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Abstract
A novel family of distribution has been introduced, named as ”exponent-Generator family of

statistical distribution”, designed for optimal univariate modeling. We explored the structural and
characterizing properties of a newly proposed distribution, the exponent power function (EPF) dis-
tribution. We provide explicit expressions for the probability density function (PDF), cumulative
distribution function (CDF), reliability function (RF), and hazard rate function (HRF). Also the r-th
moment, moment generating function (MGF), and the order statistics are obtained. The manuscript
also includes a detailed discussion on the shapes of PDF and HRF for selected parameter values,
providing valuable insights into the behavior of distribution. Moreover, we discussed maximum
likelihood estimation (MLE) and Bayesian estimation method. The adaptability of the proposed dis-
tribution is evaluated by analyzing the three real data sets related to lifetime of cancer patients as well
as a simulated dataset.

Keywords: Exponent-Generator family of distribution, power function distribution, exponent
power function distribution, hazard rate function, maximum likelihood estimation.

1. Introduction
In applied fields, researchers and practitioners encounter difficulties when dealing with diverse

lifetime data sets in health and natural sciences. To simplify modeling, they are investigating the
power function (PF) distribution, a versatile and simple lifetime distribution. Power function distri-
bution emerges in several scientific fields and is often employed in the assessment of semiconductor
devices and electrical component reliability. The PF is also called the inverse of Pareto distribution
(see Dallas(Dallas, 1976)). Estimation of the PF parameters has been done through both classical and
bayesian approach, by various authors, for instance; Sultan and Ahmad (Sultan et al., 2014) , Hanif
et al.(Hanif et al., 2015) ,Sathar et al. (Sathar and Sathyareji, 2022), Wang and Choa (Wang, 2023)
and Nuzhat et al. (Ahad et al., 2024).

Meniconi and Bery(Meniconi and Barry, 1996) proposed the probability density function (PDF)
and cumulative distribution function (CDF) of two parameter PF distribution with scale parameter λ
and shape parameter η respectively as,

f(y, λ, η) =
ηyη−1

λη
; 0 < y < λ, λ > 0, η > 0
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F (y, λ, η) =
( y
λ

)η
; 0 < y < λ, λ > 0, η > 0.

Various generalizations of PF distribution has been introduced by many researchers, some recent
include, exponentiated Weibull PF distribution by Hassan and Assar(Hassan and Assar, 2017) . Haq
et al(Haq et al., 2018) introduced McDonald PF distribution . Hassan et al. introduced the odd gener-
alized exponential PF distribution. Zaka and Akhter(Zaka et al., 2020) introduced Reflected PF, Haq
et al(Haq et al., 2021) introduced Frechet FP. Haq et al(Ahsan-ul-Haq et al., 2023) introduced New
cubic transmuted PF distribution, Alshawarbeh et al.(Alshawarbeh et al., 2024) introduced innovative
model of PF distribution utilizes a newly developed logarithmic transformation method.

The random behavior of these datasets can lead to deviation from well-established probability
models, such limitation demands for the larger family of probability distributions and development of
new generalized probability models which are richer and more versatile. In the recent years, generated
family of continuous distributions is a new evolution for generating and extending the well-known
probability models by introducing one or more extra shape parameters to the baseline distribution. We
present a list of some generated families as follows; the exponentiated generalized (EG) by Cordeiro
et al.(Cordeiro et al., 2013), Weibull-G by Bourguignon et al.(Bourguignon et al., 2014), exponen-
tiated Weibull-G by Hassan and Elgarhy(Hassan and Elgarhy, 2016), inverse Weibull-G by Hassan
and Nassr(Hassan and Nassr, 2018) and power Lindley-G by Hassan and Nassr(Hassan and Nassr,
2019),exponentaited-G by Mutairi et al(Hassan and Nassr, 2020), Ratio transformed weibull by Mur-
taza et al(Lone et al., 2022) among others.

In this manuscript new family of Power Function is introduced named as Exponent-Generator
family. As far as we know, the new family has not been previously discussed. and we study one of its
special sub-models using the PF distributions as a baseline model, the new proposed model is named
as Exponent Power Function(EPF) distribution.

The following are the key motivations for generating new Exponent-Generator family of distri-
bution:

• A simple and efficient method to create the best models.

• To enhance the flexibility and characteristics of existing models.

• Easy to use, making models highly effective for data analysis.

• To provide superior fits than the other adapted models to complex real data sets.

2. Basic Characteristics of Exponent-Generator Family
Let y be a continuous random variable and F (y) be its CDF, then CDF of new generator

(Exponent-Generator family) F (y, ζ) for 0 < y < λ and ζ ≥ −1, is defined as follows

F (y, ζ) =

{
F (y)

eζ(1−F (y)) ; ζ ≥ −1, ζ ̸= 0

F (y); ζ = 0
or, F (y, ζ) =

{
F (y) e−ζ( ¯F (y)); ζ ≥ −1, ζ ̸= 0

F (y); ζ = 0.

Clearly, F (y, ζ) is a valid CDF. If F (y) is an standard CDF with the pdf f(y), then F (y, ζ) is
also a standard commulative distribution function with the pdf

f(y, ζ) =

{
f(y)(1 + ζF (y))e−ζ ¯F (y); ζ ≥ −1, ζ ̸= 0

f(y); ζ = 0.

The RF R(y, ζ) and The HRF h(y, ζ) of new class are respectively given by

R(y, ζ) =
(
eζ(

¯F (y)) − F (y)
)
e−ζ( ¯F (y)) ; ζ ≥ −1. (1)
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h(y, ζ) =
f(y)(1 + ζF (y))(
eζ

¯F (y) − F (y)
) ; ζ ≥ −1. (2)

The hazard rate h(y, ζ) in terms of reliability function ¯F (y) and HRF h(y) of baseline distribution
can be written as

h(y, ζ) = h(y) ¯F (y)
(1 + ζF (y))(
eζ

¯F (y) − F (y)
) ; ζ ≥ −1. (3)

From (3), clearly, it is observed that,

lim
y→−∞

h(y, ζ) =
1

eζ
lim

y→−∞
h(y) and lim

y→∞
h(y, ζ) = lim

y→∞
h(y).

Advantages of Exponent-Generator family:
• The introduced parameter ζ in the Exponent-Generator family provides enhanced flexibility,

enabling effortless adaptation to diverse dataset characteristics.

• When ζ = 0, it reverts to the original CDF, ensuring consistency with base line distribution
without added complexity.

• F (y, ζ) reliably maintains the core properties of a CDF, confirming its trustworthiness for
statistical use.

• This Exponent-Generator family is versatile, effectively enhancing various probability distri-
butions to improve their fit to real-life datasets.

We have developed a new distribution in Section 3 called EPF distribution by adapting the power
function distribution to the exponent-Generator family, thereby enhancing its applicability and pre-
cision in modeling the time until significant events, such as failure or death. This novel distribution
is particularly well-suited for lifetime data, providing exceptional flexibility in representing various
hazard functions. Its adaptability enables it to accurately capture a range of failure rates, including
constant, increasing, decreasing , bathtub and j patterns commonly observed in survival and reliability
analysis.

3. EPF Distribution and Its Characteristics
Let Θ = (ζ, λ, η)T . From (2), The continuous random variable y follows EPF distribution if its

CDF, with scale parameter λ > 0 shape parameters and ζ ≥ −1, η > 0, for 0 < y < λ, is given by

FEPF (y,Θ) =
( y
λ

)η
e−ζ(1−( y

λ )
η
) ; ζ ≥ −1 (4)

and the corresponding PDF is

fEPF (y,Θ) =
η

λη
yη−1

(
1 + ζ

( y

λ

)η)
e−ζ(1−( y

λ )
η) ; ζ ≥ −1. (5)

3.1. Limiting properties of CDF and PDF
Asymptotes of the CDF and PDF at y → 0 are given by

F (y)|y → 0 ∼ 0 and f(y)|y → 0 ∼ 0.

Asymptotes of the CDF and PDF at y → λ are given by

F (y)|y → λ ∼ 1 and f(y)|y → λ ∼ η

λ
(1 + ζ).

The obtained expressions explores how the parameter ζ dynamically effects the asymptotic behavior
of both F (y) and f(y).
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3.2. Shapes of PDF
In this subsection, we explore diverse forms of the PDF of the Exponent power function distribu-

tion. Figure 1 presents some different curves of the PDF for different combination of EPF parameters
ζ, η and for λ = 2. It is noted from Figure 1 that the density curves for EPF distribution can be
decreasing, decreasing-increasing, and increasing.
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Figure 1 Density plot of EPF distribution for different combinations of ζ, η and λ = 2

3.3. Reliability and Associated measures
In this subsection, reliability and related measures of EPF distribution are obtained. The RF

REPF (y,Θ) and the HRF hEPF (y,Θ) for y < λ are, respectively, given by

REPF (y,Θ) = 1− F (y,Θ) =
eζ(1−(

y
λ )

η
) −

(
y
λ

)η
eζ(1−

y
λ )

η ; ζ ≥ −1 (6)

hEPF (y,Θ) =
f(y,Θ)

R(y,Θ)
=

η
λη y

η−1
(
1 + ζ

(
y
λ

)η)
eζ(1−(

y
λ )

η
) −

(
y
λ

)η ; ζ ≥ −1.

3.4. Shapes of HRF
In this subsection, we explore diverse forms of the HRF of the EPF distribution. Figure 2

presents some different curves of the HRF for different combination of EPF parameters ζ,η and λ. It
is noted that the EPF distribution possesses increasing, decreasing, J-shaped and bathtub shape HRF.

The behavior of the HRF at maximums for different values of shape parameter η.

h(y) =


0 for 0 < η < 1, y ∼ 0,
1

λeζ
for η = 1, y ∼ 0,

∞ for η > 1, y ∼ 0,

∞ for η > 0, y ∼ λ.

Remark 1

• For 0 < η < 1, the hazard rate starts from zero at y = 0 and steadily increases as y → λ.

• For η = 1, the hazard rate is constant at 1
λeζ

for y = 0 and increases to infinity at y → λ.

• For η > 1, the hazard rate experiences an immediate and infinite increase at y = 0 and main-
tains an infinite level at y = λ.
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Figure 2 Hazard function plot of EPF distribution for different combinations of ζ, η andλ

The reverse HRF hr(y,Θ) for a random varaible y < λ ∼ (EPF) distribution, is given by

hr(y,Θ) =
f(y,Θ)

F (y,Θ)
=

η

y

(
1 + ζ

( y
λ

)η)
; ζ ≥ −1.

The odds ratio O(y,Θ) for a random varaible y < λ ∼ (EPF) distribution, is given by

O(y,Θ) =
F (y,Θ)

f(y,Θ)
=

y

η
(
1 + ζ

(
y
λ

)η) ; ζ ≥ −1.

The Mills ratio M(y,Θ) for a random variable y < λ ∼ (EPF) distribution, is given by

M(y,Θ) =
eζ(1−(

y
λ )

η
) −

(
y
λ

)η
η
λη yη−1

(
1 + ζ

(
y
λ

)η) ; ζ ≥ −1.

3.5. Moment and moment generating function
In this segment, the rth moment , mean ,variance and the MGF of the EPF distribution are

obtained.
Let Y follow the EPF distribution with two shape parameters (ζ ≥ −1, η > 0) then, the rth

ordinary moment (µr) of Y has the form

E[Y r] = λr

[
1− e−ζ r

η
(−ζ)−

r+η
η

(
Γ(

r + η

η
)− Γ(

r + η

η
,−ζ)

)]
; ζ ≥ −1. (7)

where Γ(b,−a) =
∞∫
−a

yb−1e−ydx the first and second ordinary moments can be obtained by substi-

tuting r = 1, 2 in (8), respectively. The expressions of mean,second moment and variance are given,
respectively
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E[Y ] = λ

[
1− e−ζ 1

η
(−ζ)−

1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ)

)]
; ζ ≥ −1

E[Y 2] = λ2

[
1− e−ζ 2

η
(−ζ)−

2+η
η

(
Γ(

2 + η

η
)− Γ(

2 + η

η
,−ζ)

)]
; ζ ≥ −1.

and,

V [Y ] = λ2

{
1− e−ζ 2

η
(−ζ)−

2+η
η

(
Γ(

2 + η

η
)− Γ(

2 + η

η
,−ζ)

)

−
(
1− e−ζ 1

η
(−ζ)−

1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ)

))2
}
; ζ ≥ −1. (8)

If Y ∼ EPF (ζ, η), then the moment generating function (MGF) (My(t)) of Y is given by

My(t) =

∞∑
i=0

(λt)i

i!

[
1− i

η
e−ζ(−ζ)−

i+η
η

(
Γ(

i

η
+ 1)− Γ(

i

η
+ 1,−ζ)

)]
.

3.6. Incomplete moments and Associated measures
The nth incomplete moment of the EPF distribution, say In(t) is given by

In(t) =

t∫
0

ynf(y)dy (9)

using (5) in (9),we have

In(t) = λn

[
(
t

λ
)n+ηe−ζ(1−( t

λ
)η) − ne−ζ

η
(−ζ)

−n+η
η

(
Γ(

n+ η

η
)− Γ(

n+ η

η
,−ζ

(
t

λ

)η

)

)]
. (10)

The first incomplete moments of the EPF distribution is obtained by setting n = 1 in (10), and
is given by

I(t) =

t∫
0

yf(y)dy

= λ

[
(
t

λ
)1+ηe−ζ(1−( t

λ )η) − e−ζ

η
(−ζ)−

1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ

(
t

λ

)η

)

)]
. (11)

The mean deviations gives us useful information about the characteristics of a population and
it can be computed using the first incomplete moments. Basically, mean deviations help us see how
spread out or dispersed the things are in a population. Indeed, The extent of dispersion in a population
can be assessed by examining the overall deviations from both the mean and median. The mean
deviations of Y about the mean µ and about the median M can be calculated from the following
relations

δ1(y) = 2µF (µ)− 2I(µ) (12)

and

δ2(y) = µ− 2I(M) (13)
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where I(t) =
t∫
0

yf(y)dy is the first incomplete moments.

By using (11), we get

I(µ) = λ

[
(
µ

λ
)1+ηe−ζ(1−(µ

λ
)η) − e−ζ

η
(−ζ)

− 1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ

(µ
λ

)η

)

)]
, (14)

I(M) = λ

[
(
M

λ
)1+ηe−α(1−(M

λ
)η) − e−ζ

η
(−ζ)

− 1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−α

(
M

λ

)η

)

)]
. (15)

Substituting, (14), (15) and (4) in (12) and (13) , we will get the expressions for mean deviation
of a continuous random variable Y from mean and median respectively. Also the first incomplete
moments play a significant role in constructing Bonferroni and Lorenz curves, which are often applied
in economics for understanding income distribution, also find utility in reliability studies, facilitating
the analysis of failure rates and system performance. The Lorenz and Bonferroni curves are obtained,
respectively, as follows

L(t) =
I(t)

E(t)

[
( t
λ
)1+ηe−ζ(1−( t

λ
)η) − e−ζ

η
(−ζ)

− 1+η
η

(
Γ( 1+η

η
)− Γ( 1+η

η
,−ζ

(
t
λ

)η
)
)]

[
1− e−ζ

η
(−ζ)

− 1+η
η

(
Γ( 1+η

η
)− Γ( 1+η

η
,−ζ)

)] ,

B(t) =
L(t)

F (t)

=

(
λ

t

)η

eζ(1−(
t
λ )

η)

[
( t
λ
)1+ηe−ζ(1−( t

λ
)η) − e−ζ

η
(−ζ)

− 1+η
η

(
Γ( 1+η

η
)− Γ( 1+η

η
,−ζ

(
t
λ

)η
)
)]

[
1− e−ζ

η
(−ζ)

− 1+η
η

(
Γ( 1+η

η
)− Γ( 1+η

η
,−ζ)

)] .

3.7. Mean residual life and mean waiting time
Mean residual life (MRL) is the predicted extra lifespan given that a component has survived

up to certain time t. Suppose that y is a continuous random variable with RF R(y) ,then The MRL
function, say µ(t) , is given by

µ(t) =
1

R(t)

E(t)−
t∫

0

yf(y)dy

− t (16)

where

E(t) = λ

[
1− e−ζ

η
(−ζ)−

1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ)

)]
. (17)

Substituting (6), (17) and (11) in (16), µ(t) can be written as

µ(t) = −t+
λeζ(1−( t

λ )η)

eζ(1−( t
λ )η) − ( t

λ )
η{

1−
(
t

λ

)1+η

e−ζ(1−( t
λ )η) +

e−ζ

η
(−ζ)−

1+η
η

[
Γ(

1 + η

η
,−ζ)− Γ(

1 + η

η
,−ζ

(
t

λ

)η

)

]}
.

The mean waiting time (MWT) is the average time that has passed since the failure of an object,
considering that this failure occurred within the interval [0, t]. The MWT of y, say µ̄(t), is defined by

µ̄(t) = t− 1

F (t)

t∫
0

yf(y)dy. (18)
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Substituting (4) and (11) in (18), we get

µ̄(t) =t− 1

eζ(1−( t
λ )η)( t

λ )
η{(

t

λ

)1+η

e−ζ(1−( t
λ )η) − e−ζ

η
(−ζ)−

1+η
η

(
Γ(

1 + η

η
)− Γ(

1 + η

η
,−ζ

(
t

λ

)η

)

)}
.

3.8. Renyi entropy
The measure entropy quantify the degree of variability of a random variable y. The Renyi

entropy HR(δ) of EPF distribution is defined by

HR(δ) =
1

1− δ
log

∞∫
−∞

fδ(y)dy, δ > 0, δ ̸= 1

substituting, (5), we get, Renyi entrophy as

HR(δ) =
1

1− δ
log

[
ηδ−1λ1−δe−ζδ

∞∑
k=0

δCkζ
k(−ζδ)

δη+kη−2η−δ+1
η

[
Γ(

δη + kη − η − δ + 1

η
)− Γ(

δη + kη − η − δ + 1

η
,−ζδ)

]]
, δ > 0, δ ̸= 1.

(19)

3.9. Order statistics
Let y1, y2, ..., yn be a random sample of size n, and let yr:n denote the rth order statistic, then,

the CDF of yr:n, say Fr:n(y) is given by

Fr:n(y) =

n∑
j=r

nCjF
J(y) [1− F (y)]

n−j (20)

and the corresponding PDF is given by

fr:n(y) =
n!

(r − 1)!(n− r)!
[F (y)]r−1f(y)[(1− F (y))]n−r. (21)

Substituting (4) and (5) in (20) and (21), we get the CDF and PDF of rth order statistics, respec-
tively as

Fr:n(y) =

n∑
j=r

nCj

[( y
λ

)η
e−ζ(1−( y

λ )
η
)
]j [

1−
( y
λ

)η
e−ζ(1−( y

λ )
η
)
]n−j

fr:n(x) =
n!

(r − 1)!(n− r)!

η

ληr
yηr−1

(
1 + ζ

( y
λ

)η)
e−ζr(1−( y

λ )
η
)
[
1−

( y
λ

)η
e−ζ(1−( y

λ )
η
)
]n−r

.

4. Parameters Estimation
In this section estimation of parameters of EPF distribution has been done by both classical and

Bayesian approach.

4.1. Maximum likelihood estimation
Let a random sample (y1, y2, ..., yn ) of size n is drawn from EPF distribution, then the Log-

likelihood function is
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l = n log η − nη log λ+ (η − 1)

n∑
i=1

log yi +

n∑
i=1

log
(
1 + ζ

(yi
λ

)η)
− ζ

n∑
i=1

(
1−

(yi
λ

)η)
. (22)

To obtain MLEs of ζ, λ and η, the (22) is partially differentiating with respect to the correspond-
ing parameters and equating to zero, we have

∂l

∂ζ
=

n∑
i=1

(yi)
η

(λ)η
(
1 + ζ

(
yi

λ

)η) − n∑
i=1

(
1−

(yi
λ

)η)
(23)

∂l

∂η
=

n

η
− n log λ+

n∑
i=1

log yi + ζ

n∑
i=1

(yi
λ

)η
log
(yi
λ

)(2 + ζ
(
yi

λ

)η
1 + ζ

(
yi

λ

)η
)

(24)

∂l

∂λ
= −nη

λ
−

ζη
n∑

i=1

yi
η
(
2 + ζ

(
yi

λ

)η)
λη+1

(
1 + ζ

(
yi

λ

)η) . (25)

The above three equations (23), (24) and (25) are not in explicit form. Thus, It’s proving challenging
to compute the parameter values. However the maximum likelihood estimates of the parameter,
denoted by ζ, η and λ can be estimated using Newton-Raphson procedure provided by R software.

4.2. Bayesian estimation method
In this we estimated the shape parameter ζ of EPF distribution using a Bayesian approach,

applying the squared error loss function (SELF) and quadratic loss function (QLF), assuming uniform
prior g(ζ) = 1.

Let (y1, y2, ..., yn ) be a random sample of size n is drawn from EPF distribution, The Joint
Probability Density Function of y and given ζ is given by:

L(y|ζ) ∝
(
1 + ζ(

y

λ
)
)n

e

(
−ζ

∑n
i=1

(
1−( xi

λ )
β
))

. (26)

Using binomial expansion (1 + u)n =
∑n

k=0

(
n
k

)
uk, it can also be written as

L(y|ζ) ∝
n∑
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(
n

k

)
(
y

λ
)kβζke

(
−ζ

(
n−
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i=1(

yi
λ )

β
))

. (27)

The posterior probability density function of ζ for given data y is given by:

π1(ζ|y) ∝
c
(
n−

∑n
i=1

(
yi

λ

)β)k+1

∑n
k=0

(
n
k

)
( yλ )
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(
n

k

)
(
y

λ
)kβζke

(
−ζ

(
n−
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yi
λ )

β
))

.

The Risk Function Under SELF is given by:

R(sq)(ζ̂) = cζ̂2 +

∑n
k=0

(
n
k

)
( yλ )

kβΓ(k + 3)(
n−

∑n
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(
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)β)2∑n
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(
n
k

)
( yλ )
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(
n
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)
( yλ )
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i=1

(
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λ

)β)∑n
k=0

(
n
k

)
( yλ )

kβΓ(k + 1)
. (28)

Differentiating w.r.t ζ̂ and equating to 0, we get, Baye’s estimator as

ζ̂(sq) =

∑n
k=0

(
n
k

)
( yλ )

kβ(k + 1)Γ(k + 1)(
n−
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i=1

(
yi

λ

)β)∑n
k=0

(
n
k

)
( yλ )

kβΓ(k + 1)
. (29)
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The Risk Function Under QLF is given by:

R(q)(ζ̂) = ζ̂2

(
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(
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)β)2∑n
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(
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)
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. (30)

Differentiating w.r.t ζ̂ and equating to 0, we get, Baye’s estimator as

ζ̂(q) =

∑n
k=0

(
n
k

)
( yλ )

kβ(k − 1)Γ(k − 1)(
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(
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(
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)
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. (31)

Regularizing the sum over k we have,

ζ̂(q) =

∑n
k>1
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. (32)

4.3. Simulation study
In this segment, we are using R Software to conduct the simulation study to evaluate the per-

formance of the MLEs and bayes estimator of the EPF parameters with respect to sample size. This
comparison is carried out by generating the two sample of sizes (n=50 and n=100), each iteration con-
ducted 100 times with varying parameter values ζ = (1, 2), η = (0.5, 1, 1.5, 2) and λ = (1, 1.5, 2)
from EPF distribution. For each case, we calculated the mean MLE values under MLE method and
Bayes estimator of ζ in Bayesian estimation method along with their corresponding MSEs. The sim-
ulation results are showcased in Tables 1 and 2 respectively. From Tables 1 and 2, it can be seen that
the estimates are consistent and pretty close to the true parameter values. And in all cases it is clearly
observed with increase in sample size, the MSE decreases significantly.

Also, the random sample of 51 observations has been simulated from EPF distribution with
parameters ζ = 0.5, η = 0.5, λ = 1000, to demonstrate theoretical concepts and to compared fit
of proposed model with several competitive models. The results presented in Table 3 and Table 4
are discussed in Section 5, with the corresponding code included in the appendix. And the data are
presented below:

480.12, 667.62, 877.15, 708.32, 103.81, 547.64, 850.04, 741.9, 367.57, 338.83, 173.57,
908.03, 230.83, 557.08, 424.87, 785.56, 775.93, 535.72, 468.37, 607.26, 84.57, 605.67,
196.66, 112.76, 646.81, 496.29, 487.8, 709.57, 655.45, 403.64, 989.27, 911.52, 539.16,
604.6, 869.42, 585.49, 283.13, 283.2, 868.99, 173.23, 515.82, 918.74, 772.5, 998.12,
609.05, 660.24, 999.21, 157.19, 328.9, 686.82, 508.91.
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Table 1 Mean values of likelihood estimates (MLEs) and the corresponding mean square errors
(MSEs) for n=50 and 100

Parameter MLE MSE
n ζ η λ ζ̂ η̂ λ̂ ζ̂ η̂ λ̂

50 1 0.5 1 1.1424 0.4933 1.0337 0.4745 0.0188 0.0415
100 1.0657 0.4953 1.0121 0.2796 0.0099 0.0176
50 1.5 1.1727 0.4861 1.5461 0.6559 0.0175 0.1302
100 1.1039 0.4950 1.5262 0.4996 0.0103 0.0646
50 2 1.1463 0.4946 2.2644 0.7148 0.0234 0.6237
100 1.1244 0.4958 2.1297 0.4386 0.0128 0.5199

50 1 1 1.1823 1.0603 0.9946 0.8783 0.1606 0.0065
100 1.1388 1.0431 0.9950 0.7568 0.1319 0.0027
50 1.5 1.2775 1.1115 1.4883 1.7713 0.2870 0.0317
100 1.2559 1.0249 1.4939 1.1349 0.1477 0.0151
50 2 1.0991 1.1887 1.9860 1.2275 0.4124 0.0597
100 1.0750 1.1652 1.9946 0.6327 0.2497 0.0333

50 1.5 1 1.0928 1.6251 0.9982 0.4633 0.3027 0.0025
100 1.0824 1.5819 0.9996 0.3193 0.2054 0.0013
50 1.5 1.1925 1.5839 1.4813 0.8462 0.3435 0.0120
100 1.1636 1.5692 1.4919 0.5434 0.3077 0.0071
50 2 1.2203 1.6189 1.9711 1.2346 0.4069 0.0279
100 1.2020 1.5831 1.9897 0.6099 0.2703 0.0121

50 2 1 1.2278 2.2882 1.0031 1.2925 1.0792 0.0006
100 1.1684 2.1558 1.0017 0.7235 0.7046 0.0006
50 1.5 1.1195 2.0309 1.4829 0.4749 0.3941 0.0062
100 1.0654 2.0109 1.4862 0.3267 0.2908 0.0032
50 2 1.2379 2.1200 1.9761 0.9888 0.7410 0.0177
100 1.0944 2.0681 1.9909 0.4591 0.3828 0.0068

50 2 0.5 1 2.2103 0.5192 0.9957 1.7901 0.0372 0.0115
100 2.1486 0.5129 0.9970 1.1389 0.0262 0.0060
50 1.5 2.2842 0.5347 1.5206 1.7704 0.0488 0.0426
100 2.2317 0.5012 1.5093 1.5890 0.0351 0.0333
50 2 1.7288 0.5860 2.1068 1.1232 0.0457 0.2039
100 1.8621 0.5633 2.0023 0.5095 0.0216 0.0674

50 1 1 2.2680 1.0983 0.9970 1.8135 0.2869 0.0028
100 2.2255 1.0788 0.9985 1.5742 0.1720 0.0014
50 1.5 2.0527 1.1215 1.5118 0.6417 0.0585 0.0051
100 2.0268 1.0654 1.5067 0.3741 0.0268 0.0030
50 2 2.1875 1.1588 2.0365 1.5011 0.2285 0.0136
100 2.0192 1.0985 2.0091 0.4140 0.0660 0.0084

50 1.5 1 2.0968 1.6639 0.9968 1.4330 0.4118 0.0007
100 2.0449 1.6569 0.9992 1.1156 0.3230 0.0003
50 1.5 2.2046 1.5891 1.4907 1.1132 0.3557 0.0022
100 2.0963 1.5671 1.4937 0.9544 0.2323 0.0015
50 2 2.2040 1.7577 1.9901 1.7665 0.8231 0.0100
100 2.1772 1.5775 1.9910 1.0845 0.3611 0.0052

50 2 1 2.0661 2.1792 0.9975 1.0503 0.6706 0.0002
100 2.0508 2.1734 0.9993 0.9248 0.5064 0.0001
50 1.5 2.3302 1.9196 1.4944 1.0503 0.2740 0.0013
100 2.3232 1.9367 1.4991 0.8002 0.2648 0.0005
50 2 2.2379 1.9271 1.9793 0.9898 0.4666 0.0051
100 2.2244 1.9980 1.9941 0.8738 0.3060 0.0015
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Table 2 Bayes estimate and the corresponding mean square errors (MSE) and Bias for n=50 and 100

Sample Size Parameter SELF QLF
n ζ η λ ˆζsq(MLE) ˆζsq(MSE) ζ̂q(MLE) ζ̂q(MSE)

50 1 0.5 1 2.7102 3.0120 2.7254 3.0730
100 2.6947 2.9176 2.7079 2.9529
50 1.5 2.6888 2.9546 2.7414 3.1077
100 2.6560 2.7916 2.7400 3.0786
50 2 2.7005 2.9578 2.6847 2.9298
100 2.6529 2.7789 2.6794 2.8590

50 1 1 1 2.6775 2.8877 2.7182 3.0368
100 2.6757 2.8506 2.7089 2.9704
50 1.5 2.6827 2.9113 2.6958 2.9211
100 2.6586 2.7870 2.7003 2.9741
50 2 2.7130 3.0248 2.6986 2.9857
100 2.6710 2.8549 2.6863 2.8806

50 1 1.5 1 2.6808 2.9103 2.7075 3.0076
100 2.6607 2.8031 2.6982 2.9125
50 1.5 2.6996 2.9998 2.7236 3.0525
100 2.6791 2.8639 2.6660 2.8024
50 2 2.7054 3.0021 2.7199 3.0524
100 2.6913 2.9008 2.6987 2.9197

50 1 2 1 2.7139 3.0341 2.7129 3.0044
100 2.6764 2.8614 2.7088 2.9616
50 1.5 2.6854 2.9348 2.7072 3.0088
100 2.6726 2.8356 2.7002 2.9308
50 2 2.6710 2.9252 2.7088 3.0041
100 2.6658 2.8141 2.6968 2.9155

50 2 0.5 1 3.4945 2.3819 3.5209 2.4672
100 3.4861 2.3115 3.4870 2.3223
50 1.5 3.5412 2.5967 3.5613 2.6357
100 3.4957 2.3262 3.5543 2.5129
50 2 3.4873 2.3485 3.5537 2.5985
100 3.4583 2.2345 3.5033 2.3320

50 2 1 1 3.5712 2.6684 3.5451 2.5052
100 3.4555 2.2139 3.4836 2.2688
50 1.5 3.4909 2.4267 3.5605 2.6766
100 3.4701 2.2641 3.5499 2.4847
50 2 3.4790 2.3436 3.5213 2.5110
100 3.4530 2.1974 3.5025 2.3601

50 2 1.5 1 3.5243 2.5279 3.5480 2.6149
100 3.4887 2.2977 3.4812 2.2706
50 1.5 3.4515 2.2791 3.5116 2.4489
100 3.4440 2.1747 3.4946 2.2969
50 2 3.4687 2.3211 3.5409 2.5026
100 3.4664 2.2328 3.5212 2.4063

50 2 2 1 3.5312 2.5312 3.5703 2.6382
100 3.5065 2.3550 3.5492 2.4899
50 1.5 3.4886 2.4216 3.5795 2.6994
100 3.4561 2.2043 3.4923 2.3047
50 2 3.4949 2.4525 3.5078 2.4697
100 3.4597 2.2196 3.4596 2.2028
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Table 3 MLEs , K-S and p-value for the simulated data

Estimates Statistics

Model ζ̂ η̂ λ̂ K-S p-value

EPF -0.9251 2.0625 1096.2949 0.0778 0.8933
ZTP-PF 2.4673 2.0596 1095.8049 0.0867 0.8066
EPF 0.1052 1.4764 1093.2187 0.1223 0.3988
EP 3.0054 0.4172 1070.0648 0.1281 0.3435
PF - 1.2489 1101.6386 0.14839 0.1912

Table 4 −2l, AIC, AICC, BIC,HQIC for the simulated data.

Model −2l AIC BIC AICC HQIC

*EPF 704.0587 710.0587 715.8542 710.5694 712.2734
ZTP-PF 705.2383 711.2383 717.0337 711.7489 713.4529
EPF 709.3165 715.3165 721.1120 715.8271 717.5311
EP 708.8163 714.8163 720.6118 715.3270 717.0310
PF 712.5265 716.5265 720.3901 716.7765 718.0029

5. Applications
In this segment, Three cancer data sets were used to demonstrate the applicability and the flexi-

bility of the proposed distribution.
The first dataset consists of the life-lengths, from the diagnosis, of 43 blood cancer patients

from the ministry of Health Hospitals in Saudi Arabia, reported first by Abouammoh and Abdul-
ghani(Abouammoh et al., 1994).

The second data set consists the survival times of first 200 patients with breast cancer obtained
from the Ministry of Health in Gaza City by Okasha and Matteral(Okasha and Matter, 2015).

The third dataset consists of the life-lengths, from the diagnosis, of 43 patients suffering form
granulocytic leukemia from the National Cancer Institute, reported first by Abouammoh and Abdul-
ghani(Abouammoh et al., 1994).

We compare the fit of the proposed EPF distribution with its base-model two parameter Power
function (PF) distribution and with several more related competitive models, namely Exponenti-
ated Power Function(EPF) Al Mutairi et al. (2022), Zero Truncated Poisson Power Function(ZTP-
PF)Okorie et al. (2021) and Exponentiated Power(EP)Subramanian and Rather (2019) Distribution,
their corresponding density functions for 0 < y < λ are as follows

ZTP-PF f(y) =
ζηyη−1 exp

(
−ζ
(
y
λ

)η)
λη
(
exp

(
−ζ
(
y
λ

)η))− exp(−ζ)

EPF f(y) =
ζη

λη

1

y1−η

(
1 +

( y
λ

)η)−(1−ζ)

EP f(y) =
ζηyζη−1

λζη

The results of Tables 3-10, indicate that the suggested model demonstrates excellent performance
compared to its competitors. This is apparent from the significantly lower value of information tools
(AIC, AICC, BIC), and lower K-S value and highest p-value among all the other competitive models.
Hence the suggested model yields the better fit than the alternative models for both real life data sets.

The results are also justified by graphs of relative frequency distribution and the estimated den-
sity functions of EPF and competitive distribution of data set first, second , third and simulated dataset,
and are showcased in Figures 3 and Figures 4 respectively.
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Table 5 MLEs , K-S and p-value for the first data set

Estimates Statistics
Model ζ̂ η̂ λ̂ K-S p-value

*EPF -0.9972 2.2787 2233.2186 0.0953 0.8293
ZTP-PF 2.5073 2.1871 2228.1315 0.10011 0.7819
EPF 0.0612 1.5022 2247.5983 0.1408 0.3613
EP 1.7811 0.7242 2233.5232 0.16101 0.2149
PF - 1.2805 2248.4428 0.16453 0.1948

Table 6 −2l, AIC, AICC, BIC,HQIC for the first data set

Model −2l AIC BIC AICC HQIC

*EPF 652.7874 658.7874 664.0710 659.4028 660.7359
ZTP-PF 655.3008 661.3008 666.5844 661.9162 663.2492
EPF 659.5584 665.5584 670.8420 666.1738 667.5068
EP 660.5847 666.5847 671.8683 667.2001 668.5332
PF 661.3210 665.3210 668.8434 665.6210 666.6200

Table 7 MLEs , K-S and p-value for the second data set

Estimates Statistics
Model ζ̂ η̂ λ̂ K-S p-value

*EPF -0.5031 1.0878 987.9469 0.0389 0.9232
ZTP-PF 1.3313 1.1322 998.0271 0.0431 0.8512
EPF 0.0271 1.0015 999.4069 0.0744 0.2181
EP 0.5186 1.6194 990.3534 0.0864 0.1008
PF - 0.8336 994.7703 0.0883 0.0885

Table 8 −2l, AIC, AICC, BIC,HQIC for the second data set

Model −2l AIC BIC AICC HQIC

*EPF 2744.850 2750.850 2760.745 2750.972 2754.854
ZTP-PF 2747.111 2753.111 2763.006 2753.233 2757.115
EPF 2750.094 2756.094 2765.989 2756.216 2760.098
EP 2752.653 2758.653 2768.548 2758.776 2762.657
PF 2754.144 2758.144 2764.740 2758.205 2760.813

Table 9 MLEs , K-S and p-value for the third data set.

Estimates Statistics
Model ζ̂ η̂ λ̂ K-S p-value

*EPF -0.9956 1.0659 3008.9946 0.0845 0.8931
ZTP-PF 3.0152 1.1206 2999.8245 0.0881 0.8629
EPF 0.0073 0.7757 3002.0089 0.1505 0.2575
EP 2.7461 0.2295 3002.4247 0.1639 0.1774
PF - 0.6189 2998.8608 0.1574 0.2134
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Table 10 −2l, AIC, AICC, BIC,HQIC for the third data set.

Model −2l AIC BIC AICC HQIC

*EPF 667.3817 673.3817 678.6653 673.9970 675.3301
ZTP-PF 668.2388 674.2388 679.5224 674.8541 676.1872
EPF 674.5767 680.5767 685.8603 681.1921 682.5251
EP 677.3133 683.3133 688.5969 683.9287 685.2617
PF 677.2472 681.2472 684.7696 681.5472 682.5461
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Figure 3 (a) Frequency distribution and estimated density functions for dataset first.(b) Frequency
distribution and estimated density functions for dataset second

a

y

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0.
00

00
0.

00
04

0.
00

08

EPF
ZTP−PF
EPF
EP
PF

b

y

D
en

si
ty

0 200 400 600 800 1000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

EPF
ZTP−PF
EPF
EP
PF

Figure 4 (a) Frequency distribution and estimated density functions for dataset third.(b) Frequency
distribution and estimated density functions for simulated dataset.
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6. Conclusion
A novel family of distributions has been presented called New Exponent-Generator family of dis-

tribution to introduce new uni-variate models. A particular member of this proposed family, known
as the exponent power function (EPF) distribution (using two parameter Power Function model as
base), is thoroughly examined. Various statistical and reliability features of the EPF distribution are
explored. It has been observed that the new proposed distribution has more versatility and flexibility
concerning both the HRF and the PDF. Additionally, a simulation study was conducted to evaluate the
performance of the maximum likelihood estimators (MLEs) and Bayesian estimator for the distribu-
tion parameters. Furthermore, The potency of the suggested model is contrasted with base model and
other competitive distributions by using goodness of fit measures. The distribution has been adapted
to two different real life data sets as well as simulated data, the results show that our model fits better
than all the other that we compared to it.

Our future plan is to apply the Exponent-Generator family to different types of real-world data
beyond cancer data. Such as finance, engineering and medical data. Additionally, we will explore the
use of various priors, including conjugate and non-informative priors, in Bayesian inference to assess
their impact on posterior distributions and improve inference accuracy.
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Appendix

Data = function(n, r, zeta, eta,lambda) {
U = runif(n, 0, 1)
library(zipfR)
cdf = function(x,zeta, eta,lambda) {
((x / lambda)(̂eta)) * exp(-zeta * (1 - (x / lambda)(̂eta)))
}
data = c() Create an empty vector
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for (i in 1:length(U)) {
fn = function(x) { cdf(x, zeta, eta,lambda) - U[i] }
uni = uniroot(fn, c(0, 100000))
data = c(data, uni$root)
}
return(data)
}
Simulateddata ¡- Data(51, 1,0.5, 0.5, 1000)
x=round(Simulateddata,4)
cat(x)
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