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Abstract 

Genome-Wide Association Study (GWAS) is an approach for identifying the associations 
between genetic variants, especially Single Nucleotide Polymorphisms (SNPs), and phenotypes, such 
as disease risk. GWAS can be conducted either on a single SNP or groups of SNPs. However, 
analyzing the GWAS data can be challenging due to its high dimensionality, leading to an inflation 
of type I error rate and computational burdens when conducting multiple hypotheses testing. To 
address these limitations, this research investigates the association between SNP sets, grouped by 
gene, and the risk of Crohn's disease. The Sequence Kernel Association Test (SKAT) is employed to 
assess these associations, while spline regression analysis is used to construct the model and reduce 
analytical complexity. This research aims to obtain the optimal smoothing parameters, particularly 
the degree of freedom, for the spline regression model and the optimal number of replications for 
simulated data, and to apply the optimal model for identifying gene regions associated with Crohn's 
disease. The results indicate that the degree of freedom of 1,000 is the optimal parameter for the 
spline regression model, as it provides the lowest false positive rate while maintaining a reasonable 
true positive rate. Additionally, 1,000 replicates have been identified as the optimal number of 
replications, as this value ensures the most efficient processing time. Ultimately, the optimized model 
can effectively identify gene regions associated with Crohn’s disease while minimizing the error rate 
and conserving computational resources during the analysis of extensive data. 
______________________________ 
Keywords: GWAS, replication, sequence kernel association test, smoothing parameter, spline regression. 
 
1. Introduction 

A Genome-Wide Association Study (GWAS) is a research approach used to identify the 
association between genomic variants and phenotypes, which helps researchers discover DNA 
locations associated with complex diseases. In GWAS, a primary interest lies in exploring the 
association between diseases and Single Nucleotide Polymorphisms (SNPs). An SNP is a genetic 
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variant at a single base position in the DNA. Although SNPs do not harm organisms, their locations 
are often associated with disease risk or drug response (Sukhumsirichart 2018). 

Single SNP Analysis is a straightforward method to identify the association between a disease 
and one SNP location at a time (Sookkhee et al. 2018, Sookkhee et al. 2021). Though, with 
approximately 10 million SNP locations in the human genome, conducting simultaneous hypotheses 
testing can lead to significant challenges, particularly in inflating of the type I error rate. The 
Bonferroni correction is one approach to mitigate this issue, but it is known for being extremely 
conservative (Sookkhee et al. 2021, Kamoljitprapa et al. 2023, Kamoljitprapa et al. 2024). Another 
method, the permutation test, is a nonparametric approach that can estimate the distribution of test 
statistics under the null hypothesis (Berger 2011). Researchers can select the percentile of test 
statistics from this distribution that corresponds to or is close to the desired significance level and use 
it as a threshold for their hypotheses test.  

However, an SNP location might not strongly affect the risk of disease, and groups of closely 
linked SNPs often underlie the development of disease as presented by Sookkhee et al. (2021). 
Moreover, single SNP analysis can be time-consuming. SNP-set analysis reduces processing time by 
identifying associations between groups of SNPs and phenotypes. SNPs are commonly grouped by 
genomic features such as genes and haplotype blocks. The Sequence Kernel Association Test (SKAT) 
proposed by Wu et al. (2011) is a notable method that identifies associations between SNP sets 
grouped by gene and phenotype using the logistic kernel machine model. 

Since GWAS data is considered high-dimensional, the analysis may face complexity, often 
involving significant computational burdens due to numerous simulation studies. To address these 
challenges, spline regression analysis plays an important role in constructing and smoothing the 
model to reduce both noise and complexity. Moreover, spline regression effectively handles 
nonparametric data, ensuring reliable outcomes regardless of data assumptions. However, the 
efficiency of the spline regression model depends on the smoothing parameters, especially the degree 
of freedom, which can be challenging to optimize (James et al. 2021, Sookkhee et al. 2021, Pailoung 
et al. 2024). 

In this research, we focus on exploring the association between SNP sets and Crohn’s disease, 
by using SKAT for testing the associations and constructing the spline regression model through the 
R statistical software (R Core Team 2022) with R packages “SKAT” from Lee and Zhao (2023) and 
“splines” from Bates and Venables (2022). The data used for simulation are sourced from the 1958 
British Birth Cohort (Burton et al. 2007). The research objectives include optimizing the smoothing 
parameter, that is the degree of freedom for spline regression model, and the number of replications 
for simulated data. Lastly, this research aims to apply the optimal spline regression model to real data 
in order to identify the gene region associated with Crohn’s disease. 
 
2. Method 

This section presents the methodology used in this research, including SKAT for identifying the 
association between SNP sets and the disease, spline regression for constructing and smoothing the 
models, and the permutation method for adjusting thresholds in multiple hypotheses testing. 
2.1. Sequence kernel association test 

The Sequence Kernel Association Test (SKAT), proposed by Wu et al. (2011), is a supervised, 
flexible, and computationally efficient regression method for testing associations between genetic 
variants in a region, such as a gene or haplotype block, and both continuous and dichotomous 
phenotypes. SKAT rapidly calculates the p-value for association using a variance-component score 
test within a mixed-model framework. The logistics model for the - thi individual is defined as 
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 0log ( 1) ,i i iit P y α ′ ′= = + +α X β G  (1) 

where iy  indicates the disease status (1 for case or having disease and 0 otherwise), 0α  is an intercept 

term, 1 2( , , , )i i imX X X X=   is the covariates with 1 2[ , , , ]mα α α ′= α  is the regression coefficient 

vector for the m covariates, and 1 2( , , , )i i i ipG G G= G  is the genotypes of variants within a region 

where 1 2[ , , , ]pβ β β ′= β  is the vector of regression coefficient for p  variants. 

To test whether the variants in a region are associated with the disease, the null hypothesis can 
be constructed as 1 2 .pβ β β= = =  Each β  is assumed to follow an arbitrary distribution with a 

mean of zero and a variance of ,jw τ  where τ  is a variance-component, and jw  is a pre-specified 

weight for thj  variant in a region where 1, , .j p=   The null hypothesis can then alternatively be 
stated as 0,τ =  which can be conveniently tested with a variance-component score test. The test 
statistic is defined as 
 ˆ ˆ( ) ( ),Q y yµ µ′= − −K  (2) 

where µ̂  is the predicted mean of y under the null hypothesis that 1
0ˆ ˆˆ log ( ),itµ α−= + Xα  G  is an

n p×  genotype matrix, which each element of G  is a thj  variant of thi  individual, and W  is a p p×  

diagonal matrix containing the jw weights for p variants. ′=K GWG  is an n×n kernel matrix with 

the ( , )i i′  element is the kernel function ( , )i iK ′G G  of genotypes in a region from the thi and thi′  
individual, respectively.  

The kernel function measures the similarity between the genetic variants of the sample. 
Assuming the relationship between SNPs and the disease is linear with no interactions, the weighted 

linear kernel function 
1

( , ) p
i i j ij i ji

K w G G′ ′=
= ∑G G  is used for its high power in this research. The 

weight function is set as Beta distribution, where the random variables are minor allele frequency of 
the thj  SNP or jMAF  in a region.  
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where B  denotes the beta function, 0 1jMAF< <  and 1 2, 0.a a >  The weight used in this research 

is normal weight ( ;10,10).jBeta MAF  According to Sookkhee et al. (2018), normal weight provides 

the most efficient result for detecting the association between genetic variants and Crohn’s disease. 
 
2.2. Permutation test 

The permutation test is a nonparametric method that helps researchers determine the threshold 
for controlling the error rate in multiple hypothesis tests under the null hypothesis of no effect. The 
permutation test can estimate the sampling distribution of test statistics, which are highly reliable but 
require a large number of samples generated under the null model (Berger 2011, Sookkhee et al. 
2021). To apply this test, the data labels must be exchangeable under the null hypothesis. One reason 
the permutation test is commonly used, beyond being a nonparametric test that requires no 
assumptions about the data distribution, is that the distribution of test statistics is directly obtained 
from the data itself. This makes the method robust to the shape of the distribution. In this research, 
the thresholds were adopted from Sookkhee et al. (2021), which involved simulating 10,000 
replicates under the null hypothesis that no SNP or SNP sets causes or affects Crohn’s disease and 
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varied according to the degrees of freedom. The simulation was for computing the multivariate 
distribution that achieved a type I error rate close to 0.05. 
 
2.3. Spline Regression 

A spline is a piece-wise polynomial constructed by dividing the x-axis into intervals and fitting 
a polynomial function of degree d  on each interval. These polynomial functions are connected by 
knots (James et al. 2021). A general model for a spline of degree d  with K  knots, 1 2, , , Kξ ξ ξ  are 
the knot sequence, is given by 
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iβ  represent the regression coefficients for the polynomial, x  is the 

independent variable, jβ  are the regression coefficients for the spline and ( )d
jx ξ +−  is the basis 

function of spline. To ensure splines join smoothly and continue at every knot, constraints must be 
set. Since d  is the degree of spline and K  is the number of knots, this spline function requires 
continuity in derivatives up to degree 1d −  at each knot. Thus, the spline function with 1K +  distinct 
polynomial functions of degree d  will be tied together smoothly at the K  knots. 

The most commonly used spline degree is 3, known as the cubic spline, since it provides a 
reasonably smooth approximation to most non-linear functions (Kirdwichai 2016, Kamoljitprapa and 
Leelasilapasart 2024). Another reason is that these curves appear perfectly smooth to the human eye 
(Perperoglou et al. 2019). The spline applied in this research is the B-spline, which basis function can 
be defined by a recursive function: 
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and 0 ( ) 0jB x ≡  if 1.j jξ ξ≡ +  B-spline produces a curve from sub 

curves created in each interval, known as local estimation. Changing a few knot positions affects only 
the sub- curves near the knots, making B- spline curves easy to shape without affecting the overall 
curve (Perperoglou et al. 2019, Sookkhee et al. 2021). Moreover, B-spline uses a recursive function 
to define its basis, which avoids multicollinearity between basis splines. 

However, the efficiency of the spline depends on tuning parameters, such as the number of knots 
and the degree of freedom, which refers to the number of free parameters in the model. Although 
directly specifying the number and locations of knots is a straightforward way to optimize the 
parameters, it might require considerable time and effort for extensive data. In practice, it is common 
to specify the desired degrees of freedom and then have the R statistical software automatically place 
the corresponding number of knots at uniform quantiles of the data (James et al. 2021). 
 
3. Data and Model Simulation 

The data used for simulation in this research comprises genotype data of 13,479 SNPs on 
chromosome 16 from 1,504 healthy control individuals obtained from the 1958 British Birth Cohort. 
These 13,479 SNPs from 1,504 controls will be separated into 3,008 haplotypes. The genotype will 
be encoded into two values: 0 for the major allele and 1 for the minor allele, with the minor allele 
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being more likely to be a risk allele, according to Kido et al. (2018). Next, two haplotypes will be 
randomly selected and combined to create a genotype for each simulated individual. The simulated 
genotypes for each SNP are represented as 0, 1, and 2, indicating homozygotes for the major alleles, 
heterozygotes, and homozygotes for the minor alleles, respectively.  

A disease SNP will be assigned to the simulated data. Two disease SNPs are arbitrarily chosen: 
SNP rs3789038 located at 50,711,672bp on the HMOX2 gene and SNP rs3785142 located at 
50,753,236bp on the CYLD gene. The HMOX2 gene contains 7 SNPs, while the CYLD gene contains 
8 SNPs. Then, the disease status for each simulated individual will be determined via a logistic 
function: 
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where 0α  is a pre-specified relative risk set as 0 0.0,α =  iT  is the number of copies of the rare allele 
or the encoded genotype on a disease SNP of an individual, and β  is a gene effect that indicates how 

strongly the disease SNP can affect the - thi individual. In this research, the main interest is in the 
rare variant that shows a weak effect or is hard to classify. According to Sookkhee et al. (2021), small 
gene effects can classify rare variants more effectively than large gene effects. Thus, the gene effect 
is chosen to be 0.2.β =   

To determine the optimal number of replications for simulation, the number will be varied from 
1,000, 1,500, 2,000, 2,500, and 3,000. Each replicate comprises the simulated genotype of 3,000 cases 
and 3,000 controls. 

 
4. Simulation Study 

This section presents the simulation results of the models. The model’s efficiency is assessed by 
false positive (FP) and true positive (TP) rates. FP rate occurs when the model incorrectly detects an 
SNP set not designated as associated with the disease. In contrast, the TP rate occurs when the model 
correctly identifies the disease-associated SNP set. Since one simulated replication contains only one 
disease-associated SNP set, the equations for calculating the FP and TP rates across all replications 
are as follows: 

 #significant disease unassociated SNP sets ,
# total unassociated SNP sets # total replications

FP −
=

×
 (7) 

 #significant disease associated SNP sets .
# total replications

TP −
=  (8) 

Several steps are taken to identify the optimal model in this research. The optimal number of 
replications for each degree of freedom is selected first, followed by evaluating the optimal degree 
of freedom for spline regression. 
 
4.1. SNP rs3789038 as a disease SNP  

The ROC curves for FP and TP rates obtained from SKAT with B-spline for rs3789038 as a 
disease SNP with different degrees of freedom and number of replications are shown in Figure 1.  
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Figure 1 ROC curves for FP and TP rates from SKAT with B-spline  
with rs3789038 as a disease SNP 

 
Figure 1 illustrates that as the degrees of freedom increase, both FP and TP rates decrease. While 

increasing numbers of replications slightly lower FP and TP rates. Moreover, FP and TP rates are 
diverged into two groups: below 2,000 replications and the other above, after passing the degree of 
freedom of 800 (♦). It shows that FP and TP rates become similar when the degree of freedom is high. 

To explore the differences in each degree of freedom and each number of replications, the 
boxplot of FP and TP rates are shown in Figure 2 and Figure 3: 

 

 
 

Figure 2 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline 
with rs3789038 as a disease SNP, where the x-axis is the degree of freedom 

 
Figure 2 shows the boxplot for FP and TP rate where the x-axis is the degrees of freedom. As 

the degree of freedom increases, the FP and TP rate boxes gradually shift downward and stabilize 
after reaching a degree of freedom of 1,000. Additionally, the variability of the FP rate in each 
replication, indicated by the height of the FP box, decreases with an increase in the degrees of 
freedom. This observation confirms that increasing the degrees of freedom positively impacts the 
model’s efficiency. 
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Figure 3 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline 
with rs3789038 as a disease SNP, where the x-axis is the replication. 

 
Figure 3 shows the boxplot for FP and TP rate where the x-axis is the number of replications. 

Conversely, from Figure 2, as the number of replications increases, both FP and TP rate boxes tend 
to lower slightly and remain consistent in shape, suggesting that increasing the number of replications 
has a marginal effect on model efficiency. Therefore, evaluating the optimal number of replications 
for each degree of freedom requires significant processing time. Then, the FP, TP rates and processing 
time in hours from different degrees of freedom and replications will be presented in Table 1. 

 
Table 1 Achieved FP, TP rates and runtime from each degree of freedom, separated by  

number of replications from SKAT with B-spline with rs3789038 as a disease SNP 
Degree of Freedom Number of Replications FP TP Time (hours) 

400 

1,000 0.01369 0.9540 91.72 
1,500 0.01383 0.9560 141.07 
2,000 0.01344 0.9470 190.80 
2,500 0.01356 0.9464 240.07 
3,000 0.01353 0.9453 290.57 

600 

1,000 0.01148 0.9030 91.77 
1,500 0.01153 0.9013 141.13 
2,000 0.01123 0.8935 190.87 
2,500 0.01129 0.8952 240.15 
3,000 0.01124 0.8940 290.67 

800 

1,000 0.01040 0.8700 91.90 
1,500 0.01051 0.8680 141.33 
2,000 0.01025 0.8565 191.15 
2,500 0.01027 0.8552 240.50 
3,000 0.01023 0.8547 291.03 

1,000 

1,000 0.00894 0.8670 92.00 
1,500 0.00908 0.8627 141.48 
2,000 0.00883 0.8520 191.32 
2,500 0.00884 0.8528 240.72 
3,000 0.00882 0.8527 291.35 
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Table 1 (Continued) 
Degree of Freedom Number of Replications FP TP Time (hours) 

1,200 

1,000 0.00894 0.8670 92.45 
1,500 0.00908 0.8627 142.13 
2,000 0.00883 0.8520 192.18 
2,500 0.00884 0.8528 241.78 
3,000 0.00882 0.8527 292.63 

 
Table 1 presents FP rates, TP rates, and processing time in hours obtained from SKAT with B-

spline with SNP rs3789038 as a disease SNP. As shown in Table 1, the higher the degree of freedom 
and the number of replications, the lower the FP and TP rates. Overall, the 1,000 replications yield 
the highest FP and TP rates, while 2,000 and 3,000 replications produce the lowest FP rate, which is 
the main interest of this study. However, increasing 500 replications results in 50 additional hours.  

For the degrees of freedom of 400 and 600, the 2,000 replications return the lowest FP rates, 
0.01344 and 0.01135, and considerable TP rates of 0.9470 and 0.8935, with 190.80 and 190.87 
runtime hours, respectively. Whereas the 1,000 replications give comparable FP rate of around 
0.01369 and 0.01148 for the degrees of freedom of 400 and 600, respectively, which are 1.86% and 
2.23% higher than those with 2,000 replications but require only 91.72 and 91.77 hours, representing 
51.93% and 51.92% reduction in time.  

For the degrees of freedom of 800, 1,000 and 1,200, the lowest FP rates are 0.01023, 0.00882 
and 0.00882 obtained from 3,000 replications, requiring an average of 291.67 hours in processing 
time. The 1,000 replications still give similar FP rates of 0.01040, 0.00894, and 0.00894, respectively, 
but taking only an average of 92.12 runtime hours, which is 68.42% less time. 
 
4.2. SNP rs3785142 as a disease SNP 

The ROC curves for FP and TP rates obtained from SKAT with B-spline for rs378142 as a 
disease SNP with different degrees of freedom and number of replications are shown in Figure 4.  
 

 
 

Figure 4 ROC curve for FP and TP rates from SKAT with B-spline  
with rs3785142 as a disease SNP 

 
Figure 4 indicates that as the degrees of freedom in the model increase, the FP rates decrease, 

whereas the TP rates increase. Regarding the number of replications, higher replications slightly 
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increase both FP and TP rates. Additionally, at higher degrees of freedom, the data points from each 
replication closely align within each degree of freedom, with points nearly overlapping. 

To further explore the patterns across degrees of freedom and numbers of replications, boxplots 
of FP and TP rates are shown in Figures 5 and 6. 

 

 
 

Figure 5 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline 
with rs3785142 as the disease-associated SNP, where the x-axis is the degree of freedom 
 
Figure 5 shows the boxplot of FP and TP rates using rs3785142 as the disease-associated SNP, 

with the x-axis representing the degrees of freedom. When the degree of freedom increases, the FP 
rate boxes decline, while the TP rate boxes raise, and both stabilize after reaching a degree of freedom 
of 1,000. Additionally, the boxes become narrower at a higher degree of freedom, indicating that 
increasing the degree of freedom reduces the variance of FP and TP rates in each replication. 

  

 
 

Figure 6 Boxplot for FP rate (right) and TP rate (Burton et al.) from SKAT with B-spline 
with rs3785142 as the disease-associated SNP, where the x-axis is replications 

 
Figure 6 shows the boxplot of FP and TP rates using rs3785142 as the disease-associated SNP, 

with the x-axis representing the number of replications. Although TP rate boxes tend to stay higher 
with more replications, FP rate boxes remain consistent regardless of the number of replications. This 
suggests that the number of replications rarely affects the model’s efficiency, with processing time 
being a significant factor in determining the optimal number of replications for each degree of 
freedom. Subsequently, Table 2 will display the FP and TP rates along with runtime (in hours) across 
various degrees of freedom and numbers of replications. 
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Table 2 Achieved FP, TP rates and run time from each degree of freedom, separated by  
number of replications from SKAT with B-spline with rs3785142 as a disease SNP 

Degree of Freedom Number of Replications FP TP Time (hours) 

400 

1,000 0.01462 0.4810 88.35 
1,500 0.01460 0.4947 133.58 
2,000 0.01475 0.5035 178.85 
2,500 0.01470 0.5028 224.95 
3,000 0.01451 0.4993 270.40 

600 

1,000 0.01109 0.6890 88.37 
1,500 0.01118 0.6960 133.62 
2,000 0.01136 0.7035 178.92 
2,500 0.01127 0.7044 225.03 
3,000 0.01111 0.7073 270.50 

800 

1,000 0.00981 0.7830 88.42 
1,500 0.00990 0.7833 133.68 
2,000 0.01001 0.7875 179.00 
2,500 0.00995 0.7860 225.13 
3,000 0.00983 0.7880 270.62 

1,000 

1,000 0.00824 0.7950 88.60 
1,500 0.00830 0.7967 133.97 
2,000 0.00835 0.8010 179.38 
2,500 0.00832 0.7988 225.60 
3,000 0.00821 0.7987 271.18 

1,200 

1,000 0.00824 0.7950 89.07 
1,500 0.00830 0.7967 134.65 
2,000 0.00835 0.8010 180.30 
2,500 0.00832 0.7988 226.75 
3,000 0.00821 0.7987 272.55 

 
Table 2 displays the FP rate, TP rate, and processing time obtained from SKAT with B-spline 

using SNP rs3785142 as the disease-associated SNP. The table indicates that increasing the degree 
of freedom raises TP rates while reducing FP rates. Conversely, increasing the number of replications 
slightly increases both FP and TP rates. Among the tested replication settings, 2,000 replications yield 
the highest TP rate, while the lowest FP rates are observed with 1,000 and 3,000 replications. 
Additionally, increasing the simulation by 500 replications results in approximately 45 additional 
runtime hours. 

In the degree of freedom of 400, 3,000 replications yield the lowest FP rate at 0.01451, requiring 
270.40 processing hours. In contrast, 1,000 replications result in a slightly higher FP rate at 0.01462, 
which is 0.76% higher than that of 3,000 replications, but with reduced processing time to 88.35 
hours, which is 67.38% lower. For the degrees of freedom of 600 and 800, 1,000 replications offer 
both the lowest FP rates and the shortest processing time which are 0.01109 and 0.00981 with 88.37 
and 88.42 hours, respectively. 
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Finally, 3,000 replications provide identical results degrees of freedom of 1,000 and 1,200, 
achieving the lowest FP rate of 0.00821 with an average processing time of 271.87 hours. In contrast, 
1,000 replications can produce the closely equivalent FP rate to 3,000 replications which are 0.00824, 
merely 0.36% higher, while requiring only 88.84 processing hours, which is 67.32% less time 
compared to 3,000 replications. 

 
4.3. Evaluation the optimal spline regression model and the replications 

The simulation results, which involve varying the disease SNP, degrees of freedom and the 
number of replications, confirm that the degree of freedom significantly affects the model’s 
efficiency, while the number of replications has a marginal impact, mainly when the degree of 
freedom of the model is high. Moreover, the height of each box from the boxplot with the number of 
replications is an x-axis, is comparable in both simulation cases. Differences in FP rates across 
distinct numbers of replications are minor, only 1-3%, but the differences in processing time are 
substantial. Thus, the processing time is a key factor for determining the optimal number of 
replications. Since the 1,000 replications require the shortest processing time, as shown in Table 1 
and Table 2. The optimal number of replications is 1,000.  

To determine the optimal degree of freedom of the spline regression model, Figure 7 shows the 
ROC curves of FP and TP rates obtained from 1,000 replications in two case simulation studies, as 
shown below: 

 

 
 

Figure 7 ROC curve for FP and TP rates from SKAT with B- spline obtained from 1,000 
replications with disease SNP as rs3789038 (Burton et al.) and rs3785142 (right) 

 
The point of interest on the ROC curve typically lies in the bottom-left region, where the false 

positive rate is minimized. Figure 7 shows the degrees of freedom of 1,000 (◼) and 1,200 (⨉) provide 
the identical results: the lowest FP and reasonable TP rates. However, the degree of freedom of 1,000 
still surpasses the degree of freedom of 1,200 in terms of processing time, as shown in Table 1 and 
Table 2. Thus, the optimal degree of freedom for the spline regression model is 1,000. 

 
5. Application to Real Data 

The real data used in this part consists of the genotype data for 13,479 SNPs on chromosome 16, 
including 2,005 Crohn’s disease cases and 1,500 healthy controls obtained from the Wellcome Trust 
Case Control Consortium or WTCCC (Burton et al. 2007). The optimal spline regression model, 
determined to be at a degree of freedom of 1,000 through simulation studies, is applied to identify 
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gene regions associated with Crohn’s disease. The model successfully detects several significant 
regions related to Crohn’s disease presented in Table 3. 

 
Table 3  Names, positions and achieved p-values of significant genes on chromosome 16  

 declared by SKAT with B-spline using a degree of freedom of 1,000. 
Position Gene Name p-value 

16p12.2 
LOC646828  

Intron Gene 89 
1.01 × 10-5 

1.01 × 10-5 

16p12.3 
SMG1P5 

Intron Gene 151 
Intron Gene 174 

2.76 × 10-6 

3.28 × 10-6 

6.94 × 10-6 

16q12.1 NOD2 
CYLD 

1.22 × 10-7 

4.00 × 10-7 

 
Three specific locations of SNP sets or genes were identified. These locations are as follows: 

LOC646828 on 16p12.2, containing 2 SNPs; SMG1P5 on 16p12.3, also comprising 2 SNPs; NOD2 
and CYLD on 16q12.1, including 12 and 8 SNPs, respectively. Additionally, the model indicates that 
intron regions—segments within a gene that are not translated into proteins—are associated with 
Crohn’s disease.  

The application result shows that the spline regression model with a degree of freedom of 1,000 
has efficiency in identifying regions within chromosome 16 that are related to the disease. Especially 
the NOD2 on 16q12.1, which is the significant gene contributed to Crohn's disease, as suggested in 
previous studies from Roda et al. (2020) and Ashton et al. (2023). 

 
6. Conclusion and Discussion 

Optimizing model parameters remains a challenge due to limited time and computational 
resources. The results suggest that a degree of freedom of 1,000 is optimal for the spline regression 
model. It provides the lowest false positive (FP) rate, and a reasonable true positive (TP) rate 
compared to other degrees of freedom. Additionally, it requires less processing time than a degree of 
freedom of 1,200, which yields identical results. This finding aligns with the study by Sookkhee et 
al. (2021), which investigated the optimal parameters for spline regression in the study of the 
association between SNP sets and Crohn’s disease. Furthermore, the degree of freedom reflects the 
number of free parameters, indicating the model’s flexibility. A high degree of freedom may lead to 
overfitting and increased processing time, whereas a low degree of freedom could result in 
underfitting (James et al. 2021). 

The research outcomes suggest that the number of replications has a minor effect on the model’s 
efficiency, although the processing time varies significantly with different number of replications. 
Using a large number of replications ensures the most accurate results but requires a substantial 
amount of time. Conversely, fewer replications can produce comparable outcomes in less time, 
consistent with the studies by Mundfrom et al. (2011) and Koskan et al. (2023). Therefore, the optimal 
number of replications is 1,000, as it maintains low FP and reasonable TP rates close to the best 
results but with reduced runtime. 

After obtaining the optimized smoothing parameter and number of replications, the spline 
regression model with the degree of freedom of 1,000 successfully identifies gene regions associated 
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with Crohn’s disease, particularly NOD2, which is widely recognized as a significant factor in the 
development of Crohn’s disease in established studies (Roda et al. 2020, Ashton et al. 2023).  

The differences in the simulation study results are attributable to the Sequence Kernel 
Association Test (SKAT). Assigning different disease-causing SNPs leads to varied outcomes, 
demonstrating that the efficiency of SKAT depends on the specific disease-causing SNPs, as 
suggested by Kirdwichai and Baksh (2019) and Sookkhee et al. (2021).  

For future work, many genetic variants are associated with various complex diseases that have 
not been identified. Testing these associations and constructing an alternative regression model, such 
as penalized spline regression, would be an interesting approach. While penalized spline regression 
helps balance smoothing and model fit, determining the optimal tuning parameter is also necessary. 
Finally, the findings of this research are expected to provide aspects of defining appropriate 
smoothing parameters for spline regression models and determining the optimal number of 
replications. This could help identify associations between SNP sets and complex diseases more 
efficiently by reducing the error rate and computational burden, especially processing time, during 
an analysis. 
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