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Abstract

Genome-Wide Association Study (GWAS) is an approach for identifying the associations
between genetic variants, especially Single Nucleotide Polymorphisms (SNPs), and phenotypes, such
as disease risk. GWAS can be conducted either on a single SNP or groups of SNPs. However,
analyzing the GWAS data can be challenging due to its high dimensionality, leading to an inflation
of type I error rate and computational burdens when conducting multiple hypotheses testing. To
address these limitations, this research investigates the association between SNP sets, grouped by
gene, and the risk of Crohn's disease. The Sequence Kernel Association Test (SKAT) is employed to
assess these associations, while spline regression analysis is used to construct the model and reduce
analytical complexity. This research aims to obtain the optimal smoothing parameters, particularly
the degree of freedom, for the spline regression model and the optimal number of replications for
simulated data, and to apply the optimal model for identifying gene regions associated with Crohn's
disease. The results indicate that the degree of freedom of 1,000 is the optimal parameter for the
spline regression model, as it provides the lowest false positive rate while maintaining a reasonable
true positive rate. Additionally, 1,000 replicates have been identified as the optimal number of
replications, as this value ensures the most efficient processing time. Ultimately, the optimized model
can effectively identify gene regions associated with Crohn’s disease while minimizing the error rate
and conserving computational resources during the analysis of extensive data.
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1. Introduction

A Genome-Wide Association Study (GWAS) is a research approach used to identify the
association between genomic variants and phenotypes, which helps researchers discover DNA
locations associated with complex diseases. In GWAS, a primary interest lies in exploring the
association between diseases and Single Nucleotide Polymorphisms (SNPs). An SNP is a genetic
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variant at a single base position in the DNA. Although SNPs do not harm organisms, their locations
are often associated with disease risk or drug response (Sukhumsirichart 2018).

Single SNP Analysis is a straightforward method to identify the association between a disease
and one SNP location at a time (Sookkhee et al. 2018, Sookkhee et al. 2021). Though, with
approximately 10 million SNP locations in the human genome, conducting simultaneous hypotheses
testing can lead to significant challenges, particularly in inflating of the type I error rate. The
Bonferroni correction is one approach to mitigate this issue, but it is known for being extremely
conservative (Sookkhee et al. 2021, Kamoljitprapa et al. 2023, Kamoljitprapa et al. 2024). Another
method, the permutation test, is a nonparametric approach that can estimate the distribution of test
statistics under the null hypothesis (Berger 2011). Researchers can select the percentile of test
statistics from this distribution that corresponds to or is close to the desired significance level and use
it as a threshold for their hypotheses test.

However, an SNP location might not strongly affect the risk of disease, and groups of closely
linked SNPs often underlie the development of disease as presented by Sookkhee et al. (2021).
Moreover, single SNP analysis can be time-consuming. SNP-set analysis reduces processing time by
identifying associations between groups of SNPs and phenotypes. SNPs are commonly grouped by
genomic features such as genes and haplotype blocks. The Sequence Kernel Association Test (SKAT)
proposed by Wu et al. (2011) is a notable method that identifies associations between SNP sets
grouped by gene and phenotype using the logistic kernel machine model.

Since GWAS data is considered high-dimensional, the analysis may face complexity, often
involving significant computational burdens due to numerous simulation studies. To address these
challenges, spline regression analysis plays an important role in constructing and smoothing the
model to reduce both noise and complexity. Moreover, spline regression effectively handles
nonparametric data, ensuring reliable outcomes regardless of data assumptions. However, the
efficiency of the spline regression model depends on the smoothing parameters, especially the degree
of freedom, which can be challenging to optimize (James et al. 2021, Sookkhee et al. 2021, Pailoung
et al. 2024).

In this research, we focus on exploring the association between SNP sets and Crohn’s disease,
by using SKAT for testing the associations and constructing the spline regression model through the
R statistical software (R Core Team 2022) with R packages “SKAT” from Lee and Zhao (2023) and
“splines” from Bates and Venables (2022). The data used for simulation are sourced from the 1958
British Birth Cohort (Burton et al. 2007). The research objectives include optimizing the smoothing
parameter, that is the degree of freedom for spline regression model, and the number of replications
for simulated data. Lastly, this research aims to apply the optimal spline regression model to real data
in order to identify the gene region associated with Crohn’s disease.

2. Method

This section presents the methodology used in this research, including SKAT for identifying the
association between SNP sets and the disease, spline regression for constructing and smoothing the
models, and the permutation method for adjusting thresholds in multiple hypotheses testing.
2.1. Sequence kernel association test

The Sequence Kernel Association Test (SKAT), proposed by Wu et al. (2011), is a supervised,
flexible, and computationally efficient regression method for testing associations between genetic
variants in a region, such as a gene or haplotype block, and both continuous and dichotomous
phenotypes. SKAT rapidly calculates the p-value for association using a variance-component score
test within a mixed-model framework. The logistics model for the i - th individual is defined as
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logitP(y, =)=, +a'X, + p'G, 1)
where y, indicates the disease status (1 for case or having disease and 0 otherwise), ¢, is an intercept

term, X, =(X,, X,,....X

im

) is the covariates with a =[¢,,,,...,, ] is the regression coefficient

> m

vector for the m covariates, and G, =(G,, G,

125 +++> G},) 1s the genotypes of variants within a region
where f=[8, B,,...,B,] is the vector of regression coefficient for p variants.

To test whether the variants in a region are associated with the disease, the null hypothesis can
be constructed as S, =, =...=f,. Each S is assumed to follow an arbitrary distribution with a
mean of zero and a variance of w;z, where 7 is a variance-component, and w; is a pre-specified

weight for j" variant in a region where j=1,..., p. The null hypothesis can then alternatively be
stated as 7 =0, which can be conveniently tested with a variance-component score test. The test
statistic is defined as

O=(-m)'K(y-p), 2
where ji is the predicted mean of y under the null hypothesis that &= logit™' (&, + Xa), G is an

nx p genotype matrix, which each element of G isa ;" variant of /" individual, and W isa pxp

diagonal matrix containing the w, weights for p variants. K = GWG' is annxn kernel matrix with

the (i,i") element is the kernel function K(G,, G,) of genotypes in a region from the i" and i""
individual, respectively.

The kernel function measures the similarity between the genetic variants of the sample.
Assuming the relationship between SNPs and the disease is linear with no interactions, the weighted

linear kernel function K(G,,G,)= Zilw.G..G.,. is used for its high power in this research. The

J ooy
weight function is set as Beta distribution, where the random variables are minor allele frequency of
the j™ SNP or MAF, in a region.
a-1 a,-1
MAF;}™ (1- MAF)
B(a, a,)

JW; = Beta(MAF ; a,, a,) = , 3)

where B denotes the beta function, 0 < MAF, <1 and a,, a,>0. The weight used in this research
is normal weight Beta(MAF;;10,10). According to Sookkhee et al. (2018), normal weight provides

the most efficient result for detecting the association between genetic variants and Crohn’s disease.

2.2. Permutation test

The permutation test is a nonparametric method that helps researchers determine the threshold
for controlling the error rate in multiple hypothesis tests under the null hypothesis of no effect. The
permutation test can estimate the sampling distribution of test statistics, which are highly reliable but
require a large number of samples generated under the null model (Berger 2011, Sookkhee et al.
2021). To apply this test, the data labels must be exchangeable under the null hypothesis. One reason
the permutation test is commonly used, beyond being a nonparametric test that requires no
assumptions about the data distribution, is that the distribution of test statistics is directly obtained
from the data itself. This makes the method robust to the shape of the distribution. In this research,
the thresholds were adopted from Sookkhee et al. (2021), which involved simulating 10,000
replicates under the null hypothesis that no SNP or SNP sets causes or affects Crohn’s disease and
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varied according to the degrees of freedom. The simulation was for computing the multivariate
distribution that achieved a type I error rate close to 0.05.

2.3. Spline Regression

A spline is a piece-wise polynomial constructed by dividing the x-axis into intervals and fitting
a polynomial function of degree d on each interval. These polynomial functions are connected by
knots (James et al. 2021). A general model for a spline of degree d with K knots, &,&,,...,&, are

the knot sequence, is given by
K+d

S@) =2 Bx'+ 3 B(x=&)t, @)

J=d+l1

x=&;x>¢. ) . . .
7" 71 B represent the regression coefficients for the polynomial, x is the
0; otherwise,

where (x—¢;), = {

independent variable, S, are the regression coefficients for the spline and (x—éj)f is the basis

function of spline. To ensure splines join smoothly and continue at every knot, constraints must be
set. Since d is the degree of spline and K is the number of knots, this spline function requires
continuity in derivatives up to degree d —1 at each knot. Thus, the spline function with K +1 distinct
polynomial functions of degree d will be tied together smoothly at the K knots.

The most commonly used spline degree is 3, known as the cubic spline, since it provides a
reasonably smooth approximation to most non-linear functions (Kirdwichai 2016, Kamoljitprapa and
Leelasilapasart 2024). Another reason is that these curves appear perfectly smooth to the human eye
(Perperoglou et al. 2019). The spline applied in this research is the B-spline, which basis function can
be defined by a recursive function:

Bj(x):x_—c’g’Bf“(x)—Mijll(x);j=1,...,K+d+l, (5)
§j+d _é:j ‘ §j+d+l _éj—l ‘
1’ 5/ S X S §j+1

where B_? (x)= { and B‘? (x)=0if &, =&, +1. B-spline produces a curve from sub

Ox<&,x>&.,
curves created in each interval, known as local estimation. Changing a few knot positions affects only
the sub-curves near the knots, making B-spline curves easy to shape without affecting the overall
curve (Perperoglou et al. 2019, Sookkhee et al. 2021). Moreover, B-spline uses a recursive function
to define its basis, which avoids multicollinearity between basis splines.

However, the efficiency of the spline depends on tuning parameters, such as the number of knots
and the degree of freedom, which refers to the number of free parameters in the model. Although
directly specifying the number and locations of knots is a straightforward way to optimize the
parameters, it might require considerable time and effort for extensive data. In practice, it is common
to specify the desired degrees of freedom and then have the R statistical software automatically place
the corresponding number of knots at uniform quantiles of the data (James et al. 2021).

3. Data and Model Simulation

The data used for simulation in this research comprises genotype data of 13,479 SNPs on
chromosome 16 from 1,504 healthy control individuals obtained from the 1958 British Birth Cohort.
These 13,479 SNPs from 1,504 controls will be separated into 3,008 haplotypes. The genotype will
be encoded into two values: 0 for the major allele and 1 for the minor allele, with the minor allele
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being more likely to be a risk allele, according to Kido et al. (2018). Next, two haplotypes will be
randomly selected and combined to create a genotype for each simulated individual. The simulated
genotypes for each SNP are represented as 0, 1, and 2, indicating homozygotes for the major alleles,
heterozygotes, and homozygotes for the minor alleles, respectively.

A disease SNP will be assigned to the simulated data. Two disease SNPs are arbitrarily chosen:
SNP rs3789038 located at 50,711,672bp on the HMOX2 gene and SNP rs3785142 located at
50,753,236bp on the CYLD gene. The HMOX2 gene contains 7 SNPs, while the CYLD gene contains
8 SNPs. Then, the disease status for each simulated individual will be determined via a logistic
function:

o2+ AT,

Py, =1|T)=—_, 6
0 =) = (6)

where «, is a pre-specified relative risk set as ¢, =0.0, 7; is the number of copies of the rare allele
or the encoded genotype on a disease SNP of an individual, and # is a gene effect that indicates how
strongly the disease SNP can affect thei-th individual. In this research, the main interest is in the

rare variant that shows a weak effect or is hard to classify. According to Sookkhee et al. (2021), small
gene effects can classify rare variants more effectively than large gene effects. Thus, the gene effect
is chosen to be f=0.2.

To determine the optimal number of replications for simulation, the number will be varied from
1,000, 1,500, 2,000, 2,500, and 3,000. Each replicate comprises the simulated genotype of 3,000 cases
and 3,000 controls.

4. Simulation Study

This section presents the simulation results of the models. The model’s efficiency is assessed by
false positive (FP) and true positive (TP) rates. FP rate occurs when the model incorrectly detects an
SNP set not designated as associated with the disease. In contrast, the TP rate occurs when the model
correctly identifies the disease-associated SNP set. Since one simulated replication contains only one
disease-associated SNP set, the equations for calculating the FP and TP rates across all replications
are as follows:

#significant disease —unassociated SNP sets

FP= 7)

~ #total unassociated SNP sets x # total replications’

TP = #significant disease —associated SNP sets

— (®)
#total replications
Several steps are taken to identify the optimal model in this research. The optimal number of
replications for each degree of freedom is selected first, followed by evaluating the optimal degree
of freedom for spline regression.

4.1. SNP rs3789038 as a disease SNP
The ROC curves for FP and TP rates obtained from SKAT with B-spline for rs3789038 as a
disease SNP with different degrees of freedom and number of replications are shown in Figure 1.
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Figure 1 ROC curves for FP and TP rates from SKAT with B-spline
with rs3789038 as a disease SNP

Figure 1 illustrates that as the degrees of freedom increase, both FP and TP rates decrease. While
increasing numbers of replications slightly lower FP and TP rates. Moreover, FP and TP rates are
diverged into two groups: below 2,000 replications and the other above, after passing the degree of
freedom of 800 (#). It shows that FP and TP rates become similar when the degree of freedom is high.

To explore the differences in each degree of freedom and each number of replications, the
boxplot of FP and TP rates are shown in Figure 2 and Figure 3:
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Figure 2 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline
with rs3789038 as a disease SNP, where the x-axis is the degree of freedom

Figure 2 shows the boxplot for FP and TP rate where the x-axis is the degrees of freedom. As
the degree of freedom increases, the FP and TP rate boxes gradually shift downward and stabilize
after reaching a degree of freedom of 1,000. Additionally, the variability of the FP rate in each
replication, indicated by the height of the FP box, decreases with an increase in the degrees of
freedom. This observation confirms that increasing the degrees of freedom positively impacts the
model’s efficiency.
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Figure 3 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline
with 1s3789038 as a disease SNP, where the x-axis is the replication.

Figure 3 shows the boxplot for FP and TP rate where the x-axis is the number of replications.
Conversely, from Figure 2, as the number of replications increases, both FP and TP rate boxes tend
to lower slightly and remain consistent in shape, suggesting that increasing the number of replications
has a marginal effect on model efficiency. Therefore, evaluating the optimal number of replications
for each degree of freedom requires significant processing time. Then, the FP, TP rates and processing
time in hours from different degrees of freedom and replications will be presented in Table 1.

Table 1 Achieved FP, TP rates and runtime from each degree of freedom, separated by
number of replications from SKAT with B-spline with rs3789038 as a disease SNP

Degree of Freedom ~ Number of Replications FP TP  Time (hours)
1,000 0.01369 0.9540 91.72

1,500 0.01383 0.9560 141.07

400 2,000 0.01344 0.9470 190.80
2,500 0.01356 0.9464 240.07

3,000 0.01353 0.9453 290.57

1,000 0.01148 0.9030 91.77

1,500 0.01153 0.9013 141.13

600 2,000 0.01123 0.8935 190.87
2,500 0.01129 0.8952 240.15

3,000 0.01124 0.8940 290.67

1,000 0.01040 0.8700 91.90

1,500 0.01051 0.8680 141.33

800 2,000 0.01025 0.8565 191.15
2,500 0.01027 0.8552 240.50

3,000 0.01023 0.8547 291.03

1,000 0.00894 0.8670 92.00

1,500 0.00908 0.8627 141.48

1,000 2,000 0.00883 0.8520 191.32
2,500 0.00884 0.8528 240.72

3,000 0.00882 0.8527 291.35
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Table 1 (Continued)

Degree of Freedom ~ Number of Replications FP TP  Time (hours)
1,000 0.00894 0.8670 92.45

1,500 0.00908 0.8627 142.13

1,200 2,000 0.00883 0.8520 192.18

2,500 0.00884 0.8528 241.78

3,000 0.00882 0.8527 292.63

Table 1 presents FP rates, TP rates, and processing time in hours obtained from SKAT with B-
spline with SNP rs3789038 as a disease SNP. As shown in Table 1, the higher the degree of freedom
and the number of replications, the lower the FP and TP rates. Overall, the 1,000 replications yield
the highest FP and TP rates, while 2,000 and 3,000 replications produce the lowest FP rate, which is
the main interest of this study. However, increasing 500 replications results in 50 additional hours.

For the degrees of freedom of 400 and 600, the 2,000 replications return the lowest FP rates,
0.01344 and 0.01135, and considerable TP rates of 0.9470 and 0.8935, with 190.80 and 190.87
runtime hours, respectively. Whereas the 1,000 replications give comparable FP rate of around
0.01369 and 0.01148 for the degrees of freedom of 400 and 600, respectively, which are 1.86% and
2.23% higher than those with 2,000 replications but require only 91.72 and 91.77 hours, representing
51.93% and 51.92% reduction in time.

For the degrees of freedom of 800, 1,000 and 1,200, the lowest FP rates are 0.01023, 0.00882
and 0.00882 obtained from 3,000 replications, requiring an average of 291.67 hours in processing
time. The 1,000 replications still give similar FP rates of 0.01040, 0.00894, and 0.00894, respectively,
but taking only an average of 92.12 runtime hours, which is 68.42% less time.

4.2. SNP rs3785142 as a disease SNP
The ROC curves for FP and TP rates obtained from SKAT with B-spline for rs378142 as a
disease SNP with different degrees of freedom and number of replications are shown in Figure 4.
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Figure 4 ROC curve for FP and TP rates from SKAT with B-spline
with 1s3785142 as a disease SNP

Figure 4 indicates that as the degrees of freedom in the model increase, the FP rates decrease,
whereas the TP rates increase. Regarding the number of replications, higher replications slightly
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increase both FP and TP rates. Additionally, at higher degrees of freedom, the data points from each
replication closely align within each degree of freedom, with points nearly overlapping.

To further explore the patterns across degrees of freedom and numbers of replications, boxplots
of FP and TP rates are shown in Figures 5 and 6.
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Figure 5 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline
with 1s3785142 as the disease-associated SNP, where the x-axis is the degree of freedom

Figure 5 shows the boxplot of FP and TP rates using rs3785142 as the disease-associated SNP,
with the x-axis representing the degrees of freedom. When the degree of freedom increases, the FP
rate boxes decline, while the TP rate boxes raise, and both stabilize after reaching a degree of freedom
of 1,000. Additionally, the boxes become narrower at a higher degree of freedom, indicating that
increasing the degree of freedom reduces the variance of FP and TP rates in each replication.
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Figure 6 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline
with rs3785142 as the disease-associated SNP, where the x-axis is replications

Figure 6 shows the boxplot of FP and TP rates using rs3785142 as the disease-associated SNP,
with the x-axis representing the number of replications. Although TP rate boxes tend to stay higher
with more replications, FP rate boxes remain consistent regardless of the number of replications. This
suggests that the number of replications rarely affects the model’s efficiency, with processing time
being a significant factor in determining the optimal number of replications for each degree of
freedom. Subsequently, Table 2 will display the FP and TP rates along with runtime (in hours) across
various degrees of freedom and numbers of replications.
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Table 2 Achieved FP, TP rates and run time from each degree of freedom, separated by
number of replications from SKAT with B-spline with rs3785142 as a disease SNP

Degree of Freedom ~ Number of Replications FP TP  Time (hours)
1,000 0.01462 0.4810 88.35

1,500 0.01460 0.4947 133.58

400 2,000 0.01475 0.5035 178.85
2,500 0.01470 0.5028 224.95

3,000 0.01451 0.4993 270.40

1,000 0.01109 0.6890 88.37

1,500 0.01118 0.6960 133.62

600 2,000 0.01136 0.7035 178.92
2,500 0.01127 0.7044 225.03

3,000 0.01111 0.7073 270.50

1,000 0.00981 0.7830 88.42

1,500 0.00990 0.7833 133.68

800 2,000 0.01001 0.7875 179.00
2,500 0.00995 0.7860 225.13

3,000 0.00983 0.7880 270.62

1,000 0.00824 0.7950 88.60

1,500 0.00830 0.7967 133.97

1,000 2,000 0.00835 0.8010 179.38
2,500 0.00832 0.7988 225.60

3,000 0.00821 0.7987 271.18

1,000 0.00824 0.7950 89.07

1,500 0.00830 0.7967 134.65

1,200 2,000 0.00835 0.8010 180.30
2,500 0.00832 0.7988 226.75

3,000 0.00821 0.7987 272.55

Table 2 displays the FP rate, TP rate, and processing time obtained from SKAT with B-spline
using SNP rs3785142 as the disease-associated SNP. The table indicates that increasing the degree
of freedom raises TP rates while reducing FP rates. Conversely, increasing the number of replications
slightly increases both FP and TP rates. Among the tested replication settings, 2,000 replications yield
the highest TP rate, while the lowest FP rates are observed with 1,000 and 3,000 replications.
Additionally, increasing the simulation by 500 replications results in approximately 45 additional
runtime hours.

In the degree of freedom of 400, 3,000 replications yield the lowest FP rate at 0.01451, requiring
270.40 processing hours. In contrast, 1,000 replications result in a slightly higher FP rate at 0.01462,
which is 0.76% higher than that of 3,000 replications, but with reduced processing time to 88.35
hours, which is 67.38% lower. For the degrees of freedom of 600 and 800, 1,000 replications offer
both the lowest FP rates and the shortest processing time which are 0.01109 and 0.00981 with 88.37
and 88.42 hours, respectively.
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Finally, 3,000 replications provide identical results degrees of freedom of 1,000 and 1,200,
achieving the lowest FP rate of 0.00821 with an average processing time of 271.87 hours. In contrast,
1,000 replications can produce the closely equivalent FP rate to 3,000 replications which are 0.00824,
merely 0.36% higher, while requiring only 88.84 processing hours, which is 67.32% less time
compared to 3,000 replications.

4.3. Evaluation the optimal spline regression model and the replications

The simulation results, which involve varying the disease SNP, degrees of freedom and the
number of replications, confirm that the degree of freedom significantly affects the model’s
efficiency, while the number of replications has a marginal impact, mainly when the degree of
freedom of the model is high. Moreover, the height of each box from the boxplot with the number of
replications is an x-axis, is comparable in both simulation cases. Differences in FP rates across
distinct numbers of replications are minor, only 1-3%, but the differences in processing time are
substantial. Thus, the processing time is a key factor for determining the optimal number of
replications. Since the 1,000 replications require the shortest processing time, as shown in Table 1
and Table 2. The optimal number of replications is 1,000.

To determine the optimal degree of freedom of the spline regression model, Figure 7 shows the
ROC curves of FP and TP rates obtained from 1,000 replications in two case simulation studies, as
shown below:

rs3789038 rs3785142

0,97 0.85
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0.93 07
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Figure 7 ROC curve for FP and TP rates from SKAT with B-spline obtained from 1,000
replications with disease SNP as rs3789038 (Burton et al.) and rs3785142 (right)

The point of interest on the ROC curve typically lies in the bottom-left region, where the false
positive rate is minimized. Figure 7 shows the degrees of freedom of 1,000 (W) and 1,200 (X) provide
the identical results: the lowest FP and reasonable TP rates. However, the degree of freedom of 1,000
still surpasses the degree of freedom of 1,200 in terms of processing time, as shown in Table 1 and
Table 2. Thus, the optimal degree of freedom for the spline regression model is 1,000.

5. Application to Real Data

The real data used in this part consists of the genotype data for 13,479 SNPs on chromosome 16,
including 2,005 Crohn’s disease cases and 1,500 healthy controls obtained from the Wellcome Trust
Case Control Consortium or WTCCC (Burton et al. 2007). The optimal spline regression model,
determined to be at a degree of freedom of 1,000 through simulation studies, is applied to identify
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gene regions associated with Crohn’s disease. The model successfully detects several significant
regions related to Crohn’s disease presented in Table 3.

Table 3 Names, positions and achieved p-values of significant genes on chromosome 16
declared by SKAT with B-spline using a degree of freedom of 1,000.

Position Gene Name p-value
LOC646828 1.01 x 10

t6p12.2 Intron Gene 89 1.01 x 10
SMGI1P5 2.76 x 10°¢

16p12.3 Intron Gene 151 3.28 x 106
Intron Gene 174 6.94 x 10°°

NOD2 1.22 x 107

16q12.1 CYLD 4.00 x 107

Three specific locations of SNP sets or genes were identified. These locations are as follows:
LOC646828 on 16p12.2, containing 2 SNPs; SMG1P5 on 16p12.3, also comprising 2 SNPs; NOD2
and CYLD on 16q12.1, including 12 and 8 SNPs, respectively. Additionally, the model indicates that
intron regions—segments within a gene that are not translated into proteins—are associated with
Crohn’s disease.

The application result shows that the spline regression model with a degree of freedom of 1,000
has efficiency in identifying regions within chromosome 16 that are related to the disease. Especially
the NOD2 on 16q12.1, which is the significant gene contributed to Crohn's disease, as suggested in
previous studies from Roda et al. (2020) and Ashton et al. (2023).

6. Conclusion and Discussion

Optimizing model parameters remains a challenge due to limited time and computational
resources. The results suggest that a degree of freedom of 1,000 is optimal for the spline regression
model. It provides the lowest false positive (FP) rate, and a reasonable true positive (TP) rate
compared to other degrees of freedom. Additionally, it requires less processing time than a degree of
freedom of 1,200, which yields identical results. This finding aligns with the study by Sookkhee et
al. (2021), which investigated the optimal parameters for spline regression in the study of the
association between SNP sets and Crohn’s disease. Furthermore, the degree of freedom reflects the
number of free parameters, indicating the model’s flexibility. A high degree of freedom may lead to
overfitting and increased processing time, whereas a low degree of freedom could result in
underfitting (James et al. 2021).

The research outcomes suggest that the number of replications has a minor effect on the model’s
efficiency, although the processing time varies significantly with different number of replications.
Using a large number of replications ensures the most accurate results but requires a substantial
amount of time. Conversely, fewer replications can produce comparable outcomes in less time,
consistent with the studies by Mundfrom et al. (2011) and Koskan et al. (2023). Therefore, the optimal
number of replications is 1,000, as it maintains low FP and reasonable TP rates close to the best
results but with reduced runtime.

After obtaining the optimized smoothing parameter and number of replications, the spline
regression model with the degree of freedom of 1,000 successfully identifies gene regions associated
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with Crohn’s disease, particularly NOD2, which is widely recognized as a significant factor in the
development of Crohn’s disease in established studies (Roda et al. 2020, Ashton et al. 2023).

The differences in the simulation study results are attributable to the Sequence Kernel
Association Test (SKAT). Assigning different disease-causing SNPs leads to varied outcomes,
demonstrating that the efficiency of SKAT depends on the specific disease-causing SNPs, as
suggested by Kirdwichai and Baksh (2019) and Sookkhee et al. (2021).

For future work, many genetic variants are associated with various complex diseases that have
not been identified. Testing these associations and constructing an alternative regression model, such
as penalized spline regression, would be an interesting approach. While penalized spline regression
helps balance smoothing and model fit, determining the optimal tuning parameter is also necessary.
Finally, the findings of this research are expected to provide aspects of defining appropriate
smoothing parameters for spline regression models and determining the optimal number of
replications. This could help identify associations between SNP sets and complex diseases more
efficiently by reducing the error rate and computational burden, especially processing time, during
an analysis.
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