSE of the proposed estimators  $t_i$ ,  $i = 1, 2$  is given by*

$$\min MSE(t_i) = \frac{\mu_Y^2}{n} \frac{C_Y^2}{\phi_y} \left[ 1 - \rho^2 \phi_z \phi_y \right]. \quad (8)$$

**Proof:** Using the notations defined in the preceding section, we express the proposed estimators  $t_i$ ,  $i = 1, 2$  as

$$t_1 - \mu_Y = \mu_Y \left\{ e_0 + \delta_1 e_1 + \left( \frac{\delta_1^2}{2} - \delta_1 \right) e_1^2 + \delta_1 e_0 e_1 \right\} \quad (9)$$

$$t_2 - \mu_Y = \mu_Y \left( e_0 + \delta_1 e_1 - \frac{\delta_1}{2} e_1^2 + \delta_1 e_0 e_1 \right) \quad (10)$$

Squaring and taking expectations on both sides of (9) and (10), we get the  $MSE(t_i)$ ,  $i = 1, 2$  to the first order of approximation as

$$MSE(t_i) = \frac{\mu_Y^2}{n} \left[ \frac{C_Y^2}{\phi_y} + \delta_i^2 \frac{C_Z^2}{\phi_z} + 2\delta_i \rho C_Y C_Z \right] \quad (11)$$

Differentiating (11) with respect to  $\delta_i$ ,  $i = 1, 2$  and equating to zero, we get the optimum values of  $\delta_i$  as

$$\delta_{i(opt)} = -\rho \phi_z \frac{C_Y}{C_Z} \quad (12)$$

Now, putting the value of  $\delta_{i(opt)}$  in (11), we get the minimum MSE of the proposed estimators  $t_i$ ,  $i = 1, 2$  as

$$\min MSE(t_i) = \frac{\mu_Y^2}{n} \frac{C_Y^2}{\phi_y} \left[ 1 - \rho^2 \phi_z \phi_y \right] \quad (13)$$

### 3. Comparative Study

This section presents the comparative study of the proposed estimators regarding the existing estimators. We compare the minimum MSE of the proposed estimators from (13) with the:

(i) usual mean estimator  $\bar{y}$ , we get

$$\rho^2 \phi_y \phi_z > 1 - \frac{1}{n \mu_Y^2} \quad (14)$$

(ii) classical ratio estimator  $t_r$ , we get

$$\rho^2 > \frac{2\rho C_Z}{\phi_z C_Y} - \frac{C_Z^2}{\phi_z^2 C_Y^2} \quad (15)$$

(iii) classical product estimator  $t_p$ , we get

$$\rho^2 > -\frac{2\rho C_Z}{\phi_z C_Y} - \frac{C_Z^2}{\phi_z^2 C_Y^2} \quad (16)$$

Under the above conditions, the proposed estimators will dominate the existing estimators. These conditions are further assessed in next sections through numerical and simulation studies.

### 4. Numerical Study

This section exemplifies the performance of the proposed class of estimators using two real populations. Population 1 is taken from Gujarati and Sangeetha (2007) where consumption expenditure is denoted by the study variable and income is denoted by the auxiliary variable. Population 2 is taken from the book of U.S. Census Bureau 1986, where the product sold is denoted by the study variable and the size of the farms is denoted by the auxiliary variable. The descriptive statistics of these populations are given in Table 1 for ready reference.

**Table 1** Descriptive statistics of real populations

| Descriptive statistics | N  | n  | $\mu_Z$ | $\mu_Y$ | $\sigma_Z^2$ | $\sigma_Y^2$ | $\rho$ | $\sigma_U^2$ | $\sigma_V^2$ |
|------------------------|----|----|---------|---------|--------------|--------------|--------|--------------|--------------|
| Population 1           | 10 | 4  | 170     | 127     | 3300         | 1278         | 0.964  | 36           | 36           |
| Population 2           | 56 | 15 | 75.79   | 61.59   | 155.5        | 577.44       | -0.508 | 16           | 16           |

Based on the above populations, we have calculated percent relative efficiency (PRE) of the classical ratio estimator  $t_r$ , the product estimator  $t_p$  and the proposed estimators  $t_i$ ,  $i = 1, 2$  regarding the usual mean estimator  $\bar{y}$  using the following formula.

$$PRE = \frac{MSE(\bar{y})}{MSE(T)} \times 100 \quad (17)$$

where  $T = t_r, t_p$  and  $t_i$ ,  $i = 1, 2$ . The results of the numerical study for these populations are reported in Table 2.

**Table 2** PRE of different estimators based on real populations

| Estimators      | PRE without ME | PRE with ME   |
|-----------------|----------------|---------------|
| Population 1    |                |               |
| $t_r$           | 789.79         | 664.25        |
| $t_p$           | 21.02          | 21.49         |
| $t_i, i = 1, 2$ | <b>1414.34</b> | <b>944.12</b> |
| Population 2    |                |               |
| $t_r$           | 62.25          | 62.89         |
| $t_p$           | 133.44         | 129.18        |
| $t_i, i = 1, 2$ | <b>134.78</b>  | <b>129.48</b> |

## 5. Simulation Study

To generalize the numerical exemplification carried out in the preceding section, we accomplished a simulation study over a normal population of size  $N=800$ . The population is generated artificially with R software by using a multivariate normal distribution based on mean vector  $(\mu_Y, \mu_Z, 0, 0)$  and covariance matrix

$$\begin{pmatrix} \sigma_Y^2 & \rho\sigma_Z\sigma_Y & 0 & 0 \\ \rho\sigma_Z\sigma_Y & \sigma_Z^2 & 0 & 0 \\ 0 & 0 & \sigma_U^2 & 0 \\ 0 & 0 & 0 & \sigma_V^2 \end{pmatrix}$$

such that  $\mu_Y = 40$ ,  $\mu_Z = 30$ ,  $\sigma_Z^2 = (20, 25)$ ,  $\sigma_Y^2 = (20, 25)$ ,  $\sigma_U^2 = (2, 4)$ ,  $\sigma_V^2 = (2, 4)$ ,  $\rho = (-0.9, -0.5, -0.1, 0.1, 0.5, 0.9)$ . Based on 15000 iterations, we have computed the PRE of the classical ratio estimator, the classical product estimator and the proposed log type class of estimators regarding the unbiased estimator for the above population by using the following formula.

$$PRE = \frac{\frac{1}{15,000} \sum_{i=1}^{15,000} (\bar{y} - \bar{Y})^2}{\frac{1}{15,000} \sum_{i=1}^{15,000} (T - \bar{Y})^2} \times 100 \quad (18)$$

The simulation study is conducted in the following steps.

- Normal population of size  $N=800$  is generated using multivariate normal distribution with R software.
- Random samples of sizes  $n = 50$  and  $n = 100$  are drawn from the generated population.
- The required descriptive statistics are computed for both samples.
- The PRE of different estimators for the parameters  $\sigma_Z^2, \sigma_Y^2, \sigma_U^2, \sigma_V^2$  and  $\rho$  is calculated by using (18) and the results are reported from Table 3 to Table 6.
- The PRE is also calculated for different amounts of ME such as 10%, 20%, 30%, 40% by using (18) and the results are given from Table 7 to Table 10.

**Table 3** PRE of different estimators when  $\sigma_Z^2 = 20$  and  $\sigma_Y^2 = 20$ 

| $\sigma_U^2$ | $\sigma_V^2$ | $\rho$ | n=50    |         |                 | n=100   |         |                 |
|--------------|--------------|--------|---------|---------|-----------------|---------|---------|-----------------|
|              |              |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 2            | 2            | -0.9   | 20.832  | 189.486 | 322.18          | 20.835  | 189.837 | 320.535         |
|              |              | -0.5   | 24.363  | 63.432  | 129.748         | 24.381  | 63.572  | 128.768         |
|              |              | -0.1   | 32.189  | 39.244  | 102.764         | 32.208  | 39.304  | 101.9           |
|              |              | 0.1    | 40.928  | 33.509  | 102.764         | 40.977  | 33.518  | 101.9           |
|              |              | 0.5    | 63.738  | 24.451  | 129.885         | 63.811  | 24.45   | 128.851         |
|              |              | 0.9    | 171.183 | 19.788  | 322.671         | 171.488 | 19.803  | 320.782         |
| 2            | 4            | -0.9   | 20.199  | 147.439 | 272.735         | 20.203  | 147.726 | 271.366         |
|              |              | -0.5   | 23.441  | 57.543  | 126.737         | 23.459  | 57.664  | 125.863         |
|              |              | -0.1   | 30.601  | 36.91   | 102.532         | 30.62   | 36.965  | 101.743         |
|              |              | 0.1    | 38.543  | 31.893  | 102.532         | 38.587  | 31.902  | 101.743         |
|              |              | 0.5    | 57.889  | 23.539  | 126.899         | 57.953  | 23.539  | 125.973         |
|              |              | 0.9    | 134.401 | 19.181  | 274.205         | 134.645 | 19.196  | 272.595         |
| 4            | 2            | -0.9   | 22.312  | 177.501 | 273.167         | 22.312  | 177.769 | 272.116         |
|              |              | -0.5   | 26.031  | 65.659  | 126.756         | 26.049  | 65.795  | 125.888         |
|              |              | -0.1   | 34.179  | 41.431  | 102.54          | 34.198  | 41.49   | 101.747         |
|              |              | 0.1    | 43.143  | 35.539  | 102.54          | 43.191  | 35.546  | 101.747         |
|              |              | 0.5    | 65.99   | 26.145  | 126.832         | 66.055  | 26.142  | 125.922         |
|              |              | 0.9    | 162.402 | 21.253  | 272.267         | 162.639 | 21.265  | 271.14          |
| 4            | 4            | -0.9   | 21.558  | 142.111 | 239.972         | 21.563  | 142.355 | 238.99          |
|              |              | -0.5   | 24.912  | 59.491  | 124.177         | 24.931  | 59.61   | 123.402         |
|              |              | -0.1   | 32.338  | 38.804  | 102.332         | 32.357  | 38.86   | 101.606         |
|              |              | 0.1    | 40.467  | 33.667  | 102.332         | 40.513  | 33.677  | 101.606         |
|              |              | 0.5    | 59.854  | 25.031  | 124.292         | 59.919  | 25.032  | 123.471         |
|              |              | 0.9    | 130.752 | 20.527  | 240.255         | 130.967 | 20.542  | 239.139         |

**Table 4** PRE of different estimators when  $\sigma_Z^2 = 20$  and  $\sigma_Y^2 = 25$ 

| $\sigma_U^2$ | $\sigma_V^2$ | $\rho$ | n=50    |         |                 | n=100   |         |                 |
|--------------|--------------|--------|---------|---------|-----------------|---------|---------|-----------------|
|              |              |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 2            | 2            | -0.9   | 21.909  | 213.776 | 329.245         | 21.927  | 214.68  | 327.555         |
|              |              | -0.5   | 27.439  | 74.041  | 130.235         | 27.462  | 74.202  | 129.215         |
|              |              | -0.1   | 36.924  | 44.512  | 102.698         | 36.968  | 44.573  | 101.79          |
|              |              | 0.1    | 46.054  | 38.156  | 102.698         | 46.095  | 38.189  | 101.79          |
|              |              | 0.5    | 74.593  | 27.476  | 130.664         | 74.69   | 27.476  | 129.615         |
|              |              | 0.9    | 228.428 | 22.661  | 329.245         | 228.643 | 22.665  | 327.555         |
| 2            | 4            | -0.9   | 21.235  | 166.277 | 279.458         | 21.246  | 166.752 | 277.917         |
|              |              | -0.5   | 26.482  | 67.467  | 127.161         | 26.506  | 67.607  | 126.251         |
|              |              | -0.1   | 35.216  | 42.054  | 102.472         | 35.258  | 42.111  | 101.642         |
|              |              | 0.1    | 43.564  | 36.431  | 102.472         | 43.603  | 36.462  | 101.642         |
|              |              | 0.5    | 68.031  | 26.533  | 127.575         | 68.117  | 26.534  | 126.638         |
|              |              | 0.9    | 176.675 | 21.929  | 279.458         | 176.771 | 21.927  | 277.917         |
| 4            | 2            | -0.9   | 23.205  | 201.51  | 287.38          | 23.212  | 202.05  | 286.109         |
|              |              | -0.5   | 28.912  | 75.648  | 127.731         | 28.935  | 75.803  | 126.806         |
|              |              | -0.1   | 38.66   | 46.37   | 102.518         | 38.702  | 46.429  | 101.672         |
|              |              | 0.1    | 47.92   | 39.912  | 102.518         | 47.96   | 39.944  | 101.672         |
|              |              | 0.5    | 76.206  | 28.967  | 128.083         | 76.294  | 28.966  | 127.135         |
|              |              | 0.9    | 212.489 | 23.933  | 287.38          | 212.524 | 23.927  | 286.109         |
| 4            | 4            | -0.9   | 22.037  | 157.021 | 252.542         | 22.063  | 157.562 | 251.251         |
|              |              | -0.5   | 27.781  | 68.891  | 125.003         | 27.805  | 69.029  | 124.178         |
|              |              | -0.1   | 36.728  | 43.661  | 102.312         | 36.771  | 43.719  | 101.536         |
|              |              | 0.1    | 45.184  | 37.964  | 102.312         | 45.223  | 37.996  | 101.536         |
|              |              | 0.5    | 69.457  | 27.847  | 125.355         | 69.541  | 27.849  | 124.506         |
|              |              | 0.9    | 165.512 | 22.709  | 252.542         | 165.741 | 22.725  | 251.251         |

**Table 5** PRE of different estimators when  $\sigma_Z^2 = 25$  and  $\sigma_Y^2 = 20$ 

|              |              |        | n=50    |         |                 | n=100   |         |                 |
|--------------|--------------|--------|---------|---------|-----------------|---------|---------|-----------------|
| $\sigma_U^2$ | $\sigma_V^2$ | $\rho$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 2            | 2            | -0.9   | 17.208  | 129.534 | 330.042         | 17.225  | 130.107 | 328.417         |
|              |              | -0.5   | 21.309  | 53.949  | 130.567         | 21.326  | 54.083  | 129.57          |
|              |              | -0.1   | 29.026  | 34.628  | 102.707         | 29.022  | 34.641  | 101.798         |
|              |              | 0.1    | 35.461  | 29.105  | 102.815         | 35.489  | 29.098  | 101.953         |
|              |              | 0.5    | 57.281  | 22.287  | 130.567         | 57.357  | 22.291  | 129.57          |
|              |              | 0.9    | 141.953 | 17.916  | 330.042         | 142.104 | 17.92   | 328.417         |
| 2            | 4            | -0.9   | 16.681  | 106.583 | 287.998         | 16.692  | 106.897 | 286.436         |
|              |              | -0.5   | 20.599  | 49.618  | 127.979         | 20.616  | 49.736  | 127.078         |
|              |              | -0.1   | 27.795  | 32.89   | 102.524         | 27.792  | 32.902  | 101.678         |
|              |              | 0.1    | 33.657  | 27.878  | 102.618         | 33.683  | 27.873  | 101.819         |
|              |              | 0.5    | 52.727  | 21.562  | 127.979         | 52.794  | 21.566  | 127.078         |
|              |              | 0.9    | 115.705 | 17.341  | 287.998         | 115.76  | 17.341  | 286.436         |
| 4            | 2            | -0.9   | 18.52   | 127.928 | 279.096         | 18.528  | 128.278 | 277.919         |
|              |              | -0.5   | 22.828  | 56.272  | 127.445         | 22.845  | 56.404  | 126.565         |
|              |              | -0.1   | 22.845  | 56.404  | 126.565         | 30.936  | 36.75   | 101.647         |
|              |              | 0.1    | 37.572  | 31.001  | 102.582         | 37.599  | 30.993  | 101.792         |
|              |              | 0.5    | 59.578  | 23.854  | 127.445         | 59.651  | 23.857  | 126.565         |
|              |              | 0.9    | 138.172 | 19.228  | 279.096         | 138.181 | 19.224  | 277.919         |
| 4            | 4            | -0.9   | 17.562  | 102.943 | 251.315         | 17.586  | 103.36  | 250.19          |
|              |              | -0.5   | 21.944  | 51.625  | 125.273         | 21.962  | 51.744  | 124.475         |
|              |              | -0.1   | 29.475  | 34.73   | 102.32          | 29.474  | 34.745  | 101.543         |
|              |              | 0.1    | 35.498  | 29.543  | 102.409         | 35.525  | 29.539  | 101.675         |
|              |              | 0.5    | 54.724  | 22.952  | 125.273         | 54.791  | 22.957  | 124.475         |
|              |              | 0.9    | 110.65  | 18.217  | 251.315         | 110.868 | 18.232  | 250.19          |

**Table 6** PRE of different estimators when  $\sigma_Z^2 = 25$  and  $\sigma_Y^2 = 25$ 

|              |              |        | n=50    |         |                 | n=100   |         |                 |
|--------------|--------------|--------|---------|---------|-----------------|---------|---------|-----------------|
| $\sigma_U^2$ | $\sigma_V^2$ | $\rho$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 2            | 2            | -0.9   | 19.369  | 174.015 | 343.258         | 19.388  | 174.882 | 341.465         |
|              |              | -0.5   | 25.061  | 67.093  | 131.257         | 25.072  | 67.246  | 130.168         |
|              |              | -0.1   | 32.97   | 40.368  | 102.891         | 32.976  | 40.424  | 101.981         |
|              |              | 0.1    | 41.106  | 33.533  | 102.866         | 41.16   | 33.545  | 101.969         |
|              |              | 0.5    | 67.763  | 25.236  | 131.116         | 67.857  | 25.242  | 130.082         |
|              |              | 0.9    | 189.969 | 20.142  | 343.258         | 190.174 | 20.146  | 341.465         |
| 2            | 4            | -0.9   | 18.828  | 141.105 | 297.355         | 18.84   | 141.579 | 295.693         |
|              |              | -0.5   | 24.312  | 61.987  | 128.636         | 24.325  | 62.126  | 127.645         |
|              |              | -0.1   | 31.672  | 38.44   | 102.692         | 31.679  | 38.493  | 101.847         |
|              |              | 0.1    | 39.133  | 32.208  | 102.666         | 39.183  | 32.22   | 101.834         |
|              |              | 0.5    | 62.558  | 24.477  | 128.469         | 62.64   | 24.484  | 127.534         |
|              |              | 0.9    | 152.645 | 19.546  | 297.355         | 152.724 | 19.545  | 295.693         |
| 4            | 2            | -0.9   | 20.543  | 167.956 | 296.931         | 20.553  | 168.494 | 295.568         |
|              |              | -0.5   | 26.466  | 68.881  | 128.582         | 26.477  | 69.023  | 127.602         |
|              |              | -0.1   | 34.642  | 42.203  | 102.693         | 34.647  | 42.257  | 101.847         |
|              |              | 0.1    | 42.923  | 35.193  | 102.673         | 42.975  | 35.204  | 101.837         |
|              |              | 0.5    | 69.508  | 26.629  | 128.495         | 69.598  | 26.635  | 127.56          |
|              |              | 0.9    | 180.606 | 21.3    | 296.931         | 180.631 | 21.295  | 295.568         |
| 4            | 4            | -0.9   | 19.549  | 134.182 | 265.307         | 19.576  | 134.753 | 263.989         |
|              |              | -0.5   | 25.558  | 63.542  | 126.307         | 25.571  | 63.679  | 125.412         |
|              |              | -0.1   | 33.138  | 40.035  | 102.513         | 33.147  | 40.091  | 101.725         |
|              |              | 0.1    | 40.716  | 33.666  | 102.491         | 40.767  | 33.678  | 101.715         |
|              |              | 0.5    | 64.084  | 25.713  | 126.183         | 64.166  | 25.72   | 125.337         |
|              |              | 0.9    | 143.766 | 20.25   | 265.307         | 144.021 | 20.265  | 263.989         |

**Table 7** PRE of different estimators when  $\sigma_Z^2 = 20$  and  $\sigma_Y^2 = 20$ 

| % of ME | $\rho$ | n=50    |         |                 | n=100   |         |                 |
|---------|--------|---------|---------|-----------------|---------|---------|-----------------|
|         |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 10      | -0.9   | 20.832  | 189.486 | 322.18          | 20.835  | 189.837 | 320.535         |
|         | -0.5   | 24.363  | 63.432  | 129.748         | 24.381  | 63.572  | 128.768         |
|         | -0.1   | 32.189  | 39.244  | 102.764         | 32.208  | 39.304  | 101.9           |
|         | 0.1    | 40.928  | 33.509  | 102.764         | 40.977  | 33.518  | 101.9           |
|         | 0.5    | 63.738  | 24.451  | 129.885         | 63.811  | 24.45   | 128.851         |
|         | 0.9    | 171.183 | 19.788  | 322.671         | 171.488 | 19.803  | 320.782         |
| 20      | -0.9   | 21.558  | 142.111 | 239.972         | 21.563  | 142.355 | 238.99          |
|         | -0.5   | 24.912  | 59.491  | 124.177         | 24.931  | 59.61   | 123.402         |
|         | -0.1   | 32.338  | 38.804  | 102.332         | 32.357  | 38.86   | 101.606         |
|         | 0.1    | 40.467  | 33.667  | 102.332         | 40.513  | 33.677  | 101.606         |
|         | 0.5    | 59.854  | 25.031  | 124.292         | 59.919  | 25.032  | 123.471         |
|         | 0.9    | 130.752 | 20.527  | 240.255         | 130.967 | 20.542  | 239.139         |
| 30      | -0.9   | 22.22   | 117.118 | 200.05          | 22.226  | 117.313 | 199.29          |
|         | -0.5   | 25.402  | 56.483  | 120.122         | 25.422  | 56.588  | 119.481         |
|         | -0.1   | 32.466  | 38.435  | 101.995         | 32.486  | 38.488  | 101.376         |
|         | 0.1    | 40.081  | 33.803  | 101.995         | 40.124  | 33.814  | 101.376         |
|         | 0.5    | 56.889  | 25.55   | 120.218         | 56.948  | 25.552  | 119.538         |
|         | 0.9    | 108.893 | 21.2    | 200.233         | 109.061 | 21.215  | 199.388         |
| 40      | -0.9   | 22.824  | 101.678 | 176.608         | 22.832  | 101.843 | 175.96          |
|         | -0.5   | 25.843  | 54.113  | 117.058         | 25.863  | 54.208  | 116.511         |
|         | -0.1   | 32.578  | 38.121  | 101.728         | 32.599  | 38.172  | 101.192         |
|         | 0.1    | 39.752  | 33.923  | 101.728         | 39.793  | 33.934  | 101.192         |
|         | 0.5    | 54.552  | 26.016  | 117.138         | 54.606  | 26.019  | 116.559         |
|         | 0.9    | 95.199  | 21.815  | 176.735         | 95.339  | 21.83   | 176.029         |

**Table 8** PRE of different estimators when  $\sigma_Z^2 = 20$  and  $\sigma_Y^2 = 25$ 

| % of ME | $\rho$ | n=50    |         |                 | n=100   |         |                 |
|---------|--------|---------|---------|-----------------|---------|---------|-----------------|
|         |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 10      | -0.9   | 22.293  | 213.023 | 319.229         | 22.301  | 213.65  | 317.551         |
|         | -0.5   | 27.882  | 74.703  | 129.598         | 27.905  | 74.863  | 128.596         |
|         | -0.1   | 37.467  | 45.114  | 102.653         | 37.509  | 45.173  | 101.76          |
|         | 0.1    | 46.658  | 38.704  | 102.653         | 46.699  | 38.737  | 101.76          |
|         | 0.5    | 75.266  | 27.925  | 129.999         | 75.356  | 27.924  | 128.973         |
|         | 0.9    | 226.027 | 23.002  | 319.229         | 226.057 | 22.996  | 317.551         |
| 20      | -0.9   | 22.715  | 155.348 | 240.489         | 22.738  | 155.818 | 239.441         |
|         | -0.5   | 28.615  | 70.136  | 124.066         | 28.639  | 70.272  | 123.269         |
|         | -0.1   | 37.736  | 44.771  | 102.24          | 37.777  | 44.827  | 101.489         |
|         | 0.1    | 46.3    | 38.983  | 102.24          | 46.338  | 39.014  | 101.489         |
|         | 0.5    | 70.721  | 28.693  | 124.382         | 70.794  | 28.692  | 123.566         |
|         | 0.9    | 163.242 | 23.401  | 240.489         | 163.418 | 23.413  | 239.441         |
| 30      | -0.9   | 23.51   | 127.877 | 200.371         | 23.532  | 128.203 | 199.589         |
|         | -0.5   | 29.272  | 66.662  | 120.034         | 29.295  | 66.781  | 119.373         |
|         | -0.1   | 37.97   | 44.484  | 101.918         | 38.008  | 44.536  | 101.276         |
|         | 0.1    | 45.999  | 39.224  | 101.918         | 46.034  | 39.253  | 101.276         |
|         | 0.5    | 67.265  | 29.381  | 120.289         | 67.325  | 29.38   | 119.614         |
|         | 0.9    | 133.784 | 24.221  | 200.371         | 133.913 | 24.232  | 199.589         |
| 40      | -0.9   | 24.238  | 111.03  | 176.828         | 24.258  | 111.277 | 176.178         |
|         | -0.5   | 29.863  | 63.93   | 116.985         | 29.886  | 64.037  | 116.421         |
|         | -0.1   | 38.173  | 44.239  | 101.662         | 38.21   | 44.288  | 101.106         |
|         | 0.1    | 45.742  | 39.435  | 101.662         | 45.775  | 39.462  | 101.106         |
|         | 0.5    | 64.547  | 30.001  | 117.195         | 64.598  | 30      | 116.621         |
|         | 0.9    | 115.846 | 24.972  | 176.828         | 115.946 | 24.982  | 176.178         |

**Table 9** PRE of different estimators when  $\sigma_Z^2 = 25$  and  $\sigma_Y^2 = 20$ 

| % of ME | $\rho$ | n=50    |         |                 | n=100   |        |                 |
|---------|--------|---------|---------|-----------------|---------|--------|-----------------|
|         |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$  | $t_i, i = 1, 2$ |
| 10      | -0.9   | 17.036  | 122.982 | 319.643         | 17.047  | 123.36 | 317.851         |
|         | -0.5   | 21.127  | 52.797  | 129.873         | 21.144  | 52.926 | 128.903         |
|         | -0.1   | 28.708  | 34.177  | 102.659         | 28.705  | 34.189 | 101.766         |
|         | 0.1    | 34.992  | 28.788  | 102.763         | 35.02   | 28.782 | 101.918         |
|         | 0.5    | 56.07   | 22.101  | 129.873         | 56.144  | 22.105 | 128.903         |
|         | 0.9    | 133.914 | 17.702  | 319.643         | 133.962 | 17.701 | 317.851         |
| 20      | -0.9   | 17.325  | 95.299  | 239.822         | 17.349  | 95.676 | 238.718         |
|         | -0.5   | 21.59   | 49.71   | 124.274         | 21.608  | 49.821 | 123.508         |
|         | -0.1   | 28.877  | 33.902  | 102.245         | 28.876  | 33.917 | 101.494         |
|         | 0.1    | 34.641  | 28.947  | 102.328         | 34.668  | 28.943 | 101.619         |
|         | 0.5    | 52.717  | 22.591  | 124.274         | 52.78   | 22.596 | 123.508         |
|         | 0.9    | 102.337 | 17.977  | 239.822         | 102.54  | 17.992 | 238.718         |
| 30      | -0.9   | 17.878  | 81.581  | 199.933         | 17.903  | 81.869 | 199.096         |
|         | -0.5   | 22.003  | 47.338  | 120.199         | 22.022  | 47.438 | 119.566         |
|         | -0.1   | 29.022  | 33.671  | 101.923         | 29.024  | 33.688 | 101.281         |
|         | 0.1    | 34.346  | 29.085  | 101.99          | 34.372  | 29.083 | 101.386         |
|         | 0.5    | 50.147  | 23.029  | 120.199         | 50.203  | 23.034 | 119.566         |
|         | 0.9    | 87.063  | 18.555  | 199.933         | 87.224  | 18.57  | 199.096         |
| 40      | -0.9   | 18.383  | 72.594  | 176.508         | 18.408  | 72.829 | 175.808         |
|         | -0.5   | 22.374  | 45.46   | 117.121         | 22.393  | 45.55  | 116.582         |
|         | -0.1   | 29.148  | 33.475  | 101.667         | 29.153  | 33.493 | 101.11          |
|         | 0.1    | 34.095  | 29.205  | 101.722         | 34.121  | 29.205 | 101.201         |
|         | 0.5    | 48.116  | 23.421  | 117.121         | 48.166  | 23.428 | 116.582         |
|         | 0.9    | 77.157  | 19.083  | 176.508         | 77.293  | 19.098 | 175.808         |

**Table 10** PRE of different estimators when  $\sigma_Z^2 = 25$  and  $\sigma_Y^2 = 25$ 

| % of ME | $\rho$ | n=50    |         |                 | n=100   |         |                 |
|---------|--------|---------|---------|-----------------|---------|---------|-----------------|
|         |        | $t_r$   | $t_p$   | $t_i, i = 1, 2$ | $t_r$   | $t_p$   | $t_i, i = 1, 2$ |
| 10      | -0.9   | 19.115  | 158.73  | 322.671         | 19.142  | 159.496 | 320.782         |
|         | -0.5   | 25.189  | 66.123  | 129.885         | 25.201  | 66.271  | 128.851         |
|         | -0.1   | 33.014  | 40.28   | 102.788         | 33.021  | 40.336  | 101.912         |
|         | 0.1    | 41.003  | 33.568  | 102.764         | 41.056  | 33.58   | 101.9           |
|         | 0.5    | 66.757  | 25.359  | 129.748         | 66.848  | 25.366  | 128.768         |
|         | 0.9    | 171.349 | 19.798  | 322.671         | 171.67  | 19.813  | 320.782         |
| 20      | -0.9   | 19.825  | 122.57  | 240.255         | 19.852  | 123.058 | 239.139         |
|         | -0.5   | 25.79   | 62.053  | 124.292         | 25.804  | 62.185  | 123.471         |
|         | -0.1   | 33.225  | 39.941  | 101.616         | 33.225  | 39.941  | 101.616         |
|         | 0.1    | 40.541  | 33.726  | 102.332         | 40.591  | 33.739  | 101.606         |
|         | 0.5    | 62.544  | 25.935  | 124.177         | 62.62   | 25.942  | 123.402         |
|         | 0.9    | 130.862 | 20.537  | 240.255         | 131.087 | 20.553  | 239.139         |
| 30      | -0.9   | 20.472  | 102.687 | 200.233         | 20.499  | 103.047 | 199.388         |
|         | -0.5   | 26.327  | 58.95   | 120.218         | 26.343  | 59.07   | 119.538         |
|         | -0.1   | 33.388  | 39.556  | 102.012         | 33.401  | 39.61   | 101.384         |
|         | 0.1    | 40.154  | 33.863  | 101.995         | 40.201  | 33.877  | 101.376         |
|         | 0.5    | 59.335  | 26.45   | 120.122         | 59.402  | 26.458  | 119.481         |
|         | 0.9    | 108.976 | 21.21   | 200.233         | 109.152 | 21.226  | 199.388         |
| 40      | -0.9   | 21.063  | 90.11   | 176.735         | 21.09   | 90.397  | 176.029         |
|         | -0.5   | 26.81   | 56.506  | 117.138         | 26.828  | 56.616  | 116.559         |
|         | -0.1   | 33.54   | 39.274  | 101.743         | 33.554  | 39.327  | 101.199         |
|         | 0.1    | 39.825  | 33.983  | 101.728         | 39.869  | 33.997  | 101.192         |
|         | 0.5    | 56.81   | 26.913  | 117.058         | 56.869  | 26.921  | 116.511         |
|         | 0.9    | 95.267  | 21.826  | 176.735         | 95.414  | 21.841  | 176.029         |

## 6. Discussions and Concluding Remarks

The following concluding remarks can be read out.

- (i) From the results of the numerical study revealed in Table 2, it is observed that the superiority of the proposed estimators dominates the usual mean estimator, classical ratio and product estimators by PRE.
- (ii) From the findings of the simulation study disclosed in Table 3 for  $\sigma_Z^2 = 20$ ,  $\sigma_Y^2 = 20$ ,  $n=50$  & 100, it is observed that when  $\sigma_U^2 = 2$  and  $\sigma_V^2 = 2$ :
  - (a) the PRE of the classical ratio estimator  $t_r$  increases as the correlation coefficient  $\rho$  varies from -0.9 to +0.9.
  - (b) the PRE of the classical product estimator  $t_p$  decreases as the correlation coefficient  $\rho$  varies from -0.9 to +0.9.
  - (c) the PRE of the proposed estimators  $t_i$ ,  $i = 1, 2$  decreases as the correlation coefficient  $\rho$  varies from -0.9 to -0.1 and increases as the correlation coefficient  $\rho$  varies from +0.1 to +0.9 and dominates the existing estimators.
  - (d) The similar conclusion can be observed when  $\sigma_U^2 = 2$ ,  $\sigma_V^2 = 4$ ;  $\sigma_U^2 = 4$ ,  $\sigma_V^2 = 2$  and  $\sigma_U^2 = 4$ ,  $\sigma_V^2 = 4$ .
- (iii) The conclusion like point (ii) can also be observed from Table 4 based on  $\sigma_Z^2 = 20$ ,  $\sigma_Y^2 = 25$ , Table 5 based on  $\sigma_Z^2 = 25$ ,  $\sigma_Y^2 = 20$  and Table 6 based on  $\sigma_Z^2 = 25$ ,  $\sigma_Y^2 = 25$ .
- (iv) From the outcomes summarized in Table 7 for  $\sigma_Z^2 = 20$ ,  $\sigma_Y^2 = 20$ ,  $n=50$  & 100, it is seen that when the level of ME is 10% then:
  - (a) the PRE of the classical ratio estimator  $t_r$  varies as the correlation coefficient  $\rho$  varies from -0.9 to +0.9.
  - (b) the PRE of the classical product estimator  $t_p$  decreases as the correlation coefficient  $\rho$  varies from -0.9 to +0.9.
  - (c) the PRE of the proposed estimators  $t_i$ ,  $i = 1, 2$  decreases as the correlation coefficient  $\rho$  varies from -0.9 to -0.1 and increases as the correlation coefficient  $\rho$  varies from +0.1 to +0.9 and dominates the existing estimators.
  - (d) The same tendency can be seen when the levels of ME are 20%, 30% and 40%.
  - (e) Moreover, the PRE of the proposed estimators decreases as the level of ME increases.
- (v) The interpretation like point (iv) can also be drawn from Table 8 based on  $\sigma_Z^2 = 20$ ,  $\sigma_Y^2 = 25$ , Table 9 based on  $\sigma_Z^2 = 25$ ,  $\sigma_Y^2 = 20$  and Table 10 based on  $\sigma_Z^2 = 25$ ,  $\sigma_Y^2 = 25$ .

Based on the above discussions drawn after the perusal of the findings of numerical and simulation studies, it is clear that the performance of the proposed class of estimators is highly justifiable over the conventional estimators. Therefore, the proposed class of estimators can be recommended to the survey practitioners whenever ME occurs in the survey.

Furthermore, the proposed estimators can be developed under stratified random sampling in case of measurement errors.

## Acknowledgement

The authors are thankful to the editor-in-chief Wararit Panichkitkosolkul and anonymous reviewers for their encouraging suggestions which improved the quality of contents and presentation of the original manuscript.

## References

Allen J, Singh HP, Smarandache F. A family of estimators of population mean using multi auxiliary information in presence of measurement error. *Int J Soc Econ.* 2003; 30(7): 837-848.

Bhushan S, Kumar A. Log type estimators of population mean under ranked set sampling. *Predictive Analytics Using Statistics and Big Data: Concepts and Modeling.* Bentham Books, 2020.

Bhushan S, Kumar A. On optimal classes of estimators under ranked set sampling. *Commun Stat Theory.* 2022a; 51(8): 2610-2639.

Bhushan S, Kumar A. An efficient class of estimators based on ranked set sampling. *Life Cycle Reliab Saf Eng.* 2022b; 11: 39-48.

Bhushan S, Kumar A. Novel log type class of estimators under ranked set sampling. *Sankhya B.* 2022c; 84: 421-447.

Bhushan S, Kumar A, Lone SA. On some novel classes of estimators under ranked set sampling. *AEJ - Alex. Eng. J.* 2021; 61: 5465-5474.

Bhushan S, Kumar A, Akhtar MT, Lone SA. Logarithmic type predictive estimators under simple random sampling. *AIMS Math.* 2022a; 7(7): 11992-12010.

Bhushan S, Kumar A, Pandey AP, Singh S. Estimation of population mean in presence of missing data under simple random sampling. *Commun Stat Simulat.* 2022b; 1-22. <https://doi.org/10.1080/03610918.2021.2006713>.

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. *Measurement error in nonlinear models: a modern perspective.* Chapman and Hall/CRC, 2006.

Cekim HO, Kadilar C. In-type estimators for the population variance in stratified random sampling. *Commun Stat Simulat.* 2020a; 49(7): 1665-1677.

Cekim HO, Kadilar C. In-Type variance estimators in simple random sampling. *Pak J Stat Oper Res.* 2020b; 16(4): 689-696.

Chegg CL, Van Ness JW. On estimating linear relationships when both variables are subject to error. *J Roy Stat Soc B Met.* 1994; 56(1): 167-183.

Cochran WG. The estimation of the yields of the cereal experiments by sampling for the ratio of gain to total produce. *J Agr Sci.* 1940; 30(2): 262-275.

Cochran WG. Errors of measurement in statistics. *Technometrics,* 1968; 10(4): 637-666.

Cochran WG. *Sampling technique.* Hoboken, NJ: John Wiley & Sons, Inc. 1977.

Fuller WA. *Estimation in the presence of measurement error. Measurement error models.* Hoboken, NJ: John Wiley & Sons, Inc. 1987.

Gujarati DN, Sangeetha. *Basic econometrics.* New Delhi: Tata McGraw Hill Publishing Company Limited. 2007.

Kumar M, Singh R, Singh AK, Smarandache F. Some ratio type estimators under measurement error. *World Appl Sci J.* 2011; 14(2): 272-276.

Manisha, Singh RK. An estimation of population mean in the presence of measurement errors. *J Ind Soc Agric Stat.* 2001; 54(1): 13-18.

Murthy MN. Product method of estimation. *Sankhya A.* 1964; 26(1): 69-74.

Murthy MN. *Sampling theory and methods.* Statistical Publishing Society, Calcutta. 19-67.

Shalabh. Ratio method of estimation in the presence of measurement errors. *J Ind Soc Agric Stat.* 1997; 50(2): 150-155.

Sahoo LN, Sahoo RK, Senapati SC. An empirical study on the accuracy of ratio and regression estimators in the presence of measurement errors. *Monte Carlo Methods Appl.* 2006; 495-501.

Zaman T, Kadilar C. Exponential ratio and product type estimators of the mean in stratified two-phase sampling. *AIMS Math.* 2021a; 6(5): 4265-4279.

Zaman T, Kadilar C. New class of exponential estimators for finite population mean in two-phase sampling. *Commun Stat Theory.* 2021b; 50(4): 874-889.

Zaman T. An efficient exponential estimator of the mean under stratified random sampling. *Math Popul Stud.* 2021; 28(2): 104-121.