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Abstract
This work introduces a new proposed model, the exponentiated Rayleigh-Rayleigh distribution

created by Rayleigh-Rayleigh and exponentiated distributions. It better fits the data sets, whereas
other distributions could not be implemented. The peak over threshold method is considered for
model fitting in the tailed distribution. The parameters estimation is the maximum likelihood estimate
and measurements of model fitting are the Kolmogorov-Smirnov test, Anderson-Darling test, Akaike
Information Criterion and Bayesian information criterion. The exponentiated Rayleigh-Rayleigh dis-
tribution is compared to the current distributions, which are lognormal, gamma, Weibull and general-
ized Pareto, exponential, exponential-exponential, gamma-exponential and Rayleigh-Rayleigh. The
data are considered based on simulation and Danish Fire data. We have found that the Exponentiated
Rayleigh-Rayleigh distribution is the better fit for the small size of the data.

Keywords: Exponentiated distribution, extreme value theorem, infinite mixture distribution, Rayleigh
distribution, tailed distribution.

1. Introduction
One method of constructing a new model is an exponentiated distribution. This was originally

introduced by Gupta et al. (1999) and it was proposed for the failure time data model. Many papers
and publications have been modified and built on exponentiated distribution. They are mostly applied
to the data of lifetime models and medical sciences. The model of exponentiated distribution, G, is
in the form of

Gα(x) = [F (x)]α,

where a cumulative distribution function (cdf) has a baseline distribution function F (x) and α is
a positive real number. Many researchers have created various baseline distributions. For exam-
ple, Gupta and Kundu (2001) proposed and studied some mathematical and statistical properties of
the exponentiated exponential (EE) distribution. They found that the EE might work better than
Weibull or Gamma. AL-Jammal (2008) studied the reliability function and failure rate by using the
EE distribution. Hamedani (2013) presented the various characterizations of the class of the expo-
nentiated distributions. Masoom et al. (2007) studied a number of new exponentiated distributions,
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consisting of exponential inverse Weibull, exponentiated logistic, exponentiated Pareto, exponenti-
ated generalized uniform, exponentiated general exponential, exponentiated double exponential and
exponentiated double Weibull.

In 2014, Cordeiro et al. (2014) proposed the two parameters exponentiated half-logistic (EHL)
distributions, which represent a competitive alternative for lifetime data, while Elbatal et al. (2014)
introduced the transmuted exponentiated Fechet (TEF) distribution with some study of the transmuted
probability distribution. The new lifetime distribution of exponentiated Gumbel (EG) type-2 distribu-
tion was presented by Okorie et al. (2016). They recommended applying the model to complex data
and the exponentiated moment exponential power series (EMEPS) family was proposed by Iqbal et
al. (2017). It is suitable for several data types. In 2018, Handique et al. (2018) proposed the expo-
nentiated generalized MarshallOlkin family of distributions, a better fit for three data sets that are
increasing hazard rates. Fatima et al. (2018) proposed the new exponentiated inverse Kumaraswamy
distribution. Al-Omari et al. (2019) created the exponentiated new Weibull-Pareto (ENWP) distribu-
tion and derived several properties. In 2020, Al-Sulami (2020) proposed the exponentiated Exponen-
tial Weibull distribution (EEWD), in which the mathematical and statistical properties are described.
Abbas et al. (2020) presented exponentiated exponential-exponentiated Weibull distribution, which
deals with linear mixing of exponentiated exponential and exponentiated Weibull.

Many papers have discussed and considered the Danish fire data set which is globally recognized
data of fire insurance losses, such as Boonradsamee et al. (2022) and Wasinrat and Choopradit (2022).
It is not easy to model a whole data set for a model fitting by using a single parametric distribution.
The peaks over threshold (POT) method is a model of the extreme value theorem (EVT), which is
a model of tail distribution. Thus, the data exceeds the threshold u, which would be fitted by some
models. The generalized Pareto distribution (GPD) is most popularly used for modelling extreme
events, especially in insurance, based on the POT method, which benefits tail distribution modelling
and reinsurance work.

We present a new model called the exponentiated Rayliegh-Rayliegh (ERR) distribution derived
from an exponentiated distribution with the baseline distribution function of the Rayliegh-Rayliegh
(RR) distribution. The RR is created by the infinite distribution based on the Rayleigh distribu-
tion proposed by Jaroengeratikun et al. (2022). The heavy-tailed properties of ERR distribution are
described and applied to the model, which simulates the insurance claims for model fitting. The
comparisons of the models are based on individual data and the POT method in which the data ex-
ceed a threshold u are analyzed. The ERR distribution is applied to the Danish fire data set and also
compared to some current distributions.

2. System Descriptions
In each distribution procedure, we consider the sample sizes n that are independent identically

distributed (i.i.d.). The distributions take into account the current distributions and a new distribution
that we propose in this paper.

We employ the current distributions for comparisons of model fitting. The current models are
composed of the traditional distributions and the new distributions, which have been proposed by re-
cent authors. They are sometimes called a single parametric distribution, which is different from a fi-
nite mixture distribution. The current distributions are lognormal (LN), gamma (Gam), Weibull (Wei),
generalized Pareto distribution (GP), exponential (Exp), exponential-exponential (EE), gamma-exponential
(GE) and Rayliegh-Rayliegh (RR). The cumulative distribution function (cdf) and the probability
density function (pdf) are described as follows.

The RR distribution was constructed by Jaroengeratikun et al. (2022). It was developed from the
infinite mixture Rayleigh model. The cdf and pdf are in the following form:

F (x) =
x2

x2 + t2
; t > 0, x ≥ 0,
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f(x) =
2xt2

(x2 + t2)2
; t > 0, x ≥ 0.

2.1. A new distribution
We created a new model called the exponentiated Rayleigh-Rayleigh (ERR) distribution. The

distribution is derived from the infinite mixture distribution of the Rayleigh distribution, which was
modified to be the exponentiated Rayleigh-Rayleigh distribution under the exponentiated distribution.

Exponentiated Rayleigh-Rayleigh distribution: Suppose a random variable X follows a Rayleigh-
Rayleigh distribution. Denote its cdf by F (x|t) where

F (x|t) = x2

x2 + t2
; t > 0, x ≥ 0.

The cdf of the exponentiated Rayleigh-Rayleigh distribution is

Gα(x) =

(
x2

x2 + t2

)α

; t > 0, α > 0, x ≥ 0.

The pdf is given by

gα(x) =
2αt2x2α−1

(x2 + t2)α+1
; t > 0, α > 0, x ≥ 0.

Theorem 1 Let a random variable X follow an exponentiated Rayleigh-Rayleigh distribution. Then
the distribution function Gα(x) is:

Gα(x) =

(
x2

x2 + t2

)α

; t > 0, α > 0, x ≥ 0. (1)

Proof: It is easy to see that Gα(x) is an increasing function and a right continuous function and that
it also has limx→0 Gα(x) = 0 and limx→∞ Gα(x) = 1.

2.1.1 Properties of ERR distribution
This section presents the properties of the distributions of exponentiated Rayleigh-Rayleigh

(ERR), such as survival, hazard functions, and value-at-risk (VaR).
Survival function:

S(x) = 1−
(

x2

x2 + t2

)α

. (2)

Hazard function:

h(x) =
2αt2x(2α−1)(

1−
(

x2

x2 + t2

)α)
(x2 + t2)(α+1)

. (3)

Value-at-risk:

πp =

√
t2

p−1/α − 1
. (4)

The theorem below shows that the ERR distribution has a heavier tail based on exponential
distribution.

Theorem 2 The ERR distribution has a heavier tail based on exponential distribution.

Proof: Consider the ratio

lim
x→∞

SERR(x)

SExp(x)
= lim

x→∞

fERR(x)

fExp(x)
= lim

x→∞

t2αxα−1 exp (λx)

λ(x2 + t2)α+1
.

The limit is infinity since the exponential goes to infinity faster than polynomials. So, the ERR has
a heavier tail than the exponential. Therefore, the ERR is a heavy-tailed distribution.
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2.1.2 Parameters estimation
Let Xi, i = 1, 2, . . . , n be an i.i.d. random sample of size n from the ERR distribution. The

likelihood function can be written as follows:

L(t, α) =

n∏
i=1

2αt2x2α−1
i

(x2
i + t2)α+1

and the natural log-likelihood function is in the form

lnL(t, α) = n ln 2 + n lnα+ 2n ln t+ (2α− 1)

n∑
i=1

lnxi − (α+ 1)

n∑
i=1

ln (x2
i + t2).

Taking the partial derivatives of the log-likelihood function with respect to the parameters are as
follows:

∂

∂t
lnL(t, α) =

2n

t
− 2t(α+ 1)

n∑
i=1

1

(x2
i + t2)

,

∂

∂α
lnL(t, α) =

n

α
+ 2

n∑
i=1

lnxi −
n∑

i=1

ln (x2
i + t2).

We estimate t̂ and α̂ for parameter 1, t and parameter 2, α by setting
∂

∂t
lnL(t, α) = 0 and

∂

∂α
lnL(t, α) =

0. Thus,
t̂ =

n

t(α+ 1)
∑n

i=1

1

(x2
i + t2)

,

and
α̂ =

n∑n
i=1 ln (x

2
i + t2)− 2

∑n
i=1 lnxi

.

The equations can be solved numerically by using a fixed-point iteration method.

2.2. Peaks Over Threshold (POT) Method
The Peak Over Threshold (POT) method is one method in the extreme value theorem (EVT) [see

in Embrechts et al. (1997)]. The data considered exceed a given threshold u, and the GPD is always
represented for modelling in the tail distribution based on extreme event data. Let basic losses data
X1, X2, . . . , Xn be i.i.d. random variables with distribution functions F . The order data are denoted
by X1,n ≤ X2,n ≤ · · · ≤ Xn,n. Right endpoint xF = sup{x;F (x) < 1}. For all u < xF , the
function

Fu(x) = P{X − u ≤ x|X > u}, x ≥ u (5)

is called the distribution function of exceedances above threshold u. By the conditional probabilities,
Fu can also be defined as

Fu(x) =


F (u+ x)− F (u)

1− F (u)
, if x ≥ 0,

0 else.

Let Y = X − u for X > u and for n observed variables X1, X2, X3, . . . , Xn, we can write Yj =
Xi − u such that i is the index of the jth exceedance, j = 1, 2, . . . , nu. The exceedances data
Y1, Y2, . . . , Ynu

are independent.
We consider the various thresholds u for model fitting in tailed distribution for simulation data

and the Danish fire claims. We vary threshold u = 1, 2, . . . ,m in millions of Thai Baht depending on
the distributed sample and the sample size. Table 2 shows the suitable threshold u (or m) regarding
the distributions and the sample size n.
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2.3. Measurements of Model Fitting
There are two goodness of fit tests (GOF) (see in Klugman et al. (2008)) for model fitting,

which are the Kolmogorov-Smirnov Test (K-S test) and the Anderson-Darling Test (AD test), and
two paradoxes in model selections for Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC).

The K-S test decides if a sample comes from a hypothesized continuous distribution. It is based
on the empirical cumulative distribution function (ECDF) and denoted by

Fn
X(x) =

1

n
[Number of observations xi ≤ x].

The K-S test statistic is defined by

D = sup
x

|Fn
X(x)− FX(x)|.

The AD test statistic is defined as

AD = −n− 1

n

n∑
i=1

(2i− 1) (lnF (xi) + ln (1− F (xn−i+1)))

where FX is the theoretical cumulative distribution of the distribution being tested and n is the num-
ber of data points, the number of observations, or, equivalently, the sample size.

The Akaike information criterion (AIC)

AIC = 2k − 2lnL(θ),

where k is the number of parameters estimated and lnL(θ) is the log-likelihood function.
The Bayesian information criterion (BIC)

BIC = −2 lnL(θ) + k ln(n),

where lnL(θ) is the log-likelihood function and n is the number of observations.

3. Simulation
The simulation data are generated by the loss distributions that are composed of loglogistic,

lognormal, Burr, Pareto and Weibull distributions and the mixture of loss distributions for 2 and
3 components. The simulated data include 200 repetitions of individual data, which are based on
imposed parameters according to Table 1. The original sample sizes n were 50, 100, 500, 1,000,
3,000 and 5,000. We consider the exceedance data over threshold u. To accurately model the tailed
loss distributions, a high percentile of the distributed sample data is necessary to determine a suitable
threshold u as specification on the Table 2. This ensures a sufficiently large sample size of data points
exceeding the threshold for model fitting.

Table 1 The parameters of distribution for simulation data

Distribution Parameters
Loglogistic (LL) a = 4.6189, b = 20.5570
Lognormal (LN) µ = 3.0693, σ = 0.3905
Burr b = 1.0296, g = 1.1342, s =1.2320
Pareto a = 5.3693, s = 13.8426
Weibull (Wei) a = 0.9586, b = 3.2920
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Table 2 The values of a suitable thresholds u (or m)

m (million baht)
Distributed samples n = 50 n = 100 n = 500 n = 1000 n = 3000 n = 5000
LL 28 34 50 59 74 84
LN 31 36 49 55 65 69
Burr 3 5 18 30 77 110
Pareto 19 22 31 34 41 43
Wei 6 7 14 17 20 23
LL and LN 30 34 47 57 66 75
LL and Burr 24 30 47 56 72 92
LL and Pareto 23 29 42 48 60 72
LL and Wei 23 30 41 53 63 64
LN and Burr 26 31 46 51 67 74
LN and Pareto 26 31 43 51 54 62
LN and Wei 26 31 43 51 54 61
Burr and Pareto 4 6 16 27 43 62
Burr and Wei 5 7 14 24 43 62
Pareto and Wei 5 8 15 18 25 27
LL, LN and Burr 29 34 46 53 68 81
LL, LN and Pareto 30 31 46 52 64 72
LL, LN and Wei 28 33 48 53 64 69
LL, Burr and Pareto 25 27 41 47 64 69
LL, Burr and Wei 21 27 41 47 63 75
LL, Pareto and Wei 23 27 39 48 57 64
LN, Burr and Pareto 25 29 43 48 64 73
LN, Burr and Wei 21 27 41 49 60 67
LN, Pareto and Wei 24 30 43 45 55 58
Burr, pareto and Wei 17 18 25 30 48 49

We fit the distributions of loglogistics (LN), gamma (Gam), Weibull (Wei), generalized Pareto
(GP), exponential (Exp), exponential-exponential (EE), gamma-exponential (GE), Rayleigh-Rayleigh
(RR) and exponentiated Rayleigh-Rayleigh (ERR) to the simulation data. At a significant level
α = 0.05, none of the data can be fitted to any of the models with regard to the individual data.
For the data under the POT method, the ERR provides a higher p-value than the other comparable
distributions, except for the Burr-distributed sample. In particular, for sample size n ≥ 1,000, the
highest p-value of ERR is obviously based on the exceedance threshold u of 20 to 40 million Baht.
The p-value of RR was mostly higher than Exp for the sample sizes n = 50 and 100. We can use AIC
and BIC to show that ERR is generally suitable for the data that is generated by the components of
lognormal and Burr. The RR is generally less suitable for the data. The ERR provides a better fit for
the data when the exceedance data are decreased. Some results are presented in Table 3 - 16.

Table 3 Distribution fitting to mixed components of lognormal and Burr distributed samples with n =
3,000 and threshold u = 23 (Number of exceedance is 667.2450 or 77.7585 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 5.9215 10.6055 3.0677 5.5975 0.1025 1.6469 0.9342 0.9210 8.1785
parameter 2 0.5018 1.6203 1.2554 0.0969 9.1874 0.1246

K-S test D-value 0.0925 0.0324 0.1187 0.1326 0.0561 0.0820 0.0508 0.0469 0.0455
p-value 0.0003 0.5056 0.0000 0.0000 0.2763 0.0017 0.3300 0.3018 0.2221

AD test AD test 19.8600 1.1865 15.1804 22.4811 1.6970 8.7762 1.5386 2.3286 2.3416
p-value 0.0000 0.3343 0.0000 0.0000 0.2090 0.0004 0.2790 0.2226 0.1786

AIC 4,449.4061 4,300.5837 4,447.4839 4,479.5968 4,390.2737 4,397.8387 4,375.8562 4,351.1642 4,306.7014
BIC 4,453.9087 4,309.5891 4,456.4893 4,484.0995 4,394.7764 4,406.8306 4,384.8616 4,360.1696 4,315.7068
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Table 4 Distribution fitting to mixed components of lognormal and Burr distributed samples with n =
5,000 and threshold u = 24 (Number of exceedance is 1,005.1900 or 79.8962 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 5.7847 10.4711 3.0829 5.4677 0.1038 1.6218 0.9196 0.9094 7.9618
parameter 2 0.4958 1.5741 1.2692 0.0961 8.9951 0.1352

K-S test D-value 0.0916 0.0296 0.1164 0.1269 0.0541 0.0812 0.0497 0.0457 0.0431
p-value 0.0000 0.3759 0.0000 0.0000 0.1729 0.0001 0.2070 0.1805 0.1216

AD test AD test 30.3700 1.5288 22.5054 32.9465 1.9233 13.2044 1.9080 3.1247 3.2151
p-value 0.0000 0.2252 0.0000 0.0000 0.1194 0.0000 0.1554 0.1192 0.0892

AIC 6,674.9884 6,441.4648 6,661.4144 6,706.3084 6,577.9067 6,577.1918 6,560.5441 6,521.4191 6,451.9172
BIC 6,679.9009 6,451.2899 6,671.2395 6,711.2209 6,582.8192 6,605.0169 6,570.3692 6,531.2442 6,461.7423

Table 5 Distribution fitting to mixed components of lognormal, Burr and Pareto distributed samples
with n = 50 and threshold u = 8 (Number of exceedance is 33.7950 or 32.4100 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 10.2189 3.7520 0.5264 10.2657 0.0820 2.3191 3.0742 1.7264 17.1635
parameter 2 148.9300 397.7646 0.6206 0.2553 13.8458 -0.4147

K-S test D-value 0.1887 0.1437 0.2643 0.3047 0.3202 0.1508 0.1597 0.1667 0.2532
p-value 0.2023 0.4859 0.0282 0.0050 0.0045 0.4583 0.3841 0.3249 0.0424

AD test AD test 1.5336 0.8879 3.8489 5.0287 3.6049 0.8980 1.0573 1.2574 2.3650
p-value 0.2226 0.4962 0.0167 0.0038 0.0229 0.5191 0.4200 0.3265 0.0834

AIC 226.9776 222.3547 242.5481 258.5933 239.1742 223.0464 224.0610 226.9483 234.4117
BIC 228.4975 225.3946 245.5879 260.1132 240.6941 226.0863 227.1009 229.9882 237.4515

Table 6 Distribution fitting to mixed components of lognormal, Burr and Pareto distributed samples
with n = 50 and threshold u = 10 (Number of exceedance is 33.3600 or 33.2800 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 8.1008 4.4432 0.6886 8.1483 0.0970 2.0828 2.2433 1.4830 13.5352
parameter 2 57.9183 277.3878 0.7409 0.2204 11.5772 -0.3033

K-S test D-value 0.1436 0.1281 0.2229 0.2739 0.2629 0.1425 0.1530 0.1566 0.2150
p-value 0.4853 0.6157 0.0950 0.0167 0.0340 0.5251 0.4367 0.3983 0.1209

AD test AD test 0.8733 0.6701 2.6471 3.9239 2.3929 0.8052 0.9533 1.0568 1.6602
p-value 0.4911 0.6451 0.0627 0.0131 0.0903 0.5779 0.4748 0.4102 0.1910

AIC 215.9660 214.1474 228.7232 241.9198 225.1156 216.3651 217.1330 218.9968 223.1204
BIC 217.4729 217.1612 231.7371 243.4267 226.6226 219.3790 220.1469 222.0107 226.1342

Table 7 Distribution fitting to mixed components of lognormal, Burr and Pareto distributed samples
with n = 100 and threshold u = 9 (Number of exceedance is 68.1200 or 31.8800 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 9.1482 4.9842 0.6695 9.1914 0.0883 2.2092 2.5646 1.5664 14.0689
parameter 2 53.8358 248.0067 0.6789 0.2295 12.6997 -0.2617

K-S test D-value 0.1606 0.1133 0.2289 0.2856 0.2876 0.1253 0.1332 0.1491 0.2449
p-value 0.0780 0.3745 0.0040 0.0001 0.0002 0.3129 0.2175 0.1358 0.0020

AD test AD test 2.0618 1.0952 6.2962 8.9922 5.7370 1.2050 1.5791 2.0237 4.0651
p-value 0.1245 0.3758 0.0016 0.0001 0.0030 0.3737 0.2423 0.1464 0.0157

AIC 447.1559 441.2038 476.3205 506.3106 469.5734 443.8729 445.5243 450.7330 463.8524
BIC 449.3769 445.6460 480.7627 508.5317 471.7945 448.3151 449.9664 455.1752 468.2946
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Table 8 Distribution fitting to mixed components of lognormal, Burr and Pareto distributed samples
with n = 500 and threshold u = 11 (Number of exceedance is 331.2150 or 33.7570 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 6.9685 5.4933 0.7702 7.0438 0.1036 1.9476 1.7460 1.2638 10.2100
parameter 2 1.4498 34.5602 0.8078 0.1824 10.4217 -0.0694

K-S test D-value 0.0963 0.0697 0.1554 0.2407 0.2118 0.0860 0.1053 0.1301 0.1988
p-value 0.0084 0.1136 0.0000 0.0000 0.0000 0.0354 0.0044 0.0003 0.0000

AD test AD test 2.8586 1.9687 17.0326 31.1480 13.8614 2.4971 5.4348 6.9865 12.2913
p-value 0.0425 0.1248 0.0000 0.0000 0.0000 0.0747 0.0041 0.0010 0.0000

AIC 2,082.6367 2,076.2958 2,189.6945 2,307.6087 2,172.1180 2,091.4690 2,117.4690 2,133.5565 2,157.7795
BIC 2,086.4394 2,083.9012 2,197.2999 2,311.4114 2,175.9207 2,099.0744 2,124.9089 2,141.1620 2,165.3849

Table 9 Distribution fitting to mixed components of loglogistic, Burr and Weibull distributed samples
with n = 500 and threshold u = 16 (Number of exceedance is 131.8450 or 73.6310 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 6.4702 9.9211 2.6635 6.1750 0.1048 1.7556 1.1598 1.0702 9.4320
parameter 2 0.5959 2.1670 1.1436 0.1227 9.7520 0.0029

K-S test D-value 6.4702 9.9211 2.6635 6.1750 0.1048 1.7556 1.1598 1.0702 9.4320
p-value 0.0853 0.0594 0.1403 0.1582 0.0923 0.1025 0.0694 0.0670 0.0801

AD test AD test 2.4610 0.5948 4.0841 6.4114 1.4247 2.0570 0.7392 0.8418 1.1464
p-value 0.1367 0.6930 0.0175 0.0023 0.3233 0.1791 0.6573 0.6305 0.4154

AIC 872.7893 857.2610 891.4892 902.4554 862.6280 875.3923 860.7250 859.7545 858.6417
BIC 875.6699 863.0223 897.2505 905.3361 865.5087 881.1536 866.4863 865.5158 864.4030

Table 10 Distribution fitting to mixed components of loglogistic, Burr and Weibull distributed sam-
ples with n = 1,000 and threshold u = 14 (Number of exceedance is 298.6950 or 70.1305 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 7.2639 10.1821 2.6979 6.9547 0.0956 1.8820 1.2406 1.1001 10.2043
parameter 2 0.6512 2.2847 1.0826 0.1203 10.7324 0.0051

K-S test D-value 0.0624 0.0511 0.1482 0.1656 0.0977 0.0941 0.0606 0.0605 0.0879
p-value 0.2577 0.4520 0.0000 0.0000 0.0523 0.0301 0.4265 0.3728 0.0538

AD test AD test 3.1775 1.2649 10.7686 17.1538 3.9753 4.4840 1.1436 1.7221 3.8638
p-value 0.0636 0.3267 0.0000 0.0000 0.0293 0.01091 0.4153 0.3176 0.0364

AIC 2,001.5785 1,978.4945 2,067.4510 2,100.8268 2,008.8331 2,021.9393 1,996.0436 1,992.8487 1,990.3176
BIC 2,005.2776 1,985.8926 2,074.8491 2,104.5258 2,012.5322 2,029.3374 2,003.4417 2,000.2468 1,997.7158

Table 11 Distribution fitting to mixed components of loglogistic, Burr and Weibull distributed sam-
ples with n = 1,000 and threshold u = 16 (Number of exceedance is 236.3100 or 73.6690 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 6.3613 9.9573 2.7840 6.0666 0.1031 1.7367 1.0934 1.0234 8.9870
parameter 2 0.5769 1.9521 1.1669 0.1146 9.6656 0.0520

K-S test D-value 0.0773 0.0459 0.1332 0.1459 0.0807 0.0932 0.0617 0.0588 0.0715
p-value 0.1383 0.6374 0.0008 0.0001 0.2330 0.0588 0.4770 0.4521 0.2110

AD test AD test 4.5693 0.7939 7.7118 12.0030 1.9246 3.8203 1.0585 1.4627 2.0250
p-value 0.0234 0.5578 0.0004 0.0000 0.1841 0.0353 0.4704 0.3990 0.1797

AIC 1,742.3105 1,707.0403 1,774.4234 1,794.7737 1,732.9384 1,745.8634 1,725 .8940 1,720.4858 1,712.6398
BIC 1,745.8832 1,714.1858 1,781.5688 1,798.3464 1,736.5111 1,753.0088 1,733.0394 1,727.6312 1,719.7852
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Table 12 Distribution fitting to mixed components of loglogistic, Burr and Weibull distributed sam-
ples with n = 3,000 and threshold u = 16 (Number of exceedance is 790.7500 or 73.64167 per-
centile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 6.4040 10.0388 2.8419 6.1099 0.1019 1.7453 1.0736 1.0002 8.8511
parameter 2 0.5728 1.8740 1.1695 0.1101 9.7208 0.0783

K-S test D-value 0.0701 0.0345 0.1286 0.1445 0.0614 0.0845 0.0498 0.0511 0.0657
p-value 0.0041 0.3453 0.0000 0.0000 0.0375 0.0003 0.1837 0.1273 0.0115

AD test AD test 12.2895 1.6343 22.6506 35.4377 4.2476 10.5504 2.1039 3.3584 5.8775
p-value 0.0000 0.2071 0.0000 0.0000 0.0184 0.0001 0.1462 0.0817 0.0083

AIC 5,240.3516 5,133.0991 5,337.1641 5,398.7337 5,201.4859 5,254.5152 5,194.1692 5,185.1255 5,155.8372
BIC 5,245.0244 5,142.4448 5,346.5098 5,403.4065 5,206.1588 5,263.8609 5,203.5149 5,194.4712 5,165.1828

Table 13 Distribution fitting to mixed components of lognormal, Burr and Weibull distributed samples
with n = 3,000 and threshold u = 23 (Number of exceedance is 445.8100 or 85.13967 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 5.8801 10.4428 2.9835 5.5663 0.1048 1.6425 0.9629 00.9470 8.2938
parameter 2 0.5075 1.6588 1.2475 0.1025 9.1159 0.0980

K-S test D-value 0.0933 0.0355 0.1198 0.1343 0.0592 0.0832 0.0517 0.0462 0.0459
p-value 0.0034 0.6309 0.0000 0.0000 0.3796 0.0133 0.4802 0.4770 0.3998

AD test AD test 12.9886 0.8607 10.1989 15.3207 1.2196 5.7584 1.0541 1.5065 1.5209
p-value 0.0000 0.4883 0.0000 0.0000 0.3288 0.0042 0.4637 0.4199 0.3507

AIC 2,960.6777 2,865.2209 2,963.5861 2,986.0422 2,916.0575 2,928.4901 2,905.8275 2,890.4733 2,866.6575
BIC 2,964.7770 2,873.4194 2,971.7846 2,990.1414 2,920.1568 2,936.6886 2,914.0260 2,898.6719 2,874.8560

Table 14 Distribution fitting to mixed components of loglogistic, Burr and Weibull distributed sam-
ples with n = 5,000 and threshold u = 16 (Number of exceedance is 1,321.5450 or 73.5691 per-
centile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 6.4014 9.9918 2.8005 6.1059 0.1015 1.7462 1.0697 0.9924 8.7761
parameter 2 0.5747 1.8853 1.1632 0.1094 9.7049 0.0861

K-S test D-value 0.0676 0.0313 00.1273 0.1435 0.0582 0.0815 0.0486 0.0496 0.0642
p-value 0.0002 0.1853 0.0000 0.0000 0.0074 0.0000 0.0643 0.0361 0.0006

AD test AD test 19.9164 2.5492 37.7341 59.3852 6.6539 17.1463 2.9576 4.9234 10.0981
p-value 0.0000 0.0724 0.0000 0.0000 0.0014 0.0000 0.0405 0.0127 0.0002

AIC 8,747.2297 8,571.5721 8,912.6188 9,018.6866 8,701.8667 8,768.0334 8,687.0063 8,669.4477 8,613.5592
BIC 8,752.4161 8,581.9450 8,922.9917 9,023.8730 8,707.0532 8,778.4063 8,697.3792 8,679.8206 8,623.9321

Table 15 Distribution fitting to mixed components of lognormal, Burr and Pareto distributed samples
with n = 5,000 and threshold u = 23 (Number of exceedance is 853.0800 or 82.9384 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 5.4881 10.3187 3.0450 5.1802 0.1091 1.5647 0.9083 0.9121 7.6745
parameter 2 0.4791 1.5201 1.2913 0.1001 8.5903 0.1296

K-S test D-value 0.0983 0.0287 0.1120 0.1245 0.0497 0.0802 0.0439 0.0394 0.0356
p-value 0.0000 0.5012 0.0000 0.0000 0.3032 0.0003 0.3596 0.3517 0.3195

AD test AD test 29.8572 1.1737 17.6394 25.4275 1.4558 10.8147 1.3393 1.9774 1.7360
p-value 0.0000 0.3291 0.0000 0.0000 0.2476 0.0000 0.3053 0.2633 0.2730

AIC 5,626.2435 5,404.4491 5,581.8597 5,614.2811 5,500.0793 5,529.7241 5,482.8671 5,452.5965 5,405.2747
BIC 5,630.9919 5,413.9460 5,591.3566 5,619.0296 5,504.8278 5,539.2210 5,492.3640 5,462.0934 5,414.7715
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Table 16 Distribution fitting to mixed components of lognormal, Burr and Weibull distributed samples
with n = 5,000 and threshold u = 23 (Number of exceedance is 743.7600 or 85.1248 percentile)

Measurements of Distributions
model fitting RR ERR GE EE Exp LN Gam Wei GP
parameter 1 5.9041 10.5626 3.0530 5.5815 0.1034 1.6439 0.9434 0.9297 8.2082
parameter 2 0.5020 1.6201 1.2548 0.0987 9.1418 0.1149

K-S test D-value 0.0922 0.0321 0.1184 0.1323 0.0537 0.0820 0.0483 0.0445 0.0441
p-value 0.0001 0.4541 0.0000 0.0000 0.2734 0.0010 0.3326 0.3001 0.2034

AD test AD test 21.9665 1.2877 16.8856 25.0702 1.4144 9.6875 1.2529 2.2270 2.4064
p-value 0.0000 0.2927 0.0000 0.0000 0.2193 0.0002 0.2917 0.2387 0.1724

AIC 4,951.7365 4,786.4164 4,950.9305 4,986.9741 4,878.5667 4,896.4832 4,863.6753 4,836.4781 4,790.9772
BIC 4,956.3479 4,795.6391 4,960.1533 4,991.5855 4,883.1780 4,905.7059 4,872.8981 4,845.7009 4,800.1999

4. Application
The Danish fire claims data are applied for model fitting. They were collected at Copenhagen

Reinsurance and comprised 2,167 fire losses from 1980 to 1990. They have been adjusted for inflation
to reflect 1985 values and are expressed in millions of Danish Krone (DK). We consider the individual
data to exceed the threshold u of 1 to 40 million DK for model fitting under the POT method.

For the individual data, at a significant level α = 0.05, the data cannot be fitted to any of the
distributions. We can use AIC and BIC to show that the distribution of ERR is the best fit for the
data, followed by the distributions of RR, GE, EE, Exp, LN, Gam, Wei and GP. Table 17 shows the
estimated parameter values and model fitting test with individual danish fire claims.

Table 17 Distribution fitting to Danish fire data (million DK) n = 2,167

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 2.0259 D = 0.19592 AD = 89.435 8,089.178 8,094.859

p-value < 0.01 p-value < 0.01
ERR t = 3.0021 ×10−2 D = 0.083063 AD = 28.554 7,200.597 7,211.960

α = 3.0389 ×103 p-value < 0.01 p-value < 0.01
GE b = 6.8877 ×10−3 D = 0.21414 AD = 232.91 8,541.412 8,552.775

α = 2.6661 ×102 p-value < 0.01 p-value < 0.01
EE b = 2.1208 D = 0.32043 AD = 294.31 9,919.146 9,924.827

p-value < 0.01 p-value < 0.01
Exp λ = 0.2954 D = 0.25578 AD > 300 9,620.793 9,626.474

p-value < 0.01 p-value < 0.01
LN µ = 0.7870 D = 0.13746 AD = 87.193 8,119.795 8,131.157

σ = 0.7166 p-value < 0.01 p-value < 0.01
Gam a = 1.2977 D = 0.20188 AD > 300 9,538.191 9,549.554

r = 0.3834 p-value < 0.01 p-value < 0.01
Wei a = 0.9586 D = 0.2732 AD > 300 9,611.243 9,622.605

b = 3.2920 p-value < 0.01 p-value < 0.01
GP b = 2.5778 D = 0.3124 AD = 208.34 9,249.666 9,261.029

s = 0.1864 p-value < 0.01 p-value < 0.01

For the individual data under the POT method, at a significant level α = 0.05, the data are mostly
fitted to all the distributions, except RR and Exp, which do not fit the exceedance data for thresholds
u = 6, 7, 8, 9, 10 million DK, and the exceedance data on threshold u = 8, 9 million Krone cannot be
fitted by the Gam. We can use AIC and BIC to show that the distribution of ERR is the best fit for the
exceedance data on threshold u = 6 million DK, followed by the distributions of GP, EE, LN, GE,
Wei, Gam, Exp and RR. Tables 18 - 22 show the estimated parameters’ values and model fitting test
with the POT method based on u = 6, 7, 8, 9 and 10 million DK, respectively.
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Table 18 Distribution fitting to Danish fire data over threshold u = 6 million DK (Number of ex-
ceedance data is 186 or 91.4300 percentile)

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 4.7382 D = 0.15599 AD = 16.595 1,308.247 1,311.473

p-value < 0.01 p-value < 0.01
ERR t = 12.6114 D = 0.039924 AD = 0.27409 1,207.803 1,214.254

α = 0.3638 p-value = 0.9282 p-value = 0.9562
GE b = 3.8477 D = 0.07714 AD = 1.5233 1,221.153 1,227.605

α = 1.1118 p-value = 0.2183 p-value = 0.1695
EE b = 4.4626 D = 0.081633 AD = 1.7224 1,219.708 1,222.934

p-value = 0.1676 p-value = 0.1313
Exp λ = 0.0893 D = 0.14471 AD = 10.843 1,272.741 1,275.966

p-value < 0.01 p-value < 0.01
LN µ = 1.4130 D = 0.079892 AD = 1.4595 1,221.513 1,227.965

σ = 1.5543 p-value = 0.1860 p-value = 0.1864
Gam a = 0.6138 D = 0.089372 AD = 2.3554 1,238.782 1,245.234

r = 0.0548 p-value = 0.1025 p-value = 0.05912
Wei a = 0.7122 D = 0.058513 AD = 1.0903 1,221.986 1,228.437

b = 8.5449 p-value = 0.5474 p-value = 0.3131
GP b = 5.8444 D = 0.035597 AD = 0.32851 1,207.654 1,214.106

s = 0.4704 p-value = 0.9725 p-value = 0.9152

Table 19 Distribution fitting to Danish fire data over threshold u = 7 million DK (Number of ex-
ceedance data is 157 or 92.7750 percentile)

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 5.2880 D = 0.14398 AD = 12.731 1,124.127 1,127.183

p-value < 0.01 p-value < 0.01
ERR t = 13.1619 D = 0.029544 AD = 0.21483 1,047.130 1,053.242

α = 0.3791 p-value = 0.9992 p-value = 0.9858
GE b = 4.0120 D = 0.081164 AD = 1.5951 1,059.616 1,065.729

α = 1.1625 p-value = 0.2522 p-value = 0.1554
EE b = 4.9459 D = 0.087754 AD = 1.8055 1,058.530 1,061.586

p-value = 0.1781 p-value = 0.1179
Exp λ = 0.0820 D = 0.15032 AD = 8.7519 1,101.218 1,104.274

p-value < 0.01 p-value < 0.01
LN µ = 1.5208 D = 0.084921 AD = 1.4758 1,055.918 1,062.030

σ = 1.5073 p-value = 0.2075 p-value = 0.1824
Gam a = 0.6268 D = 0.099789 AD = 2.228 1,075.620 1,081.733

r = 0.0514 p-value = 0.08771 p-value = 0.06914
Wei a = 0.7199 D = 0.066928 AD = 1.1371 1,061.371 1,067.484

b = 9.3968 p-value = 0.4828 p-value = 0.2926
GP b = 6.4819 D = 0.038747 AD = 0.37073 1,047.481 1,053.594

s = 0.4545 p-value = 0.9725 p-value = 0.877
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Table 20 Distribution fitting to Danish fire data over threshold u = 8 million DK (Number of ex-
ceedance data is 131 or 93.95478 percentile)

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 6.0937 D = 0.10715 AD = 5.5418 938.3103 941.1855

p-value = 0.09878 p-value < 0.01
ERR t = 12.3312 D = 0.0351 AD = 0.1898 904.2095 909.9598

α = 0.4577 p-value = 0.9970 p-value = 0.9930
GE b = 3.3413 D = 0.087815 AD = 1.4594 914.7029 920.4533

α = 1.5335 p-value = 0.2646 p-value = 0.1865
EE b = 5.8840 D = 0.10406 AD = 2.4577 917.8125 920.6877

p-value = 0.1172 p-value = 0.05223
Exp λ = 0.0740 D = 0.15312 AD = 6.0576 946.2302 949.1054

p-value < 0.01 p-value < 0.01
LN µ = 1.7289 D = 0.065542 AD = 0.8466 909.8917 915.6421

σ = 0.6269 p-value = 0.6269 p-value = 0.4484
Gam a = 0.6917 D = 0.11811 AD = 2.7103 934.5987 940.3491

r = 0.0512 p-value = 0.05172 p-value = 0.03858
Wei a = 0.7572 D = 0.083142 AD = 1.7163 922.8568 928.6072

b = 10.9075 p-value = 0.3255 p-value = 0.1324
GP b = 7.6241 D = 0.053655 AD = 0.42064 905.3603 911.1107

s = 0.4088 p-value = 0.8451 p-value = 0.8278

Table 21 Distribution fitting to Danish fire data over threshold u = 9 million DK (Number of ex-
ceedance data is 117 or 94.6008 percentile)

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 6.1737 D = 0.099108 AD = 4.7515 804.9825 843.7447

p-value = 0.2006 p-value < 0.01
ERR t = 12.1574 D = 0.045445 AD = 0.29302 815.4841 821.0084

α = 0.4746 p-value = 0.9691 p-value = 0.9432
GE b = 2.9581 D = 0.082254 AD = 1.1242 821.6893 827.2137

α = 1.7161 p-value = 0.4071 p-value = 0.2981
EE b = 6.0210 D = 0.10286 AD = 2.2483 826.2059 828.9681

p-value = 0.1681 p-value = 0.06746
Exp λ = 0.0710 D = 0.16749 AD = 6.1338 854.7936 857.5558

p-value < 0.01 p-value < 0.01
LN µ = 1.7681 D = 0.049741 AD = 0.5667 816.8050 822.3294

σ = 1.3317 p-value = 0.9343 p-value = 0.6797
Gam a = 0.6908 D = 0.12518 AD = 2.8248 844.5309 850.0552

r = 0.0491 p-value = 0.05111 p-value = 0.0337
Wei a = 0.7543 D = 0.086363 AD = 1.7786 833.2919 838.8163

b = 11.2761 p-value = 0.3474 p-value = 0.1221
GP b = 7.7166 D = 0.051331 AD = 0.47032 816.0017 821.5261

s = 0.4267 p-value = 0.9175 p-value = 0.7769
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Table 22 Distribution fitting to Danish fire data over threshold u = 10 million DK (Number of
exceedance data is 109 or 94.9700 percentile)

Measurements of model fitting
Distributions Estimates K-S test AD test AIC BIC
RR t = 5.7689 D = 0.1255 AD = 7.7578 807.0222 809.7135

p-value = 0.06453 p-value < 0.01
ERR t = 14.4421 D = 0.036582 AD = 0.19696 753.4739 758.8566

α = 0.3767 p-value = 0.9986 p-value = 0.9912
GE b = 4.8875 D = 0.082735 AD = 1.1452 761.5034 766.8861

α = 1.0883 p-value = 0.4446 p-value = 0.2892
EE b = 5.4898 D = 0.086271 AD = 1.2665 759.7266 762.4179

p-value = 0.3918 p-value = 0.2435
Exp λ = 0.0710 D = 0.18005 AD = 7.6352 796.5842 799.2755

p-value < 0.01 p-value < 0.01
LN µ = 1.6136 D = 0.078153 AD = 1.2608 764.7827 770.1654

σ = 1.5797 p-value = 0.5184 p-value = 0.2454
Gam a = 0.5995 D = 0.11469 AD = 2.1328 775.0911 780.4738

r = 0.0426 p-value = 0.1137 p-value = 0.07785
Wei a = 0.7014 D = 0.082115 AD = 1.1545 764.2895 769.6722

b = 10.5252 p-value = 0.4543 p-value = 0.2854
GP b = 6.9758 D = 0.043277 AD = 0.2662 753.7860 759.1687

s = 0.4968 p-value = 0.9868 p-value = 0.9611

5. Conclusion and Discussion
5.1. Conclusion

At the significant level α = 0.05, not all simulation data can be fitted by any of the models.
For the data under the POT method, the ERR provides a higher p-value than the others, except for
the Burr distributed sample only. The p-value of ERR is higher than the others for sample size
n ≥ 1,000 based on exceedance threshold u of 20 to 40 million Baht. By using AIC and BIC, the
ERR is mostly an appropriate model for the data that is generated by the components of Lognormal
and Burr. The ERR is a better fit for the data when the exceedance data is less.

At a significant level α = 0.05, the Danish Fire claims data cannot be fitted to any of the distri-
butions. For the individual data under the POT Danish fire claims data, the data are mostly fitted by
all the distributions. Using AIC and BIC, the ERR distribution is the best fit for the data, following
the distributions of GP, EE, LN, GE, Wei, Gam, Exp and RR.

5.2. Discussion
The ERR is suitable for the remaining data because of the small sizes of the simulated data and

the Danish fire data. For further research, claim frequency should be studied, and a new compound
distribution should be constructed. This would benefit insurance pricing and provide a reasonable
price and credibility for some analysis, such as the insurer surplus.
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