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Abstract

This article introduces a new form of IXGD called the generalized inverse Xgamma distribution. The proposed
model exhibits the pattern of an inverted bathtub type hazard rate and it belongs to the family of positively skewed
models. The explicit expressions of some distributional properties, such as, moments, inverse moments, condi-
tional moments, mean deviation, quantile function etc. are derived. To estimate the unknown model parameters
as well as survival characteristics, viz., survival function and hazard rate function, we used different estimation
procedures, namely, method of maximum likelihood estimation, ordinary and weighted least squares estimation,
Cramer-von-Mises estimation and maximum product of spacings estimation. Also, the Bayesian estimation of the
same is studied with respect to the squared error loss function. The asymptotic confidence intervals and the Bayes
credible intervals of the parameters are computed. Monte Carlo simulations are performed to compare the perfor-
mances of the proposed methods of estimation in terms of average mean squared errors for the point estimates,
average widths and coverage probabilities for interval estimates. Finally, the potential and practical applicability
of the proposed model is illustrated through two real life examples.

Keywords: Bayesian estimation, classical methods of estimation, inverse xgamma distribution, moments, relia-
bility curve, order statistics.

1. Introduction

It is impossible to analyse the reliability and survival characteristics and other properties of any lifetime prod-
uct without the support of distributions. The lifespan of any item or product must follow a particular distribution
shape. When modelling monotonic hazard rate functions, exponential, gamma, Weibull and log-normal distribu-
tions may be the initial choices. But these distributions have several limitations. These distributions exhibit only
monotonically increasing, decreasing or constant Hazard rate functions (HRF)s. However, the most realistic HRF
is bathtub-shaped. Even, this occurs in most of the real-life situations. For instance, such shapes of HRF occur
when the population is divided into several sub-populations having early failures, wear out failures, and more or
less constant failures. Therefore, a perfect bathtub consists of two change points and a constant part enclosed
within the change points. The counter part of bathtub HRF is also very interesting for analysing real-life data
through several inverted family of distributions. In the literature, there are many lifetime distributions are avail-
able from inverse families of distributions, viz., Inverse exponential distribution (IED) [see, Lin et al. (1989)],
Inverse Weibull distribution (IWD) [see, Kundu and Howlader (2010)], Inverse Rayleigh distribution (IRD) [see,
Voda (1972)], Inverse Lindley distribution (ILD) [see, Sharma et al. (2014)], Inverse xgamma distribution (IXGD)
[see, Yadav et al. (2018)] distributions and many more. Also the generalization of inverse family of distributions
are available in the literature, such as, Generalized inverted exponential distribution (GIED) [see, Abouammoh et
al. (2009)], Generalized inverted gamma distribution (GIGD) [see, Mead (2015)], Generalized inverted Lindley
distribution (GILD) [see Sharma et al. (2015)], Exponentiated generalized inverse Weibull distribution (EGIWD)
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[see, Elbatal et al. (2014)] APTXGD [see, Shukla et al. (2022)], FEXGD [see, Tripathi et al. (2022)], EXGD
[see, Yadav et al. (2021)], new class of Xgamma [see, Demirci Bicer (2019)] and many more. Recently, IXGD,
the inverted version of Xgamma distribution (XGD) [see, Sen et al. (2016)] is introduced by Yadav et al. (2018).
They have also discussed several statistical properties of IXGD and showed the superiority of IXGD among the
one parameter inverted family of distributions. If X followed IXGD with scale parameter 6, then the Probability
density function (PDF) and Cumulative distribution function (CDF) of IXGD are given as;
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The main aim of this article is: introduce a generalized version of IXGD by using the power transformation,
named as Generalized inverse Xgamma distribution (GIXGD). The estimation of the parameters and associated
survival characteristics have been derived using different methods of classical estimation. Further, Bayes estima-
tion of the same has been discussed using informative/non-informative priors under squared error loss function.
The ACI and Highest posterior density (HPD) credible interval of the parameters are also computed. After through
exploration of the literature, we found that no work has been done in the direction to introduced GIXGD. Our aim
is to fill up this gap through this present study and also considered two data sets of survival time of guinea pigs
with different doses of tubercle bacilli and survival time of 44 patients suffering from head and neck cancer disease
for the illustration of application of proposed model over the some other well known models.

The rest of the article is organized as follows. In Section 2, we introduced the PDF and the CDF of GIXGD
and also derived the expression of survival and hazard rate functions. Different statistical properties, viz., mo-
ments, inverse moments, conditional moments, harmonic mean, mean deviation, quantile function, Bonferroni and
Lorenz curves and a procedure to generate random numbers from GIXGD are discussed in Section 3. In Section
4, estimation of parameters, survival and hazard rate functions by using Maximum likelihood estimator (MLE),
Ordinary least squares estimator (OLSE), Weighted least squares estimator (WLSE), Cramer-von-Mises estimator
(CME), Maximum product of spacings estimator (MPSE) and Bayesian estimation has been discussed. In Section
5, a Monte Carlo simulation study has been carried out to assess the performances of the above cited classical
and the Bayes estimators of the survival and hazard rate functions in terms of corresponding Mean squared error
(MSE)s. Also, we assessed the performances of ACIs and the Bayes credible intervals of the model parameters
in terms of Coverage probability (CP)s and Average width (AW)s. For illustrative purposes, two real data sets are
analyzed in Section 6. Finally, concluding remarks are given in Section 7.

2. Generalized Inverse Xgamma Distribution

The IXGD is actually the inverted version of XGD [see, Sen et al. (2016)], is recently proposed by Yadav et
al. (2018). They have studied the different statistical properties and estimation of the unknown parameter using
different methods of estimation. They have mentioned that IXGD possesses non-monotone hazard rates (upside-
down bathtub) and also shows the superiority of IXGD among the inverted family of distributions. As we know
that, the shape parameter play an important role in flexibility of any lifetime model and hence it becomes more
realistic for use in any real life situation. In this present article, we have proposed a more flexible model by adding
one more parameter «, the shape parameter, as the power of IXGD variable.
If X be a random variable having PDF and CDF of XGD mentioned in Equations (1) and (2) respectively, then
GIXGD is obtained by using power transformation Y = X /@ where « is the shape parameter. Hence, the PDF
and CDF of GIXGD are obtained as
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respectively. In particular, if & = 1, then GIXGD is coincide with IXGD. Survival characteristics of any life time
model is often measured in terms of it’s Survival function (SF) and HRF. The SF S(¢ | a, 8) and HRF H(t | o, 6)
for specified value at z = t of GIXGD are, respectively, obtained as:
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S(t|a,0) = 1—F(t|a0),
and
_ S 0)

A typical graphs of PDF and HRF are displayed in Figures 1 and 2 for different choices of shape and scale
parameters respectively. From the shape of density function, it is clearly observable that GIXGD is positively
skewed and uni-modal distribution. Also, from the shape of HRFs, it is noted that initially HRF is increasing and
reaches to a peak after that declined slowly, which indicates that the model possesses the hump or upside-down

bathtub property of hazard rate. Such behaviour of HRFs are quite common in reliability studies and clinical trial
studies etc.
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Figure 1 PDF of GIXGD for different values of shape and scale parameters.
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Figure 2 HRF of GIXGD for different values of shape and scale parameters.
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3. Some Statistical Properties of GIXGD
In the following subsections, the associated distributional properties of the proposed distribution have been
derived.

3.1. Moments
Moments are very useful to determine the various properties of a model. Here, We are in interested in inves-
tigating the raw moments of GIXGD. Expression of c-th order raw moment is given below
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c-th order raw moment exists iff £ < 1 and first four central moments can be easily obtained by using the
relationship between raw moments and central moments. Hence, Pearson measures of skewness (SK) and kurtosis
(K) based on moments can be obtained by using following formulae

2
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where, j9, 43 and p4 are the second, third and fourth central moments respectively.
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Figure 3 Mean of GIXGD.
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Figure 4 Variance of GIXGD.
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Figure 5 Skewness of GIXGD.
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Figure 6 Kurtosis of GIXGD.
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From Figure 3 and Figure 4, we have observed that the mean and variance of proposed distribution have
increasing nature for each value of shape parameter. From Figure 5, we can observed that distribution is positively
skewed and trend of skewness is decreasing for the considered value of the shape parameter for certain value of 6
and from Figure 6, we have noticed that kurtosis of GIXGD is decreasing in nature for the all considered value of

shape parameter «.

3.2. Inverse moments

The c-th order inverse moments about origin of GIXGD is given as
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The harmonic mean for the random variable can be computed from the Equation (5) by putting ¢ = 1. Hence,

after simplification, we get
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Figure 7 Harmonic mean of GIXGD.

Figure 7 is the graphical representation of the harmonic mean or first inverse raw moment of GIXGD for
different combination of a.. From this plot, it has been noticed that the value of harmonic mean is decreases as the

parametric value increases.

3.3. Conditional moment

Conditional moments about origin of GIXGD is obtained as
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We choose such value of shape parameter o which makes the gamma function ~(., .) positive in Equation (6).
In other words we can say that the conditional moments exists with the one restriction over the choices of shape
parameter q, i.e., g < 1.

3.4. Mean deviation
The mean deviation about mean of random variable Y, having density function (3) is obtained as

/\y 1)1 F(y | . 0)dy
0

where = E(Y). On simplification
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where F'(y) stands for CDF of Y up to point p and [ yf(y; «,)dy is obtained through use of conditional
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distribution
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3.5. Quantile function
If Q(p) be the quantile of order p (0 < p < 1) of the random variable Y, then it will be the solution of

0° 1 0 1 00
FRl) = <1+2(9+1)Q()2a) I+ 1Q0)" )QW() =

The degree of long-tail is measured by skewness and while the degree of tail heaviness is measured by kurtosis
of the random variable. The Bowley measure of skewness [see, Bowley (1920)] and Moors measure of kurtosis
[see, Moors (1988)] based on quantile can be used and are given as
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3.6. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves introduced by Kleiber and Kotz (2003). These curves are very useful in field of
income, poverty, reliability, demography and insurance. Let Y be random variable with PDF given Equation (3),
then Bonferroni and Lorenz curves are respectively defined as

q
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and the indices based on these two curves are obtained as
1 1
B=1- /B(p)dp and G=1- 2/L(p)dp
0 0

respectively, where B and G represents the Bonferroni and Gini indices.

3.7. Entropies

Entropies are the one of the most essential aspect in the model study. Entropy measures the information
regarding the uncertainty of random experiment. Application of entropies are very spacious and applicable in
the fields like finance, physics, molecular imaging of tumors, statistics, economics and sparse kernel density es-
timation. Here, we discussed the two important entropies viz., Renyi entropy [see, Renyi (1961)] and Shannon’s
entropy [see, Shannon (1951)].

Renyi entropy:
Renyi entropy (RE) is defined as:

RE =

1 o0
T log /f”(y | @, 0)da
0

where v > 0 and v # 1.

Theorem 1 IfY follow the GIXGD then expression of Renyi entropy is:
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Final expression of RE is obtained by the solving the above expression of RE and the RE is given in Equation
in (7):
_ 1 6\ i () (0) Th(+2) +2i - (1+ 2)]
RE = 1—71°g{<1+9> @ ; i (5) Oy rhrn-ar D) [ ™
Shannon Entropy:

Shannon entropy defined by the E[—log f(y | «, )] and this is the particular case of Renyi entropy when v 1 1.
Limiting v 1 1 in Equation (7) and using L’Hospitals rule, one obtains after considerable algebraic manipulation
of E[—log f(y | a, 0)]. The expression of the — log f(y | a, 8) is:
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Now, the expectation of above written expression of — log f(z) is:
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To get the final solution of the Equation (8), we have to solve the second, the third and the fourth term of the

Equation (8). Now second term is:
S e (L)
i yett .

1 1

To simplify the above equation, we use the following expansion:
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After solving the two integrals which are involve in above written Equation (9) then final expression of second

term E/ (log ya%) is given below:
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Now, the third term F (%a) can be solved by the inverse moment of the GIXGD and the final expression of
third term [see, Equation (10)] after replacing c by « in the expression of inverse moment, then,
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The last, i.e., fourth term of the Equation (8) can be solved by follow the steps of the second term and the

expression is:
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Now, substitute the values of expectations obtained above in the Equation (8) to get the final solution of
Shannon entropy is:
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3.8. Order statistic

Let Y1, Y5, Y3, ..., Y, is a random sample of size n, obtained from GIXGD. Then, the ordered observations
as Yy <Y <Yz < ... < Y(n) constitute the order statistic(s). Let Y{;.,) denotes the r-th order statistic,
then the PDF and CDF of r-th order statistic are computed as

1 Ven) = =T T_l,Z(””) Fy|a,0)Fy|a,0)" V| a0)

and
- EE ) Perinar

respectively, obtained with help proposed model given in Equations (3) and (4).

3.9. Random number generation
To generate random number from GIXGD («, 6). The following steps may be used.

1. Generate U; from Uniform(0, 1) distribution (i = 1,2, 3...,n).
2. Generate V; from Gamma(1, #) distribution (¢ = 1,2,3...,n).
3. Generate W; from Gamma(3, ) distribution (¢ = 1,2, 3...,n).

4. It U; < set Z; = V;, otherwise set Z; = W,.

9+1’
5V =(% )/ be random numbers GIXGD.

If we take @ = 1, then the algorithm of generating random number from GIXGD is same as that of IXGD.
4. Methods of Estimation

Here, we briefly described different classical methods of estimation, namely, MLE, OLSE and WLSE CME
and MPSE of the parameters as well as the estimators of SF S(¢ | a,0) and HRF H (¢ | o, ) respectively.

4.1. Maximum likelihood estimator

LetYy, Y5, -+, Y, be a random sample of size n, obtained from Equation (3). Then, the likelihood function
for the observed random sample y1, yo,- - , Yy, 1S given as
n
OZHQ 1 9 70/yq

Taking logarithm on both sides of Equation (11), we have

log L(e,0ly) = nlog(a)+2nlogh —nlog (6 +1) +Zlog +1))+
i=1 1
glog(l 22a ;Z

Partial derivatives of the log-likelihood function with respect to v and 6 and equating to zero yield the estimate
of « and 6 respectively, i.e.,

dlog L(cv, 0 n n

DB _n Sty — 52 9 m 49 5 g logy =0, (12)
« i=1 i=1 <1+2 h) i=1

dlog L(c, 0]y) m & (1/293%) n

00 R ; 121176_971:0' (13)
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Now, equating these partial derivatives to zero which do not yield closed form solutions for the MLEs of
«, 6 and thus a numerical method is used to obtain MLEs (&mnie, Omie) for (a, ) from Equations (12) and (13)
simultaneously. Using the invariance property of MLE, we can get the estimators of S(¢ | «,0) and H(t | «, 0),
given as

A . A é2 1 é l 1 i .
S(t | aae)mle =1—(1+ = mle 2a ) — mee = e Omie/tml ,
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! [1 + 2(Omic+1) tE¥mie) T Bt t&mle] e
respectively.

4.1.1 Asymptotic Confidence Interval (ACI) of parameters

From subsection (4.1), we observed that obtaining the exact confidence intervals for the parameters © =
(a, 0) is too difficult. To avoid this difficulty, we used the asymptotic normality assumption of the MLE to
compute the confidence intervals of the parameters a and 6 respectively. As we know that for large sample,

\/ﬁ((;) —0) ~ AN (07 %), where, © is the MLE of O, 7 is the observed Fisher information matrix, and and 7!
is the inverse of the observed Fisher information matrix and 7 is given by;
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The estimated elements of variance covariance matrix of the parameters v and 6 can be calculated by inverting
7 as follows:
pt = [ ver(e) cov(e) ) ( i >
cov(a) wvar(9) 21 M22

The diagonal elements ’UE:(E) and qm of the matrix are the asymptotic variance of the variance of o and 6
respectively. Thus, the asymptotic 100(1-a)% confidence interval for a and 6 are given by

<5‘(L7U) =aF Zg \/m, 0.0 =é¥Zg\/17@>.
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4.2. Ordinary and weighted least square estimators
The OLSE and the WLSE were proposed by Swain et al. (1988) to estimate the parameters of Beta distribu-
tions. Suppose F(y(m); «, 0) denotes the distribution function of the ordered random variables Yim) <Yam) <
- < Y(n:n) of size n from a distribution function F (+) from Equation (4). Then, the OLSEs of the parameters «

and 0, say, Gyse and 0,5 are obtained by minimizing

n

0t = 32 (Flem | 000) -~ 1)

i=1

i.e., by solving the following non-linear equations:

n

e ) i - 14
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n r Z )
; _F(y(i:n) | o, 6) — ntl] Y2(Y(in) | a,0) = 0, 15)

where, V1 (y(i.n) | @, 0) and o (y(iny | @, ) are the first derivatives of F'(y(;.,,) | c, ) with respect to a and
0 respectively, given as follows:
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The above normal Equations (14) and (15) cannot be solved analytically, therefore, we used NLM (Non-

Linear Minimization) function [see, Dannis and Schnabel (1983)] to obtained the solutions. Substituting the
OLSEs, we can get the estimators of S(t | a, 0) and H(t | a, 0) as

I
—
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respectively. The WLSEs of the parameters « and ¢ can be obtained by minimising

n 2 . 2

These estimators can also be obtained by solving the following normal equations:

1
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Substituting the WLSEs, we can get the estimators of S(¢ | «, 8) and H(¢ | o, 8), respectively, as

N A 92 1 éw e 1 . -
S(t | &, a)wlse =1—-(1+ ~ wlse o + = l _ e_gwlse/t . 7
2(9wlse + ]_) +(28wise) Ouise + 1 tGwise

and

‘:V’Wlb'eeilse 1 (1 + éwlsfi )e—éwlse/t&wlsa

~ 14015 t(GwisetD) 2t28wise

H(t | daé)wlse -

02 1 ) 1 ) St
1—(1 Zwlse _ Owise e Owise/tYwlse
+ 2(Ourset1) tEwise) + Ouwiset+1 tYwlse

4.3. Cramer-von-Mises estimator

To motivate our choice of Cramer-von Mises type minimum distance estimators, MacDonald (1971) provided
empirical evidence that the bias of the estimator is smaller than the other minimum distance estimators. Thus,
the Cramer-von Mises estimators (e, and écme of the parameter «, 6 are obtained by minimizing the following
equation:

cle0) = -+ 3 (Pluny [ 00) - 221) (16
Q, - 12n — Y(m) | &, m .
The minimization of the Equation (16) yields

- 2i—1

3 (F@(m) o)~ 2L ) b1 (W) | 0.6) = 0,

i=1 "

and
- 2i — 1
i=1

Hence, substituting the CMEs, we can get the estimators of S(¢ | «,0) and H (¢ | o, ), respectively, given as

G ) éQ 1 écme 1 il &eme
S<t | &, 0)eme =1 — | 14— %A + = _ e feme/t ,
2(96me + 1) t(2&cme) Qe + 1 theme

and

Geme0?, . 1 (1+ Oorme )e—écm,ﬂ/tacm

N R 1+0,me t@emetD 2t2acme

H(t | da )cme -

eznz,e 1 écvne 1 79A tdm'ne
1= (1 b 2Gemen) T T Gt e ) © /

4.4. Maximum product of spacings estimator

This Method was introduced by Cheng and Amin (1979) as an alternative to the method of MLE. The method
is briefly described as follows. The CDF of the propose distribution is given in the Equation (4), using the same
notations in subsection (4.2), define the uniform spacings of a random sample from GIXGD distribution as:

Di(ave) = F(y(zn) | a,&) - F(y(i—l:n) | Oé,@);i =1, 23 ey M ]-7

where, F'(yo:n) | @, 0) = 0 and F(ymi1n) | @, 0) =1 = F(ym:n) | @, 0). Clearly 22:11 Di(a,6) = 1. The
MPSESs Gpse and émpse, of the parameters « and 6 are obtained by maximizing with respect to « and 6, the
geometric mean of the spacings:

a7
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Taking logarithm on both sides of Equation (17), we get,

n+1

Ing =

The MPSEs are obtained by solving the following non-linear equations:

il
> Dy (e, 0) [01(Y(iny | @,0) = 1 (Yi—1m) | @, 0)] =0
=1~ \

and
n+1 1
Z Di(a, 0) [%( Y(im) | @, 0) — Y2(Y(i-1:m) | a,H)] =0,
=1

where, 11 (Ygi:n) | @,0) and Y2(y(im) | o, 0) are the first derivatives of D;(a, ) with respect to o and ¢
respectively. Substituting the MPSEs, we can get the estimators of S(¢ | «,0) and H (¢ | «, 0) as

& AN é?npse 1 émpse 1 ) /t@mpse
St] 6, 0)mpse =1— | 1+ — 2a ) + = = e Ompse 7
2(97”1156 + 1) tletmpse empse + 1 t¥mpse
and
&mpseéi;pse 1 1 + mpse _émpa‘s/t&mpsc
3 5 0 1+é7npse t(@mpse+l) 2¢26mpse e
H(t | Q, o)mpse = P - 7
0 S 1 79 d?npse
1 + mpse 1 + - mpse _ e mpse/t
( 2(97npse+1) t(2&mpse) 97711,56—"-1 tympse
respectively.

4.5. Bayesian method of estimation

Here, we have developed the Bayesian estimation procedure to estimate «, 6, SF and HRF. As we know that,
in the Bayesian analysis the model parameters (« and 6) are treated as random variable and follows some standard
distribution, called as prior distribution. Here, we assume that the parameters « and 6 follow independent gamma
priors, i.e., « ~ gamma(ay,b1) and 6 ~ gamma(as, by) respectively. Then, the joint prior distribution 7(c, §)
turned out to be

m(a,0) = ﬂaal_lg‘“_le_bw‘_b?e' 0>0,a>0 (18)
) F ( Cl,l ) F (a2 ) b 9’ )

where, a1, as, by and by are the hyper-parameters and are assumed to be known. Since, the Bayesian procedure
utilize the information, supplied by the sample and prior distribution which is combined by using the concept of
the Bayes theorem. Hence, by using Equations (11) and (18), the joint posterior distribution is obtained as

-0 ¥ %) n 1 0
R SR L (=) ()]

Y

where,

a02 " alfl as—1 7b10479b2 (; %> s 1 4
[ () e G (1 g o

1=

is a normalizing constant. In the Bayes point estimation theory, the selection of appropriate loss function is also
a important task . Since, different loss functions are available in literature and used according to the need of the
study. Here, we took most popular and widely used symmetric loss function, named as, the Squared error loss
function (SELF). Bayes estimates of the parameters under the SELF are the means of their respective marginals
posteriors. Therefore, the Bayes estimators of «, 6, S(¢; «, 8) and H (¢; o, 8) are given as follows:
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oo oo n+a192n+a2*1 ) i %) n 1 0
A ayes = K_1 a _bla_b29 <i:1 yi 1 8 80 19
QBayes 0/0/ (1_"_0)7” e ll:[l y?+1 + nya (7 ’( )
i ir n+a;—1pn2n+as —0 i % mn
_ ~1 o ¢ —bra—bsf (i: o > 1
Opayes = K // P et B Ky““ 1+ g ) | 0000, @0
0 0 i=1 g
. . RX 7L+a17102n+a271 -0 - % n 1 0
St &, 0)Bayes = K a —bra=bab Qﬁyi 1
(t1,0) 5y || == : [T | (o) (1 2
0 0 i=1
6° 1 0 1] _ope
X [1— {1—1— 200+ 1) 1o 9—&—1171] e dadl, 21
R . i iirt n+aj—1p2n+ag—1 —0 i % n
~ _ 1 o 0 —bra—bod (i: P > 1 0
H(t]6,0)payes = K~ // (1+0)- o ' H |:(ta+1 1+ 2f2a
0 0 i=1
ab? —6/t>
x [ 110 t(w S ”2”) . ] dade 22)
[1 + 2(9+1) t(2a> + e+1 tla] e~ 0/t

From the above expressions, given in the Equations (19)-(22), it is clearly observed that the analytical solutions are
not possible due to involvement of ratio of two integrals. Hence, any Bayes computational technique may be used
to obtain the required estimates. Here, we used Markov Chain Monte Carlo (MCMC) method to get the Bayes

estimates.

MCMC method

Here, we have considered MCMC method to compute the Bayes estimate of «, 6, S(t | «,0) and H(t | «,6)
as well as credible interval of the parameters o and 6 based on generated posterior samples. For more details
about MCMC method, the readers may follow the articles, given by Robert and Smith (1993), Hastings (1970),
Upadhyay et al. (2001) and many more. To implement the MCMC algorithm, the full conditional density of o and

0 can be written as

_9 n % n
b1(alf,y) x anTu—lembioe <; " ) K
1

n

—0
¢2(0|05,y) 0.8 92n+a271(1 —+ 9)771671)206 <'i:1

(23)

) 0
>H (1+ 2y2a) . (24)

=1

Now to generate the samples from above conditional densities, given in Equations (23) and (24), the following

steps are used:

1. Set the initial guess value a(9), 8(9) of o and 6 respectively.

2. Begin with j =1,

3. Generate a new sample for « and 6 as follows:
0l ~ g1(x |66, )
00 ~ da(w | 0, 6)

4. Now again repeat step 2-3 for all j = 1,2, 3,
R for parameters « and 6.

5. Using the above sequence of samples in step 4, we can obtain the sequence of S(¢ | a,6)V

o, 0)0),

...... , R(=10,000) times and obtain posterior samples of size

) and H(t |

After obtaining the posterior samples, the Bayes estimates of «, 8, S(t | «,0) and H (¢ | o, 8) under SELF

are obtained as
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R—Ro 1 R_RO
S ald), GMOME  pg | y) ~ N
= (0% ) ( ‘ y) R _ RO =

R—Rg R—Rg

N A 1 j ~ A pMcMC )
St1a,0M M n —— 37 S(t|a, ), Ht|a,0) ~ ST H(t|a,0)V
R — Ry i=1 R—Ro j=1

1
~MCMC

=F ~

z @19~ =

respectively, where, Ry is the burn-in-period of Markov Chain and here Ry is taken to be 500.

6. Now we can get the 100(1 — a)% HPD credible intervals for « and 6 by using the algorithm of Chen and
Shao (1999).

5. Simulation Study

In this section, we have executed a Monte Carlo simulation study to ascertain the performances of the four
classical methods of estimation (MLE, OLSE, WLSE, CME and MPSE) and the Bayesian method of estima-
tion for both informative (Prior-I) and non-informative (Prior-0) prior distributions of the model parameters,
SF and HRF of the proposed model. The performance of the estimators is examined in terms of their average
MSEs. Besides, we have also constructed ACIs and HPD credible intervals for the parameters, and compared
in terms of AWs and corresponding CPs. For this purpose, we have taken different choices of parameters, such
as, (a, 0)=[(0.75,1.5), (1.0,2.0), (1.5,2.0), (2.0, 2.0), (2.0, 3.0)] along with the sample sizes n = 10, 20, 30, 50
and 100 respectively. To evaluate the estimates of SF and HRF, different choices of ¢t are as t = 2, 3, 4, 2, 1.
For each design, sample with each of size n are drawn from the original sample and replicated 3, 000 times. For
the Bayesian computation, the values of hyper-parameters are chosen such that either the prior variances are very
large. Following cases are considered regarding selection of hyper-parameters values: (i) for non-informative
prior (Prior-0), we took a; = by = ay = by = 0.000001, (ii) for informative prior (Prior-I), we took as
(a1,b1) = (0.56,0.75),(1,1),(2.25,1.5), (4,2), (4,2) and (as,be) = (2.25,1.5), (4,2), (4,2), (4,2),(9, 3) re-
spectively. We generate a chain of 10,000 estimated values of parameters in the model. and we repeat this proce-
dure 1000 times. Each time we took 500 burn-in for each parameter. For an MCMC chain in a model with only
two dimensions, it is quite enough to reach a stationary state. That’s why there is no need for any other method to
check the convergence of the chain. All computations are performed by using programs, written in the open source
statistical package R [see, Ihaka and Gentleman (1996)]. For the analysis purpose, we have used several statistical
package like VGAM, boa etc..For each set up, we calculated the average estimates and corresponding MSEs of
the considered characteristics using MLE, OLSE, WLSE, CME, MPSE and results are reported in Table 1 and
2 respectively. From Table 1, we can see that, in saome cases, for both the parameters (o, #) MLE provides the
leaset MSEs for samll samples but as we increases the sample size MPSE provides the least MSEs for almost all
the cases as compared to other classical methods. Also we can see the simmiler trend From Table 2, for the MSEs
of survival and hazard rate functions. So, we can say that for all most all the considered cases, MPSE provides the
least MSEs as compared to other classical methods (MLE, OLSE, WLSE and CME) of estimation, and efficiency
of these methods can be considered as MPSE < MLE < WLSE < OLSE < CME. 1t is also observed
that as the sample sizes increases, the MSEs of all the estimators are decreases, which ensured the consistency of
the proposed estimators. Table 3 depicts the Bayes estimates under SELF with Prior-I and Prior-0 respectively.
After analyzing the simulation results, we observed that the Bayes estimator with Prior-I have least MSEs for all
the parameters set-up as compared to different classical estimators and the Bayes estimator with Prior-0. Table 4,
shows the ACIs and HPD credible intervals of parameters for the same variations of n, «, 6. After analyzing Table
4, we found that the AWs of Bayes credible intervals are smaller than the AWs of ACIs and Bayes procedure with
Prior-0, and decreases as the sample size increases.

6. Applications

e Data Set I: Data Set I, initially considered by Bjerkedal (1960) which represents the survival times (in
days) guinea pigs with different doses of tubercle bacilli. The regimen is common logarithmic of number of
bacillary units per 0.5 ml. Corresponding to 6.6 regimen, there were 72 observations given below.
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58,
58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83,
84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175,
211, 233, 258, 258, 263, 297, 341, 341, 376.
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Table 2 True value of SF, HRF and their estimates by different methods of estimation along with their corresponding MSEs.
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590

Estimates & MSEs of SF Estimates & MSEs of HRF
n (a, 0) t MLE OLSE WLSE CME MPSE MLE OLSE WLSE CME MPSE
S(t|a,0),H(t|a,b) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE) (MSE)
10 0.241250 0.273599 0.271860 0.246549 0.196158 0.180063 0.153292 0.154275 0.187089 0.187625
(0.012528) (0.013366) (0.012914) (0.015095) (0.012342) (0.005112) (0.005070) (0.004823) (0.010602) (0.005864)
20 0.245389 0.262634 0.259977 0.248366 0.222740 0.165038 0.152264 0.153673 0.166680 0.166351
(0.006137)  (0.006712)  (0.006379) (0.007095) (0.006092) (0.001641) (0.001857) (0.001593) (0.002668) (0.001686)
30 (0.75,1.5) 4 0.247951 0.259226 0.257228 0.249655 0.232705 0.160440 0.151901 0.153256 0.160985 0.160696
S(t | a,6)=0.253670 (0.004225)  (0.004643) (0.004409) (0.004812) (0.004152) (0.000991) (0.001197) (0.001051) (0.001481) (0.000988)
50  H(t|a,0))=0.201053 0.250315 0.256960 0.255190 0.251121 0.241516 0.156799 0.151917 0.153128 0.157249 0.156255
(0.002534)  (0.002791)  (0.002631) (0.002852) (0.002482) (0.000540) (0.000676) (0.000589) (0.000770) (0.000524)
100 0.003417 0.005073 0.004078 0.005427 0.003282 0.015693 0.016364 0.015839 0.016921 0.015514
(0.001206)  (0.001397) (0.001285) (0.001416) (0.001195) (0.000237) (0.000332) (0.000275) (0.000357) (0.000230)
10 0.253858 0.283762 0.281977 0.257026 0.205027 0.241195 0.208514 0.208641 0.255824 0.254234
(0.013603) (0.013971) (0.013499) (0.016076) (0.013711) (0.009755) (0.012687) (0.010433) (0.025570) (0.012152)
20 0.261615 0.278624 0.276196 0.264713 0.236325 0.218520 0.200206 0.202458 0.219370 0.221494
(0.006347)  (0.006845) (0.006538) (0.007229) (0.006284) (0.003029) (0.003448) (0.003088) (0.004782) (0.003185)
30 (1,2 4 0.262486 0.273642 0.271422 0.264174 0.245811 0.212472 0.201034 0.203071 0.213461 0.213263
S(t| a,6)=0.267108 (0.004301)  (0.004805) (0.004545) (0.005011) (0.004251) (0.001837) (0.002319) (0.002059) (0.002856) (0.001854)
50  H(t|a,0)=0.201053 0.263728 0.269971 0.268191 0.264151 0.254031 0.208030 0.201773 0.203486 0.209119 0.207550
(0.002495)  (0.002867) (0.002678) (0.002955) (0.002476) (0.000956) (0.001301) (0.001122) (0.001490) (0.000937)
100 0.265992 0.269233 0.267959 0.266320 0.261405 0.204347 0.201156 0.202390 0.204736 0.203479
(0.001273)  (0.001457) (0.001344) (0.001475) (0.001251) (0.000435) (0.000611) (0.000506) (0.000653) (0.000424)
10 0.337726 0.361881 0.361043 0.342292 0.277654 0.673272 0.578056 0.579239 0.701687 0.716102
(0.017300) (0.015849) (0.015799) (0.019774) (0.018257) (0.083577) (0.089436) (0.079540) (0.179072) (0.100251)
20 0.341920 0.355372 0.353652 0.344726 0.310655 0.615072 0.564197 0.570571 0.616699 0.627252
(0.008269) (0.008147) (0.007986) (0.009105) (0.008561) (0.026711) (0.028244) (0.025723) (0.03945)2 (0.028276)
30 (1.5,2) 2 0.345847 0.354733 0.353136 0.347553 0.324620 0.592126 0.561474 0.566295 0.595277 0.597220
S(t | a,0)=0.349624 (0.005264) (0.005419) (0.005226) (0.005825) (0.005342) (0.014461) (0.017207) (0.015159) (0.021581) (0.014711)
50  H(t| «a,0)=0.560935 0.346691 0.352014 0.350644 0.347635 0.333832 0.579564 0.561252 0.565799 0.580855 0.580467
(0.003076)  (0.003239) (0.003119) (0.003385) (0.003094) (0.007831) (0.009674) (0.008605) (0.010992) (0.007710)
100 0.348009 0.350403 0.349582 0.348183 0.341657 0.570403 0.561631 0.564856 0.571267 0.569260
(0.001481)  (0.001593) (0.001524) (0.001631) (0.001482) (0.003499) (0.004688) (0.003994) (0.005012) (0.003424)
10 0.252893 0.284169 0.282640 0.258094 0.203807 0.967273 0.818846 0.822679 0.990240 1.019945
(0.013475)  (0.013661) (0.013272) (0.015382) (0.013722) 0.152244)  (0.156071) (0.144607) (0.285096) (0.186062)
20 0.260124 0.275695 0.273621 0.261713 0.234861 0.878619 0.813091 0.819583 0.891511 0.890861
(0.006429)  (0.007180) (0.006806) (0.007660) (0.006432) (0.050136) (0.061121) (0.054067) (0.085093) (0.052803)
30 (2,2 2 0.260685 0.272705 0.270387 0.263235 0.244233 0.853551 0.804124 0.812799 0.853649 0.856307
S(t|a,b)=0.267108 (0.004325) (0.004688) (0.004468) (0.004894) (0.004328) (0.029632) (0.035479) (0.031401) (0.043629) (0.029858)
50  H(t|a,0)=0.804215 0.263684 0.270455 0.268623 0.264676 0.253843 0.834316 0.806481 0.813814 0.835671 0.832913
(0.002557)  (0.002874) (0.002710) (0.002953) (0.002537) (0.015490) (0.020177) (0.017406) (0.023061) (0.015191)
100 0.265919 0.269751 0.268366 0.266847 0.261345 0.818378 0.802962 0.808482 0.817226 0.814916
(0.001303) (0.001524) (0.001402) (0.001540) (0.001280) (0.007438) (0.010230) (0.008565) (0.010861) (0.007245)
10 0.396998 0.415082 0.414676 0.400973 0.327935 0.854846 0.724007 0.723728 0.870353 0.927449
(0.018148) (0.015659) (0.015349) (0.020205) (0.020777) (0.130584) (0.124541) (0.105284) (0.236603) (0.169208)
20 0.400117 0.409417 0.408681 0.401718 0.363371 0.780081 0.716000 0.723466 0.781718 0.804435
(0.008644) (0.008211) (0.008069) (0.009384) (0.009400) (0.045368) (0.047280) (0.043300) (0.064792) (0.050288)
30 (2,3) 2 0401184 0.408080 0.406751 0.402959 0.376160 0.759046 0.718575 0.725802 0.761061 0.770952
S(t | a,6)=0.405851 (0.005625)  (0.005671)  (0.005503) (0.006203) (0.005965) (0.026589) (0.029766) (0.027020) (0.036815) (0.027709)
50  H(t|a,8)=0.716065 0.405819 0.410045 0.409057 0.407007 0.390285 0.738728 0.714801 0.720608 0.739450 0.743424
(0.003373)  (0.003643) (0.003474) (0.003832) (0.003413) (0.013868) (0.017309) (0.015156) (0.019537) (0.014033)
100 0.404848 0.406630 0.406044 0.405066 0.397011 0.729326 0.718575 0.722390 0.730625 0.729456

(0.001582) (0.001682) (0.001617) (0.001729) (0.001596) (0.006377) (0.008261) (0.007200) (0.008942) (0.006267)
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Table 4 AWs and CPs of ACI and HPD credible interval of parameters « and 6 using MCMC method.

ACI Prior-I Prior-0
n (a, 6) « [ « [ a [
AW CP AW CP AW CP AW CP AW CP AW CP
10 (0.75,1.5)  0.804394  0.943 1.614525 0923  0.751094  0.962 1.435246 0957  0.779379  0.945 1.551978  0.932
20 0.522340  0.947 1.094618  0.927  0.506780  0.954 1.039685  0.949  0.514308  0.945 1.080489  0.941
30 0.412411 0.960  0.895072  0.947  0.406216 0948  0.860792  0.951 0.409049  0.945  0.881122  0.944
50 0.316678 0952  0.691065 0.950  0.309961 0.959  0.668726  0.953  0.311080 0.952  0.678699  0.945
100 0.219606  0.946  0.486787  0.942  0.219251 0.950 0.478725 0949  0.218434  0.952  0.480100  0.952
10 (1,2) 1.124764  0.940  2.225816  0.945 1.009759  0.963 1.804272  0.965 1.070111 0.947  2.132914  0.927
20 0.716450  0.962 1.417274 0945  0.686603  0.950 1.314480 0963  0.700970  0.946 1.403010  0.947
30 0.566039  0.948 1.142941 0.945  0.554699  0.954 1.075075  0.954  0.562825  0.953 1.120718  0.944
50 0.429064  0.948  0.877008  0.947 0423616 0.944  0.845378 0.948  0.426201 0.941 0.867288  0.938
100 0.300547 0955 0.614094 0.940 0297137 0.942  0.602577  0.957 0296750 0.943  0.609093  0.954
10 (15,2) 1.669196  0.943 2272327  0.955 1.484300  0.973 1.802143  0.977 1.644833  0.948  2.134324  0.938
20 1.074175  0.949 1.437838  0.948 1.022275  0.962 1.302062  0.957 1.066392  0.950 1.391390  0.948
30 0.854912  0.958 1.137295 0952  0.821761 0.943 1.077847 0954  0.841250  0.939 1.123494  0.942
50 0.651178 0943  0.874738 0.934  0.633667 0.952  0.839405 0.950 0.641966  0.951 0.860520  0.941
100 0450518  0.950  0.613328 0.946  0.442153  0.951 0.599786  0.959  0.444942  0.943  0.607233  0.958
10 2,2) 2247930  0.954  2.247504  0.946 1.828998  0.975 1.804247  0.971 2.125924  0.945  2.110935  0.945
20 1.438726  0.940 1.434001 0.956 1.318418  0.972 1.315905  0.949 1.409659  0.955 1.406959  0.929
30 1.136120  0.950 1.144725  0.940 1.076768  0.961 1.080403  0.956 1.121931 0.954 1.127468  0.944
50 0.865551 0.944  0.880451 0.939  0.828442  0.961 0.841363  0.957  0.848441 0.957  0.863411 0.951
100 0.601326 0948  0.613938 0.957 0589317 0.959 0.601265 0.952  0.595938  0.954  0.607930  0.951
10 2,3) 2.229278  0.953  4.428954  0.969 1.795622 0976 2502107  0.985  2.179635  0.938  3.994696  0.959
20 1.443669  0.944 2418672  0.952 1.320840  0.970 1.956297  0.973 1.432360 0956  2.356517  0.947
30 1153372 0.948 1.878874  0.957 1.091003  0.960 1.639249  0.954 1.146947  0.947 1.842227  0.944
50 0.876436  0.945 1405472 0.965  0.846812  0.949 1.300576  0.953  0.871061 0.945 1.389403  0.936
100 0.607776 0959  0.969953  0.945  0.596412  0.952  0.931906  0.947  0.603663  0.950  0.959899  0.939

e Data Set II: Second data shows survival time of 44 patients suffering from head and neck cancer disease
and were treated using combined radiotherapy and chemotherapy [See, Efron (1988)]. Values of data set 2
are given below-

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26,
74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179,
194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

From the summary of the both data sets, given in Table 5, it is observed that the Coefficient of skewness
(CS) and Coefficient of kurtosis (CK) for both data set are positive. Hence we may conclude that the considered
data sets are compatible for the proposed model even though data set contains outliers, see in Figure 10. At
first we have checked whether the considered data set is actually comes from GIXGD or not by goodness-of-fit
test and compared the fit with the following lifetime distributions: GIXGD, ILD,IXGD, IWD, IED, Generalized
exponential distribution (GED) [see Gupta and Kundu (2001)], Gamma distribution (GD) [see Thom et al. (1958)].
This procedure is based on the Kolmogorov-Smirnov (K-S) statistic and it compares an empirical and a theoretical
model by computing the maximum absolute difference between the empirical and theoretical CDFs. Note that, K-S
statistic to be used only to verify the goodness-of-fit and not as a discrimination criteria. Therefore, we consider
four discrimination criteria based on the log-likelihood function evaluated at the maximum likelihood estimates
of the parameters. The criteria are: Akaike information criterion (AIC), corrected Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion (BIC). The model with least
AIC, CAIC, HQIC, BIC and K-S is treated as best model. The obtained measures are reported in Table 6 which
indicates that the GIXGD is best choices among one parameter as well as two parameters family of distributions.
Further, density with histogram, empirical CDF and normal probability plot (P-P) plot are also displayed in Figures
8-9 for the considered data sets, these plots reveals the same results as we seen in Table 6. Hence, GIXGD might
be chosen as an alternative model. The classical and Bayes estimates of the parameters, SF and HRF for specified
value of ¢(= 54, 70, 99, 112) are obtained and reported in Tables 7-8 respectively. We have provided the trace
plots in Figure 11 for the parameters only for data set I due to constrant of length of the paper. Figure 11 shows
that the parameters are convergence enough through MCMC method.
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Table 5 Descriptive statistics of the considered data sets.
Dataset Minimum 1st Quartile Median Mean 3rd Quartile Maximum CS CK
I 12 54.75 70 99.82 112.80 376 1.796245 5.614438
II 12.20 67.21 128.50  223.50 219 1776 3.38382  16.5596
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Figure 9 Histogram-density, CDFs and P-P plot of data set II.

Table 6 The model fitting summary for the considered data sets I and II.

Data Set  Model MLEs -LogL AlIC BIC HQIC CAIC K-S
GIXGD [1.416598, 287.9991] 395.5712  795.1423  799.6957  796.955 800.6957  0.137367
ILD 61.06575 402.6685 807.3371 809.6137 808.2434 810.6137  0.184594
I IXGD 61.844 402.8761 807.7522  810.0289 808.6585 811.0289 0.187181
IWD [1.414755, 283.831] 420.1391  844.2782 848.8316 846.0909 849.8316  0.138098
IED 0.01663913 402.6718  807.3437  809.6203 808.2500 810.6203  0.184658
Data Set  Model MLEs -LogL AIC BIC HQIC CAIC K-S
GIXGD [1.019225, 84.66623] 279.4906  562.9863 566.5547 564.3096 567.5547 0.08167396
W [1.013332, 80.76181] 280.142  564.2841 567.8525 565.6074 568.8525 0.08318193
II GED [1.071444, 213.3867] 281.9558 5679116 571.48 569.235 572.48 0.1497917
GD [1.023544, 0.004579491] 282.0028 568.0055 571.5739 569.3288 572.5739  0.9999908
Weibull ~ [0.9409097, 216.1249] 281.8427 567.6854 571.2538 569.0088 572.2538 0.130701
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Table 8 Bayes estimates of parameters («, #), SF and HRF for real data sets.

Bayes Estimates ‘ Bayes Estimates
é 6 S(t;a,0)  H(t;é,0)
t=54  0.642714  0.014210
t=70  0.516444  0.013044
I 1.34436  221.0235 t=99  0.366328  0.010705
t=112  0.320606  0.009823
t=67  0.675770  0.008071
t=128  0.444028  0.005847
I 1.012478  88.609970 t=223 0.289459  0.003807
t=219  0.293801  0.003861

Data Set

Table 9 Widths of ACI and HPD credible interval of the parameters « and 6 using MCMC method for the consid-
ered data sets I and II.

Width of ACI Width of HPD credible interval
Data Set 7 o i
1 0.456567 495.7005 0.374586 431.1524
1I 0.431425 146.6619 0.382655 129.4561

7. Concluding Remarks

In this article, we have proposed a new positively skewed probability distribution, namely, GIXGD by consid-
ering the power transformation of IXGD, introduced by Yadav et al. (2018). Several distributional properties viz.,
moments, conditional moments, quantile function, Bonferroni and Lorentz curve, entropy etc., have been derived.
Also shape of HRF and SF have been studied through graphical representation. Next, the different classical and the
Bayesian estimation procedures for the parameters and SF, HRF are considered. Further, interval estimates (ACIs
and HPD) are also constructed based on MLE and posterior samples respectively. The Monte Carlo simulation
study has been performed to compare the performance of the classical and the Bayes estimators for the different
variations of n, a, 0 in terms of average mean squared error. Finally, two real data sets have been analyzed for
illustration purposes of the proposed study. Estimation of the parameters and the reliability characteristics may be
further studied under different types of censoring scheme in future.
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