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Abstract
In this article, we introduce a new distribution named, Topp-Leone Heavy-Tailed Gompertz-

G (TL-HT-Gom-G) family of distributions. Several mathematical and statistical properties of the
new TL-HT-Gom-G family of distributions including quantile function, moments, moment generat-
ing function, Reńyi entropy, distribution of order statistics, stochastic orderings are derived. Risk
measures and a numerical simulation study are also presented for this family of distributions. To es-
timate the model parameters, we use six different estimation methods, namely, maximum likelihood,
Anderson-Darling, Right-Tail Anderson-Darling, Ordinary Least Squares, Weighted Least Squares,
and Cramér-von Mises. A simulation study is further performed to assess these estimation techniques
and finally we demonstrate the applicability of the new family of distributions using applications to
three real data sets.

Keywords: Topp-Leone-G, heavy-tailed, Gompertz-G, estimation methods, simulations, applica-
tions.

1. Introduction
As the world around us continues to evolve, unforeseen challenges will undoubtedly arise. With

the availability of data, one of the efficient ways to tackle these never-ending problems is to make
data-driven decisions. However, the sprawling amount of data presents its own set of challenges, one
of which is its complexity. With the saturation of complex data, classical distributions such as nor-
mal, Poisson, beta, Weibull, gamma, and exponential often fail to fit real data well enough. Therefore,
there is need for some modifications and generalizations of the well-known distributions to improve
their flexibility. Some well-known generalized distributions proposed in the literature involving Topp-
Leone, heavy-tailed and Gompertz transformations, respectively are Topp-Leone Cauchy family of
distributions by Atchad et al. (2023), Topp-Leone-Harris-G family of distributions by Oluyede et al.
(2023), Topp-Leone exponentiated Pareto distribution by Correa et al. (2024), type II Topp-Leone
Burr XII distribution by Ogunde and Adeniji (2022), type II Topp-Leone Frechet distribution by
Shanker and Rahman (2021), Topp-Leone Gompertz distribution by Nzei et al. (2020), heavy-tailed
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generalized Topp-Leone-G distribution by Moakofi et al. (2024), heavy-tailed log-logistic distribution
by Teamah et al. (2021), the type I heavy-tailed odd power generalized Weibull-G family of distribu-
tions by Moakofi and Oluyede (2023), a new heavy tailed Weibull distribution by Ahmad et al. (2022),
a new heavy-tailed exponentiated generalised-G family of distributions by Lekono et al. (2024), Gom-
pertz flexible Weibull distribution by Khaleel et al. (2020), Gompertz ToppLeone inverse Rayleigh
distribution by Khaleel and Hammed (2023), Gompertz Topp-Leone inverse exponential distribution
by Hammed and Khaleel (2023), to mention a few.

Al-Shomrani et al. (2016) proposed the Topp-Leone-G (TL-G) family of distributions with the
cumulative distribution function (cdf) and probability density function (pdf) given by

FTL−G(x; b, ξ) =
[
1−G

2
(x; ξ)

]b
, (1)

and fTL−G(x; b, ξ) = 2b
[
1−G

2
(x; ξ)

]b−1

G(x; ξ)g(x; ξ),

respectively, for b > 0 and parameter vector ξ. Note that b is a shape parameter. G(x; ξ) = 1 −
G(x; ξ), where G(x; ξ) is the cdf of any baseline distribution with the parameter vector ξ.

The cdf and pdf of the type I heavy-tailed (TI-HT) family of distributions introduced by Zhao et
al. (2020) are given by

FTI−HT−G(x; θ, φ) = 1−
(

1−G(x;φ)

1− (1− θ)G(x;φ)

)θ
(2)

and fTI−HT−G(x; θ, φ) =
θ2g(x;φ) (1−G(x;φ))

θ−1

(1− (1− θ)G(x;φ))
θ+1

, (3)

respectively, for θ > 0, x ∈ R and parameter vector φ, where G(x;φ) is the cdf of the baseline
distribution.

Alizadeh et al. (2017) developed the Gompertz-G family of distributions with the cdf and pdf
given by

F (x; γ, δ, ψ) = 1− exp

(
δ

γ

(
1− [1−G(x;ψ)]

−γ
))

, (4)

and f(x; γ, δ, ψ) = δ [1−G(x;ψ)]
−γ−1

exp

(
δ

γ

(
1− [1−G(x;ψ)]

−γ
))

g(x;ψ),

respectively, for γ, δ > 0 and parameter vector ψ. In this paper, we let δ = 1.
The basic motivations for developing the Topp-Leone Heavy-Tailed Gompertz-G (TL-HT-Gom-

G) family of distributions in practice include the following:

• to produce skewness for symmetrical models;

• to define special models with different shapes of hazard rate function;

• to construct heavy-tailed distributions for modeling real data;

• to provide consistently better fits than other generalized distributions with the same underlying
model;

• to generalize some existing models in the literature.

The rest of the paper is outlined as follows. The proposed family and some of its statistical
properties are discussed in Section 2. Mathematical and statistical properties of the new family of
distributions are given in Section 3. In Section 4, some special cases of the new family of distributions
are provided. Risk measures and numerical study are presented in Section 5. In Section 6, estimation
of the model parameters is carried out using different estimation methods. Section 7 presents a
simulation study. Applications with real-life data are given in Section 8 to demonstrate the usefulness
of the proposed new family of distributions. Finally, in Section 9 we give some concluding remarks.



36 Thailand Statistician, 2026; 24(1): 34-62

2. The New Family and Properties
In this section, we derive a new distribution, the Topp-Leone Heavy-Tailed Gompertz-G (TL-

HT-Gom-G) family of distributions. Inserting Equations (2) and (4) into Equation (1) we obtain the
cdf and hence pdf of the TL-HT-Gom-G family of distributions as

F (x; b, θ, γ, ψ) =

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b

(5)

and

f(x; b, θ, γ, ψ) = 2θ2bg(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

, (6)

for b, θ, γ > 0 and parameter vector ψ.
The hazard function (hrf) of the TL-HT-Gom-G family of distributions is given by

f(x; b, θ, γ, ψ) = 2θ2bg(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

×

1−

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b
−1

,

for b, θ, γ > 0 and parameter vector ψ.

2.1. Sub-families
This sub-section presents several sub-families of the TL-HT-Gom-G family of distributions.

• When b = 1, we obtain the new family of distributions family of distributions with the cdf

F (x; θ, γ, ψ) =

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ
 ,

for θ, γ > 0 and parameter vector ψ.

• Setting θ = 1, we obtain the Topp-Leone Gompertz-G (TL-Gom-G) family of distributions
with the cdf

F (x; b, γ, ψ) =

[
1−

(
exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])2

]b
,

for b, γ > 0 and parameter vector ψ. (See Oluyede et al. (2022)).
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• When γ = 1, we obtain the new family of distributions with the cdf

F (x; b, θ, ψ) =

1−
 exp

[(
1−

[
Ḡ(x, ψ)

]−1
)]

1− (1− θ)
(
1− exp

[(
1−

[
Ḡ(x, ψ)

]−1
)])

2θ


b

,

for b, θ > 0 and parameter vector ψ.

• When b = θ = 1, we obtain the new family of distributions family of distributions with the cdf

F (x; γ, ψ) =

[
1−

(
exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])2

]
,

for γ > 0 and parameter vector ψ.

• When b = γ = 1, we obtain the new family of distributions family of distributions with the cdf

F (x; θ, ψ) =

1−
 exp

[(
1−

[
Ḡ(x, ψ)

]−1
)]

1− (1− θ)
(
1− exp

[(
1−

[
Ḡ(x, ψ)

]−1
)])

2θ
 ,

for θ > 0 and parameter vector ψ.

• Setting θ = γ = 1, we find the new family of distributions with the cdf

F (x; b, ψ) =

[
1−

(
exp

[(
1−

[
Ḡ(x, ψ)

]−1
)])2]b

,

for b > 0 and parameter vector ψ.

• When b = θ = γ = 1, we obtain the new family of distributions with the cdf

F (x;ψ) =

[
1−

(
exp

[(
1−

[
Ḡ(x, ψ)

]−1
)])2]

,

for parameter vector ψ.

2.2. Expansion of the density function
In this section, we express the pdf of the TL-HT-Gom-G family of distributions as an infinite

linear combination of the pdf of exponentiated-G (Exp-G) family of distributions. Note that after
utilizing the following series expansions,

ez =

∞∑
k=0

zk

k!
, (1− z)k−1 =

∞∑
j=0

(−1)j
(
k − 1

j

)
zj , for |z| < 1

and

(1 + z)−(k+1) =

∞∑
j=0

(−1)j
(
k + j

j

)
zj , for |z| < 1 and k > 0,

the pdf in Equation (5) can be written as

f(x; b, θ, γ, ψ) =

∞∑
p=0

ωp+1gp+1(x;ψ), (7)

where

ωp+1 =

∞∑
i,j,k,l,m=0

2θ2b

(
b− 1

i

)(
2θ(i+ 1) + j

j

)(
j

k

)
(1− θ)j

×

(
l

m

)(
γ(m+ 1) + p

p

)( 2θ(i+1)+k
γ

)l
l!

(−1)i+k+m

(p+ 1)
, (8)
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and gp+1(x;ψ) = (p+1)Gp(x;ψ)g(x;ψ) is the exponentiated-G (Exp-G) pdf with power parameter
(p+1). (See Appendix for derivations). Thus, using the tractability property, we can obtain the prop-
erties of the TL-HT-Gom-G family of distributions from those of the Exp-G family of distributions.

2.3. Quantile function
In the sub-section, we obtain the quantile function of the TL-HT-Gom-G family of distributions

by solving the non-linear equation:

F (x; b, θ, γ, ψ) =

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b

= v,

for 0 ≤ v ≤ 1, that is,

G(x;ψ) =

(
1−

[
1− γ log

(
θ

[(
1− v

1
b

)−1
2θ − (1− θ)

]−1
)]−1

γ
)
.

Consequently, the quantile function of the TL-HT-Gom-G family of distributions is given by

Q(v) = G−1

(
1−

[
1− γ log

(
θ

[(
1− v

1
b

)−1
2θ − (1− θ)

]−1
)]−1

γ
)
. (9)

Thus, random numbers can be obtained from the TL-HT-Gom-G family of distributions using Equa-
tion (9), for specified cdf G.

3. Mathematical and Statistical Properties
This section deals with some important properties of the TL-HT-Gom-G family of distributions.

The properties include moments and generating function, Reńyi entropy, distribution of order statis-
tics, and stochastic orderings. Let f(x; b, θ, γ, ψ) = f(x).

3.1. Moments and generating functions
The nth moment of the TL-HT-Gom-G family of distributions can be obtained as:

E(Xn) =

∫ ∞

−∞
xnf(x)dx =

∞∑
p=0

ωp+1E(Y n
p+1

),

where E(Y n
p+1

) is the nth moment of the Exp-G distribution with power parameter (p+1), and ωp+1

is given in Equation (8). Other measures such as coefficient of skewness and coefficient of kurtosis
can be readily obtained. Furthermore, the moment generating function (mgf) for t < 1 is

MX(t) =

∞∑
p=0

ωp+1Mp+1(t),

where M
p+1

(t) is the mgf of Y
p+1

, and ω
p+1

is defined in Equation (8).

3.2. Reńyi Entropy
Reńyi entropy plays an important role in information theory as a measure of uncertainity of a

random variable. By letting f(x; b, θ, γ, ψ) = f(x), the Reńyi entropy of the TL-HT-Gom-G family
of distributions is given by

IR(s) =
1

1− s
log

(∫ ∞

0

fs(x; b, θ, γ, ψ)dx

)
, s > 0 and s ̸= 1.
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Note that using series expansion in Section 2.2, we have

fs(x) =
(
2θ2b

)s ∞∑
i,j,k,l,m,p=0

(
s(b− 1)

i

)(
2θ(i+ s) + s+ j − 1

j

)
(−1)i+k+m

×

(
j

k

)(
l

m

)(
γ(m+ s) + s+ p− 1

p

)
(1− θ)j

(
2θ(i+s)+k

γ

)l
l!

Gp(x, ψ)gs(x, ψ). (10)

Consequently, the Reńyi entropy of the TL-HT-Gom-G family of distributions can be written as

IR(s) =
1

1− s
log

[ ∞∑
i,j,k,l,m,p=0

(
s(b− 1)

i

)(
2θ(i+ s) + s+ j − 1

j

)
(−1)i+k+m

×
(
j

k

)(
l

m

)(
γ(m+ s) + s+ p− 1

p

)
(1− θ)j

×
(
2θ2b

)s[
1 + p

s

]s ∫ ∞

0

([
1 +

p

s

]
g(x;ψ)G

p
s (x;ψ)

)s
dx

]

= (1− s)−1 log

( ∞∑
p=0

C
p+1

e(1−s)IREG

)
, (11)

where IREG = (1 − s)−1 log
[∫∞

0

[(
1 + p

s

)
G

p
s (x;ψ)g(x;ψ)

]s
dx
]

is the Reńyi entropy of Exp-G

distribution with power parameter
(
1 + p

s

)
, and

C
p+1

=

∞∑
i,j,k,l,m=0

(
s(b− 1)

i

)(
2θ(i+ s) + s+ j − 1

j

)
(−1)i+k+m

×
(
j

k

)(
l

m

)(
γ(m+ s) + s+ p− 1

p

)
(1− θ)j

(
2θ2b

)s[
1 + p

s

]s .
Consequently, Reńyi entropy of the TL-HT-Gom-G family of distributions can be readily ob-

tained from the exponentiated-G family of distributions.

3.3. Stochastic orderings
In this sub-section, we presents some stochastic orders for the TL-HT-Gom-G family of distri-

butions. These include stochastic order, hazard rate order, and likelihood ratio order.
Suppose FX(t) and FY (t) are the cdfs of two random variables X and Y , and define F̄X(t) =

1−FX(t) and F̄Y (t) = 1−FY (t) as the corresponding survival functions. Then, the random variable
X is said to be stochastically smaller than Y if, for all t, F̄X(t) ≤ F̄Y (t) (or FX(t) ≥ FY (t)). It is
represented byX <st Y orX ≼ Y . Moreover, if F̄X(t) < F̄Y (t) for some t, thenX is stochastically
strictly less than Y and denoted as X ≺ Y . In the case of hazard rate order, denoted by X ≼hr Y ,
hX(t) ≥ hY (t) for all t. Similarly, X is said to be smaller than Y in the likelihood ratio order
denoted by X ≼lr Y if fX(t)

fY (t) is decreasing in t. It has been shown that X ≼lr Y =⇒ X ≼hr
Y =⇒ X ≼ Y (Szekli (2012)). It is also well know that if X1 ≼hr X2, then X1 ≼mrl X2, that is
m

X1
(x) ≥ m

X2
(x) for all x, where m

X
(x) = E [(X − x) | X > x] = 1

F (x)

∫∞
x
yf(y)dx− x.

Theorem 1 Consider two independent random variables, denoted by X1 and X2, which follow the
TL-HT-Gom-G family of distributions, that is, X1 ∼ f

1
(x; b

1
, θ, γ, ψ) and X2 ∼ f

2
(x; b

2
, θ, γ, ψ). If

b2 > b1 , then X1 and X2 are stochastically ordered, and X1 ≼mrl X2.
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Proof: Note that we can write the pdf’s of X1 and X2 as follows:

f1(x) = f1(x; b1 , θ, γ, ψ) = 2θ2b1g(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b
1
−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

,

and

f2(x) = f2(x; b2 , θ, γ, ψ) = 2θ2b2g(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b
2
−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

,

respectively. Then, the ratio

f1(x)

f2(x)
=
b1
b2

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b
1
−b

2

. (12)

Differentiating Equation (12) with respect to x yields

d

dx

(
f1(x)

f2(x)

)
=
b1 (b1 − b2)

b2

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b1−b2−1

× 2θ2g(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

, (13)

which is negative if b
2
> b

1
. Therefore, likelihood ratio order X ≼lr Y exists, and we can conclude

that the random variables X1 and X2 are stochastically ordered, and X1 ≼mrl X2.

3.4. Order statistics
Order statistics are useful in survival analysis, reliability theory, probability and statistics. Let

X1, X2, ...., Xn be independent and identically distributed random variables from the TL-HT-Gom-
G family of distributions. Then, the pdf of the rth order statistic from the TL-HT-Gom-G family of
distributions is given by

fr:n(x) =
n!f(x)

(r − 1)!(n− r)!

n−r∑
q=0

(−1)q
(
n− r

q

)
[F (x)]q+r−1. (14)

Note that

f(x)[F (x)]q+r−1 = 2θ2bg(x, ψ)[Ḡ(x, ψ)]−γ−1 exp

[
2θ

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]
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×

1−
 exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(x, ψ)

]−γ
)])

2θ


b(q+r)−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(x, ψ)

]−γ
)]))−(2θ+1)

.

Now following the same steps leading to Equation (7), we obtain

f(x)[F (x)]q+p−1 =

∞∑
p=0

ω∗
p+1

g
p+1

(x;ψ), (15)

where ω∗
p+1

=
∞∑

i,j,k,l,m=0

2θ2b

(
b(q + r)− 1

i

)(
2θ(i+ 1) + j

j

)(
j

k

)
(1− θ)j

×

(
l

m

)(
γ(m+ 1) + p

p

)( 2θ(i+1)+k
γ

)l
l!

(−1)i+k+m

(p+ 1)
,

and g
p+1

(x;ψ) = (p+ 1)Gp(x;ψ)g(x;ψ) is the Exp-G pdf with power parameter (p+ 1).
Thus, by substituting Equation (15) into Equation (14), the pdf of the rth order statistic for the

TL-HT-Gom-G family of distributions can be written as

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
q=0

∞∑
p=0

(−1)q
(
n− r

q

)
ω∗

p+1
gp+1(x;ψ).

4. Some Special Cases
This section contain some special cases of the TL-HT-Gom-G family of distributions when the

baseline distribution is specified. We consider the cases when the baseline distributions are log-
logistic, Weibull and Burr III distributions.

4.1. Topp-Leone Heavy-Tailed Gompertz-Log-Logistic (TL-HT-Gom-LLoG) distribution
Consider the log-logistic distribution as the baseline distribution with parameter c > 0 having

cdf and pdf G(x; c) = 1 − (1 + xc)−1 and g(x; c) = cxc−1(1 + xc)−2, respectively. Then, the cdf
and pdf of TL-HT-Gom-LLoG distribution are given by

F (x; b, θ, γ, c) =

1−
 exp

[
1
γ

(
1−

[
(1 + xc)−1

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [(1 + xc)−1]−γ)])

2θ


b

and

f(x; b, θ, γ, c) = 2θ2bcxc−1(1 + xc)−2[(1 + xc)−1]−γ−1 exp

[
2θ

γ

(
1−

[
(1 + xc)−1]−γ

)]

×

1−
 exp

[
1
γ

(
1−

[
(1 + xc)−1

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [(1 + xc)−1]−γ)])

2θ


b−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
(1 + xc)−1]−γ

)]))−(2θ+1)

,

for b, θ, γ, c > 0.
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Figure 1 Plots of the pdf, hrf and cdf for TL-HT-Gom-LLoG distribution

Figure 1 illustrates the flexibility of the TL-HT-Gom-LLoG distribution. The pdf of the TL-HT-
Gom-LLoG distribution can take various shapes that include reverse-J, almost symmetric, left-skewed
and right-skewed. The hrf of the TL-HT-Gom-LLoG distribution exhibit decreasing, increasing, bath-
tub, upside down bathtub and bathtub followed by upside down bathtub followed by bathtub shapes.
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Figure 2 3D-Plots of the skewness and kurtosis for TL-HT-Gom-LLoG distribution

Figure 2 shows plots of skewness and kurtosis for the TL-HT-Gom-LLoG distribution. We
can see that for fixed value of θ and γ, skewness and kurtosis decreases and increases when b and θ
changes. On another note, when we fix b and γ, skewness becomes positive and kurtosis is leptokurtic
when θ and c increases.
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4.2. Topp-Leone Heavy-Tailed Gompertz-Weibull (TL-HT-Gom-W) distribution
Let the one parameter Weibull distribution be the baseline distribution with pdf and cdf given by

g(x;λ) = λxλ−1 exp(−xλ) and G(x;λ) = 1 − exp(−xλ), for λ > 0, respectively. Then, the cdf
and pdf of TL-HT-Gom-W distribution are given by

F (x; b, θ, γ, λ) =

1−
 exp

[
1
γ

(
1−

[
exp(−xλ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [exp(−xλ)]−γ)])

2θ


b

and

f(x; b, θ, γ, λ) = 2θ2bλxλ−1 exp(−xλ)[exp(−xλ)]−γ−1 exp

[
2θ

γ

(
1−

[
exp(−xλ)

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
exp(−xλ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [exp(−xλ)]−γ)])

2θ


b−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
exp(−xλ)

]−γ
)]))−(2θ+1)

,

for b, θ, γ, λ > 0.

Figure 3 Plots of the pdf, hrf and cdf for TL-HT-Gom-W distribution

Figure 3 shows the flexibility of the pdf and hrf of the TL-HT-Gom-W distribution. The pdf
can take several shapes including almost symmetric, reverse-J, left-skewed and right-skewed. Fur-
thermore, plots of the hrf for the TL-HT-Gom-W distribution display increasing, decreasing, bathtub,
upside-down bathtub, and upside-down bathtub followed by bathtub shapes.

4.3. Topp-Leone Heavy-Tailed Gompertz-Burr III (TL-HT-Gom-BIII) distribution
Consider the Burr III distribution as the baseline distribution with parameter c, λ > 0 having cdf

and pdf G(x; c, λ) = (1 + x−c)−λ and g(x; c, λ) = cλx−(c+1)(1 + x−c)−(λ+1), respectively. Then,
the cdf and pdf of TL-HT-Gom-BIII distribution are given by

F (x; b, θ, γ, c, λ) =

1−
 exp

[
1
γ

(
1−

[
1− (1 + x−c)−λ

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [1− (1 + x−c)−λ]−γ)])

2θ


b
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and

f(x; b, θ, γ, c, λ) = 2θ2bcλx−(c+1)(1 + x−c)−(λ+1)[1− (1 + x−c)−λ]−γ−1

× exp

[
2θ

γ

(
1−

[
1− (1 + x−c)−λ

]−γ
)]

×

1−
 exp

[
1
γ

(
1−

[
1− (1 + x−c)−λ

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1− [1− (1 + x−c)−λ]−γ)])

2θ


b−1

×
(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
1− (1 + x−c)−λ

]−γ
)]))−(2θ+1)

,

for b, θ, γ, c, λ > 0.

Figure 4 Plots of the pdf, hrf and cdf for TL-HT-Gom-BIII distribution

Figure 4 show the plots of the pdf and hrf of the TL-HT-Gom-BIII distribution. The pdf can take
various shapes that include almost symmetric, reverse-J, left or right-skewed. Furthermore, the graphs
of the hrf for the TL-HT-Gom-BIII distribution exhibit increasing, decreasing, bathtub, upside-down
bathtub and bathtub followed by upside-down bathtub shapes.

5. Estimation Methods
In this section, we estimate the parameters of the TL-HT-Gom-G family of distributions by uti-

lizing different estimation methods. These methods include Maximum Likelihood (ML), Anderson-
Darling (AD), Right-Tail Anderson-Darling (RAD), Ordinary Least Squares (OLS), Weighted Least
Squares (WLS) and Cramér-von Mises (CVM).

5.1. Maximum likelihood estimation
Let X ∼ TL-HT-Gom-G(b, θ, γ, ψ) and τ = (b, θ, γ, ψ)T be the vector of model parameters,

then the log-likelihood function ℓn = ℓn(τ) based on a random sample of size n from the TL-HT-
Gom-G family of distributions is given by

ℓ(τ) = (n) ln (2θ2b)− (γ + 1)

n∑
i=1

ln[Ḡ(xi, ψ)] +

n∑
i=1

ln [g(xi, ψ)]

+ (b− 1)

n∑
i=1

ln

1−
 exp

[
1
γ

(
1−

[
Ḡ(xi, ψ)

]−γ
)]

1− (1− θ)
(
1− exp

[
1
γ

(
1−

[
Ḡ(xi, ψ)

]−γ
)])

2θ


− (2θ + 1)

n∑
i=1

ln

(
1− (1− θ)

(
1− exp

[
1

γ

(
1−

[
Ḡ(xi, ψ)

]−γ
)]))
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+

n∑
i=1

[
2θ

γ

(
1−

[
Ḡ(xi, ψ)

]−γ
)]
.

In order to obtain the maximum likelihood estimates (MLEs) of the unknown parameters from the
TL-HT-Gom-G family of distributions, we solve U = (∂ℓn∂b ,

∂ℓn
∂θ ,

∂ℓn
∂γ ,

∂ℓn
∂ψk

)T = 0, using a numerical
method such as Newton-Raphson procedure. The elements of the score vector U are given in the
appendix.

5.2. Anderson-Darling estimation
Suppose x(1), x(2), ..., x(n) are the order statistics of a random sample of size n from the TL-HT-

Gom-G family of distributions. Then, the Anderson-Darling estimates (ADEs) of the TL-HT-Gom-G
family of distributions are obtained by minimizing the function

A (b, θ, γ, ψ) = −n− 1

n

n∑
i=1

(2i− 1)
[
log
(
F (x(i); b, θ, γ, ψ)

)
+ log

(
S(x(i); b, θ, γ, ψ)

)]
,

where F (x(i); b, θ, γ, ψ) and S(x(i); b, θ, γ, ψ) be the cdf and survival function of the ith order statis-
tic from the TL-HT-Gom-G family of distributions.

The ADEs can also be derived by solving the non-linear equations:

n∑
i=1

(2i− 1)

[
ϑz

(
x(i); b, θ, γ, ψ

)
F (x(i); b, θ, γ, ψ)

−
ϑz

(
x(n+1−i); b, θ, γ, ψ

)
S
(
x(n+1−i); b, θ, γ, ψ

) ] = 0, z = 1, 2, 3, 4,

where ϑ1

(
x(i); b, θ, γ, ψ

)
=

∂F
(
x(i); b, θ, γ, ψ

)
∂b

,

ϑ2

(
x(i); b, θ, γ, ψ

)
=

∂F
(
x(i); b, θ, γ, ψ

)
∂θ

,

ϑ3

(
x(i); b, θ, γ, ψ

)
=

∂F
(
x(i); b, θ, γ, ψ

)
∂γ

,

and ϑ4

(
x(i); b, θ, γ, ψ

)
=

∂F
(
x(i); b, θ, γ, ψ

)
∂ψk

. (16)

5.3. Right-Tail Anderson-Darling estimation
Right-Tail Anderson-Darling estimates (RADEs) of the TL-HT-Gom-G family of distributions

are determined by minimizing

R(b, α, φ) =
n

2
− 2

n∑
i=1

F (x(i); b, θ, γ, ψ)−
1

n

n∑
i=1

(2i− 1) logS(x(n−i+1); b, θ, γ, ψ).

The RADEs may also be obtained by solving the non-linear equation

−2

n∑
i=1

ϑz
(
x(i); b, θ, γ, ψ

)
+

1

n

n∑
i=1

(2i− 1)
ϑz
(
x(i); b, θ, γ, ψ

)
S(xn+1−i:n; b, θ, γ, ψ)

= 0,

where ϑz
(
x(i); b, θ, γ, ψ

)
are defined in Equation (16).

5.4. Ordinary least squares estimation
The Ordinary Least Squares estimates (OLSEs) of the parameters of the TL-HT-Gom-G family

of distributions are obtained by minimizing the function

V (b, θ, γ, ψ) =

n∑
i=1

[
F
(
x(i); b, θ, γ, ψ

)
− i

n+ 1

]2
.
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The OLSEs can be obtained by solving the non-linear equations:

n∑
i=1

[
F
(
x(i); b, θ, γ, ψ

)
− i

n+ 1

]
ϑz
(
x(i); b, θ, γ, ψ

)
= 0, z = 1, 2, 3, 4,

where ϑz
(
x(i); b, θ, γ, ψ

)
are defined in Equation (16).

5.5. Weighted least squares estimation
The Weighted Least Squares estimates (WLSEs) of the parameters of the TL-HT-Gom-G family

of distributions are obtained by minimizing the function

W (b, θ, γ, ψ) =
n∑

i=1

(n+ 1)2(n+ 2)

i(n− 1 + 1)

[
F
(
x(i); b, θ, γ, ψ

)
− i

n+ 1

]2
,

with respect to b, θ, γ and parameter vector ψ. The WLSEs can be obtained by solving the non-linear
equations:

n∑
i=1

(n+ 1)2(n+ 2)

i(n− 1 + 1)

[
F
(
x(i); b, θ, γ, ψ

)
− i

n+ 1

]
ϑz

(
x(i); b, θ, γ, ψ

)
= 0, z = 1, 2, 3, 4,

where ϑz
(
x(i); b, θ, γ, ψ

)
are defined in Equation (16).

5.6. Cramér-von Mises estimation
The Cramér-von Mises estimates (CVMEs) of the parameters of the TL-HT-Gom-G family of

distributions parameters are obtained through the minimization of the function

C (b, θ, γ, ψ) =
1

12n
+

n∑
i=1

[
F
(
x(i); b, θ, γ, ψ

)
− 2i− 1

2n

]2
,

with respect to b, θ, γ and parameter vector ψ. The CVMEs can also be obtained by solving the
non-linear equations

n∑
i=1

[
F
(
x(i); b, θ, γ, ψ

)
− 2i− 1

2n

]
ϑz
(
x(i); b, θ, γ, ψ

)
= 0, z = 1, 2, 3, 4,

where ϑz
(
x(i); b, θ, γ, ψ

)
are defined in Equation (16).

6. Simulation
In this section, a Monte Carlo simulation study is employed to assess the consistency property of

six estimation methods in estimating the parameters of the TL-HT-Gom-LLoG distribution. Random
samples of sizes n = 25, 50, 100, 200, 400, and 800, were generated from the TL-HT-Gom-LLoG
distribution and repeated 3000 times.

The average bias (ABias) and root mean square error (RMSE) are computed to assess the effi-
ciency of the different estimation methods. The ABias and RMSE for the estimated parameter, say,
λ̂, are given by:

ABias(λ̂) =
1

N

N∑
i=1

(λ̂i − λ), and RMSE(λ̂) =

√∑N
i=1(λ̂i − λ)2

N
,

respectively.
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Figure 5 Plots of RMSEs of parameters in Table 1
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Figure 6 Plots of RMSEs of parameters in Table 2
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Table 3 Partial and Overall Ranks of all Estimation Methods of TL-HT-Gom-LLoG Distribution by
Various Model Parameter Values

Parameters n MLE LS WLS RADE CVME ADE

b = 0.4, θ = 0.4, γ = 1.6, c = 2.3

25 1 6 2 4 5 3
50 1 4 2 5 6 3
100 1 4.5 3 6 4.5 2
200 1 5 4 6 3 2
400 1 4 3 5 6 2
800 1 4 3 5.5 5.5 2

b = 1.6, θ = 0.4, γ = 0.8, c = 0.4

25 1 3 2 6 5 4
50 1 2.5 2.5 6 5 4
100 1 2.5 2.5 5 6 4
200 1 3 4 5 6 2
400 1 2 4 6 5 3
800 1 4 3 5 6 2∑

ranks 12.0 44.5 35 64.5 63 33
Overall rank 1 4 3 6 5 2

In Tables 1 and 2, the row indicating
∑

Ranks represents the partial sum of the ranks. Among all
the estimators for a given metric, the superscript indicates their rank. Table 1 presents, for example,
the ABIAS of b̂ obtained via MLE method as 0.0194{1} for n = 25. This indicates that the ABIAS
of b̂ obtained using the MLE method ranks first among all other estimators.

Table 3 shows the partial and overall ranks of all the estimation methods of TL-HT-Gom-LLoG
distribution by various model parameter values. Based on the results in Tables 1 and 2, with increasing
sample size, the ABIAS and RMSE decreases across all estimation methods. In general, all estimation
methods are consistent and efficient. Table 3 shows that MLE method allows us to obtain better
estimates of TL-HT-Gom-LLoG parameters, followed by ADE, WLS, LS, CVME and then WLS
methods.

7. Risk Measures
In this section, risk measures including: value at risk (VaR), tail value at risk (TVaR), tail vari-

ance (TV), and tail variance premium (TVP) commonly used by financial and actuarial professionals
to assess the exposure to market risk in a portfolio of instruments are discussed.

7.1. Value at risk
VaR is an actuarial measure that is often used to assess risk in the financial markets. It is referred

to as the quantile risk measure or the quantile premium principle, and it is always provided with a
stated degree of confidence, such as 90%, 95%, or 99%. The VaR of the TL-HT-Gom-G family of
distributions is given by

V aRq = G−1

(
1−

1− γ log

θ

[(
1− q

1
b

)−1
2θ − (1− θ)

]−1


−1
γ )

, (17)

where q ∈ (0, 1) is a specified level of significance.

7.2. Tail value at risk
TVaR is used to express the expected value of loss in the case that an event beyond the pre-

determined probability threshold has actually occurred. The TVaR of the TL-HT-Gom-G family of
distributions is given as
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TV aRq = E(X | X > xq) =
1

1− q

∫ ∞

V aRq

xf(x)dx

=
1

1− q

∞∑
p=0

∫ ∞

V aRq

xωp+1gp+1(x;ψ)dx, (18)

where ω
p+1

is given in Equation (8) and g
p+1

(x;ψ) = (p + 1)Gp(x;ψ)g(x;ψ) is the pdf of Exp-G
distribution with the power parameter (p+ 1).

7.3. Tail variance
TV examines variation outside of the VaR. The TV of the TL-HT-Gom-G family of distributions

is given by

TV q = E(X2 | X > xq)− (TV aRq)
2

=
1

1− q

∫ ∞

V aRq

x2f(x)dx− (TV aRq)
2

=
1

1− q

∞∑
p=0

ωp+1

∫ ∞

V aRq

x2gp+1(x;ψ)dx− (TV aRq)
2. (19)

Thus, TV of TL-HT-Gom-G family of distributions can be obtained from those of Exp-G distri-
bution.

7.4. Tail variance premium
The TVP is a significant risk measure that is crucial to the study of insurance. The TVP of the

TL-HT-Gom-G family distributions is given by

TV P q = TV aRq + δ(TV q), (20)

where 0 < δ < 1. The TVP of the TL-HT-Gom-G family of distributions can be obtained by
substituting Eqns. (18) and (19) into Equation (20).

7.5. Numerical study for the risk measures
Here, we examine the suitability of the Topp-Leone heavy-tailed Gompertz-log-logistic (TL-HT-

Gom-LLoG) distribution in modelling heavy tailed data by performing a numerical simulation of the
risk measures. The obtained results are compared to those of the sub-models, and the equi-parameter
models: Topp-Leone odd Burr III log-logistic (TL-OBIII-LLoG) by Moakofi et al. (2022) and alpha
power exponentiated log-logistic (APExLLD) distribution by Teamah et al. (2021). Simulation results
are obtained as follows:

1. Random samples of size n = 100 are generated from each one of the used distributions and
parameters have been estimated via maximum likelihood method.

2. 1000 repetitions are made to calculate the VaR, TVaR, TV and TVP for these distributions.
Tables 4 shows the numerical findings of VaR, TVaR, TV and TVP for the six compared distri-

butions. A model with higher values of VaR, TVaR, TV and TVP is said to have a heavier tail. From
the figures in Table 4, we conclude that the TL-HT-Gom-LLoG distribution have a heavier tail than its
sub-models, and the non-nested equi-parameter TL-OBIII-LLoG and APExLLD distributions, hence
it is suitable for modelling heavy-tailed data.
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Table 4 Simulation Results of VaR, TVaR, TV and TVP

Significance level 0.7 0.75 0.8 0.85 0.9 0.95 0.99
TL-HT-Gom-LLoG VaR 0.7619 0.9124 1.0426 1.1683 1.2959 1.4298 1.5705

(b = 1.7, θ = 2.7, γ = 0.9, c = 1.9) TVaR 1.3029 1.6612 2.2253 3.1967 5.1513 10.8745 18.7321
TV 2.4667 4.2563 7.8332 16.2323 42.1406 190.8545 460.3752

TVP 0.4237 1.5310 4.0412 10.6008 32.7752 170.4372 370.5104
TL-HT-Gom-LLoG VaR 0.1405 0.2193 0.2913 0.3616 0.4324 0.5053 0.5890

(b = 1, θ = 2.7, γ = 0.9, c = 1.9) TVaR 0.4193 0.5273 0.6972 1.0018 1.6700 3.8629 6.9304
TV 0.5431 1.3366 2.9618 6.8454 19.1130 92.6773 250.1842

TVP 0.0390 0.4751 1.6722 4.8167 15.5317 84.1806 180.5402
TL-HT-Gom-LLoG VaR 0.4219 0.5386 0.6458 0.7524 0.8622 0.9778 1.1053

(b = 1.7, θ = 1, γ = 0.9, c = 1.9) TVaR 0.4757 0.6474 0.9361 1.4704 2.6502 6.5754 12.5436
TV 0.8456 1.5801 3.1246 6.9700 19.7611 101.9116 250.9420

TVP 0.1162 0.5375 1.5636 4.4541 15.1347 90.2406 180.7923
TL-HT-Gom-LLoG VaR 0.5081 0.6284 0.9282 1.1138 1.2132 1.3068 1.4106

(b = 1, θ = 1, γ = 1, c = 1.9) TVaR 0.7904 0.8147 1.5533 1.6104 2.0485 5.6043 11.3409
TV 0.9391 0.9515 1.2434 1.4711 1.7376 25.1845 80.5403

TVP 0.3468 0.5784 0.9081 1.2409 0.4846 18.3209 42.0512
TL-OBIII-LLoG VaR 0.3580 0.4191 0.4941 0.5898 0.7201 0.9239 1.1014

(b = 2.0, δ = 0.5, γ = 0.9, λ = 1.9) TVaR 0.6643 0.7197 0.7858 0.8678 0.9761 1.1397 1.3086
TV 0.0454 0.0511 0.0580 0.0639 0.0687 0.0726 0.0782

TVP 0.5152 0.7712 0.8369 0.9172 1.0222 1.1829 1.3154
APExLLD VaR 0.6057 0.6241 0.6451 0.6702 0.7028 0.7537 0.8129

(α = 0.3, a = 1.6, b = 1.9, c = 1.9) TVaR 0.6141 0.6410 0.6890 0.6928 0.7465 0.8672 0.9843
TV 0.1037 0.1243 0.1550 0.2052 0.2999 0.5267 0.7841

TVP 0.3867 0.7073 0.7330 0.7673 0.8164 0.8676 0.9102

8. Applications
In this section, the flexibility of the TL-HT-Gom-LLoG distribution is demonstrated via appli-

cations to three real datasets. The goodness-of-fit of the TL-HT-Gom-LLoG distribution are com-
pared to that of the Topp-Leone-Marshall-Olkin-Weibull (TL-MO-W) distribution by Chipepa et al.
(2020), alpha power exponentiated log-logistic distribution (APExLLD) by Teamah et al. (2021), the
Marshall-Olkin odd Burr III log-logistic (MOO-BIII-LLoG) distribution by Afify et al. (2020), Topp-
Leone odd Burr III log-logistic (TL-OBIII-LLoG) by Moakofi et al. (2022), the logistic Burr XII
(LBXII) distribution by Guerra et al. (2023), the Weibull-Burr XII (WBXII) distribution by Guerra
et al. (2021), and the Marshall-Olkin generalized Burr XII (MOGBXII) distribution by Afify and
Abdellatif (2020). The probability density functions (pdfs) of these distributions are given in the
appendix.

The goodness-of-fit is assessed using the following statistics: -2log-likelihood (−2 ln(L)), Akaike
Information Criterion (AIC = 2p − 2 ln(L)), Consistent Akaike Information Criterion (CAIC =

AIC + 2 p(p+1)
n−p−1 ), Bayesian Information Criterion (BIC = p ln(n) − 2 ln(L)), (n is the number

of observations, and p is the number of estimated parameters), Cramér-von Mises statistic (W ∗),
Anderson-Darling statistic (A∗) (Chen and Balakrishnan (1995)) and Kolmogorov-Smirnov (K-S)
statistic. The model with the smallest values of the goodness-of-fit statistics is regarded as the best
model.

Probability plots with sum of squares (SS) from the plots were also used to evaluate the fit. In
addition, fitted densities, empirical cumulative distribution function (ECDF), Kaplan-Meier (K-M)
survival curve, total time on test (TTT) plots and hrf plots are presented.

8.1. Failure times data
The first real data set is from a test that involved accelerated life for 59 conductors. Electro-

migration, or the movement of atoms within the conductors of a circuit, is a cause of failures in
microcircuits. The data was analyzed by Atchad et al. (2023). Failure times are given in hours. The
data are:

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038,
5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725,
8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009,
7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640,
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5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923.

Figure 7 Profile likelihood function plots for parameters of TL-HT-Gom-LLoG distribution on the
failure times data set

Figure 7 displays the profile likelihood plots for the parameters of the TL-HT-Gom-LLoG dis-
tribution applied to the failure times data set. The plots demonstrate that the maximum likelihood
estimates (MLEs) for the TL-HT-Gom-LLoG distribution are unique, indicating that the parameters
are identifiable.

Table 5 displays the maximum likelihood estimates (MLEs) of the fitted distributions together
with the standard errors (in parenthesis) and the values of goodness-of-fit statistics for the failure
times data. From Table 5, the selection criteria shows that TL-HT-Gom-LLoG distribution can be
considered the best fitting model to represent the failure times data. Figure 8 shows the fitted densities
and probability plots for the competing models applied to the considered data sets. From Figure 8, we
conclude that the TL-HT-Gom-LLoG distribution has the best overall fit and can therefore be selected
as the most appropriate model to explain the data.
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Table 5 MLEs and goodness-of-fit statistics

Estimates Statistics
Model b θ γ c −2 log (L) AIC CAIC BIC W ∗ A∗ K-S

TL-HT-Gom-LLoG 5.2909 0.0291 0.6913 2.5052 226.3343 234.3344 235.0751 242.6445 0.0597 0.3646 0.0767
(1.5022) (0.0122) (0.1174) (0.3246)

b δ γ λ
TL-MO-W 49.8703 0.3641 1.3630 0.0981 230.2458 238.2458 238.9866 246.556 0.1106 0.6764 0.1085

(0.0010) (0.2159) (0.2394) (0.0739)
b δ γ λ

TL-OBIII-LLoG 0.0974 365.8400 0.6969 29.4560 237.9898 245.9898 246.7306 254.3000 0.1951 1.1832 0.1287
(0.0045) (0.0002) (0.2178) (1.5195×10−05)

α a b c
APExLLD 9.6754×1003 4.5342 0.7711 1.4412×1003 237.6232 245.6232 246.3639 253.9333 0.2160 1.3044 0.1073

(3.2751×10−06) (0.4575) (0.1609) (1.9221×10−05)
δ α β λ

MOO-BIII-LLoG 37.0421 0.5045 411.2542 10.0417 234.6833 242.6833 243.4241 250.9935 0.0583 0.3732 0.1287
(23.1290) (0.4884) (0.4837) (9.7206)

λ d c s
LBXII 0.2863 36.8371 30.3190 7.9546 248.5148 256.5148 257.2555 264.8249 0.1264 0.9226 0.1557

(0.2472) (27.1532) (27.4128) (0.5359)
α β d c

WBXII 0.0066 5.3689 0.2058 3.0351 223.6743 231.6743 232.4151 239.9845 0.0614 0.3427 0.0875
(0.0103) (0.8868) (0.0858) (1.2704)

α β δ a
MOGBXII 2.4100 37.5230 1.0980×1004 0.0540 238.2812 246.2814 247.0221 254.5915 0.0433 0.2779 0.1423

(0.6921) (0.0079) (1.2610×10−06) (0.0153)

Figure 8 Histogram superposed by fitted density (left) and observed vs expected probability plots
(right) for the failure times data

Figure 9 TTT and hrf plots
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The total test on time (TTT) scaled plot and the estimated hazard rate function (hrf) plot are
displayed in Figure 9. These are plotted to check the compatibility between the new distribution
and the dataset. We can observe the hrf of the data is increasing as shown by the TTT scaled plot.
The estimated hrf of the TL-HT-Gom-LLoG distribution on the failure times data is also increasing.
Hence, we conclude that the data and the TL-HT-Gom-LLoG distribution are compatible.

8.2. Environmental data
The second data measures the acidity of rainfalls for forty days in the state of Minnesota. This

data set was analyzed by Elbatal et al. (2022). The data are
3.71, 4.23, 4.16, 2.98, 3.23, 4.67, 3.99, 5.04, 4.55, 3.24, 2.80, 3.44, 3.27, 2.66, 2.95,
4.70, 5.12, 3.77, 3.12, 2.38, 4.57, 3.88, 2.97, 3.70, 2.53, 2.67, 4.12, 4.80, 3.55, 3.86,
2.51, 3.33, 3.85, 2.35, 3.12, 4.39, 5.09, 3.38, 2.73, 3.07.

Table 6 MLEs and goodness-of-fit statistics

Estimates Statistics
Model b θ γ c −2 log (L) AIC CAIC BIC W ∗ A∗ K-S

TL-HT-Gom-LLoG 13.6200 0.0161 6.6857 0.3904 93.70089 101.7009 102.8437 108.4564 0.0397 0.3033 0.0768
(3.0096×10−04) (3.5744×10−03) (1.6284×10−03) (3.9301×10−02)

b δ γ λ
TL-MO-W 53.999 1.0381×10−03 2.6609×10−04 2.7749 96.27976 104.2797 105.4226 111.0353 0.0621 0.4625 0.0987

(1.6708×10−05) (2.0315×10−02) (5.1996×10−03) (2.2998×10−03)
b δ γ λ

TL-OBIII-LLoG 149.3400 228.8100 0.4673 0.0252 94.88592 102.8859 104.0288 109.6414 0.0485 0.3728 0.0888
(5.2548×10−06) (2.6969×10−04) (1.7375×10−01) (1.7448×10−03)

α a b c
APExLLD 1.2186×1005 5.1532 1.0563 25.9980 96.91563 104.9156 106.0585 111.6711 0.0676 0.4984 0.1021

(1.5726×10−07) (0.6272) (0.1376) (1.3377×10−03)
δ α β λ

MOO-BIII-LLoG 13.3171 0.3188 28.0343 15.2031 104.6461 112.6461 113.789 119.4017 0.0443 0.3375 0.1206
(9.1878) (1.0318) (13.9274) (49.1741)

λ d c s
LBXII 0.1965 218.8128 51.5909 3.7995 132.6436 140.6436 141.7864 147.3991 0.2657 1.7084 0.1685

(0.0813) (2.3894) (24.3740) (0.1532)
α β d c

WBXII 0.0868 4.1334 0.1283 5.8980 94.3715 102.3715 103.5144 109.127 0.0617 0.4287 0.0926
(0.1058) (0.6631) (0.0492) (2.2449)

α β δ a
MOGBXII 3.4770 5.1920 1.4168×1003 0.3210 101.0151 109.0150 110.1579 115.7706 0.0505 0.3752 0.0983

(0.9423) (1.6358) (3.9306×10−04) (0.1011)

Figure 10 illustrates that the maximum likelihood estimates (MLEs) of the TL-HT-Gom-LLoG
parameters for the environmental data are identifiable.

The data analysis results for environmental data are presented in Table 6. This table shows that
the TL-HT-Gom-LLoG distribution has the lowest values of the −2 ln(L), AIC,CAIC,BIC,W ∗, A∗,
and K-S statistic compared to other fitted distributions. Therefore, the TL-HT-Gom-LLoG distribu-
tion is considered the best model to characterize the environmental data. Figure 11 supports these
findings visually.
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Figure 10 Profile likelihood function plots for parameters of TL-HT-Gom-LLoG distribution on the
environmental data Set

Figure 11 Histogram superposed by fitted density (left) and observed vs expected probability plots
(right) for the environmental data
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Figure 12 TTT and hrf plots

Figure 12 shows the TTT scaled plot, and hrf plot. The TTT scaled plot shows an increasing
hrf. Furthermore, the estimated hrf in is agreement with the TTT scaled plot as it also displays an
increasing shape for environmental data set.

8.3. Kevlar Epoxy data
The third data set relates to the stress-rupture life of Kevlar 49/epoxy strands that were continu-

ously compressed at a 90% stress level until they all failed (Andrews and Herzberg 2012). The data
are:

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09,
0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35,
0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72,
0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01,
1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43,
1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,
2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

The profile likelihood plots for the TL-HT-Gom-LLoG distribution parameters serve as a tool for
assessing parameter identifiability. From the plots in Figure 13, it is evident that the maximum likeli-
hood estimates (MLEs) for the TL-HT-Gom-LLoG distribution are distinct, leading to the conclusion
that the parameters are identifiable.
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Figure 13 Profile likelihood function plots for parameters of TL-HT-Gom-LLoG distribution on the
Kevlar 49/epoxy data Set

Table 7 MLEs and goodness-of-fit statistics

Estimates Statistics
Model b θ γ c −2 log (L) AIC CAIC BIC W ∗ A∗ K-S

TL-HT-Gom-LLoG 0.1298 0.1081 0.1199 5.3876 197.8368 205.8368 206.2535 216.2973 0.0499 0.3666 0.0605
(0.0282) (0.0451) (0.0402) (1.0713)

b δ γ λ
TL-MO-W 49.8703 0.3641 1.3630 0.0981 230.2458 238.2458 238.9866 246.556 0.1106 0.6764 0.1085

(0.0010) (0.2159) (0.2394) (0.0739)
b δ γ λ

TL-OBIII-LLoG 0.9175 3.5113 0.2141 1.4786 211.1044 219.1044 219.521 229.5649 0.3199 1.7422 0.1339
(1.4688) (1.6230) (0.1281) (2.3671)

α a b c
APExLLD 1.4541 3.3711 1.8022 0.2015 200.0885 208.0885 208.5052 218.549 0.0656 0.4631 0.0653

(1.5263) (0.6884) (0.3462) (0.0602)
δ α β λ

MOO-BIII-LLoG 3.6073 4.5429 0.2194 0.5323 204.5787 212.5787 212.9953 223.0391 0.1245 0.7888 0.0839
(1.7422) (0.0078) (0.0855) (0.0670)

λ d c s
LBXII 24.7201 1.3669 0.0713 0.2151 227.0805 235.0805 235.4972 245.5410 0.5946 3.2280 0.1143

(18.6591) (0.4160) (0.0527) (1.3105)
α β d c

WBXII 0.8821 0.1518 1.2884 5.4832 204.9981 212.9981 213.4148 223.4586 0.1359 0.8243 0.0818
(0.1273) (0.1832) (0.2634) (6.4138)

α β δ a
MOGBXII 0.7904 1.7437 7.5800 2.1961 207.5178 215.5178 215.9344 225.9782 0.2267 1.2733 0.0907

(0.1671) (181.5521) (6.1039) (228.6481)
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The values presented in Table 7 demonstrate that the TL-HT-Gom-LLoG distribution provides
a superior fit to the data compared to other fitted distributions. This is because it is associated with
lower values of the goodness-of-fit statistics: −2 ln(L), AIC, CAIC, BIC, W ∗, A∗, and K-S
statistic. These results are supported graphically by the plots in Figure 14.

Figure 14 Histogram superposed by fitted density (left) and observed vs expected probability plots
(right) for the kevlar epoxy data

From Figure 15, we see that the TL-HT-Gom-LLoG distribution is suitable for modeling the
kevlar epoxy data data as both the TTT scaled and hrf plots are in agreement as they estimate the hrf
of the data to be bathtub followed by upside-down bathtub.

Figure 15 TTT and hrf plots

9. Concluding Remarks
We have proposed a new family of distributions called the Topp-Leone Heavy-Tailed Gompertz-

G (TL-HT-Gom-G) family of distributions. Some of its statistical properties such as quantile func-
tion, linear representation, moments, moment generating function, Reńyi entropy, distribution of
order statistics, and stochastic orderings are derived. Risk measures for this distribution were also
presented, and the results revealed that the TL-HT-Gom-LLoG distribution is heavy-tailed. The un-
known parameters of the new distribution are estimated using different estimation methods and eval-
uated via a simulation study. The TL-HT-Gom-LLoG distribution, as a special case of this family,
demonstrated robustness and applicability with three real data sets, highlighting its usefulness in fields
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requiring heavy-tailed modeling, such as finance, insurance, and environmental studies. However,
the distribution also has some disadvantages. Its complexity can make deriving statistical properties
challenging, and it is not suitable for discrete data sets, limiting its applications to continuous data.
Despite these constraints, the TL-HT-Gom-LLoG distribution remains a versatile tool for analyzing
heavy-tailed data across various fields.

Appendix
Click on the link below for results in the appendix.

https://drive.google.com/file/d/18gnwzN3t0QJw3cJ1qIROKc9H1KDs2n6L/view?usp=sharing
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