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Abstract 

Hidden Markov models ( HMMs)  are models consisting pair of stochastic process which are 
commonly called observation process and a process that affect observation. Stochastic processes that 
affect this observation is assumed unobserving and form a Markov chain.  HMM is often applied in 
time series data but still little application to longitudinal data because it requires more complex 
analysis.  One of the HMMs is the multivariate normal hidden Markov model ( MNHMM) .  The 
MNHMM is a HMMs which the probability of observation if the affect is known and assumed as 
multivariate normal distribution.  This multivariate assumption causes the MNHMM applicable to 
longitudinal data. The main problem of MNHMM is parameter estimation and the convergence of the 
parameter estimator sequences. The novelty of this research is the method of estimating the MNHMM 
parameters used and the analysis of its convergence. Estimation of parameters is done by maximizing 
the likelihood function.  The likelihood function is calculated using the forward-backward algorithm, 
then maximized recursively using the expectation maximization algorithm (EM algorithm) for obtain 
a model parameter estimator formula.  The MNHM parameter estimator sequence obtained using the 
EM algorithm converges to the stationary point of the likelihood function monotonically increasing. 
______________________________ 
Keywords:  Multivariate analysis, Markov chain, maximum likelihood, expectation maximization algorithm, 
monotonically increasing. 
 
1. Introduction 

There are many events or phenomena in everyday life that are uncertain. This uncertainty can be 
modeled by a stochastic process. This is because the stochastic process is a model built with probability 
rules (Cinlar 2011; 2013). The factors causing this uncertainty are often unobserved. The hidden 
Markov models (HMMs) can be relied to modeling such a problem. This model can be applied to 
various problems such as stock price prediction (Trichilli et al. 2020; Zhang et al. 2019; Nguyen 2018) 
and even gets better results than other methods (Somani et al. 2014; Gupta and Dhingra 2012). Besides 
that, HMM also can be applied for speech recognition (Rabiner 1989; Cutajar et al. 2013; Mouaz et 
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al. 2019), DNA sequence prediction (Luck et al. 2019; Zarrabi et al. 2018), weather prediction 
(Khiatani and Ghose 2017; Fikri et al. 2020), application to air pollution (Tao and Lu 2019; Paroli and 
Spezia 1999), high voltage diagnosis (Fikri et al. 2024), and detect for multivariate time series 
anomalies (Li et al. 2017). This is because HMMs also offers simplification in calculations 
(memoryless property) but still preserve relevance to the various application (Barbu and Limnios 
2009). The HMM often is applied to data time series as the examples above. However, it can be said 
that the application for longitudinal data is still rare even though it offers efficiency. It is because the 
analyzes are not required as easy as when applied to data time series. 

HMM consists of a pair of stochastic processes, namely the observation process and a process 
that affect observation (Cappe 2005). Stochastic processes that affect this observation is assumed 
unobserving and form a Markov chain. This is probability of effect of observation at any time depends 
on the effect an observation in several unit’s time before. The effect of this observation is usually 
called the state (Ross 2019). Multivariate normal hidden Markov model (MNHMM) is one of the 
HMM in which the probability of observation if the state is known and assumed to be multivariate 
normal distribution (Spezia 2010; Spezia et al. 2011). This multivariate assumption will cause in the 
event can be modeled form longitudinal data. 

The main problem of MNHMM and the objective of this research is parameter estimation and the 
convergence of its parameter estimator. In previous research, parameter estimation was carried out 
using Markov chain Monte Carlo (MCMC) (Spezia 2010; Spezia et al. 2011), whereas in this research 
parameter estimation was carried out which maximized the likelihood function. The likelihood 
function is calculated using the forward-backward algorithm (Baum 1972; Macdonald and Walter 
Zucchini 1997), which is then maximized recursively using the expectation maximization algorithm 
(EM algorithm) to obtain a model parameter estimator formula with main references (Fikri et al. 2016; 
Wu 1983). Because the estimation and convergence of the covariance matrix parameters has its own 
complexity and analysis (multivariate analysis) so it will be published separately. This complexity can 
be seen in several studies related to the covariance matrix (Pourahmadi 1999; Ledoit and Wolf 2004; 
Rothman et al. 2010; Mohsen Pourahmadi 2011; Lam 2016; Ledoit and Wolf 2020). Estimating the 
parameters that maximize the likelihood function in longitudinal data using MNHMM is not as easy 
as in time series data using NHMM. However, behind these difficulties there is an advantage, namely 
the guarantee of convergence of the parameter estimator sequence and the analysis can be carried out 
on many data simultaneously. Therefore, after estimating the parameters, we will discuss the 
convergence of the MNHMM parameter estimator sequence with the main reference (Fikri et al. 2016) 
(Wu 1983) and simulations accompanied by the Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC) formulations (Leroux and Puterman 1992). 

 
2. Multivariate Normal Hidden Markov Model  

The multivariate normal hidden Markov model (MNHMM) is a discrete time model consisting of 
a pair of stochastic processes { },t t tX Y

∈
(Cappe 2005). { }t tX

∈
 is the effect of observation which is 

assumed unobserving and forms a Markov chain. Whereas { }t tY
∈

 is the observation process that only 

depends on { } .t tX
∈

 Then the random variable tY  given a state of tX  is assumed to be multivariate 

normal distribution, for every t∈  (Spezia 2010; Spezia et al. 2011; Paroli et al. 2000). In  this 
research { }t tX

∈
 is assumed a homogeneous and Ergodic Markov Chain (irreducible, positive 

recurrent and aperiodic) (Ross 2019) with state space { }1,2,..., .XS m=  

To simplify the next writing, symbolized the following 10 points: 
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1. { } 1 ,T
t tY Y

=
=  which is a process of observation,  

2. { } 1 ,T
t tX X

=
=  which is the Markov chain, 

3. { } 1, ,T
t t tZ X Y

=
=  which is the HMM, 

4. 1 2( , ,..., )Ty y y y=  is longitudinal data of the process { } 1

T
t tY

=
(commonly called incomplete 

data), 

5. 1 2( , ,..., )Tx i i i=  is effect observation y  which unobserved and is the state of process { } 1 ,T
t tX

=
 

6. 1 1( , ,..., , ) ( , ),T Tz i y i y x y= =  data and state of the process { } 1, T
T T tX Y

=
 (commonly called 

complete data),  
7. ( | ) ( | ) ( , | ),P Z z p z p x yφ φ φ= = =  which is the probability mass function of ,Z  

8. ( | ) ( | ),P Y y p yφ φ= =  which is the probability function of ,Y  

9. ( ) ( | ) ( , | ),c
TL p z p x yφ φ φ= =  which is the likelihood function of the complete data, 

10. ( | , ) ( | , ),P X x Y y p x yφ φ= = =  which is the probability mass function of X  with the 

condition ,Y y=  i.e. ( ) ( )( | ) ( , | )| , .
( | ) ( | ) ( )

c
T

T

Lp z p x yp x y
p y p y L

φφ φφ
φ φ φ

= = =  

The following is a brief explanation of MNHMM: 

1. 

11 12 1

21 22 2
1 2

1 2

, ,...,

T

T
T

p p pT

y y y
y y y

y y y

y y y

     
     
     = = =     
          
     

  

 is the longitudinal data will be modeled, where T  is 

the number of time series data and p  is the number of cross data. Parameter 

11 12 1

21 22 2

1 2

,

m

m

p p pm

M

µ µ µ
µ µ µ

µ µ µ

 
 
 =  
  
 





   



 and 1 2( , ,..., )mΣ = Σ Σ Σ  with 

11 12 1

21 22 2

1 2

i i i p

i i i p
i

ip ip ipp

σ σ σ
σ σ σ

σ σ σ

 
 
 Σ =  
  
 





   



 for 

1, 2, ,i m=   (Spezia 2010). 

2. Transition probability matrix ijγ Γ =   , where size of Γ matrix is m m×  and , Xi j S∈ , 

satisfies: 1 2 1( | ) ( | ),ij t tP X j X i P X j X iγ −= = = = = =  0,ijγ ≥  
1

1,
m

ij
j
γ

=

=∑  for every 1,2,..., .i m= . 

3. The conditional probability tY  if it is known that ( )tX i t= ∈  is a normal multivariate 

random variable with mean µ  and covariance matrix .Σ   For every ,py∈  the conditional 

probability of the observation process yiπ Π =    in Geoffrey and Grimmett (2001), Spezia (2010) 

and Fikri et al. (2023) is 
( ) ( )1'

2

2

1( | ) ,
(2 )

i i iy y

yi t t p

i

P Y y X i e
µ µ

π
π

− − Σ −
 − 
 = = = =

Σ
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( )

( ) ( )1'
2

1 2
2

1 1
2

i i iy y

pp

i

e dy dy dy
µ µ

π

− − Σ −
∞ ∞ ∞  −

 
 

−∞ −∞ −∞

=
Σ

∫ ∫ ∫   

4. Let 

1

2

m

δ
δ

δ

δ

 
 
 =
 
 
 



 is the initials of the state distribution and the long-run proportion δ  is called 

the stationary distribution. Based on Ross (2019), the Markov chain { }t tX
∈

 which is assumed to be 

ergodic then the stationary distribution δ  can be obtained uniquely, namely fulfilling 
,δ δΓ =      (1) 

with 1( ),i XP X i i Sδ = = ∀ ∈  and 
1

1.
m

i
i
δ

=

=∑  

5. For every t∈  and ,py∈  the marginal distribution function of tY  is 

1 1
( ) ( | ) ( ) .

m m

t t t t i yi
i i

P Y y P Y y X i P X i δ π
= =

= = = = = =∑ ∑  

Something which very important on MNHMM is estimating model parameters and its 
convergence. Based on the discussion above, the MNHMM { },t t tX Y

∈
 is characterized by , , , ,δ µΓ Σ  

with 

[ ]iδ δ=  for ,Xi S∈  ijγ Γ =    for , ,Xi j S∈  ( )1 2, ,..., ,mµ µ µ µ=  

with 

1

2 ,

i

i
i

pi

µ
µ

µ

µ

 
 
 =  
  
 



 for 1,2,..., .i m=  ( )1 2, ,..., mΣ = Σ Σ Σ  with 

11 12 1

21 22 2

1 2

,

i i i p

i i i p
i

ip ip ipp

σ σ σ
σ σ σ

σ σ σ

 
 
 Σ =  
  
 





   



 for 

1,2,..., .i m=  
 
Based on equation (1), δ  will be obtained when Γ  is obtained so that δ  is not a parameter. In 

addition, for every the diagonal elements of the transition matrix it can be calculated by 1ii ij
j SX

j i

γ γ
∈

≠

= − ∑

so that the corresponding parameter is Γ  without its diagonal elements, which is a matrix of size 
( 1)m m× −  and symbolized by ˆ .Γ  Because the estimation and convergence of the covariance matrix 

parameters has its own complexity and analysis (multivariate analysis) so it will be published 
separately. The parameter estimation in this study is limited to ˆ( , ).Mφ = Γ  In order to estimate this 
parameter, it is necessary to clarify the parameter space along with the assumptions that accompany 
which will be discussed in the next chapter. 
 
3. Parameter Estimation and Its Convergence 

Let T  be the number of times of observation, p  is the number of cross data at any time, m  is 

the number of states and 1 2( , ,..., )Ty y y y=  is the sequence of observations. Given that 0ε >  is small 
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enough to approach 0. [ ]
2 1ˆ ˆ( , ) : 0,1 , ,

p m
m mM Mφ ε

ε

×
−   Φ = = Γ Γ∈ ∈     

 is the parameter space for the 

MNHMM. For every ,φ ∈Φ  ( ) ( ) ( ) ( ) ( )( ) , ( ) ( ) , ( ) ( ) , ( ) ( )ij ij ijk iMφ γ φ φ µ φ φ σ φ δ φ δ φΓ = = Σ = =  is 

assumed to fulfill the following four points of continuity (Spezia 2010; Paroli et al. 2000): 
1. : ,ijγ Φ →   with ( )ij ijγ φ γ=  is continue function in , , ,Xi j SΦ ∀ ∈  

2. : ,iM Φ→  with ( )i iM Mφ =  is continue function in , ,Xi SΦ ∀ ∈  

3. : ,iΣ Φ →   with ( )i iφΣ = Σ  is continue function in , ,Xi SΦ ∀ ∈  

4. : ,iδ Φ →   with ( )i iδ φ δ=  is continue function in , .Xi SΦ ∀ ∈  

 
3.1. Parameter estimation 
 The likelihood function of the observation process Y is defined as follows: 

( )1 1 2 2 1 2( ) , ,..., | ( , ,..., | ) ( | )T T T TL P Y y Y y Y y p y y y p yφ φ φ φ= = = = = =  

          ( ) ( )1 1 2 2 1 1 2 2 3 1
11 1

... ... ...
T T T T

T

m m

y i y i y i i i i i i i i
i i

π π π δ γ γ γ
−

= =

= ×∑ ∑ 1 1 1 1
11 1 2

... .
t t t t

T

Tm m

i y i i i y i
i i t

δ π γ π
−

= = =

= ∑ ∑ ∏               (2) 

 As previously explained, the main problem in the MNHMM is to find the parameter *φ ∈Φ  

which maximizes the likelihood function ( ).TL φ  For the number of observation data T  which is quite 
large, calculating the likelihood function takes a long time. A forward-backward algorithm can be 
used to solve this problem. The forward-backward algorithm is used to calculate the probability of a 
sequence of observations 1 2( , ,..., ),Ty y y  recursively, this is very useful to speed up computation time. 
These algorithms are divided into two, namely the forward algorithm and the backward algorithm. 
Baum et al. (1970) defined a forward probability as follows: 

( )1 1 2 2( | ) , ,..., , | ,t t t ti P Y y Y y Y y X iα φ φ= = = = =  

and backward probability 
( )1 1( | ) ,..., | , ,t t t T T ti P Y y Y y X iβ φ φ+ += = = =   for 1, 2, ,t T=   and  .Xi S∈  

The formulation of recursive forward and backward probabilities which are usually called the 
forward algorithm, are as follows (Baum 1972; (Macdonald and Zucchini 1997): 

11( | ) ,y i iiα φ π δ=  
11( | ) ( | ) ,

t
X

t t ij y j
i S

j iα φ α φ γ π
++

∈

 
=  
 
∑  

and backward algorithm 
( | ) 1,T jβ φ =  

11( | ) ( | ) ,
t

X

t t y i ji
i S

j iβ φ β φ π γ
++

∈

= ∑  for 1,..., 1t T= −  and , .Xi j S∈  

 Then, Baum (1972) and Macdonald and Zucchini (1997) used the forward algorithm and the 
backward algorithm to calculate the likelihood function ( ),TL φ  which is commonly called the 
forward-backward algorithm and obtained: 

( ) ( | ) ( | ),
X

T t t
i S

L i iφ α φ β φ
∈

= ∑   for any 1,2,..., ,t T=  and .Xi S∈  

The likelihood function of the complete data is as follows: 

( )
1 1 1 1

2

.
t t t t

T
c
T i y i i i y i

t

L φ δ π γ π
−

=

= ∏     (3) 
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Based on Equations (2) and (3), the relationship between the incomplete data likelihood function and 
complete data are as follows: 

1 1 11
11 1 2

( ) ( | ) ... ( , | ) ( ).
y t t t t

T

Tm m
c

T i i i i y i T
i i x xt

L p y p y x Lπφ φ δ γ π φ φ
−

= = =

= = = =∑ ∑ ∑ ∑∏  

To get *φ ∈Φ  which maximizes ( )TL φ  is a difficult problem. *φ ∈Φ  which maximizes ln ( )TL φ  

will also maximize ( ).TL φ  For * ,φ ∈Φ  apply 

( )ln ( | , ) ln ln ( ) ln ( ) ln ( | , ).
( )

c
cT

T T
T

Lp x y L L p x y
L

φφ φ φ φ
φ

= ⇒ = −  

Note that for any case φ̂ ∈Φ  be valid also 

( ) ( ) ( )ˆ ˆ ˆln ( ) | ln ( ) | ln ( | , ) | ,c
T TE L y E L y E p x y y

φ φ φ
φ φ φ= −   (4) 

and 

( )ˆ
ˆ ˆln ( ) | ln ( ) ( | , ) ln ( | ) ( | , )T T

x x
E L y L p x y p y p x y
φ

φ φ φ φ φ= =∑ ∑  

ˆ( , | ) ln ( | ) ˆln ( | ) ( , | )ˆ ˆ( | ) ( | )x x

p x y p yp y p x y
p y p y

φ φφ φ
φ φ

= =∑ ∑  

ln ( | ) ˆ( | ) ln ( | )ˆ( | )
p y p y p y

p y
φ φ φ
φ

= =   ln ( ),TL φ=                 (5) 

so based on Equations (4) and (5) are obtained 
ˆ ˆln ( ) ( | ) ( | ),TL Q Hφ φ φ φ φ= −                                (6) 

with ( )ˆ
ˆ( | ) ln ( ) |c

TQ E L y
φ

φ φ φ=  and ( )ˆ
ˆ( | ) ln ( | , ) | .H E p x y y

φ
φ φ φ=  

The first step to obtain *φ  which maximizes ln ( )TL φ  is to solve the equation ( )ln ( ) 0TLφ φ∂ =  

to get a stationary point. By following the pattern of Equation (4), it will be obtained directly 

( ) ( )( )ˆln ( ) ln ( ) | .T TL E L yφ φφ
φ φ∂ = ∂     (7) 

As a result of Equations (6) and (7) then 
 ( ) ( )( )ˆln ( ) ln ( ) |T TL E L yφ φφ

φ φ∂ = ∂ ( ) ( )ˆ ˆln ( ) | ln ( | , ) | .c
TE L y E p x y yφ φφ φ
φ φ= ∂ − ∂          (8) 

Define (Dempster et al. 1977) 

 10
ˆ

ˆ( | ) ln ( ) | ,c
TD Q E L y

φ
φ

φ φ φ
 ∂

=   ∂ 
                            (9)     

and 10
ˆ

ˆ( | ) ln ( | , ) | ,D H E p x y y
φ

φ φ φ
φ

 ∂
=  ∂ 

              (10) 

then with substituting Equations (9) and (10) into Equation (8) will be obtained 
 ( ) 10 10ˆ ˆln ( ) ( | ) ( | ).TL D Q D Hφ φ φ φ φ φ∂ = −               (11) 

 
Lemma 1 (see Dempster et al. 1977)  

Suppose 10
ˆ

ˆ( | ) ln ( | , ) | ,D H E p x y y
φ

φ φ φ
φ

 ∂
=  ∂ 

 then 10 ˆ ˆ( | ) 0,D H φ φ =  for every ˆ .φ ∈Φ  
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Proof: Take any ˆ ,φ ∈Φ  

( ) ˆ10
ˆ ˆ ˆ

ˆ( | , )ˆ ˆ( ) ln ( | , ) ( ) ( ) ( | , ) 0.ˆ( | , )
ˆ ˆ ˆ ˆ| | , | , (1)

x x x

p x y
D H p x y p p p x y

p x y
x y x yφ

φ φ φ

φ
φ φ

φ
φ φ φ φ

∂
= ∂ = = ∂ = ∂ = 

 
 

∑ ∑ ∑  

 
Lemma 2 (see Dempster et al. 1977)  
Suppose ( )ˆ

ˆ( | ) ln ( | , ) | ,H E p x y y
φ

φ φ φ=  then ˆ ˆ ˆ( | ) ( | ),H Hφ φ φ φ≤  for every ˆ, .φ φ ∈Φ  

 
Proof: Take any ˆ, ,φ φ ∈Φ  if taken ( ) ln(1/ ),f x x=  then from Jensen inequality obtained, 

ˆ

ˆ

1 1ln ln |( | , )( | , ) | ˆˆ ( | , )( | , )

E yp x yp x yE y p x yp x y

φ

φ

φφ
φφ

    ≤                     

 

( )
( )ˆ ˆ ˆ ˆ

| ,( | , ) ( | , ) ( | , )ln | ln | ln | ln |ˆ ˆ ˆˆ( | , ) ( | , ) ( | , )| ,
p x yp x y p x y p x yE y E y E y E y

p x y p x y p x yp x yφ φ φ φ

φφ φ φ
φ φ φφ

              ⇔ − ≤ − ⇔ ≤                              

 

ˆ ˆ
( | , ) ( | , ) ( | , )ˆln | ln ( | , ) ln | ln(1)ˆ ˆ ˆ( | , ) ( | , ) ( | , )x

p x y p x y p x yE y p x y E y
p x y p x y p x yφ φ

φ φ φφ
φ φ φ

        
⇔ ≤ ⇔ ≤                   

∑  

( ) ( )ˆ ˆ ˆ
( | , ) ˆln | 0 ln ( | , ) | ln ( | , ) | 0ˆ( | , )

p x yE y E p x y y E p x y y
p x yφ φ φ

φ φ φ
φ

  
⇔ ≤ ⇔ − ≤     

 

( ) ( )ˆ ˆ
ˆ ˆ ˆ ˆln ( | , ) | ln ( | , ) | ( | ) ( | ).E p x y y E p x y y H H

φ φ
φ φ φ φ φ φ⇔ ≤ ⇔ ≤  

Based on Equation (6), Lemma 1 and Lemma 2 to find the stationary point of ln ( )TL φ  just find 

the stationary point of ˆ( | )Q φ φ  with respect to .φ ∈Φ  However, 10 ˆ( | )D Q φ φ  is a non-linear function 
and difficult to solve explicitly for the parameter ,φ ∈Φ  consequently to obtain a stationary point of 

ˆ( | )Q φ φ  respect to φ ∈Φ  which analytic is a problem difficult, so this problem is solved by a 
numerical approach. This research used the expectation maximization algorithm. 

The expectation maximization (EM) algorithm is a recursive algorithm that consists of two steps 
in each iteration, namely step E and step M. The steps in the EM algorithm are to take ( )kφ  as an 

estimator of the MNHMM parameters obtained in the iteration k. In the iteration ( 1),k +  step E and 
step M are defined as follows: 

1. Give error tolerance, maximum iteration and initial parameter value ( )kφ  for 0,k =  
2. E step – count 

( ) ( ) ( )( ); ln ( ) |k
k c

TQ E L Y y
φ

φ φ φ= =  
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3. M step – find ( 1)kφ +  which maximizes ( )( ); ,kQ φ φ  so that 

( ) ( )( 1) ( ) ( )| | ,k k kQ Qφ φ φ φ+ ≥  for every ,φ ∈Φ  

4. Replace k  with 1k +  and repeat 2nd step through 4th step until ( ) ( )( 1) ( )ln lnk k
T TL Lφ φ+ −  less 

than the given error (in other words ( )( ){ }1ln k
TL φ +  converge) or the maximum iteration is reached. 

In M step, to obtain the parameter ( )( 1)k
uvγ φ +  which maximizes ( )( )| kQ φ φ  respect to φ ∈Φ  is 

to use the Lagrange multiplier method with the constraint 
1

( ) 1,
m

ij
j
γ φ

=

=∑  for , , 1,2,..., .u v i m=  Suppose 

( ) ( )( ) ( )

1
| | ( ) 1

m
k k

i ij
i j

G Qφ φ φ φ θ γ φ
= ∀

 
= − − 

 
∑ ∑  for any ,iθ ∈  then 
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( )
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0
k
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=

∂
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1
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.
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Estimation of the mean parameter is obtained by 
( )( )|

0,
( )

k

uv

Q φ φ

µ φ

∂
=

∂
 so it will be obtained 
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( ) ( )
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1
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1
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for 1,2,..., ; 1,2,..., ,u m v p= =  and 
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,
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s s s
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 for 1,2,..., .i m=  

 
3.2.  Parameter estimator sequence convergence of MNHMM 

Furthermore, it will be proved that the sequence { }( )ln ( )k
TL φ  converges to *ln ( )TL φ  using the 

EM algorithm, where ( )kφ  is the estimator of the MNHMM parameter in iteration k  and *φ are stationary 

points of the function ln ( ).TL φ  This will be discussed in the Wu theorem. Before discussing the Wu 
theorem, the following symbols are considered to simplify writing 

- Let k  denotes the iteration of the EM algorithm, namely { }0,1,2,3,... .k∈  

- Let { { int :φΨ = ∈ Φ stationary point of }ln ( ) .TL φ  
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- Let T  be the set-valued function defined at Φ  and with the range Φ  such that for any φ̂ ∈Φ  
satisfies 

ˆ ˆ ˆ( ) { : ( | ) ( | )T Q Qφ ϕ ϕ φ ϕ φ′ ′= ∈Φ ≥  for every }.ϕ ∈Φ  

As a result, the EM algorithm applies ( 1) ( )( ).k kTφ φ+ ∈  

- Let { }(0)
(0): ln ( ) ln ( ) .T TL L

φ
φ φ φΦ = ∈Φ ≥  

 
Theorem 1 (WU conditional on MNHMM) (Wu 1983; Paroli et al. 2000)  
If Φ  is the MNHMM parameter space, then the following 4 conditions are met. 

1. Φ  is a finite subset of 
2

,m m p m− + ×
  

2. ln ( )TL φ  is continuous at Φ  and differentiable in the interior ,Φ  

3. ( )0φ
Φ  is a compact set, for any (0) ,φ ∈Φ  with (0)ln ( ) ,TL φ > −∞  

4. ( | )Q ϕ φ  is a continuous function with respect to ϕ  and φ  at .Φ×Φ  
 
Proof: 

1. Suppose that , , ,T p m  and 0ε >  are sufficiently small that close to 0 are given. define the set 
diameter 

2 2 2
2 2 2 1 1 11 1 1diam ε ε ε

ε ε ε
     Φ = + + + + − + − + + −     
     

   

2 2
2 21 1( ) ( ) .

p m
m m p m m p m mε

ε ε ε
×   = − + × − < + × < + < ∞   

   
 

Consequently Φ  is a finite subset of 
2

.m m p m− + ×
  

2. ln ( )TL φ  is the sum from the  multiplication of continuous functions in Φ  and differentiable 

at ,Φ  then ln ( )TL φ  is continuous at Φ  and differentiable in interior .Φ  

3. Take any (0) .φ ∈Φ  It will be proven that (0)φ
Φ  is compact, that is, (0)φ

Φ  is finite and closed. 

( )0 ,
φ

Φ ⊂ Φ  while Φ  is finite (based on the first Wu condition). As a result, (0)φ
Φ  is finite. To show 

(0)φ
Φ  closed, simply show ( ) ( )0 0 .

φ φ
Φ ⊂ Φ  Take arbitrarily (0)

* .
φ

φ ∈Φ  Then *φ is the limit point of 

(0) .φ
Φ  Since the point *φ  is the limit point of the set (0)φ

Φ  if and only if there is a distinct sequence  

in ( )0φ
Φ which converging to * ,φ  then ∃ the sequence { }( )kφ  in (0)φ

Φ  is such that ( ) *lim ,k

k
φ φ

→∞
→  with 

( ) *kφ φ≠  for every .k  

4. Suppose (0)
* ,

φ
φ ∉Φ  then * (0)ln ( ) ln ( ).T TL Lφ φ<  Take (0) *ln ( ) ln ( ) 0.T TL Lε φ φ= − >  Since 

( ) *lim k

k
φ φ

→∞
→  and ln ( )TL φ  are continuous in ,Φ  then ( ) *lim ln ( ) ln ( ).k

T Tk
L Lφ φ

→∞
=  For 0ε >  above, 

then * *k k k∃ ∈ ∋ ≥  it satisfies 

( ) ( )( ) *ln lnk
T TL Lφ φ ε− <  
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( )( ) ( ) ( ) ( ) ( ) ( )* ( ) * (0) *ln ln ln ln ln lnk k
T T T T T TL L L L L Lφ φ ε φ φ φ φ⇒ − < ⇒ − < −

( ) ( )( ) (0)ln ln ,k
T TL Lφ φ⇒ <  

This contradicts with ( )
( )0 .k

φ
φ ∈Φ  So ( )0φ

Φ  is a closed set. Because ( | )Q ϕ φ  is the addition and 

multiplication of the functions ( | ),t iα φ  ( | ),t iβ φ  ( ), ( ), ( ), ln ( ),ij ij ijk iγ φ µ φ σ φ δ ϕ  ln ( ),ijµ ϕ ln ( ),ijkσ ϕ

ln ( )ijγ ϕ  which are continuous in ,Φ×Φ  for 1,2,...,t T=  and { }, 1, 2, , .i j m∈   Then ( | )Q ϕ φ  is a 

continuous function with respect to ,ϕ φ  in .Φ×Φ  Before entering the Wu Theorem, will proved the 

following lemmas: 
 

Lemma 3 (see Dempster et al. 1977; Wu 1983) 

If ( ) ,kφ ∈Ψ  then ( )( ) ( )( )1ln lnk k
T TL Lφ φ+ ≥  for all ( ) ( )( )1 .k kTφ φ+ ∈  

 
Proof:  
Determine { }0,1,2,... ,k∈  and take any ( ) .kφ ∈Ψ  Note that 

( )( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )1 1 1ln ln | | | |k k k k k k k k k k
T TL L Q H Q Hφ φ φ φ φ φ φ φ φ φ+ + +− = − − −  

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )( )( )1 1| | | | .k k k k k k k kQ Q H Hφ φ φ φ φ φ φ φ+ += − − −  (9) 

Based on the definition of the M-step in the EM algorithm, 
( ) ( )( ) ( ) ( )( )1 | | .k k k kQ Qφ φ φ φ+ ≥

 
As a result, 

( ) ( )( ) ( ) ( )( )1 | | 0.k k k kQ Qφ φ φ φ+ − ≥     (10) 

Based on Lemma 2, 
( ) ( )( ) ( ) ( )( )1 | | ,k k k kH Hφ φ φ φ+ ≤

 
as a result 

( ) ( )( ) ( ) ( )( )1 | | 0.k k k kH Hφ φ φ φ+ − ≤     (11) 

From (12), (13) and (14), we obtained 
( )( ) ( )( )1ln ln 0.k k

T TL Lφ φ+ − ≥
 

So 
( )( ) ( )( )1ln ln .k k

T TL Lφ φ+ ≥
 

 
Lemma 4 (see Dempster et al. 1977; Wu 1983; Zangwill 1969) 

If ( ) ,kφ ∉Ψ  then ( )( ) ( )( )1ln lnk k
T TL Lφ φ+ ≥  for all ( ) ( )( )1 .k kTφ φ+ ∈  

 
Proof: 
Determine { }0,1,2, ,k ∈   and take any ( ) .kφ ∉Ψ  Using Equation (11), it is obtained 

( )
( )( )( ) ( ) ( )( ) ( ) ( )( )10 10ln | | .k
k k k k k

TL D Q D H
φ

φ φ φ φ φ∂ = −    (12) 
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Furthermore, based on Lemma 1, ( ) ( )( )10 | 0.k kD H φ φ =  Then Equation (15) becomes 

( )
( )( )( ) ( ) ( )( )10ln | .k
k k k

TL D Q
φ

φ φ φ∂ =    (13) 

However ( ) ,kφ ∉Ψ  so ( )
( )( )( )ln 0.k
k

TL
φ

φ∂ ≠   As a result, 

( ) ( )( )10 | 0.k kD Q φ φ ≠
 

Therefore ( )kφ  is not a local maximum of ( )( )| kQ φ φ  with respect to ,i.e.φ ∈Φ ∀Θ⊂ Φ  which 

contains ( ) ,kφ φ∃ ∈Θ  such that 
( ) ( )( ) ( )( )| | .k k kQ Qφ φ φ φ<     (14) 

However according to the definition of M step in the EM algorithm, 
( ) ( )( ) ( )( )1 | | ,k k kQ Qφ φ φ φ+ ≥

  
for each .φ ∈Φ  So this is also true for ,φ φ=  that is 

( ) ( )( ) ( )( )1 | | .k k kQ Qφ φ φ φ+ ≥     (15) 

From (17) and (18), we obtained 
( ) ( )( ) ( ) ( )( )1| | .k k k kQ Qφ φ φ φ+<     (16) 

From (12), (19) and Lemma 2, ( ) ( )( )( ) ( ) ( )( )( )1 | | ,k k k kH Hφ φ φ φ+ ≤  we obtained 

( )( ) ( )( )1ln ln .k k
T TL Lφ φ+ >  

 
Lemma 5 (see Zangwill 1969) The function T  is closed in \ .Φ Ψ  
 
Proof: 
By using the definition of a function with set value ,T  from the function ( | )Q ϕ ϕ′ ′  obtained the 

information that ( )Tϕ φ′ ′∈  with , .ϕ φ′ ′∈Φ  Take any \ .φ ∈Φ Ψ  Under the 4th Wu condition ( | )Q ϕ φ  

is a continuous function with respect to ϕ  and φ  in ,Φ×Φ  i.e. 

if ( )kφ φ→  and ( )kϕ ϕ→  then ( ) ( )( ) ( )| | ,k kQ Qϕ φ ϕ φ→   when .k →∞  

As a result, we get ( ) ( )( )k kTϕ φ∈  for 0,1, 2,k =   and it fulfill 

if ( )kφ φ→  and ( ) ,kϕ ϕ→  then ( ) ,Tϕ φ∈  when .k →∞  

As a result of a closed function ,T  the EM algorithm is a special case by substituting ( )kϕ for ( )1 .kφ +  
 
Theorem 2 (Wu Theorem on MNHMM) (see Dempster et al. 1977; Wu 1983; Zangwill 1969) 

Let the ( )|Q ϕ φ  is continuous function with respect to ,ϕ φ  in .Φ×Φ  Let ( ){ }kφ  be a parameter 

estimators sequence of MNHMM obtained using the EM algorithm. If ( ) *lim ,k

k
φ φ

→∞
= then 

1. *φ  is the stationary point of the function ln ( ),TL φ  
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2. ( ) ( )( ) *lim ln ln ,k
T Tk

L Lφ φ
→∞

=  where the convergence increases monotone. 

 
Proof: 

1. Let ( ) *lim .k

k
φ φ

→∞
=  Suppose *φ  is not a stationary point, which is * .φ ∉Ψ  Specify the sequence 

( ){ }1

1
,k

k
φ

∞+

=
 which is for every ( ) ( )( )1, .k kk Tφ φ+ ∈  Under the 3rd Wu condition, the sequence ( ){ }1

1

k

k
φ

∞+

=
  

is in the compact set ( )0 .
φ

Φ  Consequently there is a subsequence ( ){ }1

1

mk

m
φ

∞+

=
 such that ( )1 ˆmkφ φ+ →  

when .m →∞  A sequence converges to a point if and only if its subsequence converge to that point, 
consequently, 

( )1 ˆkφ φ+ →  if .k →∞     (17) 

Based on Lemma 5 above, T  is closed in \Φ Ψ  and by the assumption * ,φ ∉Ψ  so that ( )*ˆ .Tφ φ∈  

As a result, based on Lemma 4 then 

 ( ) ( )*ˆln ln .T TL Lφ φ>                (21) 

Based on Equation (20) and the continuity of the function ( )ln TL φ  in Φ  then 

 ( )( ) ( )1 ˆlim ln limln ,k
T Tk k

L Lφ φ+

→∞ →∞
=                (22) 

besides that, because ( )ln TL φ  is a continuous function and the assumption is ( ) *lim k

k
φ φ

→∞
=  then 

 ( )( ) ( )*lim ln ln ,k
T Tk

L Lφ φ
→∞

=               (23) 

and 

 ( )( ) ( )( )1lim ln limln .k k
T Tk k

L Lφ φ +

→∞ →∞
=               (24) 

From Equations (22) (23) and (24), we obtained 

 ( ) ( )ˆln ln * .T TL Lφ φ=                (25) 

However, Equations (21) and (25) are contradict, so that *φ  is stationary point. 
 

2. Based on the 1st Wu theorem, we get *φ  as the stationary point of the function ( )ln .TL φ  So 

it only remains to prove the monotony of ( )( ){ }ln .k
TL φ  Based on Lemma 3 and Lemma 4 above, 

( )( ){ }ln k
TL φ  is an ascending monotone sequence, which immediately proves this theorem. 

Based on the discussion in this chapter, the convergence of the likelihood function obtained will 
only lead to the stationary point of the likelihood function, monotonically increasing. As a result, it is 
very important to determine the initial value of the MNHMM parameter estimator in the EM 
algorithm. 
 
4. Simulation 

Estimation and convergence of the parameters discussed above were then simulated on random 
data with value intervals [10−100], time series 50, 75, 100 and a cross-section of 0, 25± ±   from time 
series data.  Because the covariance matrix is not estimated, it is determined that all k  covariance 
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matrices have the same value for 1, 2,...,k m=  which is the covariance matrix of the generated random 
data. In the study of multivariate analysis, it is required that the covariance matrix is a positive definite 
matrix and is well- conditioned so that this covariance matrix is transformed using the formula by 
(Huang et al. 2017) (Young et al. 2017) so that the covariance matrix meets positive definite and well-
conditioned (not discussed in this study). Some sample data are presented as follows: 
 

  
 
 
 
 
 
 
 
 
 
 

Figure 1 Random panel data graph with 50 time series and 25 cross-section (5 samples) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Random panel data graph with 75 time series and 50 cross-section (5 samples) 
 

 From the random data above, a simulation is carried out using the parameter estimator formula. 
In addition, the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) calculations 
were also carried out using the formula ( Leroux and Puterman 1992) , namely : m mAIC l d−  and  

( )( ): log / 2,m mBIC l T p d− ×  where ml  is log-likelihood maximized with m  state, T p×  is sample 

size of data, md  is the number of free parameters in the model with m  state. The following iteration 
of the estimated function likelihood according to the data in Figures 1-3 above. 
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Figure 3 Random panel data graph with 100 time series and 75 cross-section (5 samples) 
  

 
 

Figure 4  loglikelihood iteration according 50 time series and 25 cross-section (5 samples) 
 

 
Figure 5  loglikelihood iteration according 75 time series and 50 cross-section (5 samples) 
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Figure 6  loglikelihood iteration according 100 time series and 75 cross-section (5 samples) 

 
The results obtained are summarized and presented in the following table: 
 

Table 1  MNHM models simulation for number of 50 data time series ( 50)T =  

p  m  Testing 
Parameters LogLikelihood 

start 
LogLikelihood  

final AIC BIC µ  γ  

25 2 1 50 2 −6926.24 −5640.26 −5692.26 −5825.66 
2 50 2 −6688.51 −5638.95 −5690.95 −5824.35 
3 50 2 −6754.52 −5638.87 −5690.87 −5824.27 

3 1 75 6 −6766.18 −5630.49 −5711.49 −5919.29 
2 75 6 −6385.64 −5629.25 −5710.25 −5918.05 
3 75 6 −6457.55 −5625.92 −5706.92 −5914.72 

4 1 100 12 −6755.35 −5619.77 −5731.77 −6019.10 
2 100 12 −6389.26 −5619.68 −5731.68 −6019.01 
3 100 12 −6444.14 −5617.36 −5729.36 −6016.69 

50 2 1 100 2 −31234.60 −10410.60 −10512.60 −10809.63 
2 100 2 −23069.20 −10408.30 −10510.30 −10807.33 
3 100 2 −27361.70 −10408.20 −10510.20 −10807.23 

3 1 150 6 −38906.70 −10394.40 −10550.40 −11004.68 
2 150 6 −26127.70 −10391.40 −10547.40 −11001.68 
3 150 6 −28516.00 −10414.60 −10570.60 −11024.88 

4 1 200 12 −20771.20 −10395.90 −10607.90 −11225.25 
2 200 12 −17158.50 −10409.10 −10621.10 −11238.45 
3 200 12 −30187.00 −10389.90 −10601.90 −11219.25 

75 2 1 150 2 −134712.00 −13339.20 −13491.20 −13964.64 
2 150 2 −121342.00 −13329.90 −13481.90 −13955.34 
3 150 2 −100817.00 −13338.90 −13490.90 −13964.34 

3 1 225 6 −137256.00 −13334.70 −13565.70 −14285.21 
2 225 6 −78193.00 −13334.10 −13565.10 −14284.61 
3 225 6 −161572.00 −13329.50 −13560.50 −14280.01 
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Table 1 (Continued) 

 

m  Testing 
Parameters LogLikelihood 

start 
LogLikelihood  

final AIC BIC µ  γ  

4 1 300 12 −94940.00 −13332.40 −13644.40 −14616.20 
2 300 12 −122086.00 −13331.00 −13643.00 −14614.80 
3 300 12 −122619.00 −13329.40 −13641.40 −14613.20 

 
Table 2  MNHM models simulation for number of 75 data time series ( 75)T =  

p  m  Testing 
Parameters LogLikelihood 

start 
LogLikelihood  

final AIC BIC µ  γ  

50 2 1 100 2 −20490.70 −16596.40 −16698.40 −17016.11 
2 100 2 −22454.90 −16596.30 −16698.30 −17016.01 
3 100 2 −20646.50 −16596.50 −16698.50 −17016.21 

3 1 150 6 −22316.70 −16579.80 −16735.80 −17221.70 
2 150 6 −20144.70 −16573.00 −16729.00 −17214.90 
3 150 6 −21419.90 −16575.40 −16731.40 −17217.30 

4 1 200 12 −20386.10 −16556.60 −16768.60 −17428.93 
2 200 12 −20549.90 −16554.20 −16766.20 −17426.53 
3 200 12 −19885.70 −16551.20 −16763.20 −17423.53 

75 2 1 150 2 −78644.30 −23464.20 −23616.20 −24120.46 
2 150 2 −64377.80 −23479.50 −23631.50 −24135.76 
3 150 2 −86579.70 −23468.30 −23620.30 −24124.56 

3 1 225 6 −86050.60 −23443.10 −23674.10 −24440.44 
2 225 6 −66731.90 −23465.90 −23696.90 −24463.24 
3 225 6 −66539.60 −23442.90 −23673.90 −24440.24 

4 1 300 12 −66931.70 −23444.80 −23756.80 −24791.86 
2 300 12 −71197.80 −23453.10 −23765.10 −24800.16 
3 300 12 −67117.90 −23463.40 −23775.40 −24810.46 

100 2 1 200 2 −284059.00 −28077.60 −28279.60 −28978.79 
2 200 2 −258135.00 −28055.40 −28257.40 −28956.59 
3 200 2 −243800.00 −28048.50 −28250.50 −28949.69 

3 1 300 6 −318420.00 −28052.90 −28358.90 −29418.07 
2 300 6 −269263.00 −28049.60 −28355.60 −29414.77 
3 300 6 −255696.00 −28048.70 −28354.70 −29413.87 

4 1 400 12 −256261.00 −28043.50 −28455.50 −29881.57 
2 400 12 −231878.00 −28059.20 −28471.20 −29897.27 
3 400 12 −276319.00 −28034.10 −28446.10 −29872.17 
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Table 3  MNHM models simulation for number of 100 data time series ( 100)T =  

p  m  Testing 
Parameters LogLikelihood 

start 
LogLikelihood  

final 
AIC BIC µ  γ  

75 2 1 150 2 −45090.90 −32902.80 −33054.80 −33580.92 
2 150 2 −48680.80 −32908.60 −33060.60 −33586.72 
3 150 2 −45786.10 −32910.00 −33062.00 −33588.12 

3 1 225 6 −41197.00 −32880.20 −33111.20 −33910.77 
2 225 6 −42179.20 −32877.70 −33108.70 −33908.27 
3 225 6 −45186.10 −32889.80 −33120.80 −33920.37 

4 1 300 12 −45478.40 −32857.40 −33169.40 −34249.34 
2 300 12 −39464.10 −32838.40 −33150.40 −34230.34 
3 300 12 −44167.40 −32849.00 −33161.00 −34240.94 

100 2 1 200 2 −102057.00 −41766.70 −41968.70 −42696.94 
2 200 2 −151539.00 −41798.10 −42000.10 −42728.34 
3 200 2 −138825.00 −41756.50 −41958.50 −42686.74 

3 1 300 6 −136727.00 −41724.60 −42030.60 −43133.78 
2 300 6 −89290.20 −41753.40 −42059.40 −43162.58 
3 300 6 −119623.00 −41761.00 −42067.00 −43170.18 

4 1 400 12 −126262.00 −41727.80 −42139.80 −43625.13 
2 400 12 −91507.90 −41755.10 −42167.10 −43652.43 
3 400 12 −104235.00 −41752.50 −42164.50 −43649.83 

125 2 1 250 2 −338726.00 −48374.70 −48626.70 −49563.32 
2 250 2 −348007.00 −48346.20 −48598.20 −49534.82 
3 250 2 −376975.00 −48351.40 −48603.40 −49540.02 

3 1 375 6 −345004.00 −48338.30 −48719.30 −50135.38 
2 375 6 −284638.00 −48342.20 −48723.20 −50139.28 
3 375 6 −380462.00 −48344.90 −48725.90 −50141.98 

4 1 500 12 −264409.00 −48325.00 −48837.00 −50739.97 
2 500 12 −259946.00 −48333.40 −48845.40 −50748.37 
3 500 12 −338281.00 −48319.40 −48831.40 −50734.37 

 
 The results of the MNHM model simulation for all data (attached) whose results are summarized 
and presented in Tables 1- 3 above show that the likelihood function is increasing in each iteration. 
However, because the likelihood function obtained is a local maximum value, the parameter 
initialization is important because it affects the parameter estimator obtained, this can be seen from 9  
simulations of the final result of the maximum likelihood function at 4m =  state is 7 times, 3m =
state is 2 times, and 2m =  state is 0 times. While the best model of 27 simulations is entirely at 2m =  
state which can be seen in the AIC and BIC values are always maximum at 2m =  state, this is because 
even though the final maximum likelihood is at 3m =  and 4m =  states but the penalty due to the 
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increase in independent parameters and the amount of data has a greater effect than the increase in the 
likelihood function. 
 
5. Conclusions 

The multivariate Normal hidden Markov model (MNHMM) which assumed the Markov chain is 
homogeneous, ergodic and fulfills the assumption of continuity of parameters, then 

1. Parameter Estimation of MNHMM using the EM algorithm produces a formula that maximizes 
the likelihood function, 

2. The obtained parameter estimator sequence algorithm converges to the stationary point of the 
likelihood function monotonically increasing. 
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