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Abstract
It is well known that the relevant utilization of auxiliary information associated with the aux-

iliary variable helps to enhance the efficiency of the estimates. Therefore, we introduce some log
type estimators based on multi-auxiliary information under ranked set sampling. The mean square
error (MSE) of the suggested estimators is derived to the first order approximation. The efficiency
conditions are obtained by comparing the MSE of the suggested estimators with the MSE of the
contemporary estimators. Further, numerical and simulation studies are conducted over real and ar-
tificially generated populations to support the theoretical results. The empirical results show that the
suggested estimators perform better than the usual mean estimator, classical ratio estimator, Abu-
Dayyeh et al. (2009) estimator, Mehta and Mandowara (2014) estimator, Khan and Shabbir (2016)
estimator and Khan et al. (2019) estimator.

Keywords: Mean square error, auxiliary information, ranked set sampling.

1. Introduction
McIntyre (1952) introduced the idea of ranked set sampling (RSS) as a cost-independent al-

ternative to simple random sampling but did not furnish any mathematical formula. The necessary
mathematical formulation to the theory of RSS was provided by Takahasi and Wakimoto (1968).
McIntyre (1952) and Takahasi and Wakimoto (1968) developed RSS with perfect ranking of units.
Dell and Clutter (1972) demonstrated in the case of perfect and imperfect ranking of units that the
mean under RSS is an unbiased estimator of the population mean. Muttlak and McDonald (1990)
investigated RSS when units are selected with size biased probability regarding the concomitant
variable, whereas Muttlak and McDonald (1992) introduced an efficient line intercept method under
RSS. Muttlak (1995) employed RSS to estimate the parameters in simple linear regression. Samawi
and Muttlak (1996) showed that ranking of the denominator variable in the ratio estimator improves
the efficiency. Singh et al. (2014) suggested a general family of estimators of population mean un-
der RSS. Bhushan and Kumar (2020) suggested some log type class of estimators of population
mean under RSS, whereas Bhushan et al. (2021) developed some novel classes of estimators for
the estimation of population mean under RSS. Kumar and Dudeja (2021) introduced shadowed type
2 fuzzy-based Markov model to predict shortest path with optimized waiting time. Moreover, an
extensive work is also done by Bhushan and Kumar (2021, 2022a, 2022b, 2022c) to estimate the pop-
ulation mean under RSS which may be of reader’s interest. When the surveys are rather extensive,
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the efficiency of the estimators may be improved by considering the information on more than one
auxiliary variable. Abu-Dayyeh et al. (2009) introduced a ratio estimator of population mean based
on auxiliary information in RSS. Mehta and Mandowara (2014) opined an improved ratio estimator
consisting two auxiliary variables in RSS. Khan and Sabbir (2016, 2017) envisaged improved ra-
tio type estimators utilizing two auxiliary variables under RSS. Recently, some efficient estimators
of population mean are suggested by Khan et al. (2019) using two auxiliary variables. This article
proposes some log type estimators of population mean based on bivariate auxiliary information in
RSS.

The article is designed in a few sections: In Section 2, a concise review of conventional estima-
tors is considered along with their properties. The proposed estimators are given in Section 3 along
with their properties. The conditions of efficiency for the proposed estimators are obtained in Section
4. The conditions of efficiency are enhanced by numerical and simulation studies in Section 5 and
Section 6, respectively. The results of numerical and simulation studies are discussed in Section 7.
Finally, the conclusion is presented in Section 8.

2. Conventional Estimators
In ranked set sampling, m independent random sets, each of size m, are randomly drawn from

the population with equal probability and without replacement. The members of each random set are
ranked concerning the variable of choice. Then, the first smallest unit is quantified from the ranked
set and the remaining units of the set are discarded. The second smallest unit is quantified from the
second ranked set and the remaining units of the set are discarded. In this way, this procedure is
continued until the unit with the largest rank is quantified from the mth set and the remaining units
of the set are discarded. This whole process is referred to as a cycle and the repetition of such cycles
r times provides n = mr ranked set samples.
The procedure of selecting n ranked set samples is defined in the following steps:
Step 1: Randomly draw m2 trivariate samples from the parent population.
Step 2: Allocate randomly drawn m2 units into m sets, each of size m units.
Step 3: Each set is ranked with respect to the variable of choice.
Step 4: Measure the unit with rank i from the set i (i = 1, 2, ...,m) for actual measurement.
Step 5: Repeat steps 1 to 4 for r cycles until the desired samples of size n = mr units are obtained.
Let the ranking be performed on the auxiliary variable z1 while the ranking of study variable y
and auxiliary variable z2 are measured with errors in ranking. Thus, (z1(i), z2[i], y[i]) denote ith

order statistic in the ith sample for variable z1 and the ith judgment ordering in the ith sample for
the auxiliary variable z2 and study variable y, respectively. The parentheses () and [] associated,
respectively, with z1 and z2, y show the perfect and imperfect ranking of units.
Further, this section considers existing conventional estimators under RSS using bivariate auxiliary
information.

(i) The conventional mean estimator under RSS is expressed by

ȳm = ȳ[n] (1)

where ȳ[n] =
∑m

i=1 y[i]/mr is the ranked set sample mean of the study variable y.

(ii) The conventional ratio estimator using bivariate auxiliary information under RSS is defined as

ȳr = ȳ[n]

(
Z̄1

z̄1(n)

)(
Z̄2

z̄2[n]

)
(2)

where z̄1(n) =
∑m

i=1 z1(i)/mr and z̄2[n] =
∑m

i=1 z2[i]/mr are the ranked set sample means of
auxiliary variables z1 and z2, respectively.
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(iii) Abu-Dayyeh et al. (2009) envisaged a class of ratio type estimators using bivariate auxiliary
information under RSS as

ȳw = ȳ[n]

[
w1

(
Z̄1

z̄1(n)

)a1

+ w2

(
Z̄2

z̄2[n]

)a2
]

(3)

where a1, a2, w1 and w2 are suitably chosen constants and w1 + w2 = 1.

(iv) On the lines of Olkin (1958), Mehta and Mandowara (2014) suggested ratio type estimator
under RSS as

ȳmm = ȳ[n]

[
w1

(
Z̄1

z̄1(n)

)
+ w2

(
Z̄2

z̄2[n]

)]
(4)

where w1 and w2 are duly opted scalars.

(v) Khan and Shabbir (2016) developed a class of ratio in exponential ratio type estimators based
on bivariate auxiliary information under RSS as

ȳk1
= ȳ[n]

(
Z̄1

z̄1(n)

)η1
(

Z̄2

z̄2[n]

)η2
[
k1 exp

(
Z̄1 − z̄1(n)

Z̄1 + z̄1(n)

)
+ k2 exp

(
Z̄2 − z̄2[n]

Z̄2 + z̄2[n]

)]
(5)

where η1 and η2 are unknown constants and k1 and k2 are the weights such that k1 + k2 = 1.

(vi) Khan et al. (2019) suggested a class of difference in exponential ratio type estimators using
bivariate auxiliary information under RSS as

ȳk2
= [ȳ[n] +Φ1(Z̄1 − z̄1(n)) + Φ2(Z̄2 − z̄2[n])]

[
k1 exp

(
Z̄1 − z̄1(n)

Z̄1 + z̄1(n)

)
+ k2 exp

(
Z̄2 − z̄2[n]

Z̄2 + z̄2[n]

)]
(6)

where Φ1 and Φ2 are scalars.

The MSE of the above estimators are expressed in the Appendix A for ready reference.

3. Suggested Estimators
Motivated by the work of Bhushan et al. (2020a, b), we have extended the work of Bhushan and

Kumar (2020) using bivariate and multi-auxiliary information under RSS.

3.1. Suggested estimators using bivariate auxiliary information
The proposed estimators using bivariate auxiliary information under RSS are given by

Tb1 = ȳ[n]

[
1 + log

(
z̄1(n)

Z̄1

)]α1
[
1 + log

(
z̄2[n]

Z̄2

)]β1

(7)

Tb2 = ȳ[n]

[
1 + α2 log

(
z̄1(n)

Z̄1

)][
1 + β2 log

(
z̄2[n]

Z̄2

)]
(8)

where αj and βj , j = 1, 2 are duly opted scalars to minimize the MSE.

3.2. Suggested estimators using multi-auxiliary information
In the sample survey, sometimes the information is available on multiple auxiliary variables. Let

the information be available on p multi-auxiliary variables z1, z2, ..., zp, then the proposed estimators
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based on multi-auxiliary information are defined as

Tb3 = ȳ[n]

p∏
j=1

[
1 + log

(
z̄j(n)

Z̄j

)]αj

(9)

Tb4 = ȳ[n]

p∏
j=1

[
1 + βj log

(
z̄j(n)

Z̄j

)]
(10)

where αj and βj , j = 1, 2, ..., p are duly opted scalars.

Theorem 1 The MSE and minimum MSE of the proposed class of estimators Tbi , i = 1, 2 are
given by

MSE(Tbi) = Ȳ 2
[
∆0 + α2

i∆1 + β2
i ∆2 + 2αi∆01 + 2βi∆02 + 2αiβi∆12

]
, i = 1, 2 (11)

MSE(Tb3) = Ȳ 2

∆0 +

p∑
j=1

α2
j∆j + 2

p∑
j=1

αj∆0j + 2
∑ p∑

i>j

αiαj∆ij

 (12)

MSE(Tb4) = Ȳ 2

∆0 +

p∑
j=1

β2
j∆j + 2

p∑
j=1

βj∆0j + 2
∑ p∑

i>j

βiβj∆ij

 (13)

minMSE(Tbi) = Ȳ 2
[
∆0 − (∆2∆

2
01+∆1∆

2
02−2∆01∆02∆12)

(∆1∆2−∆2
12)

]
, i = 1, 2 (14)

minMSE(Tbi) = Ȳ 2
[
∆0 −

(
∑p

j=1 ∆j∆
2
0p−j+1−2

∑∑p
i>j ∆0i∆0j∆ij)

(
∏p

j=1 ∆j−
∑∑p

i>j ∆2
ij)

]
, i = 3, 4 (15)

Proof. To find the MSE, we assume the following notations as
ȳ[n] = Ȳ (1+ϵ0), z̄1(n) = Z̄1(1+ϵ1), z̄2[n] = Z̄2(1+ϵ2) such that E(ϵt) = 0, t = 0, 1, 2, E(Z1(i)) =

µz1(i) , E(Z2[i]) = µz2[i] , E(Y[i]) = µy[i]
, E(ϵ0

2) = (γC2
y − W 2

y[i]
) = ∆0, E(ϵ1

2) = (γC2
z1 −

W 2
z1(i)

) = ∆1, E(ϵ2
2) = (γC2

z2 − W 2
z2[i]

) = ∆2, E(ϵ0, ϵ1) = (γρz1yCz1Cy − Wz1y[i]
) =

∆01, E(ϵ0, ϵ2) = (γρz2yCz2Cy −Wz2y[i]
) = ∆02 and E(ϵ1, ϵ2) = (γρz1z2Cz1Cz2 −Wz1z2[i]

) =
∆12.
Where γ = 1/mr, Cz1 = Sz1/Z̄1, Cz2 = Sz2/Z̄2, Cy = Sy/Ȳ , W 2

z1(i)
=

∑m
i=1 τ

2
z1(i)

/m2rZ̄2
1 , W

2
z2[i]

=∑m
i=1 τ

2
z2[i]

/m2rZ̄2
2 , W 2

y[i]
=

∑m
i=1 τ

2
y[i]

/m2rȲ 2, Wz1y[i]
=

∑m
i=1 τz1y[i]

/m2rZ̄1Ȳ , Wz2y[i]
=∑m

i=1 τz2y[i]
/m2rZ̄2Ȳ ,

Wz1z2[i]
=

∑m
i=1 τz1z2[i]

/m2rZ̄1Z̄2, τz
1(i)

= (µz
1(i)

− Z̄1), τz
2[i]

= (µz
2[i]

− Z̄2) τy
[i]

=

(µy
[i]

− Ȳ ), τz1y
[i]

= (µz
1(i)

− Z̄1)(µy
[i]

− Ȳ ), τz2y
[i]

= (µz
2[i]

− Z̄2)(µy
[i]

− Ȳ ) and τz1z2
[i]

=

(µz
1(i)

− Z̄1)(µz
2[i]

− Z̄2).

Using the above notations, the estimators Tbi , i = 1, 2 can be expressed as

Tb1 − Ȳ = Ȳ

[
ϵ0 + α1ϵ1 + β1ϵ2 +

(
α2

1

2 − α1

)
ϵ21 +

(
β2
1

2 − β1

)
ϵ22 + α1ϵ0ϵ1

+β1ϵ0ϵ2 + α1β1ϵ1ϵ2

]
(16)

Tb2 − Ȳ = Ȳ
[
ϵ0 + α2ϵ1 + β2ϵ2 − α2

2 ϵ21 −
β2

2 ϵ22 + α2ϵ0ϵ1 + β2ϵ0ϵ2 + α2β2ϵ1ϵ2
]
. (17)

Squaring and taking expectation both sides of (16) and (17), we get the MSE of the estimators
Tbi , i = 1, 2 up to the first order of approximation as

MSE(Tbi) = Ȳ 2
[
∆0 + α2

i∆1 + β2
i ∆2 + 2αi∆01 + 2βi∆02 + 2αiβi∆12

]
. (18)
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Minimizing the MSE(Tbi) regarding αi and βi, we get

αi(opt) =
(∆02∆12 −∆2∆01)

(∆1∆2 −∆2
12)

(19)

βi(opt) =
(∆01∆12 −∆1∆02)

(∆1∆2 −∆2
12)

. (20)

Putting αi(opt) and βi(opt) in the MSE(Tbi), we get the minimum MSE up to the first order of
approximation as

minMSE(Tbi) = Ȳ 2
[
∆0 − (∆2∆

2
01+∆1∆

2
02−2∆01∆02∆12)

(∆1∆2−∆2
12)

]
(21)

Similarly, the properties of estimators Tbi , i = 3, 4 can be obtained.

4. Efficiency Conditions
This section presents the efficiency conditions by comparing the minimum MSE of the pro-

posed estimators from (14) with the minimum MSE of the conventional estimators from (A.28),
(A.29), (A.31), (A.35), (A.36) and (A.37) as

MSE(ȳm) > MSE(Tbi)

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

> −1 (22)

MSE(ȳr) > MSE(Tbi)

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

> 2∆01 + 2∆02 − 2∆12 −∆1 −∆2 (23)

MSE(ȳw) > MSE(Tbi)

a22∆2 > 2a2∆02 (24)
MSE(ȳMM ) > MSE(Tbi)

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

>
(∆02 −∆2 −∆01 +∆12)

2

(∆1 +∆2 − 2∆12)
−∆2 − 2∆02 (25)

MSE(ȳk1
) > MSE(Tbi)

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

> −

 + 1
4 (k1 + 2η1)

2∆1 +
1
4 (k2 + 2η2)

2∆2

−(k1 + 2η1)∆01 − (k2 + 2η2)∆02

+ 1
2 (k1 + 2η1)(k2 + 2η2)∆12

 (26)

MSE(ȳk2
) > MSE(Tbi)

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

> − 1

Ȳ 2

 − 1
4 (k1Ȳ + 2Φ1Z̄1)

2∆1 − 1
4 (Ȳ k2 + 2Φ2Z̄2)

2∆2

+Ȳ (Ȳ k1 + 2Φ1Z̄1)∆01 + Ȳ (Ȳ k2 + 2Φ2Z̄2)∆02

− 1
2 (k2Ȳ − 2Φ1Z̄1)(Ȳ k2 + 2Φ2Z̄2)∆12


(27)

If the above conditions are well satisfied, then the suggested estimators become superior than the
existing estimators.

5. Numerical Study
To support the efficiency conditions presented in the previous section, we perform a numerical

study using some real populations that are given here under.
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(1) Source: Singh (2003, pp. 1115), y=Season average price (in $) per pound in 1996, z1=Season
average price (in $) per pound in 1995, z2=Season average price (in $) per pound in 1994,
N=36, Ȳ =0.2032, Z̄1=0.1856, Z̄2=0.1708, Sy=0.0803, Sz1=0.0752, Sz2=0.0634, ρz1y=0.8775,
ρz2y=0.8577 and ρz1z2=0.8780.

(2) Source: Sarndal et al. (2003, pp. 652-659), y=Total number of seats in municipal coun-
cil of Sweden in 1982, z1=Number of conservative seats in municipal council of Sweden
in 1982, z2=Number of social-democratic seats in municipal council of Sweden in 1982,
N=284, Ȳ =47.5, Z̄1=9.05, Z̄2=22.11, Sy=11.06, Sz1=4.95, Sz2=7.34, ρz1y=0.65, ρz2y=0.75
and ρz1z2=0.20.

(3) Source: Singh (2003, pp. 1116), y=Number of fish caught throughout the year 1995, z1=Number
of fish caught throughout the year 1994, z2=Number of fish caught throughout the year 1993,
N=69, Ȳ =4514.89, Z̄1=4954.43, Z̄2=4591.07, Sy = 6099.14, Sz1 = 7058.98, Sz2 = 6315.21,
ρz1y = 0.9601, ρz2y = 0.9564 and ρz1z2 = 0.9729.

From these populations, we select a ranked set sample of size n = 12 using RSS such that the
set size m = 3 and the number of cycles r = 4. The percent relative efficiency (PRE) of various
estimators T (T=ȳr, ȳw, ȳmm, ȳki , i = 1, 2 and Tbi , i = 1, 2) w.r.t. mean per unit estimator ȳm is
calculated utilizing the following expression.

PRE =
MSE(ȳm)

MSE(T )
× 100.

The results of the numerical study for these populations are reported in Table 1 by PRE.

Table 1 PRE of different estimators for real populations

Estimators Population 1 Population 2 Population 3
ȳm 100 100 100
ȳr 81.6331 22.4555 78.3802
ȳw 252.3034 272.8118 851.6827
ȳmm 28.6098 20.5741 25.3191
ȳk1 108.9130 282.0447 44.2769
ȳk2 90.8850 319.1730 17.2778
Tbi , i = 1, 2 512.4137 559.7327 1428.252

6. Simulation Study
To enhance the efficiency conditions, we have carried out a simulation study based on artificially

generated symmetric and asymmetric populations. The description of the populations is given below.

(1) We generate a trivariate normal population of size N=1000 with parameters Ȳ = 10, Z̄1 = 15,
Z̄2 = 20, σy = 15, σz1 = 20, σz2 = 25 with correlation coefficients ρz1y=0.89, ρz2y=0.79 and
ρz1z2=0.69.

(2) The triplet (y, z1, z2) is generated of size N=500 such that x1 ∼ Weibull(0.5, 1), e ∼ N(0, 1),
z2=1.5z0.51 + e and y = 8z1 + 7z2 + e, where ρz1y > ρz2y .

The RSS procedure is considered to draw 6 ranked set samples each with set size m = 3 and
number of cycle r = 4 i.e. n = 12 from each population. Using 15,000 iterations, the gain in PRE
of different estimators T w.r.t. mean per unit estimator ȳm is obtained as

PRE =
MSE(ȳm)

MSE(T )
× 100 =

1
15,000

∑15,000
i=1 (ȳm − Ȳ )2

1
15,000

∑15,000
i=1 (T − Ȳ )2

× 100.
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The simulation outcomes are displayed in terms of PRE from 2 to 3 which show the superiority
of the suggested estimators Tbi , i = 1, 2 in comparison to the usual mean estimator ȳm, classical
ratio estimator ȳr, ratio type estimator ȳa, ȳw envisaged by Abu-Dayyeh et al. (2009), Mehta and
Mandowara (2014) estimator ȳmm, Khan and Shabbir (2016) estimator ȳk1

and Khan et al. (2019)
estimator ȳk2

.

Table 2 PRE of different estimators for artificially generated normal population

Samples 1 2 3 4 5 6
Estimators
ȳm 100 100 100 100 100 100
ȳr 69.4632 103.5917 118.2773 58.6357 87.9153 82.5761
ȳw 112.2593 130.5996 134.4317 113.1973 101.4816 110.2743
ȳmm 48.9815 131.9844 100.6957 56.9013 84.3605 73.5406
ȳk1 102.8539 135.0452 120.2090 116.9718 101.2254 106.1422
ȳk2 107.3609 122.1814 122.8091 117.5623 101.2495 106.2039
Tbi , i = 1, 2 113.0088 135.4848 134.795 118.2017 101.5006 111.9497
W 2

y[i]
0.018550 0.001211 0.032321 0.000000 0.067096 0.000304

W 2
z1(i)

0.090040 0.029912 0.005574 0.024037 0.043274 0.045211
W 2

z2[i]
0.017093 0.000000 0.003656 0.000462 0.000313 0.000390

W 2
z1y[i]

-0.040868 0.006020 0.013422 0.000328 -0.053884 -0.003710
W 2

z1y[i]
0.017807 -0.000006 0.010870 0.000005 -0.004587 -0.000344

W 2
z1z2[i]

-0.039231 -0.000308 0.004514 0.00333 0.003683 0.004199

Table 3 PRE of different estimators for artificially generated Weibull population

Samples 1 2 3 4 5 6
Estimators
ȳm 100 100 100 100 100 100
ȳr 80.7379 39.2487 42.3787 41.6355 42.1923 46.8327
ȳw 163.8211 105.4807 105.3451 121.0608 112.7139 121.1342
ȳmm 27.4983 63.6670 59.4895 42.3909 55.6484 120.2273
ȳk1 155.6881 106.8107 103.9006 118.3606 110.8535 117.3293
ȳk2 160.2798 107.0126 102.6795 119.4986 113.0195 117.2040
Tbi , i = 1, 2 163.8268 107.2256 105.9513 121.7621 113.3722 129.7583
W 2

y[i]
0.004433 0.000006 0.047772 0.008802 0.001311 0.006879

W 2
z1(i)

0.058527 0.047702 0.021969 0.085072 0.000195 0.008661
W 2

z2[i]
0.002116 0.004293 0.004699 0.016382 0.004851 0.002903

W 2
z1y[i]

-0.016107 -0.001753 0.032396 -0.027364 -0.000505 -0.007719
W 2

z1y[i]
0.003063 -0.000525 0.014982 0.012008 0.002522 0.004469

W 2
z1z2[i]

-0.011131 0.014311 0.010160 -0.037332 -0.000972 -0.005014

7. Discussion of Results
Table 1 based on the results of the numerical study in terms of PRE for the real populations

show the ascendancy of the proposed class of estimators over the usual mean estimator, classical
ratio estimators, Aby-Dayyeh et al. (2009) estimator, Mehta and Mandowara (2014) estimator, Khan
and Shabbir (2016) estimator and Khan et al. (2019) estimator. Furthermore, the numerical study
is generalized by the simulation study using artificially generated normal and Weibull populations
and the results are reported in Tables 2 and 3, respectively. From Table 2, the PRE of the proposed
estimators dominate the PRE of the existing estimators in samples 1-6. The similar inclination in
the PRE values can be observed from the simulation results of 3.
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8. Conclusion
In this article, we have proposed some log type estimators based on bivariate auxiliary informa-

tion under RSS along side the expressions of their bias and MSE. The theoretical comparison is
made with respect to the usual mean estimator ȳm, classical ratio estimator ȳr, ratio type estimator
ȳw envisaged by Abu-Dayyeh et al. (2009), Mehta and Mandowara (2014) estimator ȳmm, Khan and
Shabbir (2016) estimator ȳk1 and Khan et al. (2019) estimator ȳk2 and the efficiency conditions are
obtained. The theoretical results are illustrated with a numerical study based on some real populations
and a simulation study based on some artificially generated symmetric and asymmetric populations.
It has been observed from the results of numerical and simulation studies disclosed from 1 to 3 that
the PRE of the suggested estimators repress the PRE of the existing estimators. Hence, the sug-
gested estimators may be considered by survey practitioners in practical use as an efficient alternative
of the existing estimators.
Furthermore, the proposed estimators can be developed for the estimation of population mean using
stratified ranked set sampling.
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Appendix A

The MSE of the conventional mean estimator is expressed by

MSE(ȳm) = Ȳ 2∆0. (A.28)

The MSE of the conventional ratio estimator ȳr is expressed by

MSE(ȳr) = Ȳ 2
[
∆0 +∆1 +∆2 − 2∆01 − 2∆02 + 2∆12

]
. (A.29)

The MSE of the estimator ȳw is expressed by

MSE(ȳw) = Ȳ 2 [ ∆0 + w2
1a

2
1∆1 + w2

2a
2
2∆2 − 2w1a1∆01 − 2w2a2∆02 + 2w1w2a1a2∆12

]
. (A.30)

The optimum values of scalars are expressed by

a1(opt) =
(∆2∆01 −∆02∆12)(

∆1∆2 −∆2
12

)
a2(opt) =

(∆1∆02 −∆01∆12)(
∆1∆2 −∆2

12

)
w1(opt) =

(a22∆2 + a1∆01 + a2∆02 − a1a2∆12)

(a21∆1 + a22∆2 − 2a1a2∆12)

w2(opt) = 1− w1(opt).

The minimum MSE at optimum values of scalars is expressed by

minMSE(ȳw) = Ȳ 2

[
∆0 + a22∆2 − 2a2∆02 −

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

]
. (A.31)
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The MSE of the estimator ȳmm is expressed by

MSE(ȳmm) = Ȳ 2
[
∆0 + w2

1∆1 + w2
2∆2 + 2w1∆01 + 2w2∆02 + 2w1w2∆12

]
. (A.32)

The optimum value of w1 and w2 are obtained by minimizing (A.32) w.r.t. w1 and w2 as

w1(opt) =

[
∆2 +∆01 +∆02 −∆12

∆1 +∆2 − 2∆12

]
(A.33)

w2(opt) = 1− w1(opt). (A.34)

The minimum MSE at optimum values of scalars is expressed by

minMSE(ȳmm) = Ȳ 2

[
∆0 +∆2 − 2∆02 −

(∆2∆
2
01 +∆1∆

2
02 − 2∆01∆02∆12)

(∆1∆2 −∆2
12)

]
. (A.35)

The minimum MSE of estimator ȳk1
is expressed by

minMSE(ȳk1
) = Ȳ 2

[
∆0 +

1
4 (k1 + 2η1)

2∆1 +
1
4 (k2 + 2η2)

2∆2 − (k1 + 2η1)∆01

−(k2 + 2η2)∆02 +
1
2 (k1 + 2η1)(k2 + 2η2)∆12

]
(A.36)

where

η1(opt) =
(∆01∆2 −∆02∆01)

(∆1∆2 −∆2
12)

− k1
2

η2(opt) =
(∆02∆1 −∆01∆12)

(∆1∆2 −∆2
12)

− (k2)

2
.

The minimum MSE of estimator ȳk2 is expressed by

minMSE(ȳk2
) =

 Ȳ 2∆0 +
1
4 (k1Ȳ + 2Φ1Z̄1)

2∆1 +
1
4 (Ȳ k2 + 2Φ2Z̄2)

2∆2

−Ȳ (Ȳ k1 + 2Φ1Z̄1)∆01 − Ȳ (Ȳ k2 + 2Φ2Z̄2)∆02

+ 1
2 (k1Ȳ − 2Φ1Z̄1)(Ȳ k2 + 2Φ2Z̄2)∆12

 (A.37)

where

Φ1(opt) =
Ȳ

Z̄1
η1(opt)

Φ2(opt) =
Ȳ

Z̄2
η2(opt).
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