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Abstract

The multivariate nonlinear mixed effects models (MNLMM) have received increasing attention
due to their flexibility in analyzing and modeling multivariate longitudinal data. In the framework of
MNLMM, the random effects and within-subject errors are assumed to be normally distributed for
mathematical tractability and computational simplicity. However, such assumption might not offer
robust inference if the data, even after being transformed, exhibit skewness. In this paper, we propose
a multivariate skew normal independent nonlinear mixed model (MSNI-NLMM) constructed by
assuming a multivariate skew normal independent distribution for the random effects and a
multivariate normal independent distribution for the random errors. We develop a new model which
can flexibly handle asymmetric, unbalanced, and irregularly observed multivariate longitudinal data.
Also, we present two different iterative algorithms for maximum likelihood estimation of the MSNI-
NLMM. They are the penalized nonlinear least squares coupled to the multivariate linear mixed effects
(PNLS-MLME) procedure and the pseudo-data expectation conditional maximization (ECM)
algorithm. The proposed approaches are illustrated through an application to ACTG 315 data and a
simulation study.

Keywords: AR(1) correlation, multivariate longitudinal data, nonlinear mixed effects, damped exponential
correlation, unstructured correlation.

1. Introduction

Multivariate longitudinal data where more than one response can be measured over time, for each
subject. Marshall et al. (2006) propose the multivariate nonlinear mixed effects models (MNLMMs)
for multivariate longitudinal data. Lachos et al. (2010) assume that the random effects follow
multivariate skew normal/independent distribution, and the random errors follow symmetric
normal/independent distribution. Meza et al. (2012) consider heavy-tailed multivariate distributions,
such as the t-distribution, the contaminated normal and slash, for both random effects and errors.
Pereira and Russo (2019) present a nonlinear mixed effects model with skewed and heavy-tailed
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distributions, where the nonlinearity is incorporated only in the fixed effects. Schumacher et al.
(2021b) provide an extension of the skew-normal/independent linear mixed model, where the error
term has a dependence structure, such as damped exponential correlation or autoregressive correlation
of order p. Schumacher et al. (2021a) present a class of asymmetric nonlinear mixed effects models

if the random effects follow a multivariate scale mixture of skew-normal distribution, and the random
errors follow a symmetric scale mixture of normal distribution, providing an appealing robust
alternative to the usual normal distribution.

Lin and Wang (2013) propose a multivariate skew-normal linear mixed model, assuming a
multivariate skew-normal distribution for the random effects, and a multivariate normal distribution
for the random errors. Wang and Lin (2014) consider a joint multivariate t-distribution for the random
effects and within subject errors, called the multivariate t nonlinear mixed-effects model (Mt-NLMM).
Wang (2015) assume that the random effects and the within subject errors are normally distributed to
handle symmetric multivariate longitudinal data. However, such an assumption is not always
applicable, especially when data contain outliers or heavy-tailed. Wang and Lin (2017) propose the
multivariate t nonlinear mixed model with censored responses (Mt-NLMMC) for multivariate
longitudinal data exhibiting nonlinear growth patterns with censorship and heavy-tailed behavior.
Multivariate skew normal/independent nonlinear mixed effects models (MSNI-NLMMs) are
considerably more complicated and computationally intensive than MSNI-LMMSs. The nonlinearity
offers no closed-form solutions to the model parameters.

In this article we provide hierarchical forms of multivariate skew normal independent nonlinear
mixed effects models. Also, we introduce the skew normal independent (SNI) distribution. The SNI
distribution is an attractive class of skew heavy-tailed distributions. Special cases of the SNI
distribution are the skew normal, the skew Student’s-t, the skew slash, and the skew contaminated
normal distributions. We propose a multivariate skew nonlinear mixed effects model (MSNLMM),
which is an extension of the multivariate nonlinear mixed effects model. In the proposed MSNLMM
model we assume a multivariate-skew normal independent (MSNI) distribution for random effects,
and a multivariate normal independent (MNI) distribution for within-subject errors. The proposed
MSNLMM model can be used to fit multivariate longitudinal data exhibiting nonlinear growth pattern.
We suggest two different iterative estimation algorithms. They are the penalized nonlinear least
squares coupled to the multivariate linear mixed-effects (PNLS-MLME) procedure, and the pseudo-
data expectation conditional maximization (pseudo-ECM) algorithm.

The rest of the article is organized as follows. Section 2 introduces the model formulation,
addresses some relevant properties. In Section 3, we present the hierarchal forms of the proposed
model and discuss the computational aspects of PNLS-MLME procedure and pseudo-ECM algorithm.
A method of obtaining approximate standard errors of ML estimates is also provided. The proposed
techniques are applied to ACTG 315 data in Section 4. A simulation study is also conducted to evaluate
the proposed techniques in Section 5. Some concluding remarks and future works are given in Section
6.

2. Statistical Models
2.1. Multivariate skew normal/independent (MSNI) distribution
The skew normal/independent (SNI) distribution can be defined as (Lachos et al. 2010):

Y=u+U"Z, (1)
where u is a location vector, U is a positive random variable with cdf of H( u;v) and a pdf of

h(u;v), v is a vector of parameters and Z is a multivariate skew normal random vector (Arellano-
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Valle et al., 2005) with location vector 0, scale matrix X and skewness parameter vector 4, i.e.

Z ~SN,(0,X,2). Given U =u, ¥ follows a multivariate skew normal distribution with location

vector 0, scale matrix » ' and skewness parameter vector A, i.e., ¥ |U=u~ASN, (ﬂ,u’IE,Z).
The marginal pdf of ¥ is

f(y)= 2.[0¢d (y;;c,u’lf.)d)(u”leE’”z (y—ﬂ))dH(u;v), yeRY, 2)
where ¢, (.;u,E) stands for the pdf of the d -variate normal distribution with mean vector x# and

dispersion matrix X and ®(-) represents the cdf of the standard univariate normal distribution.

2.2. Multivariate skew-normal/independent nonlinear mixed model (MSNI-NLMM)
Suppose that there are m subjects and the subject i has n; observations on each of the r

T
responses. Let ¥,=[y, :...:y,.,,]:[yf1 :...:y,.T,n‘_] be an n, xr response matrix for the i™ subject
collected longitudinally (i=1,...,m), inwhich y, =(y; .-, 7, )" is a column vector of responses for

the ;" outcome (j=1,...,r) and y,, =(Vs.-.-»V,,) is a row vector of responses collected at the

T
k" occasion (k=1,...,n). Let E, =[e,:....:e, =[e,T el ] be the n, xr matrix of within-

il <Cin,
subject errors, in which e, =(¢;,,....¢;, )" is a column vector corresponding to ;> and
e, =(e;»-e,,) is a row vector corresponding to y,,. Introducing the vec(:) operator, which
strings out the columns of a matrix vertically, we can obtain y; = vec(¥;) and e, =vec(E,) denoted by
the stacked n,7 -dimensional vectors of all responses and within-subject errors, respectively.
The MSNI-NLMM for the i" subject takes the form
yi=n(4.X,)+e, 3)
where u,(4,X,)=p,(B.b,), m isanonlinearly differentiable function of the parameters vector ¢,
and the covariate vector X, and e; is the error term in the model. The parameter vector ¢, can be
incorporated into the model as
¢ =X B+Zb, “)
where f=(B/,....8,)" are the regression coefficients with each p; vector g8, used to describe the

fixed effects of response j; b, =(b),....,b.) is a g - variate random effects. Moreover, X, =

diag{X,,.... X,

ir

} and Z, = diag{Z z }, where X; isa n,x p, covariate matrix of full column

i1o s &y
rank for fid effects associated with y,, and Z, is a n,xq, design matrix for random effects.

Typically, Z

; 1s a subset of X.. The block diagonal structures of X; and Z, allow us to analyze

multivariate longitudinal data with different numbers of measurements and/ or unequal sets of
occasions per subject. Also, to specify distinct design matrices for each response. For easy notation,

welet s, =mr, p= Z;:lpj and ¢ = Z;:lql.. Meanwhile, we assume that

~S8NI . s s JH |, i=1,....,m. %)
e 0 0 R 0
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where the matrices R, and D, i =1,..., m, are dispersion matrices, corresponding to the within and
between subjects, respectively, 4, is the skewness parameter vector of the random effects and
H=H(;v) is the cdf of the assumed distribution. ~The b, ~SNI (0,D,4;H) and
e,~NI (0,R;H) are indexed by the same scale mixing factor u,, so, they are not independent in

general.
The mixed effects model assumes that e, are symmetrically distributed, while the distribution of

random effects is assumed to be asymmetric. That is, the skewness parameter 4, a measure of

asymmetry, are all zeros, where the MSNI-NMM reduced to the MNI-NMM ( Arellano- Valle et al.
2005; Lin and Lee 2008). When 4 =0 and U is distributed as Gamma(v /2,v /2), the MSNI-LMM

reduced to the (hierarchical) Mt-NLMM.
When the dimensions of R, are large, estimation can be burdensome. Thus, a parsimonious

structure for R, is used. Accordingly, we assume that e, , ~NI,,(0,W,H ), where W=[o"l./.,]
explains the unstructured varinaces/covariances among the » outcome variables. Also, we assume
that e, ~ NI, (0,5 ,C,,H), where C, is a time varying dependence structure for the autocorrelation
among n, occasions. Hence, we have R =W ®C, (&, w), where ® denotes the Kronecker

product.

3. Maximum Likelihood Inference
3.1. Hierarchical formulation of MSNI-NLMM

Let 6= (B, D,W.E, v, A, v) be the entire model parameters. The likelihood function of 0 is
formed by the product of the marginal density of each y, for i =1,...,m, obtained by multiplying the
marginal density of b, by the conditional density of y, given b, and then integrating out b, The

exact marginal distribution of y, cannot be analytically determined because marginalizing out b,
involves complex multidimensional integration. For ease of computation and theoretical derivation,
we reparametrize D = F'F, namely, F = D"?. The models in Equation (3) and Equation (5) have

four-level hierarchical specification as
yi|(bi7Yi7ui)~Nsi (ui([‘)’:bi)> ) 1| Vl’ul) N (w/l: i A),

yi|ui~TN((0,ui’)( oo)) u, ~H u1|v) (6)
for i=1,...,m, where a=F3,A=D-aa’withd=8(L)=————=e(-1,1)", and F being the

square root of D containing g(q +1)/2 distinct elements. TN((u,t)\ a,b)) denotes the univariate

normal distribution (N(u,7)) truncated on the interval (a,b).

Let ycz(yi,bf,yf,u?)T, with y=<y1T,...,y;)T, b (b]T,...,b;)T, V=V V)

A A ~ T
u=(u,...,u, )T and let 6 (B(C)T,F(C)T, WO EET gl T Q(C)T) , denote the estimate 0
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at the c" iteration. The marginal density of 1y, when y,|(b,v,,u;)~N, (m(B.b).u;'R,),
b,|(v;,u) ~ N, (0y,,u;'A), v,[u; ~TN(O,u;") and U, =u, ~H(u]v) is
£(vi0) = [.[..[ 4, (3:]0b1v.0)) 4, (bi](ri,u)) #Cv, u)cu,v) | b,y
[0 6 (3 (Bb,),u R ), (oo A )¢ (0,0 )y v) | b,

—(s;+q+1) (si+a+1)

=[] [.n) 2 R [Z[A[2, 2
eXp - (yi —lli(ﬁabi))T Riil (y,- _ui(ﬁ7bi))+(bi _aYi)TAq (bi _(’“Yi)+yi2 + 10g(h(ui‘v)) db,dy,du;.
2

O]
The  marginal  density of y,, when y, |(b]. ,u;) ~ Ny (ui(B,bi),ui’lRi) and

b, [u; ~ SNI, (0,u;'F"F, b, H) is
(y,10) = [ 4, (v:[m(B.b).u; 'R, ), (b,[0,0; 'F"F, &, H)dH(u,[v)db,,

= ZI:IRq(zn)—(s;+q)/z |Ri |—l/2 |F|71 A

eXPK_%((yi —Hi(l}abi))T Riil (y,‘ —Hi(ﬁ,bi))+ biT(FFT)ilbi )j
u28'F'b,
\J1-8"8

From Equation (7), we can obtain the marginal distribution of y, by integrating over (b,,y;,u;)and

the joint distribution of (y/.b!,v/,ul), where ¢ (y,|(b,.v,.u)))., &, (b,|(vi.u)). d(v;[u). ACuv)

@ db,dH (u,|v). ®)

distributed as a multivariate normal, a multivariate normal, a truncated normal and a pdf of cdf
H(u,|v), respectively. Also from Equation (8), we can obtain the marginal distribution of y, by
integrating over (b;,u;,) the joint distribution of (y;,b;,u;), where ¢, (yi |(bi,ui)), #,(b,|u,)
distributed as a multivariate normal, a multivariate skew normal independent, respectively.
The log-likelihood function for the observed data Y:{yi}l] of Equations (7) and (8),
respectively, is
1(0]Y,) = A, —%i[—z 1ogj:B,, dH(u, |v)}, )

where

B

4= log% +(s; +q)log(2m) + 10g|Ri | + log|FFT

1
. 25TF b,
B, = u ™ exp| —2+((v, ~m,(B.b) R (v, —w (B.b)+ b (FF') b, )+ log @] “2——"
Al )R ) ) —

1(9|YC):—%i[Ai +B,]. (10)
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where

A = logl+ s, +q+1)log(2n)+log(R,|+log|A{—2logh(u.[v)—(s, +q+1)logu.
1 4 1 1 1 1 1

B, =u,((v, ~m(Bb)) R (3, ~w (B.b)) + (b, — ) A” (b, —ay)+7; ).

3.2. Maximum likelihood estimation via the PNLS-MLME procedure of MSNI-NLMM

The procedure consists of two steps: a penalized nonlinear least squares (PNLS) step and a
multivariate LME (MLME) step. The basic idea is to estimate the unobservable random effects b, via
the PNLS step and then update the ML estimates of parameters 0 based on the formulation of MLMM
for the pseudo-data. The proposed PNLS-MLME procedure is described as follows.

The PNLS step: According to Equation (9), we first define:

» itd)
g(y;,b;,u,,0) =—2log [ u, * exp(4)dH(u,v), (11)
u. _ _ u’?8"F'b.
Ai = _?l((yi _ui(ﬁ’bi))T Ri ](yi _l‘li(ﬂﬂbi))+ biT(FFT) ]bi)"'logq{l—ﬁTﬁlJ

where p,(B,b,)=p,(4, X,), for i=1,...,m, is a function of fixed effects and random effects b,.
Fixing the current estimates of parameters 0 = (B, F©, W £© {© 3© §©) and {ﬁfc)} , the
i=1

conditional modes of random effects b, are obtained through minimizing a penalized nonlinear least-

squares objective function:
NOR - N A0 Q@
{bi }i:l—argmln El g(y,,b,,u”,0"). (12)

In practice, solving over b® for each subject can be implemented by minimizing g(y,, b,, 4, 8)
in Equation (11) with respect to q -dimensional random effects.

The MLME step: The parameter estimates are updated by utilizing the first- order Taylor
expansion of Equation (3) around the current estimates ¢?i(°) = Xifi(c) +Zif)i(°). The pseudo- data is
denoted by ¥, =V —H, (éi(C)axij,k) + iij,kﬁ(C) + Zij,kf)i(C)a where X, =, (&i(c)axij,k )'X; and
Z; =pn j(¢?i(°),xijgk )' Z.. Consequently, the model for the super vector of the pseudo- data for the i"
subject is

¥, =XB+Zb, +e, (13)

where y, is a nrx1 vector composed of T pseudo-response vectors y; = (Y ;»---» Vi, ), 5(]. is a

n,r x p matrix with rows made up of px1 vector )N(ij,k and Z, isa nrxq matrix with rows made
up of gx1 vector iij,k. According to Equation (13), it is easy to verify that

¥, ~SNI (XB,Z,, 4, H), (14)

¥, "*Z.FF't,

(I+7Tx)"

follows immediately from Equations (2) and (14) that

where i =ZFF'Z" + W®C, and &, = witht, =F"%, T,=(FF"+ZRZ")" It
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£(3)=2[ 8 (5,1 XB,u'E; )@ (ulE; )dH (u,v), (15)
AMFZE'(§,-XPB)
(+tTt)?
From Equation (14), the three level hierarchy of MSNI-NLMM are
(7o =)~ N (X p+dyu ), 7, |U, s, ~ TN ((0,u,)](0,0)), Upu, ~ H (u,lv).

where E, =(1+1/T,t,) "*A"FZE'(§, - X B) =

(16)
The parameter vector v is assumed to be known. In practice, the optimum value of v can be
determined using the profile likelihood and the Schwarz information criterion. Note that

U,=u, ~h(u,|v), the conditional distribution of 2 given u, follows

1

y, |Ul. =u,~ SN, (Xiﬂ,ui_lii,l). In order to update ﬁ’(c), we first set an initial guess of {u,}

m
-l as

i) = arg min{—%(ﬁ,- ~X.B) £ (5, X,B) +log®(uE, ) + log h(u,-|v)},
which maximizes the log-likelihood function for the complete-data { j;l.,ui};il . In this step, we update

,3(”) by a generalized least-squares approach. The solution of {ﬁf“‘)}’: can be obtained by exploiting

the nlminb optimization routine available in R package. The initial guess is generated from A (u,[v”).

Next, we perform a generalized least squares step

A m ~ o~ ~ -1 ~ o~
ﬂ(m) _ Z[ﬁi(c)xirzq(c)xi] Z[ﬁi(c)xirzfl(c)jji _MA;/Z(c)n(c)g(c)J, (17)
i=1 i=1
~T(c)\gg-1(c) 7(c) o 1/2 7
where ¢ =u, a® =(1+d"¥'d)"* and n =¢(u’—€’)
a_[(() i i i i (D(uj/in)

Given the current estimate 3", we update & = (Vech(ﬁ‘c)),vech(W“’), é“’,t/}(”,i“),ﬁ“))

by the Newton-Raphson method:

. ~(c Il LA c
&) = ) frlemd glenn), (18)
J(c+/2) (c+1/2) . . —p(et)
where S, and H,, ' are the score vectors §, and Hessian matrix H,, evaluated at f = f
and @ =@'". Explicit expressions for elements in §, and H,, can be derived as usual. Iterations of

Equations (12), (17) and (18) continue until either the maximum number of iterations or the user-
specified convergence tolerance has been achieved.

3.3. Pseudo-ECM algorithm of MSNI-NLMM
According to the pseudo-data model specified in Equation (13), treating the random effects

{b;}",. {u,}" and {y,}” as latent data, we establish a complete data framework of the model in

i=1"
Equation (22). Given the pseudo-complete data {y,}" , {b,}" . {u,}" and {y,}" ,thelog-likelihood
function of @ is

m

1(0]Y, ) = —%Z[log|W ®C,|+log|A +tr((R,.)*‘®”)+tr(A*‘®2,)—2log h(u,|v)J +C, (19)

i=1
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where C is a constant that is independent of the parameter vector 8 and Ai(u,|v) is a function that
depends on @ only through v, O, =wéé’ =u,(y,—~X,f-Zb)F, ~X,—-Zb)", and
0, =u,(b,~ay,)(b —ar,) . Letting

09 = EQu7,.0). (ub)® = Eub, [, 6. (wbb")" = E@ub b [5,.0), ()l = E(u, 7.6,

W) = E(u,2[5,,6), (0yb)® = E(uy,b,[5,.0),

and V©© =E (( V2 i °)/&<°>))Ly,.,é<°>) with 7€ = ¢(E1) | D(E) and E =u* i’ /6. It can

be proved that
@ = fr, 4708, (20)
W =i+ &, O, 5 @
(uAb>f~°) = jay W) +i by . 22)
(Wbb ) =5+ @) @B) = £y +jay iy (07
S CTY N (R 23)
WB)® = fi, (W) +on (W), (24)

where i, =(1+d/¥;'d)"d/¥;'(5,- X f) and scale parameter &’ =(l+d/¥;'d)" in the
truncated range (0,c0) are the mean and variance of ,, @, =(I,~%,Z/R'Z)a=%,A 'a, and
X, =(Z/R'Z,+A")" are the mean vector and the variance/ covariance matrix of the conditional
distribution of b, given y, and y,, respectively, v, = f‘.blz.r R (5.-X.p).

The expected complete-data log-likelihood function (Q-function) can be evaluated as follows:
E step: Evaluate the expected complete-data log-likelihood Function Equation (19) conditioning

on the current estimates 8 and the pseudo- responses y, =y (8,6°"), which linearize the

regression function around the previous estimates of mixed effects ( ,5’,1;1.(“’”) and should be updated

at each iteration. This gives rise to the so-called Q-function:
0010 =E,,, (I (05.)7.0)

=——Z(log|W ®C |+log[Al+ir(W ©C) O )+ 1r(A"O)+ () ®(°>) (25)
where
0 =Eweéey,,09)
=0, (5~ KB - XY + Z] (b Z, ~ Z,(ub) (5 - XY — (51 - X )ub)” Z]
%) =, (B ~ a7 )b — 7Y = (Wbb ) +(up*) AT — (upb) @ ~ i (upb)”
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6y = E(logh(u ), RO =W @C,Ey"), & =E[@,.0°) =5 - X - Zb and

7, = 5.(B,b“™") represents the update pseudo-responses.

CM step: update the current estimates B, F© W © £ 7© 7© and $© by maximization the

Q function in Equation (25):

e oo o T ¢ o 5 e D (urh)®
Fe =Y [aOXTROX ] Y| XIR (5, -2, (b )] a - S
i=1 i=l Zi:l(u}/ )i
n 1 & R N A
A(c+]) :_ZO(;H)’ D(c+l) A(c+l) +a "(c+]) (c+l)T 6(c+]) — F(c+l)—l&(c+])’

m -
where F©*" is the square root matrix of D", The updated estimates of A can be calculated as

ACD =D (=532 For updating W@, we define W’lz[aﬂ] and W:[Gj,}

J,I=1,...,r. Given é)ﬁf“), we update the diagonal-elements in W which are defined as
:(Zn j Ztr( Cef ) for j=1 and
:(22}1 ] Ztr( 1@ (@i;lﬂ) +®ffh+”2))), for j #1,
i=1

A(c+172) . . . . . al ~ ~ od ; ad
() is an n, - dimensional square matrix, given by 05" =¢ e, +Z (uyh) Z,,

where @)lij1

where ¢, = j, X,b' ©h_7 b ©and &, =y, - XB“" —Zb,” with bAif(C) and (Jy\b);.‘,’) being a
g, x1 sub vector of 4, and a g,xg, sub matrix of (uyb)® respectively, evaluated at 6 =9,
Unfortunately, equating the first derivatives of Equation (31) with zero does not result in closed form.

We use the nlminb routine in R Package to perform a numerical search for updating the (§ (D 4y (eh )

That is,

(5(”” A(””) arg max{rZ|C |—tr((W(°“) ®C) 1@5?*””)].

(6w)
The v is updated by optimizing the constrained log-likelihood function
p* = arg max f(j)Ié(”l),v), where f(y|6) is as in Equation (16).

3.4. Estimation of random effects and prediction of future values for MSNI-NLMM
The posterior density of b, given (¥,,U,)=(y, u,) belong to the extended multivariate skew-

normal (EMSN) family (Azzalini and Capitanio 1999)

=N f(j)[‘bi)f(bi) _ -1 112 9T y-1/2 12 7
f(bilyi)_ .[f(_f/[|b[)f(b,-)db[ _¢q (:”bl\jr,aui Zb")—;l)(b(u[ A D bl.)(D(u Ei),

where p,; =DZ'E; ( Xﬂ) and ¥, =[D’1+Z~,.T(W ®C,.)Z.T. It is straightforward to

show that the estimator that minimizes the overall mean square error (MSE) is
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b.(6) = min E [(b,. —b,)(b, —bi*)T}. A simple way to obtain the minimum MSE estimator b, is to use
b;

the conditional mean of b, given observed data y,. After some algebraic manipulations, we obtain

V—li i\‘ : Dl/zl

~ 1/2
(1+sz D'’ D”zlb)

b(0)=E(b,.0)=p,; +
b;|y;

1/2 1
where V= E[(ui’”zn(u;/in)Lf/i,ﬂ)}, with 7(u]*E,) =g((u’l—/zg’)) Substituting @ with ML estimates
Uu.

é, the estimates I;,.(O) = I;,.(é) is called the empirical Bayes estimates. Therefore, the fitted values of

responses can be calculated as

P, = (B.b),i=1,....m. (26)

4. Application

The proposed approaches are applied to real data concerns the HIV/AIDS. The University
Hospitals of Cleveland, Rush Presbyterian St. Luke’s Medical Center and University of Colorado
Health Science Center have recruited 53 HIV-1 infected patients. The plasma RNA viral load and CD4
T cells of patients were repeatedly measured at days 0, 2, 7, 10, 14, 28, 56, 84, 168, and 196 after the
start of ARV treatment. Five patients are excluded as four patients dropped out of the study
prematurely and a patient left due to a problem with the study therapy. So, the analysis depends on 48
patients. The data have been analyzed by many authors such as Wu and Ding (1999).

To verify the existence of skewness in the random effects, we start by fitting a traditional MN-
NLMM model as in Pinheiro and Bates (2000). Figure 1 describes the normal Q-Q plots of the
empirical Bayes estimates of b, and shows that there are some non-normal patterns on the random

effects, including outliers and possibly skewness. This supports the use of thick-tailed distributions.
Additionally, patients are not regularly measured in the study and the lengths of their follow-up times
are distinct. These conclusions encourage applying a model which can flexibly handle asymmetric,
unbalanced and irregularly observed multi-outcome longitudinal data.

Let y,, and y,, be log,, RNA and CD4"° markers, respectively, at the k" occasion for the

i" patient. We use the bivariate functions for Yy and y,
Yk = log,, (GXP(¢1; =Pty ) + exp(¢3i )) te
¢

Yiox = + +€5s
1+exp( ¢5i _t[k)j
¢6i

where $ =B, +by, & =P, ¢3i :B3RNAi’ Py =By by, ¢5i = Bs’ ¢6i = BG and t, =day, /7 is
the k" visit for patient i with RNA, being hisher log,,(RNA) levels at the start of the study,

@7n

(b,

il»

b,,) are the bivariate skew normal independent distribution of random effects; and (eil,eiz)T =

(€158 »€1p15---»€,, ) are the within-subject errors that follow a multivariate normal independent

distribution with zero mean and variance-covariance u;' (W ® C,). Lin and Wang (2013) incorporated

base RNA to the analysis because it is significant covariate.
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Figure 1. Normal Q-Q plots of estimated random effects based on MNLMM with
(a) b, for log,, RNA and (b) b,, for CD4"*

We fit the models MSNNLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM with specific
nonlinear mean functions. Three covariance structures have been considered for within-subject
dependence; the uncorrelated (UNC) structure, a continuous-type autoregressive model with orderl
AR(1), and the damped exponential correlation (DEC). The Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) are used for independent variables selection.

Table 1 summarizes the values of / , , AIC and BIC for the different models under different
covariance structures. The results show that the model with DEC covariance structure performs better
than the one with UNC errors or AR (1) errors. The results of the /, _, AIC and BIC suggest that the

max?

best model is the multivariate skew slash-nonlinear mixed effect models (MSS-NLMM) with DEC
dependence. The !/

(MSNI) model presents the best fit than the multivariate skew normal (MSN-NLMM) model,
suggesting a departure of the data from normality.

The ML estimates and their standard errors (SE) of the four best fit models are presented in Table
2. The significance of the fixed effects parameters (the estimate relative to 2 SE) are similar for the
MSN-NLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM models. Under the fitted MSN-
NLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM, the estimated correlation coefficients of

AIC and BIC criteria indicate that the multivariate skew normal independent

random effects D,, /+/D, D,, are 0.9097,0.9232, 0.8827 and 0.8701, respectively. This means that

there is a highly positive correlation between patient-specific variabilities of RNA viral load and CD4-

T cells. The estimated correlation coefficients of within- subject errors VIA/]Z /4 Vf/]]l/ffzz are —0.1381,
—0.1261,—-0.1216 and —0.1302, respectively. Hence, the relationship between the two responses, CD4-
T cells and HIV-1 RNA levels (viral load), is negative and weak. The estimates of autocorrelation and
damping parameters £ and y show serial correlations among occasions. For testing H,: w =1

(AR(1) structure) versus H,:y # 1 (DEC structure), the likelihood ratio test (LRT) statistic for the

fitted MSN-NLMM, MST-NLMM, MSSNLMM and MSC-NLMM are 73.122, 71.964, 66.626 and
62.684, respectively, which is highly significant at any reasonable significance level. Hence, the null
hypothesis is not supported by the data meaning that the DEC structure is more reasonable to data.
The estimates of degrees of freedom of multivariate skew the t-distribution, the multivariate skew
slash distribution and the multivariate skew contaminated normal distribution are v =10, v =2.8533,

v,=0.7725, v, =0.5234, respectively. These estimates support the presence of heavy-tailed behavior
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of between and within patient variability. It is noticed that the estimate of re-scaled skewness
parameters are significantly which support the appropriateness of multivariate SNI distribution.

Table 1 Comparison of fitting performances for the ACTG 315 data under Pseudo ECM. Bold
values indicate the smallest value from each

C Criteria MSN MST MSS MSC
UNC - 14 15 15 16
/ -1193.392 -1184.640 -1179.817 —1189.025

AIC 2414583 2399296  2389.634  2410.050
BIC 2440780 2427364  2417.702  2439.989
AR(1) n 15 16 16 17

/ -1106.288 —-1102.378 -1093.172  —1097.072

AIC  2242.576 2236.756 2218.344 2228.144
BIC  2270.644 2266.695 2248.283 2259.954
DEC n 16 17 17 18

l -1069.727 -1066.396 —-1059.859  —1065.730

AIC 2171.454 2166.792 2153.718 2167.460

BIC 2201.393 2198.602 2185.528 2201.142
MSN=MSN-NLMM; MST= ST-NLMM; MSS=MSS-NLMM; MSC=MSC-NLMM,;
UNC=uncorrelated structure; AR(1)=continuous time autoregressive of order 1; DEC=damped

exponential correlation; 7, =number of parameters; /

e — the maximum log-likelihood value.
Also, the results show that estimates of the fixed effects parameters are similar for the four fitted
models, however the standard errors of the MST-NLMM, MSS-NLMM and MSCN-NLMM are
smaller than those of the MSN-NLMM model for the most parameter of the model, indicating that the
three models with longer tails than MSN seem to produce more accurate maximum likelihood
estimates. The standard error approximation for the skewness parameter (J,) seems to be poor.

We next compare the fitted values, calculated by using Equation (26), based on the four best
models selected in terms of AIC and BIC in each of MSN-NLMM, MST-NLMM, MSS-NLMM and
MSC-NLMM with DEC dependence frameworks. The best model is MSSNLMM with DEC errors.
To measure the discrepancy of the fitted values relative to original responses, we use the mean squared

deviation (MSD = Z,-,- s — j/[j,k)z /M ) and mean  absolute relative  deviation

m

(MARD = zij’k|(y,.j,k ~ i)/ y,.j’k|/M), where M = Zsi is the number of entire observations. The
i=1

quantities of MSD for MSN-NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with DEC
dependence are 6.344, 5.828, 5.486 and 5.599, respectively. The quantities of MARD for MSN-
NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with DEC dependence are 0.195, 0.189,
0.186 and 0.187, respectively. This justifies that the MSNI-NLMM provides a considerably better
fitting performance than the MSN-NLMM.
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Table 2 ML estimates and standard errors under the DEC-MSN, MST, MSS, MSCN-NLMM for
ACTG315 data set, where F = D",

MSN MST MSS MSC

Parameters v =10 V28533 v, =0.7725,
v, =0.5234

181 11.4176 11.3001 11.3795 11.3527
(0.2392) (0.2217) (0.2314) (0.2253)

Bz 2.1253 2.0593 2.0925 2.0807
(0.1205) (0.1101) (0.1164) (0.1145)

l}} 1.2934 1.2756 1.2905 1.2822
(0.0399) (0.0373) (0.0387) (0.0375)

ﬁ“4 16.8892 16.9068 16.9383 16.9139
(0.3294) (0.3092) (0.3159) (0.3074)

"@5 —1.4524 -1.6272 —1.5225 —1.5499
(0.2387) (0.2644) (0.2487) (0.2523)

ﬂAs 1.2017 1.2851 1.2208 1.2516
(0.1940) (0.2073) (0.1980) (0.2010)

ﬁ“ 0.1960 0.2117 0.1816 0.1782
(0.4727) (0.3376) (0.4766) (0.4971)

1%12 0.2775 0.3156 0.2304 0.2155
(1.0274) (0.6535) (1.0530) (1.1009)

ﬁzz 1.4672 1.5864 1.2789 1.2144
(0.7095) (0.3815) (0.6263) (0.6741)

[/f/” 0.5770 0.4899 0.3875 0.3329
(0.0410) (0.0350) (0.0278) (0.02338)

pf/12 —-0.2951 —-0.2299 -0.1724 —-0.1597
(0.0382) (0.0322) (0.0254) (0.0219)

sz 7.9108 6.7845 5.1877 4.5189
(0.1874) (0.1731) (0.1408) (0.1140)

51 —-0.0801 —-0.1201 0.3180 0.2956
(2.7080) (0.9724) (1.1310) (1.2421)

(§2 —0.9689 -0.9782 -0.4620 —0.3880
(2.229) (0.1191) (0.9280) (1.1015)

42 0.7715 0.7695 0.7745 0.7615
(0.0135) (0.0136) (0.0134) (0.0141)

v 0.5231 0.5142 0.5225 0.5215
(0.0355) (0.0336) (0.0345) (0.0354)

5. Simulation Study

The aim of this simulation study is to evaluate the performance of proposed models. The data
were generated from the MSN-NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with
nonlinear mean curves as in Equation (27). The model parameters are fixed as

r 0.1 0.42 1 -026
p=(123117,-21)", D= , W= .
042 2 026 7
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The C, is 10x10 DEC dependence matrix, with £ =0.8 and w =0.5, 6, =0.3 and J, =—-0.48.

For simplicity the degrees of freedom v are fixed at its true value. The sample sizes are fixed at N =
25 (small sample) and N = 100 (relatively large sample).

For each sample size, 100 replications from the MSN-NLMM model and the MSNI-NLME
model in Equation (27) were used under four scenarios: under the multivariate skew-normal model
(MSN-NLME), the multivariate skew-t with v =2 (MST-NLME), the multivariate skew—slash with
v = 2.8 (MSS-NLME), and the multivariate skew-contaminated normal model with v = (0.1,0.5)
(MSCN-NLME). The values of v were chosen to yield a highly skewed and heavy-tailed distribution
for the random effects.

For each replication the empirical average ML estimates (EST) of parameters, empirical bias
(bias) and empirical mean square error (MSE) over all samples were calculated. The computational
procedures were implemented using the R software.

The results for N =25 are presented in Table 3 and for N =100 in Table 4. The results show that
the bias and the mean square errors (MSE) for most of the parameters, decrease when the sample size
increases, indicating an asymptotic convergence for true parameter values as the sample size increases.
The results show that the proposed approximate ML estimates based on the EM algorithm provide
good asymptotic properties. In general, the mean square errors (MC-MSE) provide results close to the
empirical ones, and the closeness improves as the number of subjects increases. Under considered
sample sizes, the fixed effect parameters have lower MSE under the multivariate skew normal (MSN),
the MSE of the random components are smaller under the multivariate skew slash (MSS) distribution,
the MSE of the variance-covariance components within subject errors and skew parameters are smaller
under the multivariate skew contaminated normal (MSC) distribution. For considered sample sizes,
multivariate skew normal independent-nonlinear mixed effects models (MSNI-NLMM) tend to give
lower MSE values than multivariate skew normal-nonlinear mixed effects model (MSN-NLMM) for
all parameter of models except fixed effect parameter.

Table 3 Simulation results (N = 25, 100 Replications): Mean estimates, bias, and MSE of

parameters
MSN MSS MST MSCN
Parameter
iteri v, =0.1,
(True) Criteria v=28 v=2 !
v, =0.5
B EST 12.1282 12.0921 12.0581 11.9896
(12) bias 0.1282 0.0921 0.0581 0.0104
MSE 0.2557 0.2572 0.2260 0.2377
B, EST 2.9946 3.0227 3.0066 3.0018
3) bias —0.0054 0.0227 0.0066 0.0018
MSE 0.0422 0.0495 0.0315 0.0362
B, EST 1.0099 1.0079 1.0178 0.9946
(1) bias 0.0099 0.0079 0.0178 —0.0054
MSE 0.0051 0.0074 0.0063 0.0057
B, EST 16.9928 17.1762 17.1572 16.9506
(17) bias —0.0072 0.1762 0.1572 -0.0494

MSE 0.1607 0.3291 0.4869 0.2314
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Table 3 (Continued)

MSN MSS MST MSCN

Pam(?fﬁz; Criteria v=28 y=2 =04
v,=0.5

B EST —-1.9526 -2.2014 -2.1509 -2.0713
(:2) bias 0.0474 -0.2014 -0.1509 -0.0713
MSE 0.3843 1.0119 0.6413 0.6151

B EST 0.9812 1.1235 1.0767 1.0526
(1) bias -0.0188 0.1235 0.0767 0.0526
MSE 0.1160 0.2893 0.1863 0.1888

D, EST 0.0991 0.0874 0.0936 0.0960
O.1) bias ~0.0009 ~0.0126 —~0.0064 ~0.0040
MSE 0.0021 0.0010 0.0018 0.0021

D, EST 0.3895 0.3441 0.3723 0.3757
(0.42) bias ~0.0129 ~0.0583 ~0.0301 ~0.0367
MSE 0.0335 0.0202 0.0321 0.0267

D, EST 1.9117 1.7319 1.8659 1.8600
) bias —0.0883 -0.2681 -0.1341 —0.1400
MSE 0.5907 0.4353 0.6085 0.4637

W, EST 0.9544 0.8912 0.9559 0.9389
(1) bias —0.0456 —0.1088 —-0.0440 -0.0611
MSE 0.0162 0.0265 0.0305 0.0222

W, EST —-0.2510 —0.2636 —0.2652 —-0.2552
(-0.26) bias 0.0135 0.0009 —-0.0008 0.0093
MSE 0.0225 0.0282 0.0262 0.0203

w,, EST 6.6581 6.2456 6.6681 6.6959
7 bias -0.3419 —0.7544 —-0.3319 —0.3041
MSE 0.6336 1.2880 1.4110 0.8570

3, EST 0.3026 0.3145 0.2461 0.2903
(0.3) bias 0.0026 0.0145 —-0.0539 —-0.0097
MSE 0.0026 0.0115 0.0496 0.0011

0, EST -0.4616 —0.3492 —-0.4325 -0.4711
(:0.48) bias 0.0184 0.1308 0.0475 0.0089
MSE 0.0199 0.1032 0.2141 0.0028

& EST 0.7877 0.7875 0.7839 0.7846
(0.8) bias -0.0123 —-0.0125 —-0.0161 -0.0154
MSE 0.0008 0.0008 0.0009 0.0009

4 EST 0.4818 0.4860 0.4867 0.4974
(0.5) bias -0.0182 —-0.0140 —-0.0035 —-0.0026
MSE 0.0035 0.0029 0.0030 0.0026
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Table 4 Simulation results (N = 100, 100 Replications): Mean estimates, bias, and MSE of

parameters

MSN MSS MST MSCN

Parameter
o v, =0.1,
(True) Criteria v=28 v=2 1 o5

v, =U.

B, EST 11.9813 12.001 11.9464 12.0365
bias —0.0187 —0.001 —0.0537 0.0365

(12)
MSE 0.0376 0.0694 0.0551 0.0626
5, EST 2.9971 2.9884 2.9895 2.9903
3) bias -0.0029 -0.0116 -0.0105 —0.0097
MSE 0.0088 0.0118 0.0101 0.0112
B, EST 0.9960 1.0096 0.9938 1.0088
1) bias -0.0040 0.0097 —~0.0062 0.0088
MSE 0.0010 0.0017 0.0018 0.0013
B, EST 17.0121 16.9705 17.0498 17.0194
(17) bias 0.0121 -0.0295 0.0498 0.0194
MSE 0.0544 0.0901 0.1245 0.0555
B EST —1.9499 -2.0713 -1.9215 —2.0490
(2) bias 0.0501 —0.0713 0.0785 —0.0490
MSE 0.1268 0.2415 0.1652 0.1351
B, EST 0.9675 1.0385 1.0246 1.0328
) bias —0.0325 0.0385 —0.0299 0.0328
MSE 0.0371 0.0667 0.0440 0.0394
D, EST 0.1029 0.1006 0.0994 0.1029
0.1) bias 0.0029 0.0006 -0.0006 0.0029
MSE 0.0013 0.0007 0.0015 0.0012
D, EST 0.4088 0.4012 0.4154 0.4110
(0.42) bias 0.0064 —0.0012 —0.0046 0.0086
MSE 0.0241 0.0133 0.0270 0.0227
D, EST 1.9997 1.9781 1.9719 2.0236
@) bias —0.0003 —-0.0219 —0.0281 0.0236
MSE 0.4539 0.2603 0.4903 0.4523
W, EST 0.9879 0.9830 0.9932 0.9767
) bias -0.0121 —0.0170 —0.0068 —0.0233
MSE 0.0066 0.0070 0.0162 0.0058
w, EST —0.2846 —0.2607 —0.2573 —0.2649
. bias —0.0201 0.0038 0.0027 0.0004

(-0.26)
MSE 0.0068 0.0068 0.0095 0.0059
W, EST 6.9366 6.9194 6.9581 6.8504
% bias —-0.0634 —0.0806 —0.0419 —0.1497
MSE 0.3603 0.3739 0.8058 0.3284
5, EST 0.2979 0.2837 0.2723 0.2959
(0.3) bias —0.0021 —0.0163 —-0.0277 —0.0041

MSE 0.0037 0.0171 0.0136 0.0006
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Table 4 (Continued)

MSN MSS MST MSCN

Paratr;lzz; Criteria v=28 ve2 v, =0.1,
v,=0.5

52 EST —0.4666 —0.4515 —0.4500 —0.4795
(~0.48) bias 0.0134 0.0285 0.0300 0.0005
MSE 0.0111 0.0699 0.0805 0.0018

& EST 0.7949 0.7937 0.7967 0.7932
(0.8) bias —0.0051 -0.0063 —0.0032 —0.0068
MSE 0.0003 0.0002 0.0003 0.0002

4 EST 0.4934 0.4921 0.4938 0.4917
(0.5) bias —0.0066 —-0.0079 —0.0062 —0.0068
MSE 0.0005 0.0009 0.0008 0.0009

6. Conclusions

A robust extension of MNLMM by using multivariate skew normal independent (MSNI)
distribution for the random effects and the multivariate normal independent (MNI) distribution for the
within-subject errors has been introduced. It is assumed that the relationship between the response and
the covariates to be nonlinear in parameters. The proposed model capable of handling a broader range
of multivariate longitudinal data especially in the presence of outliers or heavy-tailed noises. The
proposed model includes the MSN-NLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM as
special cases. We also consider the scenario where only a subset of the multiple responses can be
collected at any occasion. The autocorrelation for responses at irregular time points is described by a
parsimonious DEC function. This work generalizes the results of Schumacher et al. (2021a) and by
developing some additional tools and making robust inferences in practical data analysis. We have
described two flexible hierarchies for MSNI-NLMM. We developed computationally tractable PNLS-
MLME procedure and Pseudo-ECM algorithm to obtain the ML estimates. We have created the
pseudo data by using the first-order Taylor approximation and then implement the ECM algorithm to
obtain the ML estimates. We also have created the pseudo data by using the first-order Taylor
approximation and then implement multivariate linear mixed effects models (MLMM) to update the
estimates of fixed effect by a generalized least-squares approach and estimates of the variance
component by the Newton-Raphson method. The likelihood information-based method for
approximating the standard errors of parameter estimates is also defined.

The proposed techniques are applied to the ACTG 315 data. This application supported flexibility
of the MSS-NLMM among the robust distributions in terms of likelihood-based model selection
criteria. The model with DEC dependence which takes into account the autocorrelation among
occasions also performs better than the models with UNC errors and AR(1) errors. The analysis
showed high positive correlation between patient-specific variabilities of RNA viral load and CD4-T
cells. Also, the relationship between the two responses, CD4 cells and HIV-1 RNA levels (viral load)
is negative. Furthermore, the simulation study showed that the proposed approximate ML estimates
for fitted models based on the EM algorithm provide good asymptotic properties. The bias and the
mean square error of the estimates generally decrease with the increase of the sample size.

Different venues of future research are possible. These include generalizing the multivariate SN
distribution and SNI distribution depending on broader families of distributions, such as the
multivariate skew t-distribution, the multivariate extended skew t-distribution, and the multivariate
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skew-elliptical distribution. Also, an imputation method to handle incomplete multiple repeated
measures is possible. This can be done by adopting an extension of the multivariate nonlinear mixed
effects model using multivariate skew normal and multivariate skew normal independent distributions
for random effects and multivariate normal and multivariate normal independent distributions for the
within-subject errors, taking the censoring information of multiple responses into account. A study to
compare the proposed techniques with other methods such as the Monte Carlo EM (MCEM), the
importance sampling EM (ISEM) and stochastic approximate EM (SAEM) algorithm to obtain the
ML estimates of the multivariate version of skew-family nonlinear mixed models. This can be done
by considering a more general structure for the within-subject covariance matrix, such as an AR(p)
dependency structure (Schumacher et al. 2017).
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