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Abstract

In this article, we introduce a new distribution named, Topp-Leone Heavy-Tailed Gompertz-
G (TL-HT-Gom-G) family of distributions. Several mathematical and statistical properties of the
new TL-HT-Gom-G family of distributions including quantile function, moments, moment generat-
ing function, Renyi entropy, distribution of order statistics, stochastic orderings are derived. Risk
measures and a numerical simulation study are also presented for this family of distributions. To es-
timate the model parameters, we use six different estimation methods, namely, maximum likelihood,
Anderson-Darling, Right-Tail Anderson-Darling, Ordinary Least Squares, Weighted Least Squares,
and Cramér-von Mises. A simulation study is further performed to assess these estimation techniques
and finally we demonstrate the applicability of the new family of distributions using applications to
three real data sets.

Keywords: Topp-Leone-G, heavy-tailed, Gompertz-G, estimation methods, simulations, applica-
tions.

1. Introduction

As the world around us continues to evolve, unforeseen challenges will undoubtedly arise. With
the availability of data, one of the efficient ways to tackle these never-ending problems is to make
data-driven decisions. However, the sprawling amount of data presents its own set of challenges, one
of which is its complexity. With the saturation of complex data, classical distributions such as nor-
mal, Poisson, beta, Weibull, gamma, and exponential often fail to fit real data well enough. Therefore,
there is need for some modifications and generalizations of the well-known distributions to improve
their flexibility. Some well-known generalized distributions proposed in the literature involving Topp-
Leone, heavy-tailed and Gompertz transformations, respectively are Topp-Leone Cauchy family of
distributions by Atchad et al. (2023), Topp-Leone-Harris-G family of distributions by Oluyede et al.
(2023), Topp-Leone exponentiated Pareto distribution by Correa et al. (2024), type II Topp-Leone
Burr XII distribution by Ogunde and Adeniji (2022), type II Topp-Leone Frechet distribution by
Shanker and Rahman (2021), Topp-Leone Gompertz distribution by Nzei et al. (2020), heavy-tailed
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generalized Topp-Leone-G distribution by Moakofi et al. (2024), heavy-tailed log-logistic distribution
by Teamabh et al. (2021), the type I heavy-tailed odd power generalized Weibull-G family of distribu-
tions by Moakofi and Oluyede (2023), a new heavy tailed Weibull distribution by Ahmad et al. (2022),
anew heavy-tailed exponentiated generalised-G family of distributions by Lekono et al. (2024), Gom-
pertz flexible Weibull distribution by Khaleel et al. (2020), Gompertz ToppLeone inverse Rayleigh
distribution by Khaleel and Hammed (2023), Gompertz Topp-Leone inverse exponential distribution
by Hammed and Khaleel (2023), to mention a few.
Al-Shomrani et al. (2016) proposed the Topp-Leone-G (TL-G) family of distributions with the
cumulative distribution function (cdf) and probability density function (pdf) given by
b
Pri-g(@ib,€) = [1- G (@:9)] . M

and fri-olab € =21 -G 0] Claeg(e),

respectively, for b > 0 and parameter vector £. Note that b is a shape parameter. G(z;¢) = 1 —
G(x; ), where G(x; &) is the cdf of any baseline distribution with the parameter vector &.

The cdf and pdf of the type I heavy-tailed (TI-HT) family of distributions introduced by Zhao et
al. (2020) are given by

1 -Gz ’
Fri—pr—g(z;0,0) =1 — (1 Ey Q(Té()(px) (p)> @)
02g(z;0) (1 — Ga;0))" "

(1—(1-0)G(x;9))""

respectively, for § > 0, © € R and parameter vector ¢, where G(x; ) is the cdf of the baseline
distribution.

Alizadeh et al. (2017) developed the Gompertz-G family of distributions with the cdf and pdf
given by

P s.) =1-ep (2 (1 1= Gl 7)). @

wd fland) =0 - G e (2 (11 Gl ) ot

respectively, for v, > 0 and parameter vector . In this paper, we let § = 1.
The basic motivations for developing the Topp-Leone Heavy-Tailed Gompertz-G (TL-HT-Gom-
G) family of distributions in practice include the following:

e to produce skewness for symmetrical models;
e to define special models with different shapes of hazard rate function;
e to construct heavy-tailed distributions for modeling real data;

e to provide consistently better fits than other generalized distributions with the same underlying
model;

e to generalize some existing models in the literature.

The rest of the paper is outlined as follows. The proposed family and some of its statistical
properties are discussed in Section 2. Mathematical and statistical properties of the new family of
distributions are given in Section 3. In Section 4, some special cases of the new family of distributions
are provided. Risk measures and numerical study are presented in Section 5. In Section 6, estimation
of the model parameters is carried out using different estimation methods. Section 7 presents a
simulation study. Applications with real-life data are given in Section 8 to demonstrate the usefulness
of the proposed new family of distributions. Finally, in Section 9 we give some concluding remarks.
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2. The New Family and Properties

In this section, we derive a new distribution, the Topp-Leone Heavy-Tailed Gompertz-G (TL-
HT-Gom-G) family of distributions. Inserting Equations (2) and (4) into Equation (1) we obtain the
cdf and hence pdf of the TL-HT-Gom-G family of distributions as

2 (1 - [G@w] )] "
exp |= (11— z,
Flab 0oy = L= (1 ~(=0)(1-exm [t (1- [G(%d))TOD) ”
and
Flasbw) = 269G )Gl )] e | 2 (1= [ )]
( exp [ (1[G 9)] )] )
X 1-—
1-(1-9) (1 — exp [% (1 — [@(x,w)]iv)])
X <1 —(1-9) (1 — exp {% (1 - [G(z,¥)] ])>(29+1) , (6)

for b,0,~ > 0 and parameter vector .
The hazard function (hrf) of the TL-HT-Gom-G family of distributions is given by
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for b,6,~v > 0 and parameter vector ).

2.1. Sub-families
This sub-section presents several sub-families of the TL-HT-Gom-G family of distributions.

e When b = 1, we obtain the new family of distributions family of distributions with the cdf

exp [ (1[Gl )] )] )29
0) (1 — exp [% (1 - [G(m,¢)]77>}) 7

F($597%¢): 1_<
1—(1—

for 6,y > 0 and parameter vector 1.

e Setting # = 1, we obtain the Topp-Leone Gompertz-G (TL-Gom-G) family of distributions

with the cdf
F(z;b,,¢) = [1 - (eXp E (1 - [é(x,w)]—w)DQ]b7

for b,y > 0 and parameter vector 1. (See Oluyede et al. (2022)).
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When v = 1, we obtain the new family of distributions with the cdf

26 b

exp (1= [G. )] )]
| )|

Fz;b,0,9) = |1 - (1(16) (1feXp ( [G(z, )]~ 1)])

for b, 0 > 0 and parameter vector ).

e When b = 6 = 1, we obtain the new family of distributions family of distributions with the cdf

Plwi,) = [1 - (0|2 (1= (G )D} 7

for v > 0 and parameter vector 1.

e When b = v = 1, we obtain the new family of distributions family of distributions with the cdf

20

oo (1 - (66 00) )]
| )|

F(x;0,9) = [1— (1(10) (1fexp ( [G(z,9)] 1)])

for # > 0 and parameter vector 1).

e Setting # = v = 1, we find the new family of distributions with the cdf

P = 1 (o [(1- (60 )])]

for b > 0 and parameter vector ).

e When b =60 =~ = 1, we obtain the new family of distributions with the cdf

Fla;y) = [1 — (exp [(1- [G(x,w)rl)])z} ,

for parameter vector .

2.2. Expansion of the density function

In this section, we express the pdf of the TL-HT-Gom-G family of distributions as an infinite
linear combination of the pdf of exponentiated-G (Exp-G) family of distributions. Note that after
utilizing the following series expansions,
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the pdf in Equation (5) can be written as

NgE

f(m;b,e,%l/’) = Wpi19p41 (17;1/1)7 7
p=0
where
o - o ( 1 (292+1 +J><k>(1_0)j
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and g, (z;v) = (p+1)GP(x;4)g(x;¢) is the exponentiated-G (Exp-G) pdf with power parameter
(p+1). (See Appendix for derivations). Thus, using the tractability property, we can obtain the prop-
erties of the TL-HT-Gom-G family of distributions from those of the Exp-G family of distributions.

2.3. Quantile function
In the sub-section, we obtain the quantile function of the TL-HT-Gom-G family of distributions
by solving the non-linear equation:

207 b

F(x;b79777¢): 1_<

for 0 < v <1, that is,

Glasp) = (1— |:1—710g <9 [(1_11%)% - (1_9)]_1”;).

Consequently, the quantile function of the TL-HT-Gom-G family of distributions is given by

Q(v) =G™! (1 — |:1 — vlog (9 {(1 —v%)% -1 —9)]1>:| N > 9)

Thus, random numbers can be obtained from the TL-HT-Gom-G family of distributions using Equa-
tion (9), for specified cdf G.

3. Mathematical and Statistical Properties

This section deals with some important properties of the TL-HT-Gom-G family of distributions.
The properties include moments and generating function, Renyi entropy, distribution of order statis-
tics, and stochastic orderings. Let f(z;b,0,v,v¢) = f(z).

3.1. Moments and generating functions
The n'" moment of the TL-HT-Gom-G family of distributions can be obtained as:

E(X™) = /oo 2" f(z)dx = ZwPHE(YJfH),
p=0

—0o0

where E(Y" ) is the n'" moment of the Exp-G distribution with power parameter (p+ 1), andw__,
is given in Equation (8). Other measures such as coefficient of skewness and coefficient of kurtosis
can be readily obtained. Furthermore, the moment generating function (mgf) for ¢ < 1is

Mx (t) = pr+1Mp+1 (t)v
p=0

where M, (t)is the mgfof Y, ,andw,, is defined in Equation (8).
3.2. Renyi Entropy

Renyi entropy plays an important role in information theory as a measure of uncertainity of a
random variable. By letting f(z;b,0,v,1¢) = f(x), the Refiyi entropy of the TL-HT-Gom-G family
of distributions is given by

Ir(s) = islog (/0 fS(z;b,O,fy,ip)dz), s> 0and s # 1.

1
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Note that using series expansion in Section 2.2, we have

fPlz) = (20219)5 i (S(b - 1)) <2€(i +s) + s+j— 1> (_1)i+k+m

o 7
,5,k,1,m,p=0 J

’ 20(i+9)+k )
X <i> <l> (7(m+s) +s+p— 1>(1 _ e)ijp($7¢)gs(x,¢). (10)

m p

Consequently, the Renyi entropy of the TL-HT-Gom-G family of distributions can be written as

log{ i (s(bi—1)>(29(¢+s)fs+j—1>(_l)i+k+m
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X

where Irpe = (1 — s)!log [fooo [(1+2) G (;9)g(z;9)] dx} is the Renyi entropy of Exp-G

distribution with power parameter (1 + %) and

c.. = i (s(b‘—1)>(29(i+8)—&75+j—1>(_1)i+k+m

1
i kL m=0 J

s (i) (Q(ﬂmﬂ);sml)(la)jm.

Consequently, Renyi entropy of the TL-HT-Gom-G family of distributions can be readily ob-
tained from the exponentiated-G family of distributions.

3.3. Stochastic orderings

In this sub-section, we presents some stochastic orders for the TL-HT-Gom-G family of distri-
butions. These include stochastic order, hazard rate order, and likelihood ratio order.

Suppose Fx (t) and Fy (t) are the cdfs of two random variables X and Y, and define Fx (t) =
1—Fx(t)and Fy (t) = 1— Fy (t) as the corresponding survival functions. Then, the random variable
X is said to be stochastically smaller than Y if, for all t, Fix (t) < Fy (t) (or Fx(t) > Fy(t)). Itis
represented by X <4 Y or X < Y. Moreover, if Fx () < Fy (t) for some ¢, then X is stochastically
strictly less than Y and denoted as X < Y. In the case of hazard rate order, denoted by X =<, Y,
hx(t) > hy(t) for all . Similarly, X is said to be smaller than Y in the likelihood ratio order
denoted by X =;. Y if Ix Et; is decreasing in ¢. It has been shown that X <;, V¥ — X <X,
Y — X <Y (Szekli (2012)) It is also well know that if X; <}, Xg, then X; < mrl Xo, that is
my (z) > my (z)forall z, where m (v) = E[(X —z) | X > 2] = F(w [ yf(y)de — .

Theorem 1 Consider two independent random variables, denoted by X1 and X5, which follow the
TL-HT-Gom-G family of distributions, that is, X1 ~ f,(z;b,,0,7v,¢) and Xo ~ f,(x;b,,0,v,¥). If
b, > b,, then X1 and Xy are stochastically ordered, and X1 =y, Xo.
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Proof: Note that we can write the pdf’s of X; and X5 as follows:
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Differentiating Equation (12) with respect to  yields
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respectively. Then, the ratio

20 bl 7b2 —1

< 20g(a DG ep |2 (1= [Gaw)] )]

x (1 —(1-0 (1 —exp E (1 — [G(x, )] ”)} )> e : (13)

which is negative if b, > b, . Therefore, likelihood ratio order X =, Y exists, and we can conclude
that the random Varlables X 1 and X are stochastically ordered, and X =<,,,,; Xo.

3.4. Order statistics

Order statistics are useful in survival analysis, reliability theory, probability and statistics. Let
X1, Xo,...., X,, be independent and identically distributed random variables from the TL-HT-Gom-
G family of distributions. Then, the pdf of the rt" order statistic from the TL-HT-Gom-G family of
distributions is given by

frnt®) = %Z q("_r> [F(@)* " (14)
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207 blg+r)—1

< ie ( e [1 (1= (6w v)] )] )

1-(1-0) (1 — exp [% (1 - G, )]_7)])

Now following the same steps leading to Equation (7), we obtain

oo

F@)F@)Pt =W g, (@59), (15)

p=0

where ' = i 202b(b(Q+;) B 1) (29@ +j1) +j> (i) (1-0)y

i,5,k,l,m=0

20(1+1 k l
(z) (7(m+1)+p> (BEREE) (e

X

m p Il (p+1) ’

and g, (z;v) = (p+ 1)GP(x;1)g(x; ¢) is the Exp-G pdf with power parameter (p + 1).
Thus, by substituting Equation (15) into Equation (14), the pdf of the 7" order statistic for the
TL-HT-Gom-G family of distributions can be written as

n—r oo

n! dn—r\ .
frn(z) = MMZZ(‘U( >wp+19p+1(55;1/))'

" q=0p=0 1

4. Some Special Cases

This section contain some special cases of the TL-HT-Gom-G family of distributions when the
baseline distribution is specified. We consider the cases when the baseline distributions are log-
logistic, Weibull and Burr III distributions.

4.1. Topp-Leone Heavy-Tailed Gompertz-Log-Logistic (TL-HT-Gom-LLoG) distribution

Consider the log-logistic distribution as the baseline distribution with parameter ¢ > 0 having
cdf and pdf G(x5¢) = 1 — (1 +2¢)~! and g(x;¢) = ca® (1 + 2¢) 72, respectively. Then, the cdf
and pdf of TL-HT-Gom-LLoG distribution are given by

207 b

o3 (1- 042971 7)] )

Flb e = 1_<1_<1_9>(1_exp[i<1—[<1+xc>WD

and
f@ib,0,7,¢) = 20°bcz® (142 ?[(1+2°) 77 Fexp {270 (1 —[1+2%7"] -V)]
X 1— ( exp [% (1 - [(1 + xc)—l]*“/ﬂ >29 b—1
1-(1-9) (1 — exp [% (1 —- +xc)*1]’7)})
g (1 —(1=9) (1 —exp [% (1-[a+ xc)l]w)D)mﬂ) |

for b,0,~v,c > 0.
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Figure 1 Plots of the pdf, hrf and cdf for TL-HT-Gom-LLoG distribution

Figure 1 illustrates the flexibility of the TL-HT-Gom-LLoG distribution. The pdf of the TL-HT-
Gom-LLoG distribution can take various shapes that include reverse-J, almost symmetric, left-skewed
and right-skewed. The hrf of the TL-HT-Gom-LLoG distribution exhibit decreasing, increasing, bath-
tub, upside down bathtub and bathtub followed by upside down bathtub followed by bathtub shapes.

TL-HT-Gom-LLoG(b, 1.6, 2, c)

TL-HT-Gom-LLoG(1.2,6,0.9,c)

TL-HT-Gom-LLoG(b, 1.6, 2, c)

TL-HT-Gom-LLoG(1.2,6,0.9,c)

Figure 2 3D-Plots of the skewness and kurtosis for TL-HT-Gom-LLoG distribution

Figure 2 shows plots of skewness and kurtosis for the TL-HT-Gom-LLoG distribution. We
can see that for fixed value of 6 and -, skewness and kurtosis decreases and increases when b and 6
changes. On another note, when we fix b and v, skewness becomes positive and kurtosis is leptokurtic

when 0 and c increases.
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4.2. Topp-Leone Heavy-Tailed Gompertz-Weibull (TL-HT-Gom-W) distribution

Let the one parameter Weibull distribution be the baseline distribution with pdf and cdf given by
g(x;\) = Ax*Lexp(—2*) and G(z;\) = 1 — exp(—2?), for A > 0, respectively. Then, the cdf
and pdf of TL-HT-Gom-W distribution are given by

F(2;0,0,7,))
and
J(2;0,60,7,X)
X
X
for b,0,~v, A > 0.

(o)
1-(1- (1= fexp(=2")])])

0) (1 — exp [%

exp [% (1 — [exp(—2™)] _W)]

o
= (

1—9)(1—exp[%

(1 —(1-0) (1 —exp E (1 ~ [exp(—a*)] 7”)] )) R

(1 — [exp(—mk)rw)} )

)

20 b—1

)

= 20°bAx” " exp(—2*)[exp(—2*)] 7' exp [279 (1 - [exp(_rk)] 77)]
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Figure 3 Plots of the pdf, hrf and cdf for TL-HT-Gom-W distribution

Figure 3 shows the flexibility of the pdf and hrf of the TL-HT-Gom-W distribution. The pdf
can take several shapes including almost symmetric, reverse-J, left-skewed and right-skewed. Fur-
thermore, plots of the hrf for the TL-HT-Gom-W distribution display increasing, decreasing, bathtub,
upside-down bathtub, and upside-down bathtub followed by bathtub shapes.

4.3. Topp-Leone Heavy-Tailed Gompertz-Burr III (TL-HT-Gom-BIII) distribution

Consider the Burr III distribution as the baseline distribution with parameter ¢, A\ > 0 having cdf
and pdf G(z;¢,\) = (1 +27¢) Y and g(z; ¢, \) = cdz (D) (1 4+ 27¢)~ O+ respectively. Then,
the cdf and pdf of TL-HT-Gom-BIII distribution are given by

F(x;0,0,7,¢,\)

exp [% (1 -[1-0a+ x_c)_)‘]ﬂf)]

|
1—(1—

0) (1-exp[2 (1= - (1+2-)=]77)])

267 b

|
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and
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forb,0,v,c, A > 0.
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Figure 4 Plots of the pdf, hrf and cdf for TL-HT-Gom-BIII distribution

Figure 4 show the plots of the pdf and hrf of the TL-HT-Gom-BIII distribution. The pdf can take
various shapes that include almost symmetric, reverse-J, left or right-skewed. Furthermore, the graphs
of the hrf for the TL-HT-Gom-BIII distribution exhibit increasing, decreasing, bathtub, upside-down
bathtub and bathtub followed by upside-down bathtub shapes.

5. Estimation Methods

In this section, we estimate the parameters of the TL-HT-Gom-G family of distributions by uti-
lizing different estimation methods. These methods include Maximum Likelihood (ML), Anderson-
Darling (AD), Right-Tail Anderson-Darling (RAD), Ordinary Least Squares (OLS), Weighted Least
Squares (WLS) and Cramér-von Mises (CVM).

5.1. Maximum likelihood estimation

Let X ~ TL-HT-Gom-G(b,0,~,) and 7 = (b,0,~,%)T be the vector of model parameters,
then the log-likelihood function ¢,, = £, (7) based on a random sample of size n from the TL-HT-
Gom-G family of distributions is given by

(1) = (n)In(26°b) — Zln[Gml, +Zln g(zi, ¥

F -3 1_( [ (1~ 1G] 7)} )

1= (-0 (1-exp [ (1= [Gliw)] 7)])
(29+1)iln(1—(179) (lfexp [% (1*[ ( '¢)]‘7>D)
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" 20 ~ -
+ — (1 — |G(xs, ¥ 7 :| .
5 [2 -t
In order to obtain the maximum likelihood estimates (MLEs) of the unknown parameters from the
TL-HT-Gom-G family of distributions, we solve U = (%Zg, %Zél , %{7 , gﬁ;: )T = 0, using a numerical
method such as Newton-Raphson procedure. The elements of the score vector U are given in the
appendix.

5.2. Anderson-Darling estimation

Suppose x (1), T(2), ---, T(n) are the order statistics of a random sample of size n from the TL-HT-
Gom-G family of distributions. Then, the Anderson-Darling estimates (ADEs) of the TL-HT-Gom-G
family of distributions are obtained by minimizing the function

n

1

i=1

where F'(z(;);b,0,7,v) and S(x(;); b, 0,7, 1) be the cdf and survival function of the i*" order statis-
tic from the TL-HT-Gom-G family of distributions.
The ADEs can also be derived by solving the non-linear equations:

i (21 _ 1) ﬂz (x(iﬁ b79777¢) _ ’49z (‘T(n+1—i)§b7 9777¢)

—0,2=1,2,3,4,
i=1 F(‘T(l)» b7 9177 1/}) S (1’<n+17i); b7 0777 ’l/)) z
F (x(;);b,0
where ’191 (x“)’ b7 9, v, w) _ 8 (l’“),ab’ 57 w) ,
OF (2(i); b, 0,7, ¢
OF (x i 55,97%?#
03 (2();6,0,7,9) = ( ”87 ).
aF [ ;b,07 3
and U4 (23);0,0,7,9) = d gwk ), (16)

5.3. Right-Tail Anderson-Darling estimation
Right-Tail Anderson-Darling estimates (RADEs) of the TL-HT-Gom-G family of distributions
are determined by minimizing

1 n
R(b, o, ) = 5 fzzF (30, 0,7, %) — EZ (26 — 1)10g S(T(n—i41); b, 0,7, 1)
The RADEs may also be obtained by solving the non-linear equation

" . 1 = . 19z (.13(1), ba 97 Vs w) _
_2;’0Z (m(i)7 ba 0777¢) + ﬁ lz:; (ZZ - 1) S(xnﬁ»lfi:n; b, 977’ 'Q[J) - 07

where U, (z(;);b,0,7,1) are defined in Equation (16).

5.4. Ordinary least squares estimation
The Ordinary Least Squares estimates (OLSEs) of the parameters of the TL-HT-Gom-G family
of distributions are obtained by minimizing the function

n . 2

i=1
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The OLSEs can be obtained by solving the non-linear equations:

Z |:F (x(z)7ba9777¢) - %_H 192 (x(l)abvovvad}) = 072 = 172a3547

=1

where 1, (m(i); b,6,, w) are defined in Equation (16).

5.5. Weighted least squares estimation
The Weighted Least Squares estimates (WLSEs) of the parameters of the TL-HT-Gom-G family
of distributions are obtained by minimizing the function

. 2
(3

n+1

[F (x(z)vbae”yaw) - ’
with respect to b, 6, v and parameter vector 1. The WLSEs can be obtained by solving the non-linear
equations:

i (n+1)*(n+2)

z )5 0,057, =Y :1727 747
n—1+1) ]19(m()b0’y1/}) 0,z 3

7
[F (@();6,0,7,¢) — il

i=1

where U, (z(;);b,0,7,1) are defined in Equation (16).

5.6. Crameér-von Mises estimation
The Cramér-von Mises estimates (CVMEs) of the parameters of the TL-HT-Gom-G family of
distributions parameters are obtained through the minimization of the function

2 — 112

2n ’

1 n
i=1

with respect to b, 6,y and parameter vector 1. The CVMEs can also be obtained by solving the
non-linear equations

Z |:F (x(z)7b797771/)) - 2Z2:l 1:| 192 (x(z)abaea’%w) = O,Z = 1a273747

i=1

where 1, (ZE(i); b, 0,7, 1/)) are defined in Equation (16).

6. Simulation

In this section, a Monte Carlo simulation study is employed to assess the consistency property of
six estimation methods in estimating the parameters of the TL-HT-Gom-LLoG distribution. Random
samples of sizes n = 25,50, 100, 200, 400, and 800, were generated from the TL-HT-Gom-LLoG
distribution and repeated 3000 times.

The average bias (ABias) and root mean square error (RMSE) are computed to assess the effi-
ciency of the different estimation methods. The ABias and RMSE for the estimated parameter, say,
), are given by:

% N . N o522
ABias(/\):%Z()\i—)\), and RMSEQ)) = | 2=l =V
=1

respectively.
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Figure 5 Plots of RMSEs of parameters in Table 1
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Figure 6 Plots of RMSEs of parameters in Table 2
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Table 3 Partial and Overall Ranks of all Estimation Methods of TL-HT-Gom-LLoG Distribution by
Various Model Parameter Values

Parameters n MLE LS WLS RADE CVME ADE
25 1 6 2 4 5 3
50 1 4 2 5 6 3
b=04,0=04,y=1.6,c=23 100 1 4.5 3 6 4.5 2
200 1 5 4 6 3 2
400 1 4 3 5 6 2
800 1 4 3 5.5 5.5 2
25 1 3 2 6 5 4
50 1 2.5 2.5 6 5 4
b=16,0=04,y=0.8,¢c=04 100 1 2.5 2.5 5 6 4
200 1 3 4 5 6 2
400 1 2 4 6 5 3
800 1 4 3 5 6 2
> ranks 120 445 35 64.5 63 33
Overall rank 1 4 3 6 5 2

In Tables 1 and 2, the row indicating > Ranks represents the partial sum of the ranks. Among all
the estimators for a given metric, the superscript indicates their rank. Table 1 presents, for example,
the ABIAS of b obtained via MLE method as 0.019411} for n = 25. This indicates that the ABIAS
of b obtained using the MLE method ranks first among all other estimators.

Table 3 shows the partial and overall ranks of all the estimation methods of TL-HT-Gom-LLoG
distribution by various model parameter values. Based on the results in Tables 1 and 2, with increasing
sample size, the ABIAS and RMSE decreases across all estimation methods. In general, all estimation
methods are consistent and efficient. Table 3 shows that MLE method allows us to obtain better
estimates of TL-HT-Gom-LLoG parameters, followed by ADE, WLS, LS, CVME and then WLS
methods.

7. Risk Measures

In this section, risk measures including: value at risk (VaR), tail value at risk (TVaR), tail vari-
ance (TV), and tail variance premium (TVP) commonly used by financial and actuarial professionals
to assess the exposure to market risk in a portfolio of instruments are discussed.

7.1. Value at risk

VaR is an actuarial measure that is often used to assess risk in the financial markets. It is referred
to as the quantile risk measure or the quantile premium principle, and it is always provided with a
stated degree of confidence, such as 90%, 95%, or 99%. The VaR of the TL-HT-Gom-G family of

distributions is given by
-1
—1 5
(10)} )} ), an

-

VaRg = Gt <1 — |:1 — vlog (9 |:(1 ,qu,) 2

where ¢ € (0, 1) is a specified level of significance.

By

7.2. Tail value at risk

TVaR is used to express the expected value of loss in the case that an event beyond the pre-
determined probability threshold has actually occurred. The TVaR of the TL-HT-Gom-G family of
distributions is given as
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TVaR, = E(X|X>uz)= qu o f(w)dz
- VaRg,
T 14 g+ Z /VaRq LW, 11 Gy (T3 9)d, (18)
where W, is given in Equation (8) and Gpin (z;:) = (p + 1)GP(2;1))g(x; ¥) is the pdf of Exp-G

distribution with the power parameter (p + 1).

7.3. Tail variance
TV examines variation outside of the VaR. The TV of the TL-HT-Gom-G family of distributions
is given by

TV, = BE(X?|X >z, - (TVaR,)?
- 2? f(z)dx — (TVaR,)?
1—-4q Jvar,
_ / 22g, . (x:9)dz — (TVaR,)?. (19)
1-¢ q VaR,

Thus, TV of TL-HT-Gom-G family of distributions can be obtained from those of Exp-G distri-
bution.

7.4. Tail variance premium
The TVP is a significant risk measure that is crucial to the study of insurance. The TVP of the
TL-HT-Gom-G family distributions is given by

TVP, =TVaR, + §(TV,), (20)

where 0 < § < 1. The TVP of the TL-HT-Gom-G family of distributions can be obtained by
substituting Eqns. (18) and (19) into Equation (20).

7.5. Numerical study for the risk measures

Here, we examine the suitability of the Topp-Leone heavy-tailed Gompertz-log-logistic (TL-HT-
Gom-LLoG) distribution in modelling heavy tailed data by performing a numerical simulation of the
risk measures. The obtained results are compared to those of the sub-models, and the equi-parameter
models: Topp-Leone odd Burr III log-logistic (TL-OBIII-LLoG) by Moakofi et al. (2022) and alpha
power exponentiated log-logistic (APEXLLD) distribution by Teamah et al. (2021). Simulation results
are obtained as follows:

1. Random samples of size n = 100 are generated from each one of the used distributions and
parameters have been estimated via maximum likelihood method.

2. 1000 repetitions are made to calculate the VaR, TVaR, TV and TVP for these distributions.

Tables 4 shows the numerical findings of VaR, TVaR, TV and TVP for the six compared distri-
butions. A model with higher values of VaR, TVaR, TV and TVP is said to have a heavier tail. From
the figures in Table 4, we conclude that the TL-HT-Gom-LLoG distribution have a heavier tail than its
sub-models, and the non-nested equi-parameter TL-OBIII-LLoG and APEXLLD distributions, hence
it is suitable for modelling heavy-tailed data.
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Table 4 Simulation Results of VaR, TVaR, TV and TVP

Significance level 0.7 0.75 0.8 0.85 0.9 0.95 0.99
TL-HT-Gom-LLoG VaR 0.7619 09124  1.0426 1.1683 1.2959 1.4298 1.5705
b=17,0=27,v=0.9,c=1.9) TVaR 13029 1.6612  2.2253 3.1967 5.1513 10.8745 18.7321

TV 24667  4.2563  7.8332 162323 42.1406  190.8545  460.3752
TVP 0.4237 1.5310  4.0412 10.6008  32.7752 170.4372  370.5104

TL-HT-Gom-LLoG VaR 0.1405  0.2193  0.2913 0.3616 0.4324 0.5053 0.5890
b=1,0=27,v=0.9,c=1.9) TVaR 04193 05273  0.6972 1.0018 1.6700 3.8629 6.9304
TV 0.5431 1.3366  2.9618 6.8454 19.1130 92.6773 250.1842
TVP 0.0390  0.4751 1.6722 4.8167 15.5317 84.1806 180.5402

TL-HT-Gom-LLoG VaR 0.4219  0.5386  0.6458 0.7524 0.8622 0.9778 1.1053
b=17,0=1,v=0.9,c=1.9) TVaR 04757  0.6474  0.9361 1.4704 2.6502 6.5754 12.5436

TV 0.8456  1.5801  3.1246 6.9700 19.7611 101.9116  250.9420
TVP 0.1162  0.5375 1.5636 4.4541 15.1347 90.2406 180.7923

TL-HT-Gom-LLoG VaR 0.5081  0.6284  0.9282 1.1138 1.2132 1.3068 1.4106
b=1,0=1,vy=1,c=1.9) TVaR  0.7904  0.8147 1.5533 1.6104 2.0485 5.6043 11.3409
TV 0.9391  0.9515 1.2434 1.4711 1.7376 25.1845 80.5403

TVP 0.3468  0.5784  0.9081 1.2409 0.4846 18.3209 42.0512

TL-OBIII-LLoG VaR 0.3580  0.4191 0.4941 0.5898 0.7201 0.9239 1.1014
(b=2.0,6=0.5,y=09,A=19 TVaR 06643 07197 0.7858 0.8678 0.9761 1.1397 1.3086
TV 0.0454  0.0511  0.0580 0.0639 0.0687 0.0726 0.0782

TVP 0.5152  0.7712  0.8369 0.9172 1.0222 1.1829 1.3154

APEXLLD VaR 0.6057  0.6241 0.6451 0.6702 0.7028 0.7537 0.8129
(¢=03,a=16,b=19,c=19) TVaR 0.6141 0.6410  0.6890 0.6928 0.7465 0.8672 0.9843
TV 0.1037  0.1243  0.1550 0.2052 0.2999 0.5267 0.7841

TVP 0.3867  0.7073  0.7330 0.7673 0.8164 0.8676 0.9102

8. Applications

In this section, the flexibility of the TL-HT-Gom-LLoG distribution is demonstrated via appli-
cations to three real datasets. The goodness-of-fit of the TL-HT-Gom-LLoG distribution are com-
pared to that of the Topp-Leone-Marshall-Olkin-Weibull (TL-MO-W) distribution by Chipepa et al.
(2020), alpha power exponentiated log-logistic distribution (APEXLLD) by Teamah et al. (2021), the
Marshall-Olkin odd Burr IIT log-logistic (MOO-BIII-LLoG) distribution by Afify et al. (2020), Topp-
Leone odd Burr III log-logistic (TL-OBIII-LLoG) by Moakofi et al. (2022), the logistic Burr XII
(LBXII) distribution by Guerra et al. (2023), the Weibull-Burr XII (WBXII) distribution by Guerra
et al. (2021), and the Marshall-Olkin generalized Burr XII (MOGBXII) distribution by Afify and
Abdellatif (2020). The probability density functions (pdfs) of these distributions are given in the
appendix.

The goodness-of-fit is assessed using the following statistics: -2log-likelihood (—2 In(L)), Akaike
Information Criterion (AIC = 2p — 21n(L)), Consistent Akaike Information Criterion (CAIC =
AIC + 2%), Bayesian Information Criterion (BIC' = pln(n) — 21In(L)), (n is the number
of observations, and p is the number of estimated parameters), Cramér-von Mises statistic (W),
Anderson-Darling statistic (A*) (Chen and Balakrishnan (1995)) and Kolmogorov-Smirnov (K-S)
statistic. The model with the smallest values of the goodness-of-fit statistics is regarded as the best
model.

Probability plots with sum of squares (SS) from the plots were also used to evaluate the fit. In
addition, fitted densities, empirical cumulative distribution function (ECDF), Kaplan-Meier (K-M)
survival curve, total time on test (TTT) plots and hrf plots are presented.

8.1. Failure times data
The first real data set is from a test that involved accelerated life for 59 conductors. Electro-
migration, or the movement of atoms within the conductors of a circuit, is a cause of failures in
microcircuits. The data was analyzed by Atchad et al. (2023). Failure times are given in hours. The
data are:
6.545,9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997,8.591, 6.129, 11.038,
5.381,6.958,4.288,6.522,4.137,7.459, 7.495,6.573,6.538, 5.589, 6.087, 5.807, 6.725,
8.532,9.663, 6.369, 7.024, 8.336,9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009,
7.489,7.398,6.033,10.092, 7.496, 4.531,7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640,
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5.434,7.937,6.515,6.476,6.071,10.491, 5.923.
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Figure 7 Profile likelihood function plots for parameters of TL-HT-Gom-LLoG distribution on the
failure times data set

Figure 7 displays the profile likelihood plots for the parameters of the TL-HT-Gom-LLoG dis-
tribution applied to the failure times data set. The plots demonstrate that the maximum likelihood
estimates (MLEs) for the TL-HT-Gom-LLoG distribution are unique, indicating that the parameters
are identifiable.

Table 5 displays the maximum likelihood estimates (MLEs) of the fitted distributions together
with the standard errors (in parenthesis) and the values of goodness-of-fit statistics for the failure
times data. From Table 5, the selection criteria shows that TL-HT-Gom-LLoG distribution can be
considered the best fitting model to represent the failure times data. Figure 8 shows the fitted densities
and probability plots for the competing models applied to the considered data sets. From Figure 8, we
conclude that the TL-HT-Gom-LLoG distribution has the best overall fit and can therefore be selected
as the most appropriate model to explain the data.
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Table 5 MLEs and goodness-of-fit statistics
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Estimates Statistics
Model b [d v c —2log (L) AIC CAIC BIC w* A* K-S
TL-HT-Gom-LLoG 5.2909 0.0291 0.6913 2.5052 226.3343  234.3344 235.0751 242.6445 0.0597 0.3646 0.0767
(1.5022) (0.0122) (0.1174) (0.3246)
b 0 ¥ A
TL-MO-W 49.8703 0.3641 1.3630 0.0981 230.2458  238.2458 2389866 246.556 0.1106 0.6764 0.1085
(0.0010) (0.2159) (0.2394) (0.0739)
b B Y A
TL-OBII-LLoG 0.0974 365.8400 0.6969 29.4560 237.9898  245.9898 246.7306 254.3000 0.1951 1.1832 0.1287
(0.0045) (0.0002) (0.2178) (1.5195x107%)
« a b c
APEXLLD 9.6754x10% 4.5342 0.7711 1.4412x10% 237.6232  245.6232 246.3639 253.9333 0.2160 1.3044 0.1073
(3.2751x107%%)  (0.4575) (0.1609) (1.9221x10~%)
B « B A
MOO-BIII-LLoG 37.0421 0.5045 411.2542 10.0417 234.6833  242.6833 243.4241 250.9935 0.0583 0.3732 0.1287
(23.1290) (0.4884) (0.4837) (9.7206)
A d c s
LBXII 0.2863 36.8371 30.3190 7.9546 2485148 2565148 257.2555 264.8249 0.1264 0.9226 0.1557
(0.2472) (27.1532) (27.4128) (0.5359)
@ ] d c
WBXII 0.0066 5.3689 0.2058 3.0351 223.6743  231.6743 2324151 239.9845 0.0614 0.3427 0.0875
(0.0103) (0.8868) (0.0858) (1.2704)
@ B 0 a
MOGBXII 2.4100 37.5230 1.0980x10%* 0.0540 238.2812  246.2814 247.0221 2545915 0.0433 0.2779 0.1423
(0.6921) (0.0079)  (1.2610x10~°6) (0.0153)
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Figure 8 Histogram superposed by fitted density (left) and observed vs expected probability plots
(right) for the failure times data
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The total test on time (TTT) scaled plot and the estimated hazard rate function (hrf) plot are
displayed in Figure 9. These are plotted to check the compatibility between the new distribution
and the dataset. We can observe the hrf of the data is increasing as shown by the TTT scaled plot.
The estimated hrf of the TL-HT-Gom-LLoG distribution on the failure times data is also increasing.
Hence, we conclude that the data and the TL-HT-Gom-LLoG distribution are compatible.

8.2. Environmental data
The second data measures the acidity of rainfalls for forty days in the state of Minnesota. This
data set was analyzed by Elbatal et al. (2022). The data are
3.71,4.23,4.16,2.98, 3.23,4.67, 3.99, 5.04, 4.55, 3.24,2.80, 3.44, 3.27, 2.66, 2.95,
4.70,5.12,3.77,3.12,2.38,4.57, 3.88, 2.97,3.70, 2.53, 2.67,4.12, 4.80, 3.55, 3.86,
2.51,3.33,3.85,2.35,3.12,4.39, 5.09, 3.38,2.73, 3.07.

Table 6 MLEs and goodness-of-fit statistics

Estimates Statistics
Model b 0 v c —2log (L) AIC CAIC BIC w* A7 K-S
TL-HT-Gom-LLoG 13.6200 0.0161 6.6857 0.3904 9370089 1017009 102.8437 108.4564 0.0397 0.3033 0.0768
(3.0096x1079%)  (3.5744x107%%)  (1.6284x107%%) (3.9301x107°%)
b B 5 A
TL-MO-W 53.999 1.0381x107%  2.6609x10~%4 2.7749 96.27976 1042797 1054226 111.0353 0.0621 0.4625 0.0987
(1.6708x107%)  (2.0315x1079%)  (5.1996x10%%)  (2.2998x10~%%)
b B ¥ A
TL-OBIII-LLoG 149.3400 228.8100 0.4673 0.0252 94.88592  102.8859 104.0288 109.6414 0.0485 0.3728 0.0888
(5.2548x107%)  (2.6969x107%%)  (1.7375x107°1)  (1.7448x10~9%)
« a b c
APEXLLD 1.2186x10%° 5.1532 1.0563 25.9980 96.91563  104.9156 106.0585 111.6711 0.0676 0.4984 0.1021
(1.5726x1077) (0.6272) (0.1376) (1.3377x10~%%)
5 a B p)
MOO-BIII-LLoG 13.3171 0.3188 28.0343 15.2031 104.6461  112.6461 113789  119.4017 0.0443 0.3375 0.1206
(9.1878) (1.0318) (13.9274) (49.1741)
A d c s
LBXII 0.1965 218.8128 51.5909 3.7995 1326436 140.6436 1417864 147.3991 0.2657 1.7084 0.1685
(0.0813) (2.3894) (24.3740) (0.1532)
« ] d c
WBXII 0.0868 4.1334 0.1283 5.8980 943715 1023715 1035144  109.127  0.0617 0.4287 0.0926
(0.1058) (0.6631) (0.0492) (2.2449)
« ] 5 a
MOGBXII 3.4770 5.1920 1.4168x10%% 0.3210 1010151 109.0150 110.1579 1157706 0.0505 0.3752 0.0983
(0.9423) (1.6358) (3.9306x 10~ 0.1011)

Figure 10 illustrates that the maximum likelihood estimates (MLEs) of the TL-HT-Gom-LLoG
parameters for the environmental data are identifiable.

The data analysis results for environmental data are presented in Table 6. This table shows that
the TL-HT-Gom-LLoG distribution has the lowest values of the —21n(L), AIC, CAIC, BIC, W*, A*,
and K-S statistic compared to other fitted distributions. Therefore, the TL-HT-Gom-LLoG distribu-
tion is considered the best model to characterize the environmental data. Figure 11 supports these
findings visually.
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Figure 12 TTT and hrf plots

Figure 12 shows the TTT scaled plot, and hrf plot. The TTT scaled plot shows an increasing
hrf. Furthermore, the estimated hrf in is agreement with the TTT scaled plot as it also displays an
increasing shape for environmental data set.

8.3. Kevlar Epoxy data
The third data set relates to the stress-rupture life of Kevlar 49/epoxy strands that were continu-
ously compressed at a 90% stress level until they all failed (Andrews and Herzberg 2012). The data
are:
0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09,
0.10,0.10,0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35,
0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72,
0.72,0.72,0.73, 0.79, 0.79, 0.80, 0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01,
1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43,
1.45,1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81,
2.02,2.05,2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89.

The profile likelihood plots for the TL-HT-Gom-LLoG distribution parameters serve as a tool for
assessing parameter identifiability. From the plots in Figure 13, it is evident that the maximum likeli-
hood estimates (MLEs) for the TL-HT-Gom-LLoG distribution are distinct, leading to the conclusion
that the parameters are identifiable.
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Figure 13 Profile likelihood function plots for parameters of TL-HT-Gom-LLoG distribution on the

Kevlar 49/epoxy data Set
Table 7 MLEs and goodness-of-fit statistics
Estimates Statistics
Model ) 0 v c —2log(L) _AIC___CAIC___BIC W & KS§
TL-HT-Gom-LLoG  0.1298  0.1081  0.1199 53876  197.8368 2058368 206.2535 216.2973 0.0499 03666 0.0605
0.0282)  (0.0451)  (0.0402)  (1.0713)
b 5 P )
TL-MO-W 49.8703 03641 13630 00981  230.2458 2382458 2389866 246.556 0.1106 0.6764 0.1085
(0.0010)  (02159)  (0.2394)  (0.0739)
b 0 5 A
TL-OBII-LLoG 09175 35113 02141 14786  211.1044 219.1044 219521 2295649 0.3199 17422 0.1339
(14688)  (1.6230)  (0.1281)  (2.3671)
@ a b c
APEXLLD 14541 33711 18022 02015  200.0885 208.0885 208.5052 218.549 0.0656 04631 0.0653
(15263)  (0.6884)  (0.3462)  (0.0602)
5 a B )
MOO-BII-LLoG ~ 3.6073 45429 02194 05323 2045787 212.5787 2129953 2230391 0.1245 0.7888 0.0839
(1.7422)  (0.0078)  (0.0855)  (0.0670)
A d c s
LBXII 247201 13669 00713 02151 2270805 235.0805 2354972 2455410 0.5946 32280 0.1143
(18.6591)  (0.4160)  (0.0527)  (1.3105)
« Io) d c
WBXII 0.8821 0.1518 12884 54832 2049981 212.9981 213.4148 2234586 0.1359 0.8243 0.0818
(0.1273)  (0.1832)  (0.2634)  (6.4138)
« 5 0 a
MOGBXII 0.7904 17437 75800 21961  207.5178 2155178 2159344 2259782 02267 12733 0.0907
(0.1671)  (181.5521)  (6.1039) (228.6481)
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The values presented in Table 7 demonstrate that the TL-HT-Gom-LLoG distribution provides
a superior fit to the data compared to other fitted distributions. This is because it is associated with
lower values of the goodness-of-fit statistics: —21n(L), AIC, CAIC, BIC, W*, A*, and K-S
statistic. These results are supported graphically by the plots in Figure 14.
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Figure 14 Histogram superposed by fitted density (left) and observed vs expected probability plots
(right) for the kevlar epoxy data

From Figure 15, we see that the TL-HT-Gom-LLoG distribution is suitable for modeling the
kevlar epoxy data data as both the TTT scaled and hrf plots are in agreement as they estimate the hrf
of the data to be bathtub followed by upside-down bathtub.

Scaled TTT-Transform

Figure 15 TTT and hrf plots

9. Concluding Remarks

We have proposed a new family of distributions called the Topp-Leone Heavy-Tailed Gompertz-
G (TL-HT-Gom-G) family of distributions. Some of its statistical properties such as quantile func-
tion, linear representation, moments, moment generating function, Rerlyi entropy, distribution of
order statistics, and stochastic orderings are derived. Risk measures for this distribution were also
presented, and the results revealed that the TL-HT-Gom-LLoG distribution is heavy-tailed. The un-
known parameters of the new distribution are estimated using different estimation methods and eval-
vated via a simulation study. The TL-HT-Gom-LLoG distribution, as a special case of this family,
demonstrated robustness and applicability with three real data sets, highlighting its usefulness in fields
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requiring heavy-tailed modeling, such as finance, insurance, and environmental studies. However,
the distribution also has some disadvantages. Its complexity can make deriving statistical properties
challenging, and it is not suitable for discrete data sets, limiting its applications to continuous data.
Despite these constraints, the TL-HT-Gom-LLoG distribution remains a versatile tool for analyzing
heavy-tailed data across various fields.

Appendix
Click on the link below for results in the appendix.
https://drive.google.com/file/d/18gnwzN3t0QJw3cJ 1qIROKcOH1KDs2n6L/view Tusp=sharing
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