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Abstract
Random variables with order have found extensive use across various fields, including sports,

seismology, reliability, quality control, actuarial science, and more. This study focuses on the in-
verse Lomax log-logistic distribution. Inverse Lomax log-logistic distribution is a flexible and robust
model that exhibits several noteworthy statistical properties. Its probability density function is typ-
ically right-skewed and decreasing, making it suitable for modeling positively skewed data. We
establish precise formulations for moments, providing valuable tools for determining diverse statis-
tical properties of this distribution. We compute moments at various parameter values to enhance
our understanding of the distribution. Further, these moments are used to determine the best linear
unbiased estimators.

Keywords: Order statistics, inverse Lomax log-logistic distribution, single moment, product mo-
ments, hypergeometric functions, best linear unbiased estimator.

1. Introduction
Ordered random variables prove advantageous in numerous practical scenarios. Scholars have

dedicated considerable attention to these variables due to their extensive applications. For example,
one might employ ordered random variables to arrange the pricing of goods or organize a list of
students based on their final test scores. In games, ordered random variables come into play when
managing records, and they offer a logical approach for addressing significant events like earthquakes.
Arranging data in ascending or descending order leads to the creation of order statistics, providing
insights into various data characteristics such as the maximum or minimum values within the data
range. Statisticians traditionally aim to collect n independent random variables. Consider a set of
random variables X1, X2, . . . , Xn arranged in ascending order of magnitude as X1:n ≤ X2:n ≤
· · · ≤ Xn:n. Here, Xr:n or X(r) denotes the rth order statistics in a sample of size n. The well-
established theory of ordered random variables proves to be a vital tool for handling observations
X1:n ≤ X2:n ≤ · · · ≤ Xn:n and various statistics derived from Xr:n.

Order statistics concern the properties and applications of these ordered random variables and
their associated functions, as highlighted by Arnold et al. (2008). Explicit expressions for moments of
order statistics of some distributions were determined by Nadarajah (2008). Joshi and Balakrishnan
(1982) established the recurrence relations and found identities for the product moments of order
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statistics. Balakrishnan et al. (1988) established recurrence relations and identities for moments of
order statistics for some specific continuous distributions.

For a comprehensive exploration of the moments of order statistics, refer to the work of Balakr-
ishnan and Sultan (1998). Several authors have extensively investigated moments of order statistics.
Childs et al. (2000) provided precise and explicit expressions for single, product, triple, and quadru-
ple moments of order statistics derived from the Pareto distribution. They also established recurrence
relations for these moments.

Adeyemi (2002) developed recurrence relations for both single and product moments of order
statistics originating from a symmetric generalized log-logistic distribution. Zghoul (2010) obtained
expressions for moments of order statistics from a family of J-shaped distributions. Gen (2012) ob-
tained the exact expression for single and product moments of order statistics from the Topp-Leone
distribution. Nagaraja (2013) derived moments and L-moments for the symmetric triangular distribu-
tion. Furthermore, Sultan and Al-Thubyani (2016) provided exact and explicit expressions for single,
product, triple, and quadruple moments of order statistics, along with deriving the best linear unbi-
ased estimator for scale and location parameters from the Lindley distribution. Kumar and Goyal
(2019) presented explicit expressions for single and product moments of order statistics and derived
the best linear unbiased estimators (BLUEs) for scale and location parameters from the power Lind-
ley distribution. Akhter et al. (2020) established exact and explicit expressions for single and product
moments of order statistics from the length-biased exponential distribution and derived the BLUEs
for scale and location parameters. Gul and Mohsin (2021) derived recurrence relations for both single
and product moments of order statistics from the half logistic-truncated exponential distribution. An-
war and Khan (2021) provided explicit expressions for single and product moments of order statistics
from Ishita distribution and derived BLUEs for location and scale parameters. Nayabuddin and Khan
(2022) obtained the explicit form of moments of order statistics from the exponentiated Burr XII dis-
tribution. Anwar et al. (2023) presented explicit expressions for single, product, triple and quadruple
moments of order statistics from Pareto-Weibull distribution. For estimation methods, one can see:
Khan et al. (2025) and Anwar et al. (2025a). Anwar et al. (2025b), this paper investigates the moment
properties of the Benktander Type II distribution using generalized order statistics, deriving explicit
moment formulas, recurrence relations, and characterization results.

The probability density function (pdf ) of rth order statistics is given by

fr:n(x) =
n!

(r − 1)!(n− r)!
[F (x)]r−1[1− F (x)]n−rf(x); −∞ < x < ∞. (1)

The joint pdf of rth and sth order statistics X(r) and X(s) is given by

fr,s:n(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!
[F (x)]r−1f(x)[F (y)− F (x)]s−r−1

×[1− F (y)]n−sf(y); x < y.

(2)

The log-logistic distribution is a well-established probability distribution with applications span-
ning across diverse academic disciplines such as survival analysis, hydrology, and economics. The
log-logistic distribution has been thoroughly investigated by numerous researchers and authors. Lloyd
(1952) originally introduced estimations of location and scale parameters based on order statistics.
Bennett (1983) considered the log-logistic regression model for survival data, highlighting its useful-
ness as an alternative to the Weibull distribution for parametric modeling, especially in cases where
the hazard rate is non-monotonic.

Ragab and Green (1984) derived some properties of order statistics from the log-logistic distri-
bution, while Ali and Khan (1987) derived recurrence relations for the moments of order statistics.
Varoon (1987) characterized the log-logistic distribution based on extreme-related stability with ran-
dom sample size. Shoukri et al. (1988) demonstrated its suitability in fitting precipitation data from
diverse Canadian regions. Collett (1994) applied the log-logistic distribution for modeling survival
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data in medical research. Additionally, Ashkar and Mahdi (2003) compared the log-logistic model
with the two-parameter lognormal, two-parameter Weibull, and extreme value type I distributions
for fitting maximum annual stream flow data. The log-logistic distribution is recognized for provid-
ing a good approximation to both normal and log-normal distributions. Falgore and Doguwa (2023)
provide an extension of the inverse Lomax (IL) distribution with the log-logistic distribution called
inverse Lomax log-logistic (IL-LL) distribution is considered and studied various statistical proper-
ties.

Over the last few decades, the log-logistic (LL) distribution, also known as the Risk distribution
in economics, has found widespread use, particularly in survival and reliability analysis. The log-
logistic distribution is considered an alternative to the log-normal distribution due to its provision of
an initially increasing and decreasing fault rate function.

The random variable X follows the IL-LL distribution with pdf

f(x) = αβλx−λ−1
(
1 + βx−λ

)−α−1
; x > 0, α, β, λ > 0 (3)

and the corresponding cumulative distribution function (cdf ) is given by

F (x) =
(
1 + βx−λ

)−α
; x > 0, α, β, λ > 0 (4)

where α, λ are the shape parameters and β is the scale parameter.
Using (3) and (4), we get the relation between cdf and pdf

f(x) =
αβλx−λ−1

(1 + βx−λ)
F (x). (5)

The reliability function for the IL-LL distribution is

R(t) = 1− F (t) = 1−
(
1 + βt−λ

)−α
.

The Hazard function for the IL-LL distribution is

h(t) =
f(t)

R(t)
=

αβλt−λ−1
(
1 + βt−λ

)−α−1

1− (1 + βt−λ)
−α .

In Figure 1(a) and (b), various forms of density and distribution functions for the IL-LL distri-
bution are presented. The illustrated distribution in the figure demonstrates its capability to capture
diverse datasets behaviors. Figures 1(c) and (d) depict the reliability and hazard rate functions of the
IL-LL distribution. The hazard rate function displays both increasing and decreasing behavior, as
indicated in the figure.

The papers structure is as follows: Section 2 presents the derivation of the precise and explicit
expression for the single moment from the IL-LL distribution. In Section 3, we have shown the
product moments from the IL-LL distribution. In Section 4, the results of Sections 2 and 3, are
utilized to compute the means, variances and covariances of order statistics from samples of sizes
up to 10 and for different values of the parameters α, β, λ. In Section 5, the moment’s application
is discussed by presenting the BLUEs of the IL-LL distribution for location and scale parameters,
followed by parameter estimation and explanation. Finally, in Section 6, we draw conclusion for the
paper.
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(a) The plot of pdf for (IL−LL) distribution.
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(b) The plot of cdf for (IL−LL) distribution.
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(c) The plot of reliability function for (IL−LL) distribution.
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(d) The plot of hazard function for (IL−LL) distribution.
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Figure 1 p.d.f., c.d.f., reliability, and hazard function graph at different parameter values

2. Single Moment
Theorem 1 For the IL-LL distribution as given in (3) and 1 ≤ r ≤ n, α, β, λ > 0.

E[Xj
r:n] = µj

r:n = Cr:n

n−r∑
i=0

(−1)i
(
n− r

i

)
αβ

j
λB

(
1− j

λ
, α(r + i) +

j

λ

)
. (6)

Proof: Using binomial expansion in Equation (1), then after that in view of Equation (3) and (4),
we get

E[Xj
r:n] = Cr:n

n−r∑
i=0

(−1)i
(
n− r

i

)
αβλ

∫ ∞

0

xj−λ−1

(1 + βx−λ)α(r+i)+1
dx.

Substituting t = βx−λ, we get

E[Xj
r:n] = Cr:n

n−r∑
i=0

(−1)i
(
n− r

i

)
αβ

j
λ

∫ ∞

0

t
−j
λ

(1 + t)α(r+i)+1
dt.

Now using the beta function B (c, d) =
∫∞
0

xc−1

(1+x)c+d dx, we get the expression as given in (6).
Special Cases:
a) For r = 1 in Equation (6), we obtain an exact expression for single moments of the first order
statistics, which is also denoted as sample minimum

E[Xj
1:n] = nαβ

j
λ

n−1∑
i=0

(−1)i
(
n− 1

i

)
B

(
1− j

λ
, α(i+ 1) +

j

λ

)
.
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b) In the other case, for sample maximum, putting r = n in (6), we obtain the exact expression for
single moments of the largest order statistics

E[Xj
n:n] = nαβ

j
λB

(
1− j

λ
, α(n+ i) +

j

λ

)
.

c) If r = n = j = 1, we get

E(X) = αβ
1
λB

(
1− 1

λ
, α(i+ 1) +

1

λ

)
.

It is possible to verify the accuracy of the single moments of order statistics in Equation (6) by

applying
n∑

r=1

µr:n = nE(X), given by (David and Nagaraja, 2003).

3. Product Moments
Theorem 2 For the IL-LL distribution as given in (3) with n ∈ N , 1 ≤ r < s ≤ n,

E[X l
r:nY

m
s:n] =µl, m

r,s:n = Cr,s:n

s−r−1∑
i=0

n−s∑
j=0

(−1)i+j

(
s− r − 1

i

)(
n− s

j

)
α2β

l+m
λ

(
1− m

λ

)−1

×B

(
2−

(
l +m

λ

)
,
l

λ
+ α(r + i)

)
3F2

[
1− m

λ
− α(s− r − i+ j),

1− m

λ
,−
(
l +m

θ

)
+ 2; 2− m

λ
,−m

λ
+ α(r + i) + 2; 1

]
.

(7)

Proof: Using Equations (2), (3) and expanding binomially, we get

E[X l
r:nY

m
s:n] =Cr,s:n

s−r−1∑
i=0

n−s∑
j=0

(−1)i+j

(
s− r − 1

i

)(
n− s

j

)
α2I(x, y) (8)

where I(x, y) = λβ

∫ ∞

0

xl−λ−1
(
1 + βx−λ

)−α(r+i)−1
I(y)dx,

(9)

I(y) = λβ

∫ ∞

x

ym−λ−1
(
1 + βy−λ

)−α(s−r−i+j)−1
dy.

Setting t = βy−λ, we get

I(y) =

∫ βx−λ

0

t
−m
λ (1 + t)−α(s−r−i+j)−1dt.

Using the result, Gradshteyn et al. (2007), [Page-315, ET I 310(20)].∫ u

0

xµ−1

(1 + βx)v
dx =

uµ

µ
2F1(v, µ; 1 + µ; − βu); Re µ ≥ 0, |arg(1 + βu)| ≤ π,

and Pfaff transformation

2F1(a, b; c; z) = (1− z)−b
2F1(c− a, b; c;

z

1− z
),
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after simplification, we get

= β
(
1− m

λ

)−1

(1 + βx−λ)
m
λ −1

2F1

(
1− m

λ
− α(s− r − i+ j), 1− m

λ
; 2− m

λ
;

βx−λ

1 + βx−λ

)
.

Substituting I(y) in (9) and setting t = βx−λ, we get

I(x, y) =β
l+m
λ

(
1− m

λ

)−1
∫ ∞

0

t−(
l+m
λ )+1 (1 + t)

−α(r+i)+m
λ −2

× 2F1

(
1− m

λ
− α(s− r − i+ j) , 1− m

λ
; 2− m

λ
;

t

1 + t

)
dt.

Substituting u = t
1+t and using the identity∫ 1

0

xρ−1(1− x)σ−1
2F1 (α, β, γ; x) dx = B (ρ, σ) 3F2 (α, β, ρ; γ, ρ+ σ, 1) .

See, Gradshteyn et al. (2007), [Page-813, ET II 399(5)], I(x, y) reduces to

I(x, y) =β
l+m
λ

(
1− m

λ

)−1

B

(
2− l

λ
− m

λ
,
l

λ
+ α(r + i)

)
3F2

(
1− m

λ
− α(s− r − i+ j),

1− m

λ
, 2−

(
l +m

λ

)
; 2− m

λ
, − m

λ
+ α(r + i) + 2; 1

)
.

Substituting I(x, y) in (8) we get the required result as given in (7).
Using the following identity, the accuracy of the product moments of order statistics in Equation

(7) may be verified
n∑

r=1

n∑
s=1

σr,s:n = nσ2

where, σr,s:n = Cov (Xr:n, Xs:n) and σ2 = Var(X).

4. Computations of Means, Variances and Covariances
In this section, we have utilized the results established in Sections 2 and 3 to compute the means,

variances and covariances of order statistics from the IL-LL distribution. By setting j = 1 in (6), the
means of the order statistics have been computed for n = 1(1)10 and for different selected values of
parameters α, β, λ. The means values to five decimal places are reported in Table 1.

Here, it can be seen that the condition
n∑

r=1

µr:n = nE(X), David and Nagaraja (2003) is satis-

fied. By setting j = 1 and j = 2 in (6), respectively, the first two moments of the form µ
(1)
r:n and µ

(2)
r:n

for all order statistics and for any sample sizes can be calculated in a systematic way, and then, using
these two moments, the variances of order statistics may easily be computed.

It is clear from the expression (6) that all the product moments µ(1,1)
r,s:n = µr,s:n, r < s, can also

be computed. Thus, setting l = m = 1 in (7), all the product moments have been computed first and
using these product moments with already computed first two moments, the covariances of all order
statistics have been computed in a simple way. The covariances have been computed for n = 2(1)10
and several choices of the parameters α, β, λ. The variances and covariances to five decimal places
are presented in Table 2. MATLAB has been used for computation of the moments.

Here, it may be seen that the condition
n∑

r=1

n∑
s=1

σr,s:n = nσ2, David and Nagaraja (2003), is

satisfied, where σr,s:n = Cov (Xr:n, Xs:n) and σ2 = Var(X).
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Table 1 Moments (µr:n) of order statistics for the IL-LL distribution.

α=0.1, β=0.2
n r λ=3 λ=4 λ=5 λ=6
1 1 0.17018 0.21932 0.26534 0.30729
2 1 0.05324 0.08733 0.12298 0.15840

2 0.28713 0.35132 0.40770 0.45619
3 1 0.02437 0.04671 0.07285 0.10091

2 0.11097 0.16855 0.22323 0.27339
3 0.37520 0.44271 0.49994 0.54759

4 1 0.01316 0.02859 0.04841 0.07106
2 0.05801 0.10108 0.14619 0.19043
3 0.16393 0.23602 0.30026 0.35634
4 0.44563 0.51160 0.56650 0.61134

5 1 0.00787 0.01903 0.03454 0.05326
2 0.03433 0.06686 0.10388 0.14228
3 0.09352 0.15241 0.20966 0.26265
4 0.21087 0.29176 0.36066 0.41880
5 0.50432 0.56657 0.61796 0.65948

6 1 0.00505 0.01342 0.02589 0.04167
2 0.02195 0.04706 0.07776 0.11121
3 0.05909 0.10646 0.15610 0.20444
4 0.12795 0.19836 0.26322 0.32087
5 0.25233 0.33846 0.40939 0.46776
6 0.55471 0.61219 0.65968 0.69782

7 1 0.00342 0.00989 0.02014 0.03365
2 0.01484 0.03463 0.06044 0.08977
3 0.03974 0.07812 0.12108 0.16479
4 0.08488 0.14424 0.20281 0.25731
5 0.16026 0.23895 0.30852 0.36854
6 0.28916 0.37826 0.44974 0.50745
7 0.59897 0.65118 0.69467 0.72955

8 1 0.00241 0.00753 0.01611 0.02785
2 0.01046 0.02637 0.04833 0.07428
3 0.02796 0.05941 0.09675 0.13626
4 0.05938 0.10930 0.16163 0.21233
5 0.11038 0.17919 0.24399 0.30228
6 0.19019 0.27481 0.34724 0.40830
7 0.32215 0.41274 0.48390 0.54051
8 0.63852 0.68524 0.72478 0.75655

9 1 0.00176 0.00589 0.01318 0.02350
2 0.00763 0.02063 0.03954 0.06267
3 0.02037 0.04646 0.07911 0.11492
4 0.04314 0.08532 0.13201 0.17893
5 0.07967 0.13926 0.19864 0.25409
6 0.13495 0.21112 0.28026 0.34083
7 0.21781 0.30665 0.38073 0.44203
8 0.35196 0.44306 0.51338 0.56864
9 0.67434 0.71551 0.75121 0.78004

10 1 0.00132 0.00471 0.01098 0.02014
2 0.00572 0.0165 0.03295 0.05371
3 0.01527 0.03715 0.06591 0.09849
4 0.03229 0.06817 0.10992 0.15327
5 0.05943 0.11104 0.16515 0.21741
6 0.0999 0.16749 0.23214 0.29077
7 0.15831 0.24021 0.31235 0.37421
8 0.24331 0.33513 0.41004 0.47109
9 0.37912 0.47004 0.53921 0.59303
10 0.70714 0.74278 0.77476 0.80082
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Table 2 Product moments of order statistics for n = 2, 3, . . . , 10.

α= 0.1, β=0.2
λ=3 λ=4 λ=5 λ=6

s r n µr,s:n µr,s:n µr,s:n µr,s:n

2 1 2 0.02896 0.04810 0.07041 0.09443
3 0.00657 0.01488 0.02639 0.04044
4 0.00226 0.00629 0.01277 0.02154
5 0.00094 0.00309 0.00701 0.01282
6 0.00044 0.00167 0.00419 0.00822
7 0.00022 0.00097 0.00266 0.00556
8 0.00012 0.00060 0.00177 0.00392
9 0.00007 0.00038 0.00123 0.00286
10 0.00004 0.00026 0.00087 0.00215

3 1 3 0.01403 0.02770 0.04512 0.06514
4 0.00398 0.01029 0.01984 0.03219
5 0.00158 0.00490 0.01066 0.01884
6 0.00072 0.00263 0.00632 0.01201
7 0.00036 0.00152 0.00400 0.00810
8 0.00020 0.00093 0.00266 0.00571
9 0.00011 0.00060 0.00184 0.00416
10 0.00007 0.00040 0.00131 0.00312

2 3 0.06628 0.10173 0.13971 0.17770
4 0.01779 0.03665 0.06017 0.08649
5 0.00693 0.01729 0.03213 0.05040
6 0.00316 0.00922 0.01900 0.03206
7 0.00159 0.00533 0.01201 0.02162
8 0.00086 0.00326 0.00799 0.01523
9 0.00049 0.00209 0.00552 0.01111
10 0.00029 0.00139 0.00394 0.00832

4 1 4 0.00809 0.01810 0.03195 0.04876
5 0.00262 0.00754 0.01554 0.02637
6 0.00115 0.00391 0.00899 0.01649
7 0.00057 0.00223 0.00564 0.01106
8 0.00030 0.00136 0.00374 0.00777
9 0.00017 0.00087 0.00258 0.00566
10 0.00010 0.00058 0.00184 0.00424

2 4 0.03598 0.06428 0.09674 0.13087
5 0.01149 0.02656 0.04679 0.07051
6 0.00499 0.01373 0.02703 0.04404
7 0.00247 0.00783 0.01695 0.02951
8 0.00132 0.00477 0.01122 0.02073
9 0.00075 0.00305 0.00774 0.01509
10 0.00045 0.00203 0.00552 0.01131

3 4 0.10567 0.15300 0.20096 0.24673
5 0.03181 0.06104 0.09490 0.13058
6 0.01355 0.03118 0.05439 0.08109
7 0.00664 0.01771 0.03399 0.05421
8 0.00354 0.01077 0.02248 0.03805
9 0.00201 0.00688 0.01550 0.02769
10 0.00120 0.00457 0.01105 0.02074



Zakir Ali et al. 71

Table 2 (Continued)

α= 0.1, β=0.2
λ=3 λ=4 λ=5 λ=6

s r n µr,s:n µr,s:n µr,s:n µr,s:n

5 1 5 0.00513 0.01273 0.02400 0.03833
6 0.00183 0.00575 0.01253 0.02209
7 0.00086 0.00318 0.00767 0.01452
8 0.00045 0.00191 0.00503 0.01013
9 0.00026 0.00122 0.00346 0.00735

10 0.00015 0.00081 0.00246 0.00550
2 5 0.02244 0.04479 0.07223 0.10244

6 0.00795 0.02018 0.03765 0.05897
7 0.00374 0.01113 0.02302 0.03873
8 0.00196 0.00670 0.01510 0.02701
9 0.00111 0.00426 0.01038 0.01960

10 0.00066 0.00282 0.00738 0.01466
3 5 0.06177 0.10263 0.14622 0.18948

6 0.02152 0.04578 0.07570 0.10852
7 0.01004 0.02515 0.04615 0.07114
8 0.00526 0.01510 0.03024 0.04956
9 0.00296 0.00959 0.02077 0.03595

10 0.00176 0.00635 0.01477 0.02689
4 5 0.14493 0.20044 0.25457 0.30453

6 0.04740 0.08604 0.12831 0.17092
7 0.02164 0.04666 0.07752 0.11128
8 0.01122 0.02785 0.05060 0.07731

6 1 6 0.00346 0.00941 0.01877 0.03117
7 0.00133 0.00452 0.01034 0.01884
8 0.00066 0.00262 0.00660 0.01286
9 0.00037 0.00165 0.00449 0.00926

10 0.00022 0.00108 0.00318 0.00690
2 6 0.01508 0.03300 0.05638 0.08320

7 0.00576 0.01583 0.03103 0.05026
8 0.00287 0.00919 0.01982 0.03431
9 0.00159 0.00576 0.01348 0.02470

10 0.00093 0.00379 0.00955 0.01840
3 6 0.04073 0.07479 0.11330 0.15305

7 0.01546 0.03575 0.06221 0.09228
8 0.00769 0.02071 0.03969 0.06295
9 0.00424 0.01297 0.02698 0.04530

10 0.00249 0.00854 0.01910 0.03375
4 6 0.08921 0.14015 0.19168 0.24075

7 0.03322 0.06621 0.10439 0.14427
8 0.01639 0.03817 0.06638 0.09816
9 0.00900 0.02386 0.04505 0.07055

10 0.00528 0.01568 0.03187 0.05254
5 6 0.18324 0.24411 0.30185 0.35388

7 0.06384 0.11069 0.15969 0.20740
8 0.03076 0.06289 0.10050 0.14003
9 0.01672 0.03905 0.06790 0.10031

10 0.00975 0.02559 0.04793 0.07457
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Table 2 (Continued)

α= 0.1, β=0.2
λ=3 λ=4 λ=5 λ=6

s r n µr,s:n µr,s:n µr,s:n µr,s:n

7 1 7 0.00245 0.00721 0.01513 0.02600
8 0.00099 0.00363 0.00869 0.01630
9 0.00052 0.00220 0.00575 0.01148
10 0.00030 0.00143 0.00402 0.00848

2 7 0.01065 0.02527 0.04541 0.06936
8 0.00431 0.01273 0.02606 0.04348
9 0.00226 0.00769 0.01724 0.03061
10 0.00130 0.00499 0.01207 0.02261

3 7 0.02858 0.05704 0.09100 0.12735
8 0.01154 0.02868 0.05218 0.07976
9 0.00603 0.01732 0.0345 0.05613
10 0.00347 0.01123 0.02416 0.04146

4 7 0.06130 0.10555 0.15262 0.19900
8 0.02456 0.05283 0.08725 0.12435
9 0.01280 0.03184 0.05759 0.08742
10 0.00734 0.02063 0.04030 0.06453

5 7 0.11716 0.17594 0.23304 0.28574
8 0.04597 0.08692 0.13197 0.17728
9 0.02373 0.05207 0.08677 0.12424
10 0.01355 0.03364 0.06060 0.09158

6 7 0.22033 0.28443 0.34404 0.39680
8 0.08064 0.13457 0.18891 0.24038
9 0.04059 0.07935 0.12281 0.16701
10 0.02292 0.0509 0.08533 0.12264

8 1 8 0.00180 0.00569 0.01248 0.02212
9 0.00076 0.00298 0.00741 0.01428
10 0.00042 0.00186 0.00504 0.01031

2 8 0.00782 0.01993 0.03745 0.05899
9 0.00332 0.01043 0.02223 0.03808
10 0.00181 0.00652 0.01513 0.02749

3 8 0.02091 0.0449 0.07497 0.10823
9 0.00886 0.02349 0.04448 0.06984
10 0.00482 0.01467 0.03026 0.05040

4 8 0.04449 0.08268 0.12532 0.16870
9 0.01878 0.04318 0.07425 0.10875
10 0.01021 0.02694 0.05048 0.07845

5 8 0.08309 0.13587 0.18944 0.24039
9 0.03478 0.07058 0.11182 0.15452
10 0.01883 0.04392 0.07589 0.11131

6 8 0.14503 0.20976 0.27069 0.32557
9 0.05934 0.10739 0.27069 0.20759
10 0.03179 0.06639 0.10682 0.14901

7 8 0.25617 0.32185 0.38213 0.43474
9 0.09754 0.15750 0.21608 0.27030
10 0.05089 0.09574 0.14421 0.19220
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Table 2 (Continued)

α= 0.1, β=0.2
λ=3 λ=4 λ=5 λ=6

s r n µr,s:n µr,s:n µr,s:n µr,s:n

9 1 9 0.00136 0.00459 0.01049 0.01911
10 0.00060 0.00248 0.00640 0.01264

2 9 0.00591 0.01608 0.03148 0.05098
10 0.00261 0.00869 0.01920 0.03370

3 9 0.01579 0.03621 0.06298 0.09349
10 0.00695 0.01957 0.03841 0.06180

4 9 0.03347 0.06653 0.10512 0.14558
10 0.01472 0.03592 0.06407 0.09619

5 9 0.06193 0.10871 0.15828 0.20681
10 0.02713 0.05855 0.09631 0.13647

6 9 0.10546 0.16523 0.22366 0.27771
10 0.04575 0.08846 0.1355 0.18264

7 9 0.17250 0.24167 0.30512 0.36119
10 0.07305 0.12737 0.18276 0.23543

8 9 0.29078 0.35679 0.41685 0.46874
10 0.11437 0.17945 0.24137 0.29760

10 1 10 0.00106 0.00378 0.00895 0.01673
2 10 0.00458 0.01322 0.02687 0.04463
3 10 0.01223 0.02977 0.05375 0.08183
4 10 0.02587 0.05464 0.08964 0.12737
5 10 0.04766 0.08904 0.13473 0.18069
6 10 0.08031 0.13447 0.18951 0.24178
7 10 0.12798 0.19341 0.25543 0.31153
8 10 0.19943 0.27179 0.3368 0.39334
9 10 0.32425 0.38958 0.44879 0.49956

5. Applicaton of Moments
In this section, we have calculated the BLUEs for the location and scale parameters µ and σ of

IL-LL distribution using relations established in the this section based on Type II censored sample.
Assume that X1, X2, . . . , Xn be a random sample of size n from IL-LL distribution with pdf

f(x) = αβλ

(
x− µ

σ

)−λ−1
(
1 + β

(
x− µ

σ

)−λ
)−α−1

; x > µ, σ, µ, α, β, λ > 0

and therefore its cdf is

F (x) =

(
1 + β

(
x− µ

σ

)−λ
)−α

; x > µ, σ, α, β, λ > 0.

Let X1:n ≤ X2:n ≤ · · · ≤ Xn−c:n, c = 0, 1, . . . , n− 1 denote Type-II censored sample for the
location-scale parameter from IL-LL distribution in (3). Let us denote Zr:n = (Xr:n−µ)

σ , E (Zr:n) =

µ
(1)
r:n, 1 ≤ r ≤ (n− c), and Cov (Zr:n, Zs:n) = σr,s:n = µ

(1,1)
r,s:n 1 ≤ r < s ≤ (n− c). Then we can

write the best linear unbiased estimators (BLUEs) of µ∗ and σ∗ (Arnold et al., 2008) as

µ∗ = a1X1 + a2X2 + · · ·+ anXn (10)
σ∗ = b1X1 + b2X2 + · · ·+ bnXn (11)



74 Thailand Statistician, 2026; 24(1): 63-79

Here ai’s and bi’s are the entries of the matrix C =
(
A′V −1A

)−1
A′V −1, with

A =
[
1 µ

]
, 1′ = (1, . . . , 1)1×(n−c), µ′ = (µ1:n, . . . , µn−c:n)1×(n−c)

where µ is the mean of the first n− c order statistics and V −1 is the inverse of the covariance matrix
V = (σr,s:n) , 1 ≤ r, s ≤ n− c.

Variances and covariance of these estimators are given by

Var(µ∗) = d11σ
2, Var(σ∗) = d22σ

2 and Cov(µ∗, σ∗) = d12σ
2,

where

D =

[
d11 d12
d21 d22

]
σ2 = (A′V −1A)−1.

Table 3 Variances and covariance of the BLUEs.

α= 0.1, β=0.2
λ n c Var(µ∗) Var(σ∗) Cov(µ∗,σ∗)
3 7 0 0.00011 0.39091 -0.00044

1 0.00011 0.43995 -0.00051
2 0.00011 0.63292 -0.00078

10 0 0.00002 0.26354 -0.00007
1 0.00002 0.27912 -0.00008
2 0.00002 0.34748 -0.00009
3 0.00002 0.46816 -0.00014
4 0.00002 0.65594 -0.00016

4 7 0 0.00045 0.21733 -0.00123
1 0.00046 0.25843 -0.00145
2 0.00046 0.37980 -0.00207

10 0 0.00012 0.14700 -0.00030
1 0.00012 0.16032 -0.00033
2 0.00012 0.20356 -0.00040
3 0.00012 0.27581 -0.00051
4 0.00012 0.38643 -0.00075

5 7 0 0.00123 0.17006 -0.00344
1 0.00121 0.17586 -0.00306
2 0.00123 0.26270 -0.00418

10 0 0.00040 0.09540 -0.00079
1 0.00040 0.10609 -0.00088
2 0.00040 0.13653 -0.00106
3 0.00040 0.18636 -0.00135
4 0.00040 0.26116 -0.00178

Tables 4 and 5 display the necessary coefficients of the BLUEs for Type-II censored samples
of order statistics for the sample sizes n = 7, 10, α = 0.1, β = 0.2, λ = 3, 4, 5 and different
censoring cases c = 0(1)([n/2] − 1). Similarly, we can obtain BLUE for any other choice of the
parameters α, β, λ. The coefficients of the BLUEs in Tables 4 and 5 are checked by using the
conditions

n−c∑
r=1

ar = 1 and
n−c∑
r=1

br = 0.
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Table 4 Coefficients for the BLUEs of µ.

α= 0.1, β=0.2 ai, i = 1, 2, . . . , (n− c)
λ n c
3 7 0 1.09959 -0.07254 -0.01302 -0.00892 -0.00192

-0.00262 -0.00057
1 1.10045 -0.07262 -0.01307 -0.00900 -0.00206

-0.00370
2 1.10411 -0.07285 -0.01334 -0.00939 -0.00853

10 0 1.08673 -0.03841 -0.05212 0.00972 -0.00017
-0.00593 0.00138 -0.00099 -0.00010 -0.00010

1 1.08683 -0.03840 -0.05214 0.00972 -0.00018
-0.00594 0.00137 -0.00101 -0.00026

2 1.08704 -0.03842 -0.05215 0.00972 -0.00018
-0.00595 0.00134 -0.00140

3 1.08794 -0.03850 -0.05213 0.00967 -0.00023
-0.00602 -0.00074

4 1.08854 -0.03863 -0.05217 0.00969 -0.00025
-0.00718

4 7 0 1.12203 -0.07645 -0.02481 -0.00621 -0.00571
-0.00558 -0.00328

1 1.12519 -0.07673 -0.02495 -0.00645 -0.00621
-0.01085

2 1.13302 -0.07742 -0.02543 -0.00711 -0.02305
10 0 1.13720 -0.10104 -0.02035 -0.00397 -0.00827

0.00241 -0.00366 -0.00200 -0.00134 -0.00078
1 1.13781 -0.10108 -0.02037 -0.00399 -0.00829

0.00238 -0.00372 -0.00030 -0.00245
2 0.00061 1.17489 -0.10262 -0.04471 -0.01690

-0.00632 -0.00338 -0.00156
3 1.14088 -0.10139 -0.02051 -0.00400 -0.00842

0.00220 -0.00876
4 1.14529 -0.10179 -0.02044 -0.00421 -0.00857

-0.01028
5 7 0 1.16148 -0.24529 0.23205 -0.22549 0.14935

-0.05337 -0.01873
1 1.14331 -0.07652 -0.02490 -0.00927 -0.00823

-0.02438
2 1.15696 -0.07744 -0.02569 -0.01038 -0.04345

10 0 1.12172 -0.06505 -0.02709 -0.01127 -0.00547
-0.00275 -0.00112 -0.00215 -0.00384 -0.00298

1 1.12358 -0.06635 -0.02538 -0.01201 -0.00550
-0.00284 -0.00128 -0.00245 -0.00776

2 1.12656 -0.06643 -0.02550 -0.01207 -0.00563
-0.00302 -0.00164 -0.01227

3 1.13121 -0.06693 -0.02546 -0.01222 -0.00574
-0.00336 -0.01750

4 1.13811 -0.06705 -0.02587 -0.01229 -0.00606
-0.02684
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Table 5 Coefficients for the BLUEs of σ.

α= 0.1, β=0.2 bi, i = 1, 2, . . . , (n− c)
λ n c
3 7 0 -4.56480 0.42277 0.31942 0.56447 1.04025

1.76375 0.45413
1 -5.25013 0.48361 0.35907 0.63195 1.15481

2.62070
2 -7.83538 0.64749 0.55010 0.90826 5.72953

10 0 -3.97646 0.05683 0.34123 0.05003 0.18425
0.36736 0.57957 0.94780 1.20980 0.23960

1 -4.24000 0.01074 0.38815 0.04818 0.19333
0.38775 0.61029 0.99469 1.60687

2 -5.50717 0.16559 0.45056 0.06898 0.23634
0.47764 0.75407 3.35399

3 -7.66863 0.34602 0.39310 0.18401 0.34244
0.64783 5.75524

4 -12.34638 1.41511 0.70069 0.06198 0.50356
9.66504

4 7 0 -3.02314 0.25216 0.16544 0.25571 0.5717
1.18399 0.59413

1 -3.59501 0.30348 0.19152 0.30001 0.66274
2.13725

2 -5.13648 0.43962 0.28650 0.42949 3.98086
10 0 -2.83845 0.26859 0.06820 0.04409 0.10629

0.15906 0.33319 0.59823 0.92414 0.33667
1 -3.10326 0.28562 0.07512 0.04947 0.11372

0.17236 0.35915 0.64164 1.40617
2 1.00066 -1.12853 0.07293 0.03612 0.00783

0.00802 0.00035 0.00263
3 -5.10258 0.49898 0.16416 0.05576 0.20081

0.29087 3.89200
4 -7.06217 0.67493 0.13493 0.14956 0.26876

5.83400
5 7 0 -3.17777 5.08991 -7.32495 6.73626 -4.55094

2.29002 0.93747
1 -2.88752 0.22091 0.12407 0.19589 0.46263

1.88403
2 -3.94266 0.29199 0.18584 0.28109 3.18374

10 0 -2.23366 -0.02272 0.29136 -0.04497 0.05559
0.11166 0.22275 0.45410 0.77747 0.38839

1 -2.47597 0.14608 0.06797 0.05185 0.06059
0.12291 0.24396 0.49352 1.28909

2 -2.97156 0.15999 0.08837 0.06098 0.08114
0.15182 0.30433 2.12393

3 -3.77758 0.24668 0.08195 0.10045 0.21117
3.05035

4 -4.98038 0.26753 0.15384 0.09955 0.15573
4.30373
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5.1. Numerical illustration
In this section, we have presented the usefulness of coefficients of BLUEs of location and scale

parameters as given in Tables 4 and 5, respectively. For this purpose, we have simulated here three
data sets from IL-LL distribution by using the inverse transform method for given values as follows;
Data Set 1: For n=7, µ=0, σ=1, α=0.3, β=0.4, λ=0.5, we have

0.00190, 0.00020, 2.23419, 0.01129, 0.01475, 1.19372, 0.00005.
For n=10, µ=0, σ=1, α=0.3, β=0.4, λ=0.5, we have

0.18190, 0.00198, 0.05419, 0.00143, 0.00006, 0.00461, 0.18395, 0.00286, 0.09526, 0.01999.
Data Set 2: For n=7, µ=0, σ=1, α=1, β=0.4, λ=0.3, we have

0.00022, 0.06287, 0.00261, 0.00019, 0.00010, 2.06713, 3.32024.
For n=10, µ=0, σ=1, α=1, β=0.4, λ=0.3, we have

0.00035, 0.00682, 0.12522, 0.00003, 0.27655, 0.21628, 0.03953, 0.00004, 9.34846, 2.24118.
Data Set 3: For n=7, µ=0, σ=1, α=1.5, β=0.4, λ=0.3, we have

0.00100, 0.00807, 0.12479, 5.69157, 0.01808, 0.00314, 0.00626.
For n=10, µ=0, σ=1, α=1.5, β=0.4, λ=0.3, we have

1.85629, 0.12294, 8.40780, 3.47068, 0.05849, 0.08453, 2.67296, 3.17099, 0.81415, 0.03492.
Next, by using these samples, the BLUEs of µ and σ are computed based on complete as well as

Type-II censored samples using (10) and (11). By using the BLUEs coefficients, we have

µ∗ =

n−c∑
r=1

arXr:n

= (0.00190× 1.09959) + (0.00020×−0.07254) + (2.23419×−0.01302)+

(0.01129×−0.00892) + (0.01475×−0.00192) + (1.19372×−0.00262)

+ (0.00005×−0.00057)

= − 0.03027

and σ∗ =

n−c∑
r=1

brXr:n

= (0.00190×−4.56480) + (0.00020× 0.42277) + (2.23419× 0.31942)

+ (0.01129× 0.56447) + (0.01475× 1.04025) + (1.19372× 1.76375)

+ (0.00005.45413)

= 2.83221

Remark: For α = 1, β = 1, we get all the above results for Log-Logistic distribution.

6. Conclusion
In this study, we consider a novel model within the inverse Lomax-G family, referred to as the

IL-LL distribution. We explored several statistical properties of the IL-LL distribution, including
explicit expressions for the single and product moments of order statistics. Using these expressions,
we derived the means, variances, and covariances for the order statistics and used these results to
compute the BLUEs of the location and scale parameters. The probability density function plots
presented in Figure 1 demonstrate that the distribution exhibits a right-skewed shape. Additionally,
the hazard function plots reveal a decreasing pattern, further characterizing the distribution’s behavior.
These findings highlight the flexibility and applicability of the IL-LL distribution in modeling diverse
datasets. The best linear invariant (BLI) estimators of the scale and location-scale parameters of the
IL-LL distribution, as well as best linear unbiased (BLU) and best linear invariant (BLI) predictors
of future unobserved order statistics, might be developed using these findings; see, for example,
Balakrishnan and Cohen (2014).
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