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Abstract 

The multivariate nonlinear mixed effects models (MNLMM) have received increasing attention 
due to their flexibility in analyzing and modeling multivariate longitudinal data. In the framework of 
MNLMM, the random effects and within-subject errors are assumed to be normally distributed for 
mathematical tractability and computational simplicity. However, such assumption might not offer 
robust inference if the data, even after being transformed, exhibit skewness. In this paper, we propose 
a multivariate skew normal independent nonlinear mixed model (MSNI-NLMM) constructed by 
assuming a multivariate skew normal independent distribution for the random effects and a 
multivariate normal independent distribution for the random errors. We develop a new model which 
can flexibly handle asymmetric, unbalanced, and irregularly observed multivariate longitudinal data. 
Also, we present two different iterative algorithms for maximum likelihood estimation of the MSNI-
NLMM. They are the penalized nonlinear least squares coupled to the multivariate linear mixed effects 
(PNLS-MLME) procedure and the pseudo-data expectation conditional maximization (ECM) 
algorithm. The proposed approaches are illustrated through an application to ACTG 315 data and a 
simulation study. 
______________________________ 
Keywords: AR(1) correlation, multivariate longitudinal data, nonlinear mixed effects, damped exponential 
correlation, unstructured correlation. 
 
1. Introduction 

Multivariate longitudinal data where more than one response can be measured over time, for each 
subject. Marshall et al. (2006) propose the multivariate nonlinear mixed effects models (MNLMMs) 
for multivariate longitudinal data. Lachos et al. (2010) assume that the random effects follow 
multivariate skew normal/independent distribution, and the random errors follow symmetric 
normal/independent distribution. Meza et al. (2012) consider heavy-tailed multivariate distributions, 
such as the t-distribution, the contaminated normal and slash, for both random effects and errors. 
Pereira and Russo (2019) present a nonlinear mixed effects model with skewed and heavy-tailed 
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distributions, where the nonlinearity is incorporated only in the fixed effects. Schumacher et al. 
(2021b) provide an extension of the skew-normal/independent linear mixed model, where the error 
term has a dependence structure, such as damped exponential correlation or autoregressive correlation 
of order .p  Schumacher et al. (2021a) present a class of asymmetric nonlinear mixed effects models 
if the random effects follow a multivariate scale mixture of skew-normal distribution, and the random 
errors follow a symmetric scale mixture of normal distribution, providing an appealing robust 
alternative to the usual normal distribution. 

Lin and Wang (2013) propose a multivariate skew-normal linear mixed model, assuming a 
multivariate skew-normal distribution for the random effects, and a multivariate normal distribution 
for the random errors. Wang and Lin (2014) consider a joint multivariate t-distribution for the random 
effects and within subject errors, called the multivariate t nonlinear mixed-effects model (Mt-NLMM). 
Wang (2015) assume that the random effects and the within subject errors are normally distributed to 
handle symmetric multivariate longitudinal data. However, such an assumption is not always 
applicable, especially when data contain outliers or heavy-tailed. Wang and Lin (2017) propose the 
multivariate t nonlinear mixed model with censored responses (Mt-NLMMC) for multivariate 
longitudinal data exhibiting nonlinear growth patterns with censorship and heavy-tailed behavior. 
Multivariate skew normal/independent nonlinear mixed effects models (MSNI-NLMMs) are 
considerably more complicated and computationally intensive than MSNI-LMMs. The nonlinearity 
offers no closed-form solutions to the model parameters. 

In this article we provide hierarchical forms of multivariate skew normal independent nonlinear 
mixed effects models. Also, we introduce the skew normal independent (SNI) distribution. The SNI 
distribution is an attractive class of skew heavy-tailed distributions. Special cases of the SNI 
distribution are the skew normal, the skew Student’s-t, the skew slash, and the skew contaminated 
normal distributions. We propose a multivariate skew nonlinear mixed effects model (MSNLMM), 
which is an extension of the multivariate nonlinear mixed effects model. In the proposed MSNLMM 
model we assume a multivariate-skew normal independent (MSNI) distribution for random effects, 
and a multivariate normal independent (MNI) distribution for within-subject errors. The proposed 
MSNLMM model can be used to fit multivariate longitudinal data exhibiting nonlinear growth pattern. 
We suggest two different iterative estimation algorithms. They are the penalized nonlinear least 
squares coupled to the multivariate linear mixed-effects (PNLS-MLME) procedure, and the pseudo-
data expectation conditional maximization (pseudo-ECM) algorithm.   

The rest of the article is organized as follows. Section 2 introduces the model formulation, 
addresses some relevant properties. In Section 3, we present the hierarchal forms of the proposed 
model and discuss the computational aspects of PNLS-MLME procedure and pseudo-ECM algorithm. 
A method of obtaining approximate standard errors of ML estimates is also provided. The proposed 
techniques are applied to ACTG 315 data in Section 4. A simulation study is also conducted to evaluate 
the proposed techniques in Section 5. Some concluding remarks and future works are given in Section 
6. 
 
2. Statistical Models 
2.1. Multivariate skew normal/independent (MSNI) distribution 

The skew normal/independent (SNI) distribution can be defined as (Lachos et al. 2010): 
1/2 ,U −= +Y μ Z                                                           (1) 

where μ  is a location vector, U  is a positive random variable with cdf of H( ;u ν )  and a pdf of  

( ; ),h u ν  ν  is a vector of parameters and Z  is a multivariate skew normal random vector (Arellano-
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Valle et al. , 2005)  with location vector 0,  scale matrix Σ  and skewness parameter vector λ , i. e. 

( )~ 0, ,   .dSN ΣZ λ  Given ,  U u= Y  follows a multivariate skew normal distribution with location 

vector 0 , scale matrix 1  u− Σ and skewness parameter vector λ , i. e. , ( )1| ~ , , .dU u SN u−= ΣY μ λ  

The marginal pdf of Y is 

( ) ( ) ( )( ) ( )1 1/2 1/2

0
2 ; , Φ ; ,df u u dH uφ

∞ − −= −∫ Σ ΣTy y μ λ y μ ν  y ,d∈                       (2) 

where ( ).; ,dφ μ Σ  stands for the pdf of the d - variate normal distribution with mean vector µ  and 

dispersion matrix Σ  and Φ( )⋅  represents the cdf of the standard univariate normal distribution. 
 
2.2. Multivariate skew-normal/independent nonlinear mixed model (MSNI-NLMM) 

Suppose that there are m  subjects and the subject i  has in  observations on each of the r  

responses.  Let [ ]1 ,1 ,  : ... : : ... :
i

TT T
i i ir i i n = =  Y y y y y  be an in r×  response matrix for the thi subject 

collected longitudinally (   1  , ,  ),i m= …  in which ,1 ,( ,..., )
i

T
ij ij ij ny y=y  is a column vector of responses for 

the thj  outcome (   1  ,...,  )j r=  and , 1, ,( , , )i k i k ir ky y= …y   is a row vector of responses collected at the 

thk occasion (   1  ,...,  ).ik n=  Let [ ]1 ,1 ,: . : : . :
i

T

i i ir i i n = … = … 
T TE e e e e  be the in r×  matrix of within-

subject errors, in which ,1 ,( ,..., )
i

T
ij ij ij ne e=e  is a column vector corresponding to ,ijy and 

, 1, ,( ,..., )i k i k ir ke e e=  is a row vector corresponding to , .i ky  Introducing the vec( )⋅  operator, which 

strings out the columns of a matrix vertically, we can obtain vec( )i=iy Y  and    vec( )i=ie E denoted by 

the stacked in r -dimensional vectors of all responses and within-subject errors, respectively. 

The MSNI-NLMM for the thi  subject takes the form  

( ), ,i i i i iφ= +y μ X e                                                               (3) 

where ( ) ( ), , ,i i i i iφ =μ X μ β  b  iμ  is a nonlinearly differentiable function of the parameters vector iφ  

and the covariate vector ,iX  and ie  is the error term in the model.  The parameter vector iφ  can be 
incorporated into the model as 

,i i i iφ = +X  β Z b                                                                 (4) 

where 1( , , )T T T
r= …β β β  are the regression coefficients with each jp  vector ,jβ  used to describe the 

fixed effects of response ;j  1( , , )T T T
i ir= …ib b b  is a q - variate random effects.  Moreover, i =X  

{ }1diag , ,i ir…X X  and { }1diag , , ,i ir= …iZ Z Z  where ijX  is a i jn p×  covariate matrix of full column 

rank for fid effects associated with ijy , and ijZ  is a i jn q×  design matrix for random effects. 

Typically, ijZ  is a subset of .ijX  The block diagonal structures of iX  and iZ  allow us to analyze 

multivariate longitudinal data with different numbers of measurements and/ or unequal sets of 
occasions per subject.  Also, to specify distinct design matrices for each response.  For easy notation, 

we let   ,i is n r=  
1

r
jj

p p
=

= ∑  and 
1

.r
jj

q q
=

= ∑  Meanwhile, we assume that 

00
~ , , ,   ,       1, ., .

00 0i

i b
s q

i i

SNI H i m+

       
= …               

b D λ
e R

                    (5) 
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where the matrices iR  and ,D   1  , ,   ,i m= …  are dispersion matrices, corresponding to the within and 

between subjects, respectively, bλ  is the skewness parameter vector of the random effects and 

( ).;H H= ν  is the cdf of the assumed distribution.  The ( )~ 0, , ;i q bSNI Hb D λ  and 

( )~ 0, ;
ii s iNI He R  are indexed by the same scale mixing factor ,iu  so, they are not independent in 

general. 
The mixed effects model assumes that ie  are symmetrically distributed, while the distribution of 

random effects is assumed to be asymmetric.  That is, the skewness parameter ,λ  a measure of 
asymmetry, are all zeros, where the MSNI- NMM reduced to the MNI- NMM ( Arellano- Valle et al. 
2005; Lin and Lee 2008). When 0=λ  and U  is distributed as Gamma( / 2, / 2),ν ν  the MSNI-LMM 
reduced to the (hierarchical) Mt-NLMM.  

When the dimensions of iR  are large, estimation can be burdensome.  Thus, a parsimonious 

structure for iR  is used.  Accordingly, we assume that ( ), ~ 0, , ,rNI Hi ke W  where jjσ ′ =  W  

explains the unstructured varinaces/ covariances among the r  outcome variables.  Also, we assume 
that  ~ 0, , ,( )

in jj iNI Hσ ′ije C  where iC  is a time varying dependence structure for the autocorrelation 

among in  occasions.  Hence, we have ( ),   ,i i ξ ψ= ⊗R W C  where ⊗  denotes the Kronecker 

product. 
 
3.    Maximum Likelihood Inference 
3.1. Hierarchical formulation of MSNI-NLMM 

Let ( ),   ,  ,ξ,   ,   ,    ψ=θ β D W λ ν  be the entire model parameters.  The likelihood function of θ  is 

formed by the product of the marginal density of each iy  for 1, , ,i m= …  obtained by multiplying the 

marginal density of ib  by the conditional density of iy  given ib  and then integrating out ib  The 

exact marginal distribution of iy  cannot be analytically determined because marginalizing out ib  
involves complex multidimensional integration.  For ease of computation and theoretical derivation, 
we reparametrize     ,= ′D F F  namely, 1/2 .   =F D  The models in Equation (3) and Equation (5) have 
four-level hierarchical specification as 

( ) ( )( )i

1
i i i i s i i i i, γ , u N , , u ,−y b μ β b R   ( ) ( )1

i i i q i iγ , u N γ ,u ,−b α Λ  

 ( ) ( )( )1
i i iγ u   TN 0,u | 0, ,− ∞

 ( )i iu H u | ,ν                (6) 

for 1, , ,i m= …  where ( ) ( )qT

T
,  with  1,1 ,  

1
= = − = = ∈ −

+

λα Fδ Λ D αα δ δ λ
λ λ

and F being the 

square root of D containing ( 1) / 2q q +  distinct elements. ( ) ( )( ) TN μ, τ | ,a b  denotes the univariate 

normal distribution ( )(μ, τ)N  truncated on the interval ( , ).a b  

Let ( )TT T T T
c i i i i,   ,  γ ,  u ,=y y b  with ( )TT T

1 m, , , = …y y y  ( )TT T
1 m, , ,= …b b b  ( )T

1, , ,mγ γ= …γ

( )T
1, , mu u= …u  and let ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )Tc c c c c c c cT T T T T T Tˆˆ , ,   ,  ξ ,  ψ ,   , ˆ ˆˆ ˆ ˆ,  ˆ=θ β F W λ ν  denote the estimate θ  
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at the thc iteration.  The marginal density of i  ,y when ( )i

1
i i i i s i i i i  ( , γ ,u ) ~ N , ,u ,( ) −y b μ β b R  

1 1
i i i q i i i i i(γ ,u ) ~ N γ ,u ,   γ u ~ TN(0,u )( )− −b α Λ  and  ( )i iu ~ H u |iU = ν  is 

     ( ) ( ) ( )q is i i i i q i i i i i i i i i0
f | ( , γ ,u ) (γ ,u ) (γ u ) (u | ) d dγ du ,h

∞
φ φ φ =  ∫ ∫ ∫y θ y b b ν b

i  

                  ( )( ) ( ) ( ) ( )q i

1 1 1
s i i i i i q i i i i i i i i i0

,, ,u γ ,u γ 0,u u |  d dγ duh
∞

φ φ φ− − − =  ∫ ∫ ∫ y μ β b R b α Λ ν b


 

                  ( )
( ) ( )ii

q

s q 1s q 1 1 1
22 22

i i0
2π u

∞
+ +− + +

− −
= ∫∫ ∫ R Λ


 

( ) ( ) ( )( ) ( )( )T 1 T 1 2i
i i i i i i i i i i i i i i

ue .xp , ,   ( γ ) o( d) ( ) γ γ    l g h u |  d dγ u
2

− − − − − + − − + + 
 

y μ β b R y μ β b b α Λ b α ν bi i

(7) 

The marginal density of i  ,y  when ( )i

1
i i i s i i i i( ,u ) ~ N , ,u( ) −y b μ β b R  and 

1 T
i i q i b )u ~ SNI 0,u( , ,H−b F F λ  is 

( )q i

1 1 T
i s i i i i i q i i b i i0

f( | ) , ,u 0,u , ,H dH(u  ( ) ( ) | )d ,
∞
φ φ− −= ∫ ∫y θ y μ β b R b F F λ ν b


 

             = i i
q

1/2 1(s q)/2 (s q)/2
i i0

2 (2π) u
∞ − −− + +∫ ∫ R F


 

               ( ) ( )( )T 1 T T 1i
i i i i i i i

ue ( ) ( ) ( )xp , ,   
2

− − − − − + 
 

y μ β b R y μ β b b FF bi i  

               ( )
1

T 12
i i

i iT

uΦ  d dH u | .
1

− 
 
 − 
 

δ F b b ν
δ δ

                                                                                              (8) 

From Equation (7), we can obtain the marginal distribution of iy  by integrating over T T T
i i i( , γ ,u )b and  

the joint distribution of T T T T
i i i i( , , γ ,u ),y b  where ( )

is i i i i( , γ ,u ) ,φ y b  ( )q i i i(γ ,u ) ,φ b i i(γ u ),φ  i(u | )h ν  

distributed as a multivariate normal, a multivariate normal, a truncated normal and a pdf of cdf 

iH(u | ),ν  respectively. Also from Equation (8), we can obtain the marginal distribution of iy  by 

integrating over i i( ,u )b   the joint distribution of T T T
i i i( , ,u ),y b  where ( )

is i i i( ,u ) ,φ y b  q i i( )uφ b  

distributed as a multivariate normal, a multivariate skew normal independent, respectively. 

The log-likelihood function for the observed data { }m
i i 1=

=Y y  of Equations (7) and (8), 

respectively, is 
m

C i i0
i 1

1l( | ) A   2log  dH(u | ) , 
2 iB

∞

=

 = − −  ∑ ∫θ Y ν                                          (9) 

where 
T

i i
1 log (s q) log(2π) log log ,
4iA = + + + +R FF  

( ) ( )( )i

1
T 12T(s q)/2 1 T T 1i i i

i i i i i i i i i T

u uB  u exp , ,   logΦ
2

( ) ( ) ( )
1

−
+ − −

  
  = − − − + +  −  

δ F by μ β b R y μ β b b FF b
δ δ

i i  

 ( ) [ ]
m

C i i
i 1

1l | A B .
2 =

= − +∑θ Y                             (10) 
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where  

( ) ( ) ( ) ( )i i i i i i
1A  log s q 1 log 2π log log 2log h u |ν s q 1 log u
4

= + + + + + − − + +R Λ  

( ) ( )( )T 1 T 1 2
i i i i i i i i i i i u , ,( ) ( ) ( γ ) γ)γ(iB − −= − − + − − +y μ β b R y μ β b b α Λ b αi i . 

 
3.2. Maximum likelihood estimation via the PNLS-MLME procedure of MSNI-NLMM 

The procedure consists of two steps:  a penalized nonlinear least squares ( PNLS)  step and a 
multivariate LME (MLME) step. The basic idea is to estimate the unobservable random effects ib  via 
the PNLS step and then update the ML estimates of parameters θ based on the formulation of MLMM 
for the pseudo-data. The proposed PNLS-MLME procedure is described as follows. 

The PNLS step: According to Equation (9), we first define: 
i(s q)
2

i i 0
g( , , , ) 2log u exp( )dH(u | ), i i i iu A

+
∞

= − ∫y b θ ν                               (11) 

( ) ( )( )
1/2 T 1

T 1 T T 1 i
i i i i i i i T
( ) ( ) ( ,) u  , ,   logΦ

2 1
i i

i
uA

−
− −  

= − − − + +   − 

δ F by μ β b R y μ β b b FF b
δ δ

i i  

where i i i i iμ ( , ,   ,  ) ( )φ=β b μ X  for 1, , , i m= …  is a function of fixed effects and random effects i  .b  

Fixing the current estimates of parameters (c) (c) (c) (c) (c) (c) (c) (c)( , , ,ξ ,ψ , , )ˆˆ ˆ ˆˆ ˆ ˆ ˆ=θ β F W λ ν  and ( ){ }mc
i

i 1
ˆ ,u

=
 the 

conditional modes of random effects ib  are obtained through minimizing a penalized nonlinear least-
squares objective function: 

( ){ }
mmc (c) (c)

i i i i
i 1 i 1

arg min g( , , , ).ˆˆ û
= =

= ∑b y b θ                                           (12) 

In practice, solving over (c)
ib̂  for each subject can be implemented by minimizing (c) (c)

i i ig( ,   ,   ,   ) ˆûy b θ
in Equation (11) with respect to q -dimensional random effects.  

The MLME step:  The parameter estimates are updated by utilizing the first- order Taylor 

expansion of Equation ( 3)  around the current estimates (c) (c) (c)
i i i i
ˆ ˆ ˆ .φ = +X β Z b The pseudo- data is 

denoted by (c) (c) (c)
ij,k ij,k j i ij,k ij,k ij,k iy y μ , ,ˆ ˆ ˆ( )φ= − + +x x β Z b

   where (c) T
ij,k j i ij,k iμ ,ˆ( )φ=x x X  and 

(c) T
ij,k j i ij,k iμ , Z .ˆ( )φ=Z x  Consequently, the model for the super vector of the pseudo- data for the thi  

subject is 

i i i i i ,= + +y X β Z b e 

                                                     (13) 

where iy  is a 1in r×  vector composed of r  pseudo- response vectors 
i

T
ij ij,1 ij,n(y , , y ,)= …y  iX  is a 

in r p×  matrix with rows made up of  1p×  vector ij,kx  and iZ  is a in r q×  matrix with rows made 

up of 1q×  vector ij,k .z  According to Equation (13), it is easy to verify that  

ii s i i i( )~ SNI , , ,H ,y X β Σ λ 

                                                    (14) 

where  T T
i i i i   + ⊗=Σ Z FF Z W C  and

1/2 T
i i i

i T 1/2
i i i

Σ  
(1 )

−

=
+

Z FF τλ
τ Γ τ







with 1
i  ,−=τ F λ   T T 1

i i i i .( )−= +Γ FF Z R Z    It 

follows immediately from Equations (2) and (14) that 



698                                                                   Thailand Statistician, 2025; 23(3): 692-709 

( ) ( ) ( ) ( )
i

1 1/2
i s i i i i i i0

f 2 | , u Φ u E dH u | ,i

∞
φ −= ∫y y X β Σ ν  

                                   (15) 

where 
T 1

T 1/2 T 1 i i i i
i i i i i i i i T 1/2

i i i

E (1 ) .
(1 )

( )( )
−

− − −
= + − =

+
λ FZ Σ y X βτ Γ τ λ FZ Σ y X β

τ Γ τ

  



    





   

From Equation (14), the three level hierarchy of MSNI-NLMM are 

( ) 1 1, ) ( , ),
ii i i i s i i i i iU u N uγ γ − −= + Ψ 



y X β d  ( )1(0, )|(0, ) ,i i i iU u TN uγ −
= ∞  ( )| .i i iU u H u=  ν  

                                                                (16) 
The parameter vector ν  is assumed to be known.  In practice, the optimum value of ν  can be 
determined using the profile likelihood and the Schwarz information criterion.  Note that
    ~ ( | ),i i iU u h u ν= the conditional distribution of iy  given iu  follows 

1(~ , , .)
ii i i s i i iU u SN u−= Σ 

y X β λ  In order to update (c)ˆ ,β  we first set an initial guess of { } 1

m
i i

u
=

 as 

( ) ( )1 1/2 ,ˆ arg min ( ) logΦ log ( |( ) )
2i

c Ti
i i i i i i i iu

uu u E h u− = − − − + + 
 

Σ   

 y X β y X β ν  

which maximizes the log-likelihood function for the complete-data { } 1
., m

i i i
u

=
y  In this step, we update 

( )ˆ cβ  by a generalized least-squares approach. The solution of { }(c)

1
  ˆ

m

i i
u

=
 can be obtained by exploiting 

the nlminb optimization routine available in R package. The initial guess is generated from (0)( | ).ih u ν  
Next, we perform a generalized least squares step 

( ) 11 (c) (c) (c) (c) (c) (c)1 1 1/ (c)2

1 1

ˆ ,ˆ ˆ ˆ
m m

c T T
i i i i i i i

i i

u u u η ς
−+ − −

= =

   = −   ∑ ∑Σ Σ    

β X X X y                          (17) 

where ( )

(c) 1(c) (c)
(c) ,

T
i i

c
ia

ς
−

=
Ψ 





x d  (c) 1 1/2(1 )T
i i i ia −= + Ψ  

 d d  and 
1/2

(c)
1/2

( ) .
Φ( )

i i

i i

u E
u E

φη =




  

Given the current estimate (c 1)ˆ ,β +  we update ( )(c) (c) (c) (c) (c) (c) (c)vech( ), vech( ) ,   , , ,  ˆ ˆˆ ˆˆ ˆ ˆξ ψ=ω F W λ ν  

by the Newton-Raphson method: 

 ( ) ( ) ( ) ( )11 1/2 1/2ˆˆ ,ˆ ˆc c c c−+ + += − ωω ωω ω H s               (18) 

where (c 1/2)ˆ +
ωs  and (c 1/2)+

ωωH  are the score vectors ωs  and Hessian matrix ωωH  evaluated at ( )1ˆ c+=β β  

and (c)ˆ .=ω ω  Explicit expressions for elements in ωs  and ωωH  can be derived as usual. Iterations of 

Equations (12), (17) and (18) continue until either the maximum number of iterations or the user-
specified convergence tolerance has been achieved. 
 
3.3. Pseudo-ECM algorithm of MSNI-NLMM 

According to the pseudo-data model specified in Equation (13), treating the random effects 

{ } 1
,m

i i=
b  { } 1

m
i i

u
=

and { } 1

m
i i
γ

=
 as latent data, we establish a complete data framework of the model in 

Equation (22). Given the pseudo-complete data { } 1
  ,m

i i=
y { } 1

  ,m
i i=
b { } 1

  m
i i

u
=

 and { } 1

m
i i
γ

=
, the log-likelihood 

function of θ  is 

( ) ( )1 1
C 1 2

1

1l | log log ( ) ( ) 2log ( | ) ,
2

m

i i i i i
i

tr tr h u C− −

=

 = − ⊗ + + + − + ∑θ Y Λ Θ Λ ΘW C R ν       (19) 
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where C  is a constant that is independent of the parameter vector θ and ( | )ih u ν  is a function that 

depends on θ only through ,ν  1  ,( )( )T T
i i i i i i i i i i i i iu u= = − − − −Θ    

   e e y X β Z b y X β Z b and

( )( )2  . T
i i i i i iu γ γ= − −Θ b α b α Letting  







(c) (c) (c) (c) (c) (c) (c) (c)  ( | , ), (u ) ( | ,   ), (u ) ( | , ), (u ) ( | , ),ˆ ˆ ˆ ˆˆ T T
i i i i i i i i i i i i i i i iu E u E u E u E uγ γ= = = =b b   y θ b y θ bb b y θ y θ  





2 (c) 2 (c) ( ) (c)(u )   ( | , ), (u ) ( | , ),ˆ ˆc
i i i i i i i i iE u E uγ γ γ γ= = b y θ b y θ  

and ( )( )(c) 1/2 1/2 (c) (c) (c)
1

ˆˆ ( / ) | ,
i ii i i iV E u u γ γη µ σ=   y θ  with  (c) )ˆ ( ) / Φ(i ii E Eη φ=    and  1/2 ( ) (c)/ .

i i

c
i iE u γ γµ σ=    It can 

be proved that 

   

(c) (c)(c) (c) (c)
1( ,ˆˆu ) iii i iu V γγγ µ σ= +                (20) 

 

   

2 ( ) ( )2 ( ) ( )2 ( ) ( ) ( )
1(u ) ,ˆˆ

i ii i

c cc cc c c
i i iu Vγ γγ γγ µ σ µ σ= + +                  (21) 

   

(c) (c)(c) (c) (c) ,( ˆu ) u( ) iii i iuγ= + 

 bbb μ υ               (22) 




 

(c)
(c) (c) (c)((u ) (u ) u )i

T T
i i i= +Σ bbb b b =   



(c) (c) (c) 2 (c)u( )i i i

T

iγ+Σ  b b bμ μ  

                                                            

( ) ( ) ( )


( )
( )( ) ( ) ( ) ( )

,  ui i i ii i

cc cc T c c c Tc
i

i
uγ + + + 

 
   

    b b b bb bμ υ υ μ υ υ                          (23) 

  





(c) (c)(c) 2 (c) (c)( ,u u( ) )u() iii i iγ γ γ= +  bbb μ υ   (24) 

where 1 1 1) ( )(1
i

T T
i i i i i i iγµ

− − −= + −Ψ Ψ     

 d d d y X β  and scale parameter 2 1 1(1 )
i

T
i i iγσ

− −+= Ψ  

 d d  in the 

truncated range (0, )∞  are the mean and variance of ,iγ   1 1( ) ,
i i i

T
q b i i i

− −= − =Σ Σ Λ   

 b bμ I Z R Z α α  and 
1 1 1( )

i

T
i i i

− − −= +Σ Λ  

b Z R Z  are the mean vector and the variance/ covariance matrix of the conditional 

distribution of ib  given iy  and ,iγ  respectively, 1 .( )
i i

T
i i i i

−= −Σ  

 b bυ Z R y X β  

The expected complete-data log-likelihood function (Q-function) can be evaluated as follows: 
E step: Evaluate the expected complete-data log-likelihood Function Equation (19) conditioning 

on the current estimates (c)θ̂  and the pseudo- responses (c 1) ,  ˆ,ˆ( ) i i i
−= y y β b  which linearize the 

regression function around the previous estimates of mixed effects (c 1)( ,  )ˆ
î
−β b  and should be updated 

at each iteration. This gives rise to the so-called Q-function: 

( ) ( )(c) (c)
,  ,  

ˆ( | ) | ˆ| , p
u b c cQ E lγ= θ θ θ y y θ  

 ( )  ( )( )1 (c) 1 (c) 2 (c)
1 2 3

1

1  log log   ( )      (Λ Θ ) (u ) 2Θ ,ˆ
2

ˆ ˆ
m

c
i i i i i i

i

tr tr γ− −

=

=− ⊗ + + ⊗ + + −∑ Λ ΘW C W C   (25) 

where  
(c) (c)
1 )ˆ ( | ˆ,T
i i i i iE u=Θ   e e y θ  

( ) 

 

(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)ˆ ˆ ˆ ˆˆ ( )( ) ( ) ( ) (u u ( )( ,u ))c T T T T T
i i i i i i i i i i i iu= − − + − − − −       

   y Xβ y Xβ Z bb Z Z b y Xβ y Xβ b Z  
 

 

(c) (c) (c) (c) (c) (c) (c) (c) 2 (c) (c) (c) (c) (c) (c) (c)
2

ˆ )ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ( (( ) (u) ( )(u ) u ) uT T T T T
i i i i i i i i i iu γ γ γ γ γ= − − = + − −Θ b α b α bb α α b α α b  
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( )(c)
3Θ log ( | ) , ˆ

i iE h u= ν  (c) (c) (c) (c)ˆ  ˆ ˆ ˆ( ), ,i iR ξ ψ= ⊗W C  
(c) (c) (c) (c) (c)( | , )ˆ ˆ ˆ

i ii i i iE  = = − − 


 

   e e y θ y Xβ Z b  and   

(c 1) ), ˆ ˆ(i i i
−= y y β b  represents the update pseudo-responses.  

CM step: update the current estimates (c) (c) (c) (c) (c) (c)ˆ ,ˆ, , ˆ, , ˆˆ ξ ψβ F W λ  and (c)ν̂  by maximization the 
Q function in Equation (25): 

( )1(c 1) (c) 1(c) 1(c) (c) (c)

1 1

ˆ ,ˆ    (u )ˆ
m m

T T
i i i i i i i i i i

i i

u u
−+ − −

= =

  = −    ∑ ∑R R   

β X X X y Z b   




(c)
(c 1) 1

2 (c)
1

,ˆ
(u )

(u )

m
ii

m
ii

γ

γ
+ =

=

= ∑
∑

b
α  

(c 1) (c 1)
2

1

1 ,ˆ ˆ
m

i
im

+ +

=

= ∑Λ Θ   (c 1) (c 1) (c 1) (c 1)ˆˆ ,ˆ ˆ T+ + + += +D Λ α α   (c 1) (c 1) 1 (c 1)ˆ ,ˆ ˆ+ + − +=δ F α  

where (c 1)ˆ +F  is the square root matrix of (c 1)ˆ .+D  The updated estimates of λ  can be calculated as 
(c 1) (c 1) (c 1) (c 1) 1/21 . ˆ ˆ ˆ ˆ( )T+ + + + −−=λ δ δ δ  For updating (c)ˆ , W we define 1 jlσ−  =  W  and ,jlσ =  W   

, 1, , .j l r= …  Given ( )1
1  ˆ ,c
i
+Θ  we update the diagonal-elements in ( )Ŵ c  which are defined as 

( ) ( )( )
1

c c 1/22 1
1ijl

1 1

ˆˆ
m m

jj i i
i i

n trσ
−

+−

= =

 
=  
 
∑ ∑ C Θ  for j l=  and 

( )( )
1

2 1(c) (c 1) (c 1/2)
1ijl 1ilj

1 1

ˆ ˆ ,ˆ 2
m m

jj i i
i i

n trσ
−

− + +

= =

 
= + 
 
∑ ∑ C Θ Θ  for  ,j l≠  

where ( )1/2
1ijl

ˆ c+Θ  is an in - dimensional square matrix, given by 

(c 1/2) (c) (c) (c)
1ijl

ˆ ( ) ,uγT T
ij il i i i

+ = +Θ  

 e e Z b Z  

where (c) (c 1) (c)  ˆ ˆ
ij ij j i ij

+= − − 

 e y Xβ Z b and (c) (c 1) (c)  ˆ ˆ
il il l i il

+= − − 

 e y Xβ Z b  with (c)
îjb  and  ( )(uγ ) c

ijlb  being a 

1jq ×  sub vector of 
i
 bμ  and a j lq q×  sub matrix of  (c)(uγ )ib  respectively, evaluated at ( 1/2). ˆ c+=θ θ

Unfortunately, equating the first derivatives of Equation (31) with zero does not result in closed form. 

We use the nlminb routine in R Package to perform a numerical search for updating the ( )(c 1) (c 1)ˆ .ˆ,ξ ψ+ +

That is, 

( ) ( )
( )( )1(c 1) (c 1) (c 1) (c 1/2)

1i,  1

ˆ ., arg ˆ ˆ max
m

i i
i

r tr
ξ ψ

ξ ψ
−+ + + +

=

 
= − 

 
⊗∑ ΘC W C  

The (c)ν̂  is updated by optimizing the constrained log-likelihood function

( )(c 1) (c 1)ˆ ,ˆ arg max | ,f
ν

+ += ν y θ ν  where ( )|f y θ  is as in Equation (16). 

 
3.4. Estimation of random effects and prediction of future values for MSNI-NLMM 

The posterior density of ib  given ( ) ( ), ,i i i i=Y U y u  belong to the extended multivariate skew-

normal (EMSN) family (Azzalini and Capitanio 1999) 

( ) ( ) ( )1 1/2 1/2 1/2
| |

( | ) ( )( | ) , Φ Φ ,
( | ) ( ) i i i i

Ti i
i i q y i y i i i

i i i i

f ff u u u E
f f d

φ − −= =
∫

Σ
 









i
b b

y b bb y μ λ D b
y b b b

 

where  ( )1
|i i

T
b y i i i i

−= −Σ


  

μ DZ y X β  and ( )
11

| .
i i

T
i i i

−− = + ⊗Σ


 

b y D Z W C Z  It is straightforward to 

show that the estimator that minimizes the overall mean square error (MSE) is  
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*

* * .ˆ ( ) min ( )( )
i

T
i i iE  = − − i ib
b θ b b b b  A simple way to obtain the minimum MSE estimator îb  is to use 

the conditional mean of ib  given observed data iy . After some algebraic manipulations, we obtain  

( ) ( )
( )

1/21
| |1/21/2 1/2

|

| , ,ˆ
1

i i i i

i i

i
i i i y

T

V
E −= = +

+
Σ

Σ








 



b b y b

b b y b

b θ b y θ μ D λ
λ D D λ

 

where ( )1/2 1/2
1 ( )| , ,i i i i iV E u u Eη−
−

 =  
 

y θ with 
1/2

1/2
1/2

( )( ) .
Φ( )

i i
i i

i i

u Eu E
u E

φη =






 Substituting θ  with ML estimates 

ˆ,θ  the estimates ˆ ˆ ˆ( ) ( )i i=b θ b θ   is called the empirical Bayes estimates. Therefore, the fitted values of 
responses can be calculated as 

 ˆ ˆˆ ), ,  , ,( 1 . i i i i mµ= = …y β b                                                     (26) 
 
4.    Application 

The proposed approaches are applied to real data concerns the HIV/AIDS. The University 
Hospitals of Cleveland, Rush Presbyterian St. Luke’s Medical Center and University of Colorado 
Health Science Center have recruited 53 HIV-1 infected patients. The plasma RNA viral load and CD4 
T cells of patients were repeatedly measured at days 0, 2, 7, 10, 14, 28, 56, 84, 168, and 196 after the 
start of ARV treatment. Five patients are excluded as four patients dropped out of the study 
prematurely and a patient left due to a problem with the study therapy. So, the analysis depends on 48 
patients. The data have been analyzed by many authors such as Wu and Ding (1999).  

To verify the existence of skewness in the random effects, we start by fitting a traditional MN-
NLMM model as in Pinheiro and Bates (2000). Figure 1 describes the normal Q-Q plots of the 
empirical Bayes estimates of ib  and shows that there are some non-normal patterns on the random 
effects, including outliers and possibly skewness. This supports the use of thick-tailed distributions. 
Additionally, patients are not regularly measured in the study and the lengths of their follow-up times 
are distinct. These conclusions encourage applying a model which can flexibly handle asymmetric, 
unbalanced and irregularly observed multi-outcome longitudinal data. 

Let 1,i ky  and 2,i ky  be 10log RNA  and 0.5CD4  markers, respectively, at the thk  occasion for the 
thi patient. We use the bivariate functions for 1,i ky  and 2, :i ky  

( ) ( )( )1, 10 1 2 3 1,log exp exp ,i k i i ik i i ky t eφ φ φ= − + +  

 4
2, 2,

5

6

,
( )1 exp

i
i k i k

i ik

i

y e
t

φ
φ
φ

= +
 − +  

  

              (27) 

where 1i 1 i1β b ,φ = +  2i 2 ,βφ =  3i 3 i 4i 4 i2β RNA ,    β b ,φ φ= = +  5i 5 ,βφ =  6i 6βφ =  and ik ikt day / 7=  is 

the thk  visit for patient i  with RNAi  being hisher 10 ( )log RNA  levels at the start of the study, 

i1 i2(b ,b )  are the bivariate skew normal independent distribution of random effects; and ( )T
i1 i2,e e =

i ii1,1 i1,n i2,1 i2,n( , , , , , )e e e e… …  are the within-subject errors that follow a multivariate normal independent 

distribution with zero mean and variance-covariance 1
i iu .( )− ⊗W C  Lin and Wang (2013) incorporated 

base RNA to the analysis because it is significant covariate. 
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(a) (b) 

  

Figure 1. Normal Q-Q plots of estimated random effects based on MNLMM with 
(a) 1ib  for 10log RNA and (b) 2ib for 0.5CD4  

 
We fit the models MSNNLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM with specific 

nonlinear mean functions. Three covariance structures have been considered for within-subject 
dependence; the uncorrelated (UNC) structure, a continuous-type autoregressive model with order1 
AR(1), and the damped exponential correlation (DEC). The Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) are used for independent variables selection. 

Table 1 summarizes the values of ,maxl AIC and BIC for the different models under different 
covariance structures. The results show that the model with DEC covariance structure performs better 
than the one with UNC errors or AR (1) errors. The results of the ,maxl AIC and BIC suggest that the 
best model is the multivariate skew slash-nonlinear mixed effect models (MSS-NLMM) with DEC 
dependence. The ,maxl AIC and BIC criteria indicate that the multivariate skew normal independent 
(MSNI) model presents the best fit than the multivariate skew normal (MSN-NLMM) model, 
suggesting a departure of the data from normality. 

The ML estimates and their standard errors (SE) of the four best fit models are presented in Table 
2.  The significance of the fixed effects parameters ( the estimate relative to 2 SE)  are similar for the 
MSN- NLMM, MST- NLMM, MSS- NLMM and MSCN- NLMM models.  Under the fitted MSN-
NLMM, MST- NLMM, MSS- NLMM and MSCN- NLMM, the estimated correlation coefficients of 

random effects 12 11 22
ˆ ˆ/ ˆD D D  are 0.9097, 0.9232, 0.8827 and 0.8701, respectively.  This means that 

there is a highly positive correlation between patient-specific variabilities of RNA viral load and CD4-

T cells.  The estimated correlation coefficients of within- subject errors 12 11 22  ˆ/ˆ ˆW W W  are −0.1381, 

−0.1261, −0.1216 and −0.1302, respectively. Hence, the relationship between the two responses, CD4-
T cells and HIV-1 RNA levels (viral load), is negative and weak. The estimates of autocorrelation and 
damping parameters ξ  and ψ  show serial correlations among occasions.  For testing 0H : ψ = 1 

(AR(1) structure) versus 1H :ψ ≠ 1 (DEC structure), the likelihood ratio test (LRT) statistic for the 
fitted MSN-NLMM, MST-NLMM, MSSNLMM and MSC-NLMM are 73.122, 71.964, 66.626 and 
62.684, respectively, which is highly significant at any reasonable significance level. Hence, the null 
hypothesis is not supported by the data meaning that the DEC structure is more reasonable to data. 
The estimates of degrees of freedom of multivariate skew the t- distribution, the multivariate skew 
slash distribution and the multivariate skew contaminated normal distribution are ν̂ =10, ν̂ =2.8533, 

1̂ν =0.7725, 2ν̂ =0.5234, respectively. These estimates support the presence of heavy-tailed behavior 
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of between and within patient variability.  It is noticed that the estimate of re- scaled skewness 
parameters are significantly which support the appropriateness of multivariate SNI distribution.  
 

Table 1 Comparison of fitting performances for the ACTG 315 data under Pseudo ECM. Bold 
values indicate the smallest value from each 

iC  Criteria MSN MST MSS MSC 

UNC parn  14 15 15 16 

maxl  −1193.392 −1184.640 −1179.817 −1189.025 

AIC 2414.583 2399.296 2389.634 2410.050 
BIC 2440.780 2427.364 2417.702 2439.989 

AR(1) parn  15 16 16 17 

maxl  −1106.288 −1102.378 −1093.172 −1097.072 
AIC 2242.576 2236.756 2218.344 2228.144 
BIC 2270.644 2266.695 2248.283 2259.954 

DEC parn  16 17 17 18 

maxl  −1069.727 −1066.396 −1059.859 −1065.730 
AIC 2171.454 2166.792 2153.718 2167.460 
BIC 2201.393 2198.602 2185.528 2201.142 

MSN=MSN-NLMM; MST= ST-NLMM; MSS=MSS-NLMM; MSC=MSC-NLMM; 
UNC=uncorrelated structure; AR(1)=continuous time autoregressive of order 1; DEC=damped 
exponential correlation; parn =number of parameters;  maxl = the maximum log-likelihood value. 

 
Also, the results show that estimates of the fixed effects parameters are similar for the four fitted 

models, however the standard errors of the MST-NLMM, MSS-NLMM and MSCN-NLMM are 
smaller than those of the MSN-NLMM model for the most parameter of the model, indicating that the 
three models with longer tails than MSN seem to produce more accurate maximum likelihood 
estimates. The standard error approximation for the skewness parameter 1( )δ  seems to be poor. 

We next compare the fitted values, calculated by using Equation (26), based on the four best 
models selected in terms of AIC and BIC in each of MSN-NLMM, MST-NLMM, MSS-NLMM and 
MSC-NLMM with DEC dependence frameworks. The best model is MSSNLMM with DEC errors. 
To measure the discrepancy of the fitted values relative to original responses, we use the mean squared 

deviation ( )2
, ,,

MSD    ( )ˆ /ij k ij kij k
My y−= ∑  and mean absolute relative deviation 

( ), , ,,
MARD    ( ) / / ,ˆij k ij k ij kij k

y y y M−= ∑  where 
1

m

i
i

M s
=

= ∑  is the number of entire observations. The 

quantities of MSD for MSN-NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with DEC 
dependence are 6.344, 5.828, 5.486 and 5.599, respectively. The quantities of MARD for MSN-
NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with DEC dependence are 0.195, 0.189, 
0.186 and 0.187, respectively. This justifies that the MSNI-NLMM provides a considerably better 
fitting performance than the MSN-NLMM.  
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Table 2 ML estimates and standard errors under the DEC-MSN, MST, MSS, MSCN-NLMM for 
ACTG315 data set, where 1/2.F D=  

Parameters 

MSN MST MSS MSC 

 10ν =  ν = 2.8533 1 0.7725,ν =  

2 0.5234ν =  

1̂β  11.4176 
(0.2392) 

11.3001 
(0.2217) 

11.3795 
(0.2314) 

11.3527 
(0.2253) 

2β̂  2.1253 
(0.1205) 

2.0593 
(0.1101) 

2.0925 
(0.1164) 

2.0807 
(0.1145) 

3β̂  1.2934 
(0.0399) 

1.2756 
(0.0373) 

1.2905 
(0.0387) 

1.2822 
(0.0375) 

4β̂  16.8892 
(0.3294) 

16.9068 
(0.3092) 

16.9383 
(0.3159) 

16.9139 
(0.3074) 

5β̂  −1.4524 
(0.2387) 

−1.6272 
(0.2644) 

−1.5225 
(0.2487) 

−1.5499 
(0.2523) 

6β̂  1.2017 
(0.1940) 

1.2851 
(0.2073) 

1.2208 
(0.1980) 

1.2516 
(0.2010) 

11F̂  0.1960 
(0.4727) 

0.2117 
(0.3376) 

0.1816 
(0.4766) 

0.1782 
(0.4971) 

12F̂  0.2775 
(1.0274) 

0.3156 
(0.6535) 

0.2304 
(1.0530) 

0.2155 
(1.1009) 

22F̂  1.4672 
(0.7095) 

1.5864 
(0.3815) 

1.2789 
(0.6263) 

1.2144 
(0.6741) 

11Ŵ  0.5770 
(0.0410) 

0.4899 
(0.0350) 

0.3875 
(0.0278) 

0.3329 
(0.0238) 

12Ŵ  −0.2951 
(0.0382) 

−0.2299 
(0.0322) 

−0.1724 
(0.0254) 

−0.1597 
(0.0219) 

22Ŵ  7.9108 
(0.1874) 

6.7845 
(0.1731) 

5.1877 
(0.1408) 

4.5189 
(0.1140) 

1̂δ  −0.0801 
(2.7080) 

−0.1201 
(0.9724) 

0.3180 
(1.1310) 

0.2956 
(1.2421) 

2̂δ  −0.9689 
(2.229) 

−0.9782 
(0.1191) 

−0.4620 
(0.9280) 

−0.3880 
(1.1015) 

ξ̂  0.7715 
(0.0135) 

0.7695 
(0.0136) 

0.7745 
(0.0134) 

0.7615 
(0.0141) 

ψ̂  0.5231 
(0.0355) 

0.5142 
(0.0336) 

0.5225 
(0.0345) 

0.5215 
(0.0354) 

 
5.    Simulation Study 

The aim of this simulation study is to evaluate the performance of proposed models. The data 
were generated from the MSN-NLMM, MST-NLMM, MSS-NLMM and MSC-NLMM with 
nonlinear mean curves as in Equation (27). The model parameters are fixed as 

( ) 0.1 0.42 1 0.26
12, 3,1  ,1  7,  2,1  ,     ,     .

0.42 2 0.26 7
T D Wβ

−   
= − = =   −   
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The iC  is 10 10×  DEC dependence matrix, with 0.8ξ =  and 0.5,ψ = 1 0.3δ =  and 2 0.48.δ = −  
For simplicity the degrees of freedom ν  are fixed at its true value. The sample sizes are fixed at N = 
25 (small sample) and N = 100 (relatively large sample). 

For each sample size, 100 replications from the MSN-NLMM model and the MSNI–NLME 
model in Equation (27) were used under four scenarios: under the multivariate skew-normal model 
(MSN-NLME), the multivariate skew-t with ν  = 2 (MST-NLME), the multivariate skew–slash with 
ν  = 2.8 (MSS-NLME), and the multivariate skew-contaminated normal model with  ν  = (0.1,0.5) 
(MSCN-NLME). The values of ν  were chosen to yield a highly skewed and heavy-tailed distribution 
for the random effects. 

For each replication the empirical average ML estimates (EST) of parameters, empirical bias 
(bias) and empirical mean square error (MSE) over all samples were calculated. The computational 
procedures were implemented using the R software. 

The results for N =25 are presented in Table 3 and for N =100 in Table 4. The results show that 
the bias and the mean square errors (MSE) for most of the parameters, decrease when the sample size 
increases, indicating an asymptotic convergence for true parameter values as the sample size increases. 
The results show that the proposed approximate ML estimates based on the EM algorithm provide 
good asymptotic properties. In general, the mean square errors (MC-MSE) provide results close to the 
empirical ones, and the closeness improves as the number of subjects increases.  Under considered 
sample sizes, the fixed effect parameters have lower MSE under the multivariate skew normal (MSN), 
the MSE of the random components are smaller under the multivariate skew slash (MSS) distribution, 
the MSE of the variance-covariance components within subject errors and skew parameters are smaller 
under the multivariate skew contaminated normal ( MSC)  distribution.  For considered sample sizes, 
multivariate skew normal independent-nonlinear mixed effects models (MSNI-NLMM) tend to give 
lower MSE values than multivariate skew normal-nonlinear mixed effects model (MSN-NLMM) for 
all parameter of models except fixed effect parameter. 
 

Table 3 Simulation results ( N  = 25, 100 Replications): Mean estimates, bias, and MSE of 
parameters 

Parameter 
(True) Criteria 

MSN MSS MST MSCN 
 

2.8ν =  2ν =  1ν 0.1,=  

2ν 0.5=  

1β  
(12) 

EST 
bias 

MSE 

12.1282 
0.1282 
0.2557 

12.0921 
0.0921 
0.2572 

12.0581 
0.0581 
0.2260 

11.9896 
0.0104 
0.2377 

2β  
(3) 

EST 
bias 

MSE 

2.9946 
−0.0054 

0.0422 

3.0227 
0.0227 
0.0495 

3.0066 
0.0066 
0.0315 

3.0018 
0.0018 
0.0362 

3β  
(1) 

EST 
bias 

MSE 

1.0099 
0.0099 
0.0051 

1.0079 
0.0079 
0.0074 

1.0178 
0.0178 
0.0063 

0.9946 
−0.0054 

0.0057 

4β  
(17) 

EST 
bias 

MSE 

16.9928 
−0.0072 

0.1607 

17.1762 
0.1762 
0.3291 

17.1572 
0.1572 
0.4869 

16.9506 
−0.0494 

0.2314 
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Table 3 (Continued) 

Parameter 
(True) Criteria 

MSN MSS MST MSCN 
 

2.8ν =  2ν =  1ν 0.1,=  

2ν 0.5=  

5β  
(-2) 

EST 
bias 

MSE 

−1.9526 
0.0474 
0.3843 

−2.2014 
−0.2014 

1.0119 

−2.1509 
−0.1509 

0.6413 

−2.0713 
−0.0713 

0.6151 

6β  
(1) 

EST 
bias 

MSE 

0.9812 
−0.0188 

0.1160 

1.1235 
0.1235 
0.2893 

1.0767 
0.0767 
0.1863 

1.0526 
0.0526 
0.1888 

11D  
(0.1) 

EST 
bias 

MSE 

0.0991 
−0.0009 

0.0021 

0.0874 
−0.0126 

0.0010 

0.0936 
−0.0064 

0.0018 

0.0960 
−0.0040 

0.0021 

12D  
(0.42) 

EST 
bias 

MSE 

0.3895 
−0.0129 

0.0335 

0.3441 
−0.0583 

0.0202 

0.3723 
−0.0301 

0.0321 

0.3757 
−0.0367 

0.0267 

22D  
(2) 

EST 
bias 

MSE 

1.9117 
−0.0883 

0.5907 

1.7319 
−0.2681 

0.4353 

1.8659 
−0.1341 

0.6085 

1.8600 
−0.1400 

0.4637 

11W  
(1) 

EST 
bias 

MSE 

0.9544 
−0.0456 

0.0162 

0.8912 
−0.1088 

0.0265 

0.9559 
−0.0440 

0.0305 

0.9389 
−0.0611 

0.0222 

12W  

(−0.26) 

EST 
bias 

MSE 

    −0.2510 
0.0135 
0.0225 

−0.2636 
0.0009 
0.0282 

−0.2652 
−0.0008 

0.0262 

−0.2552 
0.0093 
0.0203 

22W  
(7) 

EST 
bias 

MSE 

6.6581 
-0.3419 
0.6336 

6.2456 
−0.7544 

1.2880 

6.6681 
−0.3319 

1.4110 

6.6959 
−0.3041 

0.8570 

1δ  
(0.3) 

EST 
bias 

MSE 

0.3026 
0.0026 
0.0026 

0.3145 
0.0145 
0.0115 

0.2461 
−0.0539 

0.0496 

0.2903 
−0.0097 

0.0011 

2δ  
(-0.48) 

EST 
bias 

MSE 

−0.4616 
0.0184 
0.0199 

−0.3492 
0.1308 
0.1032 

−0.4325 
0.0475 
0.2141 

−0.4711 
0.0089 
0.0028 

ξ  
(0.8) 

EST 
bias 

MSE 

0.7877 
−0.0123 

0.0008 

0.7875 
−0.0125 

0.0008 

0.7839 
−0.0161 

0.0009 

0.7846 
−0.0154 

0.0009 
ψ  

(0.5) 
EST 
bias 

MSE 

0.4818 
−0.0182 

0.0035 

0.4860 
−0.0140 

0.0029 

0.4867 
−0.0035 

0.0030 

0.4974 
−0.0026 

0.0026 
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Table 4 Simulation results ( N  = 100, 100 Replications): Mean estimates, bias, and MSE of 
parameters 

Parameter 
(True) 

Criteria 

MSN MSS MST MSCN 
 

2.8ν =  2ν =  
1ν 0.1,=  

2ν 0.5=  

1β  
(12) 

EST 
bias 

MSE 

11.9813 
−0.0187 

0.0376 

12.001 
−0.001 
0.0694 

11.9464 
−0.0537 

0.0551 

12.0365 
0.0365 
0.0626 

2β  
(3) 

EST 
bias 

MSE 

2.9971 
−0.0029 

0.0088 

2.9884 
-0.0116 
0.0118 

2.9895 
−0.0105 

0.0101 

2.9903 
−0.0097 

0.0112 

3β  
(1) 

EST 
bias 

MSE 

0.9960 
-0.0040 
0.0010 

1.0096 
0.0097 
0.0017 

0.9938 
−0.0062 

0.0018 

1.0088 
0.0088 
0.0013 

4β  
(17) 

EST 
bias 

MSE 

17.0121 
0.0121 
0.0544 

16.9705 
-0.0295 
0.0901 

17.0498 
0.0498 
0.1245 

17.0194 
0.0194 
0.0555 

5β  
(-2) 

EST 
bias 

MSE 

−1.9499 
0.0501 
0.1268 

−2.0713 
−0.0713 

0.2415 

−1.9215 
0.0785 
0.1652 

−2.0490 
−0.0490 

0.1351 

6β  
(1) 

EST 
bias 

MSE 

0.9675 
−0.0325 

0.0371 

1.0385 
0.0385 
0.0667 

1.0246 
−0.0299 

0.0440 

1.0328 
0.0328 
0.0394 

11D  
(0.1) 

EST 
bias 

MSE 

0.1029 
0.0029 
0.0013 

0.1006 
0.0006 
0.0007 

0.0994 
-0.0006 
0.0015 

0.1029 
0.0029 
0.0012 

12D  
(0.42) 

EST 
bias 

MSE 

0.4088 
0.0064 
0.0241 

0.4012 
−0.0012 

0.0133 

0.4154 
−0.0046 

0.0270 

0.4110 
0.0086 
0.0227 

22D  
(2) 

EST 
bias 

MSE 

1.9997 
−0.0003 

0.4539 

1.9781 
−0.0219 

0.2603 

1.9719 
−0.0281 

0.4903 

2.0236 
0.0236 
0.4523 

11W  
(1) 

EST 
bias 

MSE 

0.9879 
-0.0121 
0.0066 

0.9830 
−0.0170 

0.0070 

0.9932 
−0.0068 

0.0162 

0.9767 
−0.0233 

0.0058 

12W  

(−0.26) 

EST 
bias 

MSE 

−0.2846 
−0.0201 

0.0068 

−0.2607 
0.0038 
0.0068 

−0.2573 
0.0027 
0.0095 

−0.2649 
0.0004 
0.0059 

22W  
(7) 

EST 
bias 

MSE 

6.9366 
−0.0634 

0.3603 

6.9194 
−0.0806 

0.3739 

6.9581 
−0.0419 

0.8058 

6.8504 
−0.1497 

0.3284 

1δ  
(0.3) 

EST 
bias 

MSE 

0.2979 
−0.0021 

0.0037 

0.2837 
−0.0163 

0.0171 

0.2723 
−0.0277 

0.0136 

0.2959 
−0.0041 

0.0006 
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Table 4 (Continued) 

Parameter 
(True) Criteria 

MSN MSS MST MSCN 
 

2.8ν =  2ν =  
1ν 0.1,=  

2ν 0.5=  

2δ  

(−0.48) 

EST 
bias 

MSE 

−0.4666 
0.0134 
0.0111 

−0.4515 
0.0285 
0.0699 

−0.4500 
0.0300 
0.0805 

−0.4795 
0.0005 
0.0018 

ξ  
(0.8) 

EST 
bias 

MSE 

0.7949 
−0.0051 

0.0003 

0.7937 
-0.0063 
0.0002 

0.7967 
−0.0032 

0.0003 

0.7932 
−0.0068 

0.0002 
ψ  

(0.5) 
EST 
bias 

MSE 

0.4934 
−0.0066 

0.0005 

0.4921 
−0.0079 

0.0009 

0.4938 
−0.0062 

0.0008 

0.4917 
−0.0068 

0.0009 
 
6.  Conclusions 

A robust extension of MNLMM by using multivariate skew normal independent (MSNI) 
distribution for the random effects and the multivariate normal independent (MNI) distribution for the 
within-subject errors has been introduced. It is assumed that the relationship between the response and 
the covariates to be nonlinear in parameters. The proposed model capable of handling a broader range 
of multivariate longitudinal data especially in the presence of outliers or heavy-tailed noises. The 
proposed model includes the MSN-NLMM, MST-NLMM, MSS-NLMM and MSCN-NLMM as 
special cases. We also consider the scenario where only a subset of the multiple responses can be 
collected at any occasion. The autocorrelation for responses at irregular time points is described by a 
parsimonious DEC function. This work generalizes the results of Schumacher et al. (2021a) and by 
developing some additional tools and making robust inferences in practical data analysis. We have 
described two flexible hierarchies for MSNI-NLMM. We developed computationally tractable PNLS-
MLME procedure and Pseudo-ECM algorithm to obtain the ML estimates. We have created the 
pseudo data by using the first-order Taylor approximation and then implement the ECM algorithm to 
obtain the ML estimates. We also have created the pseudo data by using the first-order Taylor 
approximation and then implement multivariate linear mixed effects models (MLMM) to update the 
estimates of fixed effect by a generalized least-squares approach and estimates of the variance 
component by the Newton-Raphson method. The likelihood information-based method for 
approximating the standard errors of parameter estimates is also defined. 

The proposed techniques are applied to the ACTG 315 data. This application supported flexibility 
of the MSS-NLMM among the robust distributions in terms of likelihood-based model selection 
criteria. The model with DEC dependence which takes into account the autocorrelation among 
occasions also performs better than the models with UNC errors and AR(1) errors. The analysis 
showed high positive correlation between patient-specific variabilities of RNA viral load and CD4-T 
cells. Also, the relationship between the two responses, CD4 cells and HIV-1 RNA levels (viral load) 
is negative. Furthermore, the simulation study showed that the proposed approximate ML estimates 
for fitted models based on the EM algorithm provide good asymptotic properties. The bias and the 
mean square error of the estimates generally decrease with the increase of the sample size.  

Different venues of future research are possible. These include generalizing the multivariate SN 
distribution and SNI distribution depending on broader families of distributions, such as the 
multivariate skew t-distribution, the multivariate extended skew t-distribution, and the multivariate 
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skew-elliptical distribution. Also, an imputation method to handle incomplete multiple repeated 
measures is possible. This can be done by adopting an extension of the multivariate nonlinear mixed 
effects model using multivariate skew normal and multivariate skew normal independent distributions 
for random effects and multivariate normal and multivariate normal independent distributions for the 
within-subject errors, taking the censoring information of multiple responses into account. A study to 
compare the proposed techniques with other methods such as the Monte Carlo EM (MCEM), the 
importance sampling EM (ISEM) and stochastic approximate EM (SAEM) algorithm to obtain the 
ML estimates of the multivariate version of skew-family nonlinear mixed models. This can be done 
by considering a more general structure for the within-subject covariance matrix, such as an AR(p) 
dependency structure (Schumacher et al. 2017). 
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