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Abstract
It is well known that the median run length measures chart performance better than the average

run-length. Some authors have advocated more representative measures like the percentiles for as-
sessing charts performance and called for an examination of the percentiles of the entire run-length
distribution. An earlier work studied the percentiles of Shewhart x̄-chart when the process mean
and variance are known (Case KK), later, another when the process mean and variance are unknown
(Case UU). Here, we consider when only the process mean is unknown (Case UK) and when only
the process variance is unknown (Case KU) by evaluating and plotting their exact run-length cumu-
lative distribution functions for some reference samples (m) of size 5 at a given false alarm rate. We
compare the results with those for Cases KK and UU. Unlike in Case UU, the cumulative distribution
function curves for Case UK for small to moderate m are stochastically ordered relative to that of
the geometric distribution and dominance is a function of δ, however, in line with Case UU, in Case
KU, the curves cross that for the geometric distribution at some points and for at least m = 500 and
n = 5, the curves for Cases UK and KU converge with that for Cases KK and UU.

Keywords: average run length (ARL), false alarm rate (FAR), median run length (MRL), parameter
estimation, stochastic ordering

1. Introduction
Control charts are essential tools in ascertaining if a process is in a state of statistical control or

not, (see in Montgomery, 1991, p. 186). The Shewhart x̄-chart is one of the most frequently used
charts for monitoring and controlling for the mean of a process, Jardim et al. (2019). To design this
chart, the process mean and standard deviation are needed and they are either specified or estimated
from m phase I samples taken from the process during an in-control state. Therefore, four situations
are involved and they are; when both the process mean and variance are specified, when the process
mean is specified but the variance is unknown, when the process mean is unspecified but the variance
is specified and when both the process mean and variance are unspecified. These are referred to as
Cases KK, KU, UK and UU respectively. The performance of this chart like every other chart is an
important consideration in application and is always judged in terms of certain measures or charac-
teristics associated with its run-length distribution, Chakraborti (2000). The run-length, a random
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variable, is the number of subgroups that must be collected or put in another way; the number of plot-
ting statistics that must be plotted until the first signal suggesting a change from in-control process is
observed, Chakraborti (2007). It is well known that the run-length distribution is right-skewed and in
a right-skewed distribution, median is a better measure of the central tendency. Hence, the median
run length (MRL) is a better measure of a chart performance than the average run length (ARL).

When the parameters used in the chart’s design are specified or known, that is, the ideal but a
rare practical Case KK, a well-known fact is that the run-length distribution of the Shewhart x̄-chart is
geometric, Chakraborti (2006). This is simply because, in this case, the signaling events are mutually
independent. However, in many applications of the Shewhart x̄-charts, the process parameters such
as the mean and the variance are not known, instead, their estimates are obtained and used in the
chart’s design. Plugging in these estimates in its design has significant effects on the properties of
the chart as the signaling events are no longer independent and hence, the run-length distribution is
no longer geometric, Quesenberry (1993). Several works have been done in the literature to study
the effect of the estimated parameter(s) on the performance of the Shewhart x̄-chart especially as
it concerns its probability of signal and the run-length distribution; see Quesenberry (1993), Chen
(1997), Chakraborti (2000), Chakraborti (2006) and Goedhart et al. (2016). These studies focused on
the marginal distribution of the in-control (IC) run-length, most especially on its expected value, the
so-called unconditional in-control average run length (ARL0), Jardim et al. (2018). In line with what
has been said about the run-length distribution, Chakraborti (2007) and some earlier works stated that
since the run-length random variable takes on only positive integer values, the distributional shape is
significantly right-skewed. Also, Chakraborti (2006) categorically stated that because of the skewed
nature of the run-length distribution, one might prefer the median (or some other quantile) and not
the mean (ARL) as a measure of typical chart performance. Chakraborti (2007) went further to say
that some studies have advocated the use of other more representative measures other than the ARL
for the assessment of chart performance, noting that one such measure is the percentile of the run-
length distribution. The percentiles provide wider information about a distribution and hence on the
performance of a chart not provided by the mean or the expected value. Works exist in the literature
on the examination of the percentiles of the run-length distribution of the Shewhart x̄-chart. This
can be seen in Shmueli and Cohen (2003), Khoo (2004) and Radson and Boyd (2005). However,
these papers considered the examination based on the standard known case (Case KK) only. Not
only was Case KK considered alone but there is also a lack in the provision of broader details in the
examination of the percentiles even as it concerns the in-control and out-of-control states coverage.
Chakraborti (2007) at m = 20, 30, 50, 100, 500 and ∞ provided the percentiles of the Shewhart x̄-
chart when the process mean is unknown but the variance is known referred to as Case UK. The same
paper under the same conditions of phase I samples (m) considered the examination when both mean
and standard deviation are unknown referred to as Case UU. However, only the 5th, 50th (median),
and 95th percentiles were considered in the work at δ = 0, that is, at an in-control state only. As a
way of filling this gap, Chakraborti (2007) examined the run-length distribution and demonstrated a
more detailed examination of the percentiles at ”13” different percentage points beginning from the
5th to the 95th percentiles for the chart in Case UU at different values of m, each of size (n = 5)
when the nominal false alarm rate, α = 0.0027 and δ = 0, 0.2, 0.6 and 1.0 with 0 as the in-control
state and 0.2, 0.6 and 1.0 as out-of-control states of the respective sizes. Some details of the work
will be provided here during the presentation and discussion of the results for this work. Although
it was stated in Chakraborti (2007) that the same methodology in the paper can be adapted to obtain
similar results for Case UK and Case KU, they were never provided. To the best of our knowledge,
these are currently unavailable in the literature. Motivated by this and by the sense of examination of
all estimation cases to ensure completeness, the purpose and contribution of this paper, therefore, is
to fill this gap by providing a detailed examination of the run-length distribution and the percentiles
of Shewhart x̄-chart for Cases UK and KU and comparing the results with those in Cases KK and UU
as it concerns the chart performance from the c.d.fs and percentiles standpoints.

The remainder of this paper is structured as follows. We present the review of the probability
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of signal, false alarm rate (FAR), c.d.f, and the percentile distribution of Cases KK in Section 2. In
Section 3, we present the derivations of the c.d.fs and the percentile distributions of the Cases UK
and KU respectively. The results of the evaluations in simulation of the given and derived expressions
will be presented in Section 4 and finally, the conclusion of the work is presented in Section 5.

2. Mean and Standard Deviation Both Known (Case KK)
Suppose that m subgroups (phase I samples) each of size n, say; Xi1, Xi2, . . ., Xin, i =

1, 2, . . . ,m are available from an in-control state with the process mean (µ0) and standard devia-
tion (σ0), both known or specified. Then, the general expressions for the upper and lower control
limits (UCL and LCL) of a Zα/2-Sigma Shewhart x-chart are given by UCL=µ0+ Zα/2

σ0√
n

and
LCL=µ0- Zα/2

σ0√
n
, respectively, where the charting constant, Zα/2 = Φ−1(1 − α/2) and Φ(.) is

the standard normal cumulative density function. The probability of signal by the chart is given by
1− P (LCL ≤ µ1 ≤ UCL), which can be expressed as

1− β(δ, n) = 1−
{
Φ
(
Zα/2 − δ

√
n
)
− Φ

(
−Zα/2 − δ

√
n
)}

where δ = (µ1−µ0)
σ0

, µ1 is taken to be the mean of any subgroup sample in phase II and Φ(.) remains
as already defined in Chakraborti (2000). It is well-known that in Case KK, the run length, N follows
a geometric distribution, (see in Montgomery, 2004, p. 190-208). Therefore, the characteristics of
the chart here can be inferred by the characteristics of a geometric distribution. Consequently, the
in-control average run length, ARL0 of the chart is the expected value of a geometric distribution
defined as

α−1 or equivalently
[
1−

{
Φ
(
Zα/2

)
− Φ

(
−Zα/2

)}]−1
(1)

where α is the false alarm rate (the probability of signal at δ=0). The out-of-control average run
length, ARLδ is defined for some values of δ ̸= 0 as[

1−
{
Φ
(
Zα/2 − δ

√
n
)
− Φ

(
−Zα/2 − δ

√
n
)}]−1 (2)

Run length distribution
Therefore, the cumulative distribution function, c.d.f of the run length, N is defined as{

P (N ≤ s) = 1−
{
Φ
(
Zα/2 − δ

√
n
)
− Φ

(
−Zα/2 − δ

√
n
)}s

, δ = 0

P (N ≤ s) = 1− (1− β)
s
, s = 1, 2, . . .

(3)

where β also is the FAR always set at 0.0027 in many applications. The results of the evaluation of
expressions (1) and (2) are presented in Table 1 specifically at the Table section (standards known
case) under, ARL.

Percentiles of run length
The 100pth (0 < p < 1) percentile is defined as the smallest integer, ’s’ so that the c.d.f in

expression (3) at ’s’ is at least equal to p, Chakraborti (2007). Therefore, the expressions in (3) can
be redefined for this purpose as

1−
{
Φ
(
Zα/2 − δ

√
n
)
− Φ

(
−Zα/2 − δ

√
n
)}s ≥ p or 1− (1− β)

s ≥ p, (4)

where s = 1, 2, . . . ,and can be used to study the statistical properties of the control chart, including
the various performance characteristics. Since the first part of the expressions in (3) can easily be
evaluated at different values of δ, it will be used in this work for the evaluations for all possible
values of p within the range. The results of the evaluations at different values of δ and p are presented
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in Table1 for comparison with other cases. It was also evaluated graphically at δ= 0 and 0.5 for
all possible values of p as the plots (standard known case plots) and included in all the figures for
comparison.

3. Process Mean Unknown but the Standard Deviation is Known (Case UK)
Suppose that the process mean (µ0) is unknown but that the standard deviation (σ0) is known.

Then, the mean ( µ0) is estimated by the grand mean ( ¯̄X) from the m subgroup means and the control
limits of the Shewhart x̄-chart becomes; ¯̄X ±Zα/2

σ0√
n

. Quesenberry (1993) and Chakraborti (2000)
stated that once estimated control limits are used, the properties of the control chart fundamentally
change as the run-length distribution, N is no longer geometric. However, conditionally on ¯̄X, the
random variable N has a geometric distribution with probability of a success (a signal) given as;
1− β(δ, n ¯̄X) where

β
(
δ, n, ¯̄X

)
= Φ

−δ
√
n+ Zα

2
+

√
n
(
¯̄X − µ0

)
σ0

− Φ

−δ
√
n− Zα

2
+

√
n
(
¯̄X − µ0

)
σ0


and δ is as defined before, Chakraborti (2000). This is called the conditional probability of signal,
CPS and at δ = 0, it is then called the conditional false alarm rate, CFAR of the Shewhart x̄-chart
when the process mean is estimated. Since ¯̄X has a normal distribution with mean, µ0 and variance
σ0/mn, the CPS can be expressed in the alternative canonical form as

1−
{
Φ

(
−δ

√
n+ Zα

2
+

Z√
m

)
− Φ

(
−δ

√
n− Zα

2
+

Z√
m

)}
also called CFAR at δ = 0, where Z =

√
mn( ¯̄X − µ0)/σ0 has a standard normal distribution,

Chakraborti (2000). Therefore, the exact in-control and out-of-control average run lengths are defined
respectively by

ARL0 =

∞∫
−∞

[
1−

{
Φ

(
Zα

2
+

Z√
m

)
− Φ

(
−Zα

2
+

Z√
m

)}]−1

Φ(z) d (z) (5)

and

ARLδ =

∞∫
−∞

[
1−

{
Φ

(
−δ

√
n+ Zα

2
+

Z√
m

)
− Φ

(
−δ

√
n− Zα

2
+

Z√
m

)}]−1

Φ(z) d (z) , δ ̸= 0

(6)
The ARL Equations in (5) and (6) were evaluated by simulation at 106 replications and the same

simulation size is maintained throughout this work. The results are given in Table 1 for m = 20, 30, 50
and 100 and for δ = 0.0, 0.2, 0.5, 0.6, and 1.0 with n = 5 and α = 0.0027. Note that Equation (6)
was evaluated at different shift sizes (δ).

Distribution of the run length
Since the distribution of N is no longer geometric with estimated parameter, ¯̄X. It can be de-

duced from Chakraborti (2000) and Chakraborti (2007) that the exact c.d.f of N is given by

P (N ≤ s) = 1−
∞∫

−∞

[
Φ

(
−δ

√
n+ Zα

2
+

Z√
m

)
− Φ

(
−δ

√
n− Zα

2
+

Z√
m

)]s
Φ(z) d (z) , (7)

where s = 1, 2, . . ., Φ(.) and Z are as already defined.
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Percentiles of the run length
As already stated, the 100pth percentile can be formulated from the definition that it is the

smallest positive integer, ’s’ such that the c.d.f at ’s’ is at least equal to p. Therefore, the equation in
(7) is redefined as in (4) for the purpose. That is

1−
∞∫

−∞

[
Φ

(
−δ

√
n+ Zα

2
+

Z√
m

)
− Φ

(
−δ

√
n− Zα

2
+

Z√
m

)]s
Φ(z) d (z) ≥ p, (8)

where s = 1, 2, . . .. By evaluating this equation at different values of p and δ , one can study
the performance characteristics of the Shewhart x̄-chart with estimated process mean, ¯̄X . Aside
evaluating the percentiles from equation (8), it was also evaluated and plotted for all possible values
of p, first, at m = 30, 100 and 500 when δ = 0 and at m = 30, 100 and 500 when δ = 0.5. The
choice of these values is in line with Chakraborti (2007) as the both results will be compared in this
work . The graphs for m = 30, 100 and 500 when δ = 0 and at m = 30, 100 and 500 when δ = 0.5
are presented in Figures 1 and 2 respectively and like already hinted, the graph of the standards known
case (Case KK) will be included in each case for reference purposes. Each figure in each case will
be discussed and compared with the graphs in Figures 5 and 6 in this work which show Shewhart x̄-
charts operating under the same conditions of m,n and δ when the mean and variance are unknown
and estimated by ¯̄Xand S as reported by Chakraborti (2007).

3.1. Process mean known but the standard deviation unknown (Case KU)
When the mean standard µ = µ0 is given but the standard deviation σ0 is unknown, the process

standard deviation is typically estimated from m reference (phase I) samples each of size n when the
process is in-control from a phase 1 analysis, Jardim et al. (2018). Mahmoud et al. (2010) analyzed
several estimators of the standard deviation (σ0) in terms of the mean squared error and recommended

the use of σ̂0 = Sp=
√

1
m

∑m
i=1 S

2
i where S2

i = 1
n−1

∑n
j=1

(
Xij − X̄i

)2and X̄i = 1/n
∑n

j=1 Xij

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n and Xij is the jth observation of the ith Phase 1 sample of size
n. In this work, the recommended estimator will be considered in use. Then, the control limits of the
chart becomes; µ0 ± Zα/2

Sp√
n

. Because of this estimated limits plugged into the design of the chart,
the run length random variable (N) is no longer geometric, Quesenberry (1993). But conditionally
on Sp, N has a geometric distribution with the probability of success( signal) given by 1−β (δ, n, Sp)
where

β (δ, n, Sp) = Φ

(
−δ

√
n+ Zα/2

Sp√
n

)
− Φ

(
−δ

√
n− Zα/2

Sp√
n

)
.

Like before, this is called the conditional probability of signal and at δ = 0, it is then called the
conditional false alarm rate of the Shewhart x̄-chart when the process variance is estimated. Using the
fact that Y = m (n− 1)S2

p/σ
2
0 follows chi-square distribution with m(n − 1) degrees of freedom,

that is, Y = m (n− 1)S2
p/σ

2
0 ∼ χ2

m(n−1) and letting v = m(n− 1), the probability of signal can be
rewritten as

1−
{
Φ

(
−δ

√
n+

Zα
2√
v

√
y

)
− Φ

(
−δ

√
n−

Zα
2√
v

√
y

)}
.

Therefore, the exact in-control and out-of-control average run lengths are defined respectively by

ARL0 =

∫ ∞

0

[
1−

{
Φ

(
Zα

2√
v

√
y

)
− Φ

(
−
Zα

2√
v

√
y

)}]−1

fχv (y) dy (9)

and

ARLδ =

∫ ∞

0

[
1−

{
Φ

(
−δ

√
n+

Zα
2√
v

√
y

)
− Φ

(
−δ

√
n−

Zα
2√
v

√
y

)}]−1

fχ2
v
(y) dy, δ ̸= 0

(10)
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where fχ2
v

is the Chi-square probability density function (p.d.f) with v degrees of freedom, Chakraborti
(2000). Equations (9) and (10) were evaluated and the results presented in Table 2. Note that equation
(10) was evaluated at different shift sizes (δ).

Distribution of the run length
Again, since the distribution of N is no longer geometric with the estimated parameter, Sp. It

can be deduced from Chakraborti (2000) and Chakraborti (2007) that the exact c.d.f of N is given by

P (N ≤ s) = 1−
∫ ∞

0

[
Φ

(
−δ

√
n+

Zα
2√
v

√
y

)
− Φ

(
−δ

√
n−

Zα
2√
v

√
y

)]s
fχv (y) dy, (11)

where s = 1, 2, . . ..

Percentiles of the run length
Following the argument before, the percentiles of the distribution can be written as

1−
∫ ∞

0

[
Φ

(
−δ

√
n+

Zα
2√
v

√
y

)
− Φ

(
−δ

√
n−

Zα
2√
v

√
y

)]s
fχv (y) dy ≥ p, (12)

where s = 1, 2, . . ..
Expression (12) was evaluated at different values of p and δ for the study of the chart perfor-

mance characteristics with estimated process variance. Aside from evaluating the percentiles from
equation (12), it was also evaluated and plotted for all possible values of p, first, at m = 30, 100 and
500 when δ = 0 and at m = 30, 100 and 500 when δ = 0.5. The graphs are presented in Figures 3
and 4 respectively alongside the graph of the standards known case (Case KK) included for reference
purpose and which will be discussed and compared with the other graphs in Figures 1, 2, 5 and 6 for
other cases.

4. Results and Discussion
As pointed out already, specifically, for comparison with the results in Chakraborti (2007), the

c.d.fs of the run length distribution for the Shewhart x̄-chart for Cases UK and KU are evaluated and
plotted for m = 30, 100, 500, n = 5, and α = 0.0027 for shift sizes ( δ = 0 and 0.5).

Figure 1 In-control (δ = 0) run length c.d.f of the Shewhart x̄-chart of Case UK for m=30 ,100 and
500, n=5 in each and α=0.0027
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Figure 2 Out-of-control (δ = 0.5) run length c.d.f of the Shewhart x̄-chart in Case UK for m=30,100
and 500, n=5 in each and α=0.0027

Figure 3 In-control (δ = 0) run length c.d.f of the Shewhart x̄-chart of Case KU for m=30 ,100 and
500, n=5 in each and α=0.0027

Figure 4 Out-of-control (δ = 0.5) run length c.d.f of the Shewhart x̄-chart in Case KU for m=30,100
and 500, n=5 in each and α=0.0027
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Before the discussions on the figures, it suffices to note that the information from the figures of
each case (Cases UK, KU, and UU) is appreciated more by paying greater attention to the in-control
(δ = 0) state of each case because with the out-of-control (δ = 0.5) size, the run-length distributions
at small, moderate and large values of m tend to converge alongside that of the standards known case.
Therefore, viewing the movement of a particular curve clearly might appear a bit clumsy but this is
not so with the former.

Figure 5 In-control (δ = 0) run length c.d.f of the Shewhart x̄-chart in Case UU for m=30,100, and
500, n=5 in each and α=0.0027 reproduced for comparison from (Chakraorti, 2007)

.

Figure 6 Out-of-control (δ = 0.5) run length c.d.f of the Shewhart x̄-chart in Case UU for m=30,100
and 500, n=5 in each and α=0.0027 reproduced for comparison from (Chakraorti, 2007)

The graphs in Chakraborti (2007) for the Shewhart x̄-chart when the parameters, the process
mean and variance are unknown but estimated are reproduced in this work and presented in Figures
5 and 6 to concretize our comparative discussions by having the results side by side. As already
mentioned, the graph of the c.d.f of the run-length distribution for the standards known case (geomet-
ric distribution) for nominal (α = 0.0027) was also included in each case for reference. In Figure
1 of the Case UK, the run length c.d.f curves differ significantly from that of the standards known
case (geometric distribution) especially at small to moderate values of m but at large m say 500 and
above, it was discovered that the distance between the curve and that of the standards known case
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thins off significantly as the two curves are seen to converge everywhere including at both tails of the
distribution. Similar results were obtained in Figure 2 with the shift size of 0.5 from the in-control
state except that the curve for the standards known case lies above the other curves unlike before,
pointing to the fact that the curve for the standards known case raises more alarms to this shift. These
observations are true with Case KU which can be seen in Figures 3 and 4 for the in-control and 0.5
out-of-control states respectively. All these reports thus far, agree with the remarks in Chakraborti
(2007) for the Case UU as can be seen in Figures 5 and 6. Therefore, at large m, at least 500, the
run-length c.d.f curves of Shewhart x̄-chart when the process mean is unknown but estimated (Case
UK), when the variance is unknown but estimated (Case KU) and when both the process mean and
variance are unknown but estimated (Case UU) converge with that of the standards known case (Case
KK).

Again, Chakraborti (2007) showed that in the in-control state, when m=30 and 100, the run-
length c.d.fs for Case UU lie above that of the geometric distribution up to (approximately) the 82nd
percentile but beyond that, they lie below it. It was noted in that paper again that similar behavior was
observed in the out-of-control state (δ = 0.5) but that the c.d.fs lie above up to (approximately) the
62nd percentiles and lie below that of the geometric distribution beyond the 62nd percentiles. This
is evident in Figures 5 and 6 of this work as reproduced from Chakraborti (2007). Owing to this,
it was further noted that when parameters are estimated and m is small to moderate, the run-length
distributions neither dominate nor are dominated by the run-length distribution in the standard known
case describing them are not being stochastically ordered relative to the geometric distribution. A
random variable is said to be stochastically smaller (larger) than the second when the c.d.f of that
random variable lies entirely above (below) the c.d.f of the second random variable, Gibbons and
Chakraborti (2003). Note that a stochastically larger random variable has larger percentiles than the
smaller one and vice versa. Very similar results are obtained in Figures 3 and 4 when a parameter
(variance) is estimated (Case KU), only that in both shifts states (0 and 0.5), the c.d.f curves lie above
that of geometric distribution up to (approximately) the 62nd percentiles beyond which they lie below
it making them not to be stochastically ordered relative to the geometric distribution.

However, this is not true in the case when only the process mean is estimated (Case UK) as
the c.d.f curves for m = 30 and 100 are seen in Figure 1 to lie above that of the standards known
(geometric distribution) throughout their course. Thus, in line with this augment, the run-length
distributions of the Shewhart x̄-chart are dominated by the run-length distribution in the standard
known case (geometric distribution) when only the process mean is estimated with small to moderate
values of m. This shows that the run-length distributions here are stochastically ordered relative to
the geometric distribution. Again, with a shift in the in-control state of δ = 0.5, the c.d.f curves are
still stochastically ordered relative to that of the standard known case which can be seen in Figure
2 except that the run-length distribution for the standard known is now dominated as it lies entirely
above the curves in Case UK for m = 30 and 100. This implies smaller run-length percentiles for
the standards known case at all times which means more out-of-control signal for this shift compared
to Cases UK, making it more efficient. This is also different from what was reported in Chakraborti
(2007) which was reproduced and presented in Figure 6 as no one c.d.f is seen to dominate the other
for the shift size, δ = 0.5.
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As already stated, several percentiles of the run-length distribution for both in-control and out-
of-control states were evaluated for m = 20, 30, 50, and 100 and at shift sizes of δ = 0.0, 0.2, 0.5, 0.6
and 1.0 when the sample size and the FAR are fixed at 5 and 0.0027 respectively for Cases UK and
KU. The evaluations of the ARLs and the c.d.fs involved numerical integration and in this paper,
statistical software, R (R core, 2019) was used for the evaluations. Table 1 is the result of the detailed
examination of the percentiles of the run- length distribution of the Shewhart x̄-chart when the process
mean is unknown but estimated from m phase I samples, (Case UK) while Table 2 is that of the Case
KU. Juxtaposing the results with those in Chakraborti (2007) of Case UU and given the results of
the standards known case, Case KK too, the following remarks can be made of them. First, at an in-
control state (δ = 0), Chakraborti (2007) reported that the 50th percentiles (MRL0) for Case UU are
194, 211, 227 and 241 for m = 20, 30, 50, and 100 respectively and compared it with the (MRL0),
257 for the standard known case, Case KK. The paper further noted that the median run lengths,
when parameters are estimated are shorter especially at small to moderate values of m compared to
that of the Case KK. Of course, it implies more false alarms than what is nominally expected in Case
KK with FAR of 0.0027. But in Case UK, the 50th percentiles (MRL0) are 209, 223, 234 and 245
for m = 20, 30, 50 and 100 respectively and when compared with that of the standards known case,
the values imply shorter run-lengths and more false alarms as well, however, they mean longer run
lengths with smaller false alarms when compared to Case UU.

However, in Table 2, it can be seen that at δ = 0 (in-control state), the 50th percentiles (MRL0)
for Case KU are 238, 243, 248 and 252 for m = 20, 30, 50 and 100 respectively. When compared
with the MRL0 for the standard known case (257), the values are all smaller in terms of the median
run length implying more false alarms but when compared to the Case UU of Chakraborti (2007) and
Case UK of this work, the values stand, instead, for larger median run length and smaller false alarms.
This is a bit contradictory to what one might ordinarily think and expect on the basis that in Case UU,
both parameters are estimated and therefore, more variation is expected in the process which implies
more false alarms and a smaller median run length. A similar conclusion is reached in terms of the
average run length (ARL0)

Looking at columns 2 and 9 of Tables 1 and 2, which show the ARL and the 50th percentiles
(MRL) values of the Cases UK and KU , it is clear that the ARL values are larger than that of the
MRL values which points to the right-skewed nature of the run-length distribution and it is there-
fore misleading to settle for the ARL as a better or a sole measure of chart performance. Again,
Chakraborti (2007) stated that the tails of the c.d.f of the run length when parameters are estimated
behave differently relative to that of the geometric distribution, noting that in Case UU, while the
percentiles for p ≤ 0.82 (approximately) are smaller than those for the standard known case (geo-
metric distribution), for p > 0.82, the percentiles are larger. Figure 5 helps to affirm this statement.
A similar conclusion is reached for Case KU as the percentiles for p ≤ 0.62 ( approximately) are
smaller than those for the standard known case, however, for p > 0.62, the percentiles are larger, see
Figures 3 and 4. However, in Case UK, the c.d.fs for small to moderate values lie entirely above that
of the geometric distribution (stochastically smaller), therefore, the percentiles over the entire range
are smaller than those of the standards known case. The same paper had it that when m = 500, so
that 500 × 5 = 2, 500 phase I data points are used to estimate the mean and the variance, the c.d.f
of the run length and hence the percentiles all converge to those of the standard known case. Similar
results were obtained for Cases UK and KU

5. Conclusion
The c.d.fs of Case UK for small to moderate values of Phase I samples are stochastically ordered

(specifically smaller) relative to that of the standards known case (geometric distribution) unlike in the
Cases UU and KU where the c.d.fs cross with that of the geometric distribution at some points making
them not to be stochastically ordered relative it. Smaller false alarms were witnessed in Case UU,
with MRL0 of 194, 211, 227, and 241 for m = 20, 30, 50, and 100 respectively, followed by Case
UK with MRL0 of 209, 223, 234 and 245 for m = 20, 30, 50 and 100 respectively and then Case
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KU with MRL0 of 238, 243, 248 and 252 for m = 20, 30, 50 and 100 respectively when compared
to that of Case KK. These results imply that the Shewhart x̄-chart gives out more false alarms when
the process mean and variance are estimated, followed by only when the process mean is estimated,
and finally when only the variance is estimated. The run-length c.d.fs of Case UU and KU for small
to moderate values of m are not stochastically ordered relative to that of the Case KK but the run
lengths c.d.fs of Case UK are. For small to moderate sizes of m, the c.d.fs of the Shewhart x̄-chart
obtained in all cases of parameters estimation are significantly different from that of the standards
known case but, at large size of m (Phase I samples), say up to 500 each of size 5, the c.d.f.s in Cases
UU, UK and KU converge to that of the standard known case as well as the percentiles.
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