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Abstract

Hidden Markov models (HMMs) are models consisting pair of stochastic process which are
commonly called observation process and a process that affect observation. Stochastic processes that
affect this observation is assumed unobserving and form a Markov chain. HMM is often applied in
time series data but still little application to longitudinal data because it requires more complex
analysis. One of the HMMSs is the multivariate normal hidden Markov model (MNHMM). The
MNHMM is a HMMs which the probability of observation if the affect is known and assumed as
multivariate normal distribution. This multivariate assumption causes the MNHMM applicable to
longitudinal data. The main problem of MNHMM is parameter estimation and the convergence of the
parameter estimator sequences. The novelty of this research is the method of estimating the MNHMM
parameters used and the analysis of its convergence. Estimation of parameters is done by maximizing
the likelihood function. The likelihood function is calculated using the forward-backward algorithm,
then maximized recursively using the expectation maximization algorithm (EM algorithm) for obtain
a model parameter estimator formula. The MNHM parameter estimator sequence obtained using the
EM algorithm converges to the stationary point of the likelihood function monotonically increasing.

Keywords: Multivariate analysis, Markov chain, maximum likelihood, expectation maximization algorithm,
monotonically increasing.

1. Introduction

There are many events or phenomena in everyday life that are uncertain. This uncertainty can be
modeled by a stochastic process. This is because the stochastic process is a model built with probability
rules (Cinlar 2011; 2013). The factors causing this uncertainty are often unobserved. The hidden
Markov models (HMMs) can be relied to modeling such a problem. This model can be applied to
various problems such as stock price prediction (Trichilli et al. 2020; Zhang et al. 2019; Nguyen 2018)
and even gets better results than other methods (Somani et al. 2014; Gupta and Dhingra 2012). Besides
that, HMM also can be applied for speech recognition (Rabiner 1989; Cutajar et al. 2013; Mouaz et
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al. 2019), DNA sequence prediction (Luck et al. 2019; Zarrabi et al. 2018), weather prediction
(Khiatani and Ghose 2017; Fikri et al. 2020), application to air pollution (Tao and Lu 2019; Paroli and
Spezia 1999), high voltage diagnosis (Fikri et al. 2024), and detect for multivariate time series
anomalies (Li et al. 2017). This is because HMMs also offers simplification in calculations
(memoryless property) but still preserve relevance to the various application (Barbu and Limnios
2009). The HMM often is applied to data time series as the examples above. However, it can be said
that the application for longitudinal data is still rare even though it offers efficiency. It is because the
analyzes are not required as easy as when applied to data time series.

HMM consists of a pair of stochastic processes, namely the observation process and a process
that affect observation (Cappe 2005). Stochastic processes that affect this observation is assumed
unobserving and form a Markov chain. This is probability of effect of observation at any time depends
on the effect an observation in several unit’s time before. The effect of this observation is usually
called the state (Ross 2019). Multivariate normal hidden Markov model (MNHMM) is one of the
HMM in which the probability of observation if the state is known and assumed to be multivariate
normal distribution (Spezia 2010; Spezia et al. 2011). This multivariate assumption will cause in the
event can be modeled form longitudinal data.

The main problem of MNHMM and the objective of this research is parameter estimation and the
convergence of its parameter estimator. In previous research, parameter estimation was carried out

using Markov chain Monte Carlo (MCMC) (Spezia 2010; Spezia et al. 2011), whereas in this research
parameter estimation was carried out which maximized the likelihood function. The likelihood
function is calculated using the forward-backward algorithm (Baum 1972; Macdonald and Walter
Zucchini 1997), which is then maximized recursively using the expectation maximization algorithm
(EM algorithm) to obtain a model parameter estimator formula with main references (Fikri et al. 2016;
Wu 1983). Because the estimation and convergence of the covariance matrix parameters has its own
complexity and analysis (multivariate analysis) so it will be published separately. This complexity can
be seen in several studies related to the covariance matrix (Pourahmadi 1999; Ledoit and Wolf 2004,
Rothman et al. 2010; Mohsen Pourahmadi 2011; Lam 2016; Ledoit and Wolf 2020). Estimating the
parameters that maximize the likelihood function in longitudinal data using MNHMM is not as easy
as in time series data using NHMM. However, behind these difficulties there is an advantage, namely
the guarantee of convergence of the parameter estimator sequence and the analysis can be carried out
on many data simultaneously. Therefore, after estimating the parameters, we will discuss the
convergence of the MNHMM parameter estimator sequence with the main reference (Fikri et al. 2016)
(Wu 1983) and simulations accompanied by the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) formulations (Leroux and Puterman 1992).

2. Multivariate Normal Hidden Markov Model
The multivariate normal hidden Markov model (MNHMM) is a discrete time model consisting of

a pair of stochastic processes {X,,Y,} _(Cappe 2005). {X,}  is the effect of observation which is

7 teN

assumed unobserving and forms a Markov chain. Whereas {Y[ }leN is the observation process that only

depends on {X,} . Then the random variable ¥, given a state of X, is assumed to be multivariate

normal distribution, for every ¢ € N (Spezia 2010; Spezia et al. 2011; Paroli et al. 2000). In this

research {Xt} is assumed a homogeneous and Ergodic Markov Chain (irreducible, positive

teN

recurrent and aperiodic) (Ross 2019) with state space S, = {1,2,...,m}.
To simplify the next writing, symbolized the following 10 points:
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Lor=(ny

. » Which is a process of observation,

2. X= {X }; , which is the Markov chain,

t

3. Z={X,Y) , whichis the HMM,

127t =1

659

4. y=(,,,...,y,) is longitudinal data of the process {Yt}; (commonly called incomplete

5. x=(iiy,....i;) is effect observation y which unobserved and is the state of process {X, }[TZI ,

6. z=(i,,5ip,¥r) = (%, ), data and state of the process {X;,Y, }; (commonly called

T>°T

complete data),

7. P(Z=z|¢)=p(z|p)= p(x,y|¢), which is the probability mass function of Z,

8. P =y|¢)=p(y|@), which is the probability function of Y,

9. L.(¢)=p(z|¢)=p(x,y|¢), which is the likelihood function of the complete data,
10. P(X =x|Y =y,0)= p(x|y,¢), which is the probability mass function of X with the

_prild) _pGeyld) L)
ryie) 9 L(9)
The following is a brief explanation of MNHMM:

condition Y =y, i.e. p(x|y.¢)

Y Y2 Nir

Yai Yo Yar | . . . .
L. y="0 [ »,=| . |-y, =| . | isthelongitudinal data will be modeled, where 7' is

ypl ypZ ypT

the number of time series data and p is the number of cross data. Parameter

My My o Hy, O O

oy Hyn 0 Moy O O

M= ,and £=(8,,%,,..,% ) with £, =

ypl /upz T lupm O-ipl O-[[)Z
i=1,2,-,m (Spezia 2010).

[}

2. Transition probability matrix I' = [7.

Uin

ilp

for

ipp

1, where size of I'matrix is mxm and i,j€S,,

satisfies: y, = P(X, =j| X, =i)=P(X,=j| X, =i), 7, 20, 2717 =1, foreveryi=1,2,...,m..

J=1

3. The conditional probability Y, if it is known that X, =i (¢ € N) is a normal multivariate

random variable with mean x4 and covariance matrix X. For every yeR”, the conditional

probability of the observation process I1 = I:il'y,.:' in Geoffrey and Grimmett (2001), Spezia (2010)

and Fikri et al. (2023) is
{7(%%)‘2'(%%)]

. 2
7, =P, =yl X, =)=

>

1
—e
CRN
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0 © o 1 [_(yi"l)vzlil(y’:”t)
e z dy,dy,--dy =1

P

4. Let §=| | is the initials of the state distribution and the long-run proportion & is called

0

m

the stationary distribution. Based on Ross (2019), the Markov chain {X , }leN which is assumed to be

ergodic then the stationary distribution J can be obtained uniquely, namely fulfilling
ré=o, €))
with 6, = P(X, =i),Vie S, and ) 5 =1.

i=1

5. Forevery teN and y € R”, the marginal distribution function of ¥, is

P(Y, =)= 3P, =y X, =DP(X, =)= 30 x,,

=1 i=1

Something which very important on MNHMM is estimating model parameters and its

27t

convergence. Based on the discussion above, the MNHMM {X Y }teN is characterized by 0,1, 1, %,

with
§=[5] forieS,, T=[y,] forijeS,. u=(tm.thm,),
s Oy Ouy 0 Oy,
with p, = ﬂzzi , for i=12,..,m. 2=(21,22,... Em) with X, = T Ui'zz O-'?p , for
Hpi Op1 Oip2 Cipp
i=L2,...m

Based on equation (1), & will be obtained when I' is obtained so that ¢ is not a parameter. In

addition, for every the diagonal elements of the transition matrix it can be calculated by y, =1— Z iz
Jjes X
J#

so that the corresponding parameter is I' without its diagonal elements, which is a matrix of size
mx(m—1) and symbolized by I'. Because the estimation and convergence of the covariance matrix
parameters has its own complexity and analysis (multivariate analysis) so it will be published
separately. The parameter estimation in this study is limited to ¢ = (I",M). In order to estimate this

parameter, it is necessary to clarify the parameter space along with the assumptions that accompany
which will be discussed in the next chapter.

3. Parameter Estimation and Its Convergence
Let T be the number of times of observation, p is the number of cross data at any time, m is

the number of states and y =(y,,¥,,...,¥,) 1s the sequence of observations. Given that £ > 0 is small



Miftahul Fikri 661

. pxm
enough to approach 0. @ = {¢ = (f,M ): le [O,l]m ,M e [5,—} } is the parameter space for the
£

MNHMM. For every ge®, I(4)=(7,(#)).M@)=(u,($).2(#)=(0,(#)).5()=(5,()) is
assumed to fulfill the following four points of continuity (Spezia 2010; Paroli et al. 2000):

1.y, :®—>R, with 7,(4) =7,
2. M,:®—>R,with M, (¢)=M, is continue function in d,Vie S,,
3. Z,:® >R, with £,(#)=Z, is continue function in ®,Vie§,,

. is continue function in ®,Vi,je S,,

4. 5:®— R, with &,(4)=4, is continue function in ®,Vie S,.

3.1. Parameter estimation
The likelihood function of the observation process Y is defined as follows:

L) =P(Y, =y, Y, = sV =y | 4) = PV Yson V7 | ) = P(¥ | 4)

m m m m T
= 2 "'Z(”ym ﬂyzfz '"ﬂyri’/ ) x (é”l 7/[1[2 }/[2[3 “'}/['r—l"l ) = ZZ 5[1 ﬂ/Vlil H 7/,'[7][1 ﬂ)')i: : (2)
=l i=l ip=l =l =2

As previously explained, the main problem in the MNHMM is to find the parameter ¢* € @
which maximizes the likelihood function L,(¢). For the number of observation data 7 which is quite
large, calculating the likelihood function takes a long time. A forward-backward algorithm can be
used to solve this problem. The forward-backward algorithm is used to calculate the probability of a
sequence of observations (y,,,,..., ¥, ), recursively, this is very useful to speed up computation time.
These algorithms are divided into two, namely the forward algorithm and the backward algorithm.
Baum et al. (1970) defined a forward probability as follows:

O.’t(l|¢) :P(Y; :prZ :yza'-'ayf :ynX; :i|¢)7
and backward probability
:Bt(i | ¢) = P(YIH :ytﬂ""’YT =JVr ‘ Xz :is¢): for t=12,---,T and ie SX,

The formulation of recursive forward and backward probabilities which are usually called the

forward algorithm, are as follows (Baum 1972; (Macdonald and Zucchini 1997):

o |9)=7,0, a.,(jl§)= [Z a, (i ¢)7,,J7fy,ﬂj,

ieSy
and backward algorithm

B =1 BUIH =2 B, 7, fort=1..T-1andi,jeS,.

ieSy
Then, Baum (1972) and Macdonald and Zucchini (1997) used the forward algorithm and the
backward algorithm to calculate the likelihood function L.(¢), which is commonly called the

forward-backward algorithm and obtained:
L.(¢)= Z a,Glg)p(i|g), forany t=12,.,T, and i€ S,.

ieSy

The likelihood function of the complete data is as follows:

T
LCT (¢) = 51] ﬂym 1_!:7’}711} ”,V,'} : (3)
=
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Based on Equations (2) and (3), the relationship between the incomplete data likelihood function and
complete data are as follows:

L(#)=p(y|¢)= i 3 ll,,,,Hyl = Zp0x1 9= T L)

ip= i=1
To get ¢* € ® which maximizes L,(¢) is a difficult problem. ¢ € ® which maximizes InL,(¢)
will also maximize L,(¢). For ¢ € ®, apply
1 =1 L@ InL =InL;(¢)—1
np(x|y,¢)= n (¢)=> nL(¢) =InL;(4)—In p(x|y,9).

T

Note that for any case ¢ € ® be valid also

E,(InL,(4)|y)=E,;(InL;($) | y)~ E, (In p(x | .| ), )
and

E@(lnLT<¢)|y)=ZlnLr(¢)p<x\y,&>=21np<y|¢>p(x|y,¢3)

_ pPy|4) _Inp(y|9)
Z P(y|9) Y Zp( sar))
_Inp(y|¢)

2019 —= 2 p(y| ) =Inp(y|4) =InL,(9), ®)
so based on Equations (4) and (5) are obtained
InL,(¢)=0p|9)~H@|P), ©)
with Q(4]§) = E, (InL;(#) | y) and H(p|$)=E,(In p(x|y.9)| ).
The first step to obtain ¢~ which maximizes InL,(¢) is to solve the equation 0 5 (ln L, (¢)) =0
to get a stationary point. By following the pattern of Equation (4), it will be obtained directly
0,(InLy(9)) = E;(8,(In Ly ()] )- @
As a result of Equations (6) and (7) then
0, (InL;(9)) = E; (2, (nL;(9)) | y) = E; (0,0 L;(9) | y) = E; (2, n p(x | ».4) | ¥).  (®)
Define (Dempster et al. 1977)

D°0(4|§)=E, (ailn L (@) y], ©)

¢

and DH(¢$|9) = E, (%1np(x|y,¢>yj, (10)

then with substituting Equations (9) and (10) into Equation (8) will be obtained
0,(InL;($)) = D"Q(4| §)~ D" H(¢| ). (11)

Lemma 1 (see Dempster et al. 1977)

10 7 a 10 AA A
Suppose D H(¢¢)=E&(%lnp(x|y,¢)|y], then D'"H (¢ |$) =0, for every ¢ € ®.
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Proof: Take any ¢f e d,

Z ¢p( x| y.4)

D H($|$)=.0;(Inp(x|y.9)) p(x| y.) = Cod)

p(x|y.4) =a¢(2p(x|y,¢3)j =a,(1)=0.

Lemma 2 (see Dempster et al. 1977)
Suppose H(¢|§)=E;(In p(x|y,4)|y), then H($|§)< H(|9), for every ¢, e ®.

Proof: Take any ¢,¢? e @, iftaken f(x)=In(1/x), then from Jensen inequality obtained,

1

1
" g (210 =5 e |
P(x13.9) px|1.9)

ol g [2G10) }S_E [1 (p(xy,qﬁ)) J g || 2(12:9) _1{ [p<x|y,¢> D
n[ [p(x|y¢>'y SRR YY) o e B T el e e P

e |y,¢>j ( Px|y.9) j ( (p( |y¢>] ]Sl X
- ‘”[ ( ctr) S Z e gy P pxlr)) )5

@Eé{ln(%}y SOQE@(lnp(x‘y’¢)|J’)—E¢;(lnp(x|y,g$)|y)g()

& E(Inp(x| y,9)| y) < E; (In p(x| y.§)| v) = H(B| ) < H (S| ).
Based on Equation (6), Lemma 1 and Lemma 2 to find the stationary point of InZ,(¢) just find

the stationary point of Q(¢| ¢?) with respect to ¢ € ®. However, D'°Q(¢ | 413) is a non-linear function

and difficult to solve explicitly for the parameter ¢ € ®, consequently to obtain a stationary point of

Q(¢|¢?) respect to ¢ € ® which analytic is a problem difficult, so this problem is solved by a

numerical approach. This research used the expectation maximization algorithm.
The expectation maximization (EM) algorithm is a recursive algorithm that consists of two steps

in each iteration, namely step E and step M. The steps in the EM algorithm are to take ¢* as an
estimator of the MNHMM parameters obtained in the iteration k. In the iteration (k +1), step E and
step M are defined as follows:

1. Give error tolerance, maximum iteration and initial parameter value ¢(k) for k=0,

2. E step — count

O(¢:4")=E (InL ()| Y = »)
( ¢(k))ﬂ1( |¢(k>) Z“( |¢(A) ( |¢(k))

) nP(Y,=y,| X, =i.4)

ZZ (114%)5 (l|¢“‘>) o ZZ (116%)5, (114"

leSy leSy




664 Thailand Statistician, 2025; 23(3): 657-676

~

-1

7y ()t (118)P (Y = 21 1 X = 1.8°) Ba (719
P2 > o, (1167)5,(1147)

leSy

3. M step — find ¢(k+l) which maximizes Q(¢;¢“‘)), so that
O(¢“"14")=0(¢14"). forevery pe .
4. Replace k with k+1 and repeat 2™ step through 4" step until ‘ln L, (¢“‘“’ ) -InL, (¢“‘) )‘ less

ln }/i/' (¢)5

than the given error (in other words {ln L, (¢(/‘”) )} converge) or the maximum iteration is reached.

In M step, to obtain the parameter y,, (¢<k”)) which maximizes Q(¢ | ¢(")) respect to ge D is

to use the Lagrange multiplier method with the constraint Z}/i].(gzﬁ) =1, for u,v,i=1,2,...,m. Suppose

J=1

. oy T, oG (g1o") - -
G M) = P->0. (p)-1 ) eR, then ——= = wv=12,..,
(619)-0(616")- 50 S, 1-1 | forany 0 €2, then EE 20 (o =12,

i=1

implies

( ) )) TEE}/W (¢(k))at (u|¢(k))P<Y/+1 =V | X :Va¢(k))ﬂ/+1(v|¢(k)>
}/uv ¢ k+1 — =1 — .
2, (ulg”) B, (u14°)

00(414")
Ott,, (#)

Estimation of the mean parameter is obtained by =0, so it will be obtained

M-

p P
a,(v169)B,(v187)] 25,0 + Z (Ve —y,w>+;sm (Y — )

t

(k+1) ) _ k#u k#u
/uuv (¢ - T >
(k) (k)
2svuuzat(v‘¢ )lBt(v|¢ )
=1
St Sz Sitp
. 1 i21 2 T Sip .

for u=12,..m;v=12,..,p, and X = . A A for i=1,2,...,m.

Sipl sip2 ipp

3.2. Parameter estimator sequence convergence of MNHMM
Furthermore, it will be proved that the sequence {ln L, (¢"‘))} converges to InL,(¢") using the

EM algorithm, where ¢ is the estimator of the MNHMM parameter in iteration k and ¢’ are stationary
points of the function In L, (¢). This will be discussed in the Wu theorem. Before discussing the Wu

theorem, the following symbols are considered to simplify writing
- Let k denotes the iteration of the EM algorithm, namely k € {0,1,2,3,...}.

- Let {¥ = {¢ e int @ : stationary point of InL, (¢)}
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- Let T be the set-valued function defined at ® and with the range © such that for any ¢? ed
satisfies
T(@)={p' e ®:0(¢'|$)2 Qp|9) forevery p e .
As a result, the EM algorithm applies ¢“™ e T(¢").
-Let @, ={pe®:InL (§) 2L (§)}.

Theorem 1 (WU conditional on MNHMM) (Wu 1983; Paroli et al. 2000)
If @ is the MNHMM parameter space, then the following 4 conditions are met.

1. @ is a finite subset of R e

2. InL,(@) is continuous at ® and differentiable in the interior @,
3. (DW is a compact set, for any ¢(0) € ®, with InL,(¢") > —on,

4. Q(@| @) is a continuous function with respect to ¢ and ¢ at ® x®.

Proof:
1. Suppose that 7, p,m, and & >0 are sufficiently small that close to 0 are given. define the set

1Y (1Y 1Y
diam(l):\/12+12+---+12+(——5j +[__SJ +--~+(——5j
& & &
1Y 1Y X m
=\/m2—m+(pxm)(——£j <\/m2+(p><m)(—) <m+ ' <0,
& & &

Consequently @ is a finite subset of R

diameter

2. InL,(¢) is the sum from the multiplication of continuous functions in @ and differentiable
at @, then InL,(¢@) is continuous at @ and differentiable in interior ®.

3. Take any ¢'* € ®@. It will be proven that ® 4o is compact, that is, ® ,, is finite and closed.

c @, while @ is finite (based on the first Wu condition). As a result, @ 4 is finite. To show

(D¢(D)

() 40 closed, simply show CD;#(“) c q)¢(0). Take arbitrarily ¢ e ® 40 Then ¢ is the limit point of

) o Since the point ¢ is the limit point of the set ® 40 if and only if there is a distinct sequence

in @, which converging to ¢, then 3 the sequence {¢“‘)} in @, is such that 1im¢““) — ¢, with
—0

¢ = ¢ forevery k.

4. Suppose ¢ ¢® ,, then InL, (¢ )<InL,(¢"”). Take e=InL,(4"”)—InL,(¢)>0. Since

g0
limﬂ“ — ¢ and InL,(¢) are continuous in @, then IlcimlnLT(¢‘k))=1nLT(¢*). For ¢ >0 above,

then 3k" e N>k >k it satisfies
In L, (¢)~InL, (¢)[ <
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=L, (p")-InL,(¢") <=L (¢")-InL, (¢ )<InL,(¢”)-InL,(¢")

=L (¢")<InL (),
This contradicts with ¢*) e CDW" So (Dw, is a closed set. Because Q(@|¢@) is the addition and
multiplication of the functions (14, £,i[). 7,(#).t,(#).0,4 (@IS (9). I 1, (). Inar, (p),
Iny,(¢) which are continuous in ®x®, for 1=1,2,..,7 and i,/ €{1,2,---,m}. Then O(¢p|4) isa
continuous function with respect to @,¢ in ® x®. Before entering the Wu Theorem, will proved the

following lemmas:

Lemma 3 (see Dempster et al. 1977; Wu 1983)
If ¢") e, then InL, (") 2L, (¢“) forail g*" eT(p").

Proof:
Determine k €{0,1,2,...}, and take any #“) e W. Note that

InL, (¢(k+1))_ln L (¢(’f)) _ (Q(¢(k+1) |¢("))_H<¢(k+1) |¢(k)))_(Q(¢(k) |¢(k))_H(¢(k) |¢(k)))

=(0(¢""19)-0(¢" 1)) (£ (¢"" 169) -1 (6" 16V)). )
Based on the definition of the M-step in the EM algorithm,
(4" 14" )2 0(¢" 14").
As aresult,
0" 19%)-0(¢" 1) >0. (10)
Based on Lemma 2,
H (g 199) < 1 (g1 g),
as a result
H(¢ " 1¢") - (6" 14) <0. (11)
From (12), (13) and (14), we obtained
Inz, (¢“")-mnL, (4")>0.
So
inL, (¢*) 2L, ("),

Lemma 4 (see Dempster et al. 1977; Wu 1983; Zangwill 1969)
If ¢ ¢ W, then InL, (¢<k*‘>) >inL, (¢") forail ¢* eT(g").

Proof:
Determine k € {0,1,2, . .}, and take any ¢(k) ¢ V. Using Equation (11), it is obtained

00 (InLy (¢))= D 0(¢ 19" ) - D" 1 (9" ). (12)
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Furthermore, based on Lemma 1, D"°H (¢(k) | ¢("') ) =0. Then Equation (15) becomes
8,0 (2, (94))= D0 (4 14"). (13)
However ¢*) ¢ ¥, so 6¢m (ln L, (¢(k))) #0. Asaresult,
D°o(¢"4")#o0.
Therefore ¢(k) is not a local maximum of Q(¢|¢(k)) with respect to ¢ € ®,i.e.vO < ® which

contains ¢(k) s EI% € © such that
0(¢"14")<0(g14"). (14)
However according to the definition of M step in the EM algorithm,
0(“ 14")2 0(¢14"),
for each ¢ € ®@. So this is also true for ¢ = g_zﬁ, that is

0 19")2 0(¢14"). (15)
From (17) and (18), we obtained
0" 14" )< 0" 14"). (16)

ann(12L(19)andLﬁnuna2,(11(¢““>\¢“ﬁ)s(z1(¢“>\¢“>»,\Veobuuned

Inz, (¢*")> L, (").

Lemma 5 (see Zangwill 1969) The function T is closed in ®\P.

Proof:
By using the definition of a function with set value T, from the function Q(¢'|¢@") obtained the

information that ¢’ € T'(¢') with ¢',¢' € ®. Take any ¢ € ®\¥. Under the 4" Wu condition O(¢|¢)

is a continuous function with respect to @ and ¢ in ®x®, i.e.
if ¢(k) —>a and go(k) —>g_0 then Q(w(") |¢(k))—> Q(E@), when k — .
As a result, we get go(k) € T(¢(")) for £=0,1,2,--- and it fulfill
if ¢(k) —>5 and qa(") —>&, then g_oe T(g), when k — oo.

As aresult of a closed function 7', the EM algorithm is a special case by substituting (p(k) for ¢(1‘+1).

Theorem 2 (Wu Theorem on MNHMM) (see Dempster et al. 1977; Wu 1983; Zangwill 1969)
Let the Q(¢)|¢) is continuous function with respect to @,¢ in ©®x®. Let {¢(k)} be a parameter

estimators sequence of MNHMM obtained using the EM algorithm. If }im¢(k) =g, then
—0

1. ¢ is the stationary point of the function InL,(¢),
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2. }im InL, (¢(k )) =InL, (¢), where the convergence increases monotone.
—0

Proof:

1. Let lim #") = ¢". Suppose ¢ is not a stationary point, which is ¢* ¢ W. Specify the sequence

{¢(k”)}r , whichis for every k,¢*" eT (¢(") ) Under the 3™ Wu condition, the sequence {¢(M)}w
=1

k=1
is in the compact set CDW" Consequently there is a subsequence {¢(k+l)”’ }m:1 such that ¢(M)”’ —>¢?

when m — co. A sequence converges to a point if and only if its subsequence converge to that point,
consequently,

$N S if ko oo, (17)
Based on Lemma 5 above, T is closed in @ \'¥ and by the assumption ¢ ¢ ¥, so that ¢f el (¢* )

As aresult, based on Lemma 4 then

InL, (§)>MnL,(¢). @1
Based on Equation (20) and the continuity of the function InZ, (¢) in @ then
fiminL, (¢"')=fiminz, (¢). )

besides that, because In L, (¢) is a continuous function and the assumption is lim ") =4 then
—o0

liminZ, (¢ ) =L, (¢°), 23)
and
limlnZ, (¢(”) = limIn Z, (¢<k“> ) (24)
From Equations (22) (23) and (24), we obtained
InL, (¢)=InL, (¢*). (25)

However, Equations (21) and (25) are contradict, so that ¢ is stationary point.

2. Based on the 1 Wu theorem, we get ¢~ as the stationary point of the function In L, (¢) So

it only remains to prove the monotony of {ln L, (¢$(k))}. Based on Lemma 3 and Lemma 4 above,

{ln L, (¢(k) )} is an ascending monotone sequence, which immediately proves this theorem.

Based on the discussion in this chapter, the convergence of the likelihood function obtained will
only lead to the stationary point of the likelihood function, monotonically increasing. As a result, it is
very important to determine the initial value of the MNHMM parameter estimator in the EM
algorithm.

4. Simulation
Estimation and convergence of the parameters discussed above were then simulated on random
data with value intervals [ 10—100], time series 50, 75, 100 and a cross-section of 0,225 from time

series data. Because the covariance matrix is not estimated, it is determined that all & covariance
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matrices have the same value for k£ =1,2,...,m which is the covariance matrix of the generated random
data. In the study of multivariate analysis, it is required that the covariance matrix is a positive definite
matrix and is well-conditioned so that this covariance matrix is transformed using the formula by
(Huang et al. 2017) (Young et al. 2017) so that the covariance matrix meets positive definite and well-
conditioned (not discussed in this study). Some sample data are presented as follows:

10 |
— [z

QO |
i — 2

@
: — [3
D — 4
Dl — [5

Figure 2 Random panel data graph with 75 time series and 50 cross-section (5 samples)

From the random data above, a simulation is carried out using the parameter estimator formula.
In addition, the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) calculations
were also carried out using the formula (Leroux and Puterman 1992), namely AIC:I —d  and

BIC:(1,-(logTx p)d,)/2, where [, is log-likelihood maximized with m state, Tx p is sample

size of data, d,, is the number of free parameters in the model with m state. The following iteration

of the estimated function likelihood according to the data in Figures 1-3 above.
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Figure 3 Random panel data graph with 100 time series and 75 cross-section (5 samples)
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Figure 4 loglikelihood iteration according 50 time series and 25 cross-section (5 samples)
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loglikelihood iteration according 75 time series and 50 cross-section (5 samples)



Miftahul Fikri 671
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Figure 6 loglikelihood iteration according 100 time series and 75 cross-section (5 samples)
The results obtained are summarized and presented in the following table:

Table 1 MNHM models simulation for number of 50 data time series (7' =50)
Parameters  LogLikelihood  LogLikelihood

P m Testing AIC BIC

H v start final

25 2 1 50 2 -6926.24 -5640.26 —5692.26 —5825.66
2 50 2 —6688.51 —5638.95 —5690.95 —5824.35

3 50 2 —6754.52 -5638.87 —5690.87 —5824.27

3 1 75 6 -6766.18 -5630.49 -5711.49 -5919.29

2 75 6 —6385.64 -5629.25 -5710.25 —5918.05

3 75 6 —6457.55 -5625.92  -5706.92 -5914.72

4 1 100 12 —6755.35 -5619.77 -5731.77 -6019.10

2 100 12 —6389.26 -5619.68 —5731.68 —-6019.01

3 100 12 —6444.14 -5617.36 —5729.36 -6016.69

50 2 1 100 2 —31234.60 —-10410.60 —10512.60 —10809.63
2 100 2 -23069.20 —-10408.30 —-10510.30 —10807.33

3 100 2 -27361.70 —-10408.20 —-10510.20 —-10807.23

3 1 150 6 -38906.70 -10394.40 —-10550.40 —11004.68

2 150 6 -26127.70 -10391.40 —-10547.40 —11001.68

3 150 6 —28516.00 -10414.60 —10570.60 —11024.88

4 1 200 12 -20771.20 -10395.90 —-10607.90 —11225.25

2 200 12 —-17158.50 —-10409.10 -10621.10 —-11238.45

3 200 12 -30187.00 -10389.90 -10601.90 -11219.25

75 2 1 150 2 —134712.00 —13339.20 —13491.20 —13964.64
2 150 2 —-121342.00 —13329.90 -13481.90 —13955.34

3 150 2 —-100817.00 —13338.90 —13490.90 —13964.34

3 1 225 6 —137256.00 —13334.70 —13565.70 —14285.21

2 225 6 —78193.00 —13334.10 —13565.10 —14284.61

3 225 6 -161572.00 —13329.50 —-13560.50 —14280.01
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Table 1 (Continued)

m Testing Paia;mete;s LongkehhSc;;)rc: LongkehlE)r?ﬁ AIC BIC

4 1 300 12 —94940.00 —13332.40 -13644.40 -14616.20

2 300 12 —122086.00 —13331.00 —13643.00 —14614.80

3 300 12 —122619.00 —13329.40 -13641.40 -14613.20

Table 2 MNHM models simulation for number of 75 data time series (7 =75)

P m Testing p aral;lletersy LongkehhSc;;):[ Longkeh};‘?;:} AIC BIC
50 2 1 100 2 —20490.70 —16596.40 —16698.40  —17016.11
2 100 2 —22454.90 -16596.30 -16698.30  -17016.01
3 100 2 —20646.50 —16596.50 —16698.50  —17016.21
3 1 150 6 —22316.70 -16579.80 —16735.80  —17221.70
2 150 6 -20144.70 —16573.00 —16729.00  —17214.90
3 150 6 -21419.90 -16575.40 —-16731.40  —17217.30
4 1 200 12 -20386.10 -16556.60 —16768.60  —17428.93
2 200 12 -20549.90 -16554.20 —-16766.20  —17426.53
3 200 12 —19885.70 -16551.20 —16763.20  —17423.53
75 2 1 150 2 —78644.30 —23464.20 -23616.20  —24120.46
2 150 2 —64377.80 —23479.50 —-23631.50  —-24135.76
3 150 2 -86579.70 —23468.30 —23620.30  —24124.56
3 1 225 6 —86050.60 —23443.10 —-23674.10  —24440.44
2 225 6 -66731.90 —23465.90 —23696.90  —24463.24
3 225 6 —66539.60 —23442.90 —-23673.90  —-24440.24
4 1 300 12 -66931.70 —23444.80 —23756.80  —24791.86
2 300 12 -71197.80 —23453.10 —23765.10  —24800.16
3 300 12 -67117.90 —23463.40 —23775.40  —-24810.46
100 2 1 200 2 —284059.00 -28077.60 —28279.60  —28978.79
2 200 2 —258135.00 —28055.40 —28257.40  —28956.59
3 200 2 —243800.00 —28048.50 —28250.50  —28949.69
3 1 300 6 —318420.00 —28052.90 —28358.90  —29418.07
2 300 6 -269263.00 —28049.60 —28355.60  —29414.77
3 300 6 —255696.00 —28048.70 —28354.70  —-29413.87
4 1 400 12 —256261.00 —28043.50 —28455.50  —-29881.57
2 400 12 —231878.00 -28059.20 —28471.20  —-29897.27
3 400 12 —276319.00 —28034.10 —28446.10  —-29872.17
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Table 3 MNHM models simulation for number of 100 data time series (7 =100)
P m Testing Parameters LogLikelihood LogLikelihood AIC BIC
U 4 start final
75 2 1 150 2 —45090.90 —-32902.80 —33054.80  —33580.92
2 150 2 —48680.80 —-32908.60 —33060.60  —33586.72
3 150 2 —45786.10 -32910.00 -33062.00  —-33588.12
3 1 225 6 —41197.00 —-32880.20 -33111.20  -33910.77
2 225 6 —42179.20 —-32877.70 -33108.70  —-33908.27
3 225 6 —45186.10 —32889.80 —33120.80  —33920.37
4 1 300 12 —45478.40 —32857.40 -33169.40  —-34249.34
2 300 12 —-39464.10 —32838.40 -33150.40  —-34230.34
3 300 12 —44167.40 —32849.00 -33161.00  —-34240.94
100 2 1 200 2 —-102057.00 —41766.70 —41968.70  —42696.94
2 200 2 —-151539.00 —41798.10 —42000.10  —42728.34
3 200 2 —138825.00 —41756.50 —41958.50  —42686.74
3 1 300 6 —-136727.00 —41724.60 —42030.60  —43133.78
2 300 6 —-89290.20 —41753.40 —42059.40  —43162.58
3 300 6 —-119623.00 —41761.00 —42067.00  —43170.18
4 1 400 12 —126262.00 —41727.80 —42139.80  —43625.13
2 400 12 -91507.90 —41755.10 —42167.10  —43652.43
3 400 12 —104235.00 —41752.50 —42164.50  —43649.83
125 2 1 250 2 —-338726.00 —48374.70 —48626.70  —49563.32
2 250 2 —-348007.00 —48346.20 —48598.20  —49534.82
3 250 2 -376975.00 —48351.40 —48603.40  —49540.02
3 1 375 6 —-345004.00 —48338.30 —48719.30  —-50135.38
2 375 6 —284638.00 —48342.20 —48723.20  -50139.28
3 375 6 —-380462.00 —48344.90 —48725.90  -50141.98
4 1 500 12 —264409.00 —48325.00 —48837.00  —-50739.97
2 500 12 —259946.00 —48333.40 —48845.40  —-50748.37
3 500 12 —338281.00 —48319.40 —48831.40  —-50734.37

The results of the MNHM model simulation for all data (attached) whose results are summarized
and presented in Tables 1-3 above show that the likelihood function is increasing in each iteration.
However, because the likelihood function obtained is a local maximum value, the parameter
initialization is important because it affects the parameter estimator obtained, this can be seen from 9

simulations of the final result of the maximum likelihood function at m =4 state is 7 times, m =3

state is 2 times, and m =2 state is 0 times. While the best model of 27 simulations is entirely at m =2

state which can be seen in the AIC and BIC values are always maximum at m =2 state, this is because

even though the final maximum likelihood is at m =3 and m =4 states but the penalty due to the
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increase in independent parameters and the amount of data has a greater effect than the increase in the
likelihood function.

5. Conclusions

The multivariate Normal hidden Markov model (MNHMM) which assumed the Markov chain is
homogeneous, ergodic and fulfills the assumption of continuity of parameters, then

1. Parameter Estimation of MNHMM using the EM algorithm produces a formula that maximizes
the likelihood function,

2. The obtained parameter estimator sequence algorithm converges to the stationary point of the
likelihood function monotonically increasing.
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