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Abstract

It is important to find new simple explicit forms for distributions instead of their old implicit
forms which cause some problems in mathematical properties and generating random numbers. In
this paper, a simple transformation is applied to the Topp-Leone distribution giving a new distribution
called the flexible Toppe-Leone distribution having more flexibility in mathematical properties and
simulation studies specially generating random numbers. Some different methods of estimation are
used for the flexible Toppe-Leone distribution via classical and Bayesian approaches using a
progressive Type-II censoring scheme, a simulation study is performed to compare estimators'
behaviors of the estimation methods.

Keywords: Maximum likelihood estimation, maximum product spacing estimation, least square estimation,
Bayesian estimation, MCMC, censored Type-II.

1. Introduction

Lifetime distributions, are used to model the life of an item to study its properties so that
generalizing lifetime distributions and increasing its flexibility may provide more useful information
resulting in more effective conclusions and decisions. The bounded Topp-Leone (TL) distribution,
presented by Topp and Leone (1955), for empirical data with a J-shaped histogram as a powered band
tool and automatically calculates machine failures. Many authors have studied the Topp-Leone
distribution as Nadarajah and Kotz (2003), Ghana et al. (2005), van Dorp and Kotz (2006), Kotz and
Seier (2007), Nadarajah (2009) and Geng (2012).

The cumulative distribution function (CDF) and the probability density function (PDF), for the
TL distribution are given as

F(x):[x(Z—x)]a;0<x<1;a>0, (1)
7L

and

f(x)=2ax"" (2—x)a71(1—x);0<x<1;a>0, ©)
TL
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one can see Topp and Leone (1955), Nadarajah and Kotz (2003).

(1) indicates that the TP distribution has an implicit quantile function form which gives some
problems in mathematical properties and simulation studies especially generating random numbers
s0, in Section 2, a simple transformation will be applied to solve these problems.

There are many censoring schemes, which are used in life testing experiments such as
conventional (Type-I and Type-II) censoring. Type-I censoring occurs when a study is designed to
end after a fixed period T, determined before starting the experiment. The experimental time is fixed,
but the number of failures is a random variable. Type-II censoring occurs when exactly & failures
occur. The failure time of the k items is observed. The number of failures is fixed, but the
experimental time is a random variable.

2. The Flexible Topp-Leone Distribution
A flexible form for the TL distribution can be given by using the square complete transformation
as follows: Since

_ 1 T a-l A .
F(x)_—B(a,b)on (1 x) dx;0<x<1l;a,b>0, 3)

where B(.,.) is the beta function, at a=1 gives F(x)=1—(1 —x)b , then, replacing X in the last

equation with (1) leads to
b
Fppy (%) :1_(1_[x(z_x)]“) 0<x<Lab>0,

when b =1 gives the CDF of the classic TL distribution.
Using the square complete transformation and adding £1 inside brackets gives the CDF of
flexible Topp-Leone (FTL) distribution

b
FFTL(x)zl—[l—[zx—xZ] ) 0<x<l;a,b>0,
hence,
o b
FFTL(x):l—(I—[l—(I—x)Z} j [0<x<lia,b>0, @)

one can see that, at Fip; (0)=0 and Fpp (1)=1.

Some shapes of the cumulative functions for the FTL distribution are illustrated in Figure 1.
Differentiating (4) concerning x gives

fem ()= 20;1)(1—x)[l—(l—x)zr1 [1—[1—(1—@101}“ 0<x<La,b>0. (5)

Some shapes of the density functions for the FTL distribution are illustrated in Figure 2.
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Figure 1 The FTL cumulative functions
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Figure 2 The FTL probability density function

One can see, in Figure 2, that the density function is unimodal and the density is suitable for

lifetime, especially the bathtub lifetime curve.

2.1.

Expansions for CDF and PDF
In this section, expansions for the CDF and PDF of the FTL distribution will be given.

2.1.1 An Expansion for the PDF

Using binomial expansion,

(1—[1—(1—@2}“)[7_l :i(—l)i (bi_lj[l—(l—x)z}m;0<x<1;a,b >0,

then, using (6) into (5) gives

£(x)= 20;1;(1—x)[1—(1—x)2}6H i(—l)i[ i 1)[1—(1—x)2r [0<x<lia,b>0,

i=0

hence,

(6)
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f(x)=2ab i a; (1-x)", )

i,j=0

wj(b—1 -1
where aij:(—l)“[ . ][OH_O.” j

1 J

2.1.2 An Expansion for the CDF

hence,
F=1-3 0 [ -0-T"
| P=1- 3 e () oo
hence,
r=1- 3 0 ] o
then,

F(x)=1-Y D, (1-x)", ®)
where D, = i(—l)k” [Z][aﬂ

k=0

3. Some Statistical Properties of the FTL Distribution
In this section, some statistical properties of the FTL distribution will be illustrated as follows

3.1. Quantile and median of the FTL distribution

We derive the quantile function of the FTL distribution as follows:

The quantile function of the random variable X having the CDF of the FTL distribution is given
by the nonlinear equation

x, =[F@] " :0<x<La,b>0,

2

e
x,=1- 1—{1—(1—14)13}0{ 0<u<lia,b>0, 9)

in particular, the median (M) can be derived from (9) by setting ¢ = 0.5 then the M is
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el
M=1- 1{1—(1—0.5)17} ;a,b>0.

3.2 The r™ moment of the FTL distribution

Generally, the #™ moment of a continuous random variable X , 1s given by
E(Xr)= | x" f(x)dx;—o0 < x <o,

substituting (7) into (10) yields

E(X")=2abzw:oal.jﬂ(r+l,2j+l)dx,
i,j=

o= (1) (bi—lj(aﬂ;i—l)

3.3 The moment generating function of the FTL distribution

where,

(10)

(1)

The moment-generating function of the random variable X which has the PDF of the FTL

distribution is given by
1
My (t)= E(e’X) = Ie’xf(x)dx,
0
substituting (7) into the last equation yields

1 o '
M, (1)=2ab[e* Y a; (1-x)" ax,
0

i,j=0
then,

o 1 )
My (1)=2ab Z ai/-'[etx (1—x)zj dx,
0

i,j=0
where alj = (—I)H‘][ ' ][OI (Z.l — )

1 J

3.4. The mode of the FTL distribution
The natural logarithm of the (5) is

log f (x)=2logab+log(1-x)+(a —l)log[l—(1—x)z}+(b—l)log(l—[l—(l—x)zr}
differentiating the last equation concerning *

g oy D200 GOt 0- 2000
dx 1-x 1-(1-x) 1_[1_(1_)6)2}01

>
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Then,

J L 2(a-n)(-x) 2a|1-(-2) =) ()
a8/ )= 1-(1-x)’ t-[1-(-x) | | -

where the second derivative is

j_;logf(x):_ . +2(a—1){(3(1—x))—1}

(1-x) (-0

8’ (l—x)z (b_l)z [1—(1—x)1[1—[1—(1—)6)2](1}
p-{-0-97]

Equation (12) is nonlinear and it does not have an analytic solution with respect to x, therefore it has

; (13)

to be solved numerically. If x, is a root for (12) then it must be verify that 1 ”[log (xo)]< 0.

3.5. The survival and Hazard function of the FTL distribution
Generally, the survival function of a random variable X, (Meeker and Escobar, 1998), can be

given by
S(x)=1-F(x),

substituting (4) into the last equation gives

b
S(x):@_[l_(l—x)z} ] :0<x<La,b>0, (14)

simply, the hazard rate function, Meeker and Escobar (1998), can be given by
h ( x) _ S (x) ,
S(x)

substituting (5) and (14) into the last equation yields
a-1
2ab(1-x)| 1-(1-x)’ |

(1—[1—(1—x)zrj

Some shapes of the hazard functions for the identified FTL distribution are illustrated in Figure
3. One can see, in Figure 3, two types of hazard functions curves of the FTL distribution are described
as follows: A decreasing then stability then increasing (bathtub) hazard curve and a stability then
increasing hazard curve.

(15)

h(x)
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Figure 3 The FTL distribution hazard functions

3.6. The order statistic of the FTL distribution

A simple random sample X,X|,...,X, given from the FTL distribution where X's are

identically independent distributed (iid) random variables, has the density f, ., (x,.) ofthe u™ order
statistic, (Arnold et al. 1992), for u =1,2,...,v as follows

N 2g+]
(X)) = w ;-0 <X, <00, 16
Fur ) = g™ uﬂ)gZ ’ (16)

where B(.,.) is the beta function.

Proof:
_ 1 u-1 _ V*u._oo 0
ﬁ,:v(xu;v)——B(u’v_qul)f(xu)F(xu) {1-F(x,)} " —o0<x, <o, (17)
then,
1 ,e-l )7 b-1
fu:v(xu:v)=m2ab(l—xu)[l—(l—xu) jl (1—[1—(1—)@) ] j
" b u—1 " p) VU
{(1—[1—(1_%)2} ]} {(1_[1_(1_%)2} j } ;0<x, <1,
hence,

s =g 200050105 (1100

x[(p[l—(l—xu)zrjb}ul; 0<x<l,

o j(b—l)-f-b(v—u)

then,
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o (b—l)+b(v—u)

fu:v(xu:v)=;2‘)‘[)(1_%)[“(1‘%)2}%1(1_[1_(1_xu)2] j

B(u,v—u+1)

xui(—l)’” [”;1][1—[1—(1—xu )erbm; 0<x<l,

m=0
moreover,

1 5ol
f;t:v(xu:v) :mzab(l_xu)[l_(l—xu) :|

u—l1 u—1 , @ (b71)+b(v—u)+bm
XZ(_l)m[ - j(l—[l—(l—xu) | ] L 0<x<l,

m=0
furthermore,

oy () =;2ab(1—xu)[l‘(l‘xu )2}0,4 S(‘l)m [Hj

B(u,v—u+1) =

Xi(—l)d [(b_1)+b$)_”)+bmj[l—(l—xu )2Td; 0<x<l,

then,

_ 1 _ = _qymtd u—1
Fu o) = g 2eb(1-5,) ), D (1) (mJ

X[(b—l)+b(v—u)+bm][l_(1_xu )g]ad+(“—1); 0<x<l,

d

since,

e =m2ab(l—xu):§_} >y (”,; 1}
X[(b—l)+b(v—u)+bmji(_l)g (ad+(a—l))(l_xu Pe: 0<x<t

then,

éd 0

[(b 1 +b v u +bm][ad+

2+1
L 0<x<l,

1 u7 m+d+g u-1
Juey G ) = B(u,v- u+1) ( J

hence,

S ) = > (1=, )" 0<x <, (18)

B(u V- u+1) o

» :g :_;(_1)”’*g*’” (un—f] {(b—l)+b$/—u)+bm][ad+(a—l)j.

where w
g
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4. Non-Bayesian Estimation
In this section, the maximum likelihood estimation, the least square and the maximum product
spacing methods of the FTL distribution will be applied as follows:

4.1. Maximum likelihood estimation
Let X,,X,,...,X, be iid random variables from the FTL («,b) distribution then the likelihood

function for the parameters « and b, (Garthwaite et al. 2002), is given by

L(a,b;x) :ﬁf(a,b;x),

i=1
then,

n n

L(abiv)=(2ab ) [ [0-x)[ [|1-(1-5) |

i=1 i=1 i=1
the log likelihood function can be written as

f(a,b;x)znlog( 2ab )+Zn:10g(l—xi)+(a—l)ilog[l—(l—xi)2}
+(b—1)210g{1—[1—(1—xi)ZT},

the score functions for the parameters ¢ and b are given by

%=%+anlog{1—[l—(l—x,~)2r}, (19)

a-1

and
(1—(1—xi)2)a log(l—(l—xl«)z) .

e T 2 = (1—(1—(1—)@.)2)“}

The unknown parameters of the maximum likelihood estimators (MLEs) are obtained by solving

(20)

the nonlinear (19) and (20) numerically, using a suitable iterative technique such as the Newton—
Raphson algorithm to obtain the estimate.

4.2. Least square method
Let X, X,,...,X, beiid random variables from the FTL («,b;x) distribution then the summation

of square for the error term, (Singh et al. 2014; Dey et al. 2017), is given by

ief =Zn:{F(x,-)—FEm}2, Q1)
i=1 i=1

where Fy,, is the empirical CDF of the FTL («,b) distribution based on the mean rank, since,
i
n+l’

Fpy = (22)

then, substituting (4) and (22) into (21) gives
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S-S L0075

i=l1 i=l1

the score functions for the parameters « and b are given by

@%i{lwxﬂ“fﬁ}(lmm“

x[l—(l—xi)ZT 1og(1_(1_x,.)2), (23)

and

B gl ot -seffobort)

xlog[l—[l—(l—xi)zrj. 4)

The unknown parameters of the least square estimators (LSEs) are obtained by solving the
nonlinear equations numerically, using a suitable iterative technique.

4.3. Maximum product spacing method
Let X,,X,,...,X, be iid random variables from the FTL (,b) distribution then the geometric

mean (GM) for parameters «,b, (Singh et al. 2014; Bhatti et al. 2021), is given by

n+l
GM = n+\1/ [TlFe)-Fasi=12,0n+1, (25)

i=1
where F(a,b;x,)=0 and F(e,b;x,,,)=1, then, taking the natural logarithm of (25) yields

n+l

log(GM) =——>log {[F(x)~ Fx)]}. 26)
i=1

then, the last equation can be rewritten as follows
1 n+l
log(GM ) = m{Zlog{[F(xi) —F(x.y) |} +log[F(x)]+log{[1- F(x, )]}},
i=1

substituting (4) into (26) leads to

log(GM) =ﬁ§mg {1—(1—[1—(1—;@.)z}aﬂ—{l—[l_@_(l_xi_lﬂ“n :

the score functions for the parameters & and b are given by
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dlog(GM) 1 Z“:

a el [1_[1_[1_(1_x,.)ﬂaﬂ{l‘(l{l_(l_x"l)z]a]b]

_b(l_[l_(l—xl_l)zrj el R Sl @)
[1_(1_[1—(1—%)2}“]1)}_{ _[1_[1_(1_%_1)2}&]])} :
and
Olog(GM) _ 1 < _[1—[1—(1—%)2}“]])log(l_[l_(l_xi)zrj
ab n+l4 {1_[1_[1_(1—xi)2}ath—{ _[1_[1_(1_%—1)2}“]}}
(1-[1 (-5 [ Jb log[l_[l Rl )Zn (28)

[Tl ])

The unknown parameters of the maximum product space estimators (MPSEs) are obtained by
solving the nonlinear (27) and (28) numerically using a suitable iterative technique
as will be seen in Section 7.

5. Bayesian Estimation
In this section, the Bayesian estimation for the FTL («,b) distribution parameters is considered

under the assumption that the random variables «,b prior distributions are as follows
7z(a)=é;0<a<a, (29)
and
ﬂ(b):%;0<b<c. (30)
The joint prior density of « and b can be written as

L(a,b; b
(a x)”(a)ﬂ() 0<a<a0<b<c;x>0,

m(a,b;x) = -

[[L(ebix) weynw)ydaas
00

substituting (29) and (30) into the last equation gives
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(2ab)" ﬁ(l—x)ﬁ[l_(l_x)z]‘” ﬁ{l_[l_(l_x)z]a}bl é%

(@, b;x) = =l = =l ———dadb.

n

j‘( 2ab )nH(l_x)ﬁ[l—(l—x)z]alﬁ{l_[l_(l_x)z:r‘} é%’

i=1 i=1 i=1

O ey

The marginal posterior distribution of o and b can be given, respectively, by

ﬂ(a;x):Iﬂ(a,b;x)db;0<b<c;x>0, (31
0
and
a
2(byx) = Iﬂ(a,b;x)da;o <a<ax>0. (32)
0

Estimating « and b can be obtained using the squared error (SE) loss function or linear

exponential (LINEX) loss function.

5.1. The SE Loss Function

In this subsection, estimation of the marginal posterior distributions will be performed using the
SE loss function, or the quadratic loss function, which is a symmetric loss function for (31) and (32),
(Guure et al. 2012), as follows

ESE(a;x):.[aﬂ(a;x)da;O<a<a;x>0, (33)
0
and

ESE(b;x)z'[b 2(byx)db;0 < b < ¢;x > 0. (34)
0

The unknown parameters of the Bayesian technique via integrations (33) and (34) are not
possible to be obtained numerically so the Markov Chain Monte Carlo (MCMC) method will be used.

5.2. The LINEX loss function
In this subsection, estimation of the marginal posterior distributions will be performed using the
LINEX loss function which is an asymmetric loss function for (31) and (32), (Guure et al. 2012), as
follows
E; vex (ox) = —%lnb’eh“ ﬂ(a;x)da];o <a<a;x>0, (35)
0

and

c
E; iy (:x) = —%mlfe‘“’ z(b;x) db];o <b<cx>0. (36)
0

On the other hand, /% is the shape parameter for the LINEX function where the sign of / reflects
the direction of asymmetry and its magnitude reflects the degree of asymmetry, when /% closes to
zero the LINEX loss is approximately SE loss.
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The unknown parameters of the Bayesian technique via integrations in (35) and (36) are not
possible to be obtained numerically so the MCMC method will be used.

5.3. The MCMC method
In this subsection, the MCMC method will be discussed using the Gibbs sampling procedure.
The conditional posterior densities of the parameters « and b are given respectively by:

e 11 a[l_(l_x,,_,)ﬂ“1{1_[1—(1_%,-)2}“}

i=l1

~ {1—[1—(1—x,x, )ZT}(H) b: G7)

b-1

and

q(b,j)=bL2 lL[b.{l—[l—(l—xi,j)zr}(“) {1—[1—(1—)6”)2}“} T

i=l1

The Bayes estimates of the parameters « and b under squared error loss function respectively are

| &
Egg (”TZII(MLE) (a|p, x)) = Nzﬂ'j (alb,x), (39)
j=1
and
| &
Egp (”TIU(MLE) (b|a,x)) = Wzﬂj (b|a,x), (40)
j=1

where N is the number of iteration in the MCMC process, the Bayes estimates of the parameter

and b under LINEX loss function respectively are

N
1 1 —h(albx)
Epnex (”TIII(MLE)(a|b7x))=_Zln er =l , (41)
j=1
and
1 1~ (blar,x)
—hr (ble,x
Epivex (”TIII(MLE)(b|a’x)):_Zln er ' , (42)

Jj=1
where N is the number of iteration in the MCMC process.

An important sub-class of MCMC methods is Gibbs sampling and more general Metropolis
within Gibbs samplers. For more information about the Metropolis-Hastings algorithm see
Metropolis et al. (1953), Amin (2017) and Nassar et al. (2018).

6. Estimation based on Censored Type- II Samples
In this section, estimating parameters of the FTL distribution will be used based on censored
Type-II samples.
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6.1. Maximum likelihood estimation
Let X,),X,),....X,, be the ordered observed failures in a random sample from n components

from the FTL (a,b) distribution after a predetermined and fixed number of failures r then the

censored Type- II likelihood function for parameters « and b, is given by

Loy (a,b;x) :(n,i—'r)'{( 2ab )”ﬁ(l—x[)ﬁ[l—(l—xl_ )2T—1 ﬁ{l—[l_(l—’%)z]a}b—l}

i=1 i=1 i=

x{l -[1-0-x, )ZT }h(n_r) ,

The log likelihood function can be written as

ey (a,b;x) = log( )+rlog(2ab +10g21 x; +alog2( (1- x)2)+

i=l1 i=1

(b—1)1ogg(1—[1—(1—xi)2Jaj+b(n—r)1og(1—[1—(1—xr)TJ,

The score functions for the parameters « and b are given by

c%C,,: +lg21 %) Z[ ~(1- ,2] log[ ( xi)2:|

—b(n-r) , (43)

and
Oley _r \ 2" 2
——=—+lo 1—[1— 1-x; ] +(n—r)lo 1—[1— 1-x, } . (44
= 110w | Jetorpog (100 7] | s
The MLES of the censored Type- II samples (CII-MLEs) are obtained by solving the nonlinear
equations numerically, using a suitable iterative technique.

6.2. Bayesian estimation
Let X,),X,),....X,, be the ordered observed failures in a random sample from n components

from the FTL (a,b) distribution after a predetermined and fixed number of failures » then the
censored Type-II likelihood function for parameters « and b, is given by

Loy (a,b;x) :(’:—L)'{( 2ab )r ﬁ(l—xi)ﬁ[l—(l—xi)z]a—l ﬁ{l_[l_(l—xi)ja}b-l}

i=1 i=1 i=1

x{l—[l—(l—x,. )2}a}b(w),

non-informative prior distributions for parameters « and b will be used, respectively, from (43) and

(44), then, the joint posterior distribution is
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Loy (a0,b;x) m(@) 7 (b)

e (a,b;x) = - 0<a<a;0<b<cx>0,

“LCH (ct.b:x) () (b) da db

00
last equation needs a numerical integration technique to be solved using a mathematical package. The
marginal posterior distribution of o and b can be given respectively by,

e (asx) = J-ﬂ'CH (e, b;x)db;0<b < c;x >0, (45)
0

and

a
ey (Bix) = j ey (a,bix)da;0 < a < a;x > 0, (46)
0
Estimation of the marginal posterior distributions will be performed using the SE loss function,
or the quadratic loss function, which is a symmetric loss function as follows

Eqp(asx) = Iaﬂcﬂ (a;x)do;0<x <a;x >0, 47)
0
and

Eqy(bix) = J.b e (b;x)db;0 <b <c;x > 0. (48)
0

The unknown parameters of the Bayesian estimators are obtained by solving integrations in (47)
and (48), numerically, using a suitable iterative technique.

6.3. The MCMC method
In this subsection, the MCMC method will be discussed using the Gibbs sampling procedure.

The conditional posterior densities of the parameters « and b are given respectively by

b-1

p(a,j)=$ ﬁ a[l—(l—xi’j)zr1{1—[1—(1—4,].)2}“} , (49)

i=l1

and

n 2
o
9. = I1 b{l—[l—(l—xi’j)z} } . (50)

The Bayes estimates of the parameter & and » under squared error loss function, respectively

arc

Eg (”FTL(MLE) (a

N
b,x)):%Z;ﬂ_i(a|b,x), (51)
=

and
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L&
Egp (”FTL(MLE) (b a,x)) = WZ 7 (blar, x), (52)
=1

where N is the number of iteration in the MCMC process, the Bayes estimates of the parameter o

and » under LINEX loss function, respectively are

-1 1NN b (apor)
Epivex (”FTL(MLE)(a|b7x)):71n er 7;(a] , (53)
=1
and
1 1S (bla.x)
- —h7x;(bla,x
Eivex (ﬂ-FTL(MLE)(b|a’x)):71n er ! , (54
=

where N is the number of iteration in the MCMC process.

An important sub-class of MCMC methods are Gibbs sampling and more general Metropolis
within Gibbs samplers. For more information about the Metropolis-Hastings algorithm, see
Metropolis et al. (1953), Amin (2017) and Nassar et al (2018).

7. A simulation study
In this section, some simulation studies will be performed in order to investigate between
estimators’ behaviors of estimated methods.

7.1. Complete sample (non-Bayesian)

In this subsection, the algorithm for MLE, maximum product spacing (MPS), and least square
(LS) methods under a complete sample using a non-Bayesian approach will be illustrated in the
following steps:

Step (1): Generating random samples X, X,,....X, of sizes n = (10, 20, 30, 50, 100, 300)
using the FTL distribution with fixed seeds of random numbers.

Step (2): Using a set values of parameters as: (a =3,b=4).

Step (3): Solving normal equations of estimators for every method independently as follows:

In the MLE method under complete sample: Solve (19) and (20), in the LS method with the complete
sample: Solve(23) and (24), in the MPS method with the complete sample: Solve (27) and (28).

Step (4): Calculate biases, MLEs, and RMSE (the root of mean squared error) of the FTL
distribution.

Step (5): Repeating Step (1) to Step (4), 1000 times.

In this study, random numbers with fixed seeds are generated via Mathcad package v15 where the
conjugate gradient iteration method is performed. All results are included in the Appendix I, included
in Tables 1, 2 and 3.

From study results, included in appendices; as sample size increases, biases and RMSEs decrease,
moreover, when sample size increases, the distribution estimators can be more consistent.

7.2. Complete sample (Bayesian)
In this subsection, the algorithm for MLE method under a complete sample using the Bayesian
approach with the MCMC method will be illustrated in the following steps:
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Step (1): Generating a random sample X, X,,....X, of sizes n = (10, 20, 30, 50, 100, 300)
using the FTL distribution with fixed seeds of random numbers.
Step (2): Using a set values of parameters as: (a =3,b=4).

Step (3): Generating posterior for ¢ and b as follows: Generate posterior for ¢ and b from
(37) and (38) where the Bayes estimate of the parameters under SE loss function is given by (39) and
(40), the Bayes estimate of the parameters under LINEX loss function is given by (41) and(42).

Step (4): Calculating biases, MLEs and RMSE of the FTL distribution.

Step (5): Repeating step (1) to step (4), 1,000 times.

In this study, random numbers with fixed seeds are generated via Mathcad package v15 where
the conjugate gradient iteration method is performed. All results are included in Tables 4, 5, and 6
and are indicated in the Appendix .

From study results, included in appendices; as sample size increases, biases and RMSEs
decrease, moreover, when sample size increases, the distribution estimators can be more consistent.

In Bayesian estimation methods, it is clear that the most efficient estimation method, according
to biases and RMSEs, is the Bayesian estimation using LINEX loss function, on the other hand,
Bayesian estimation methods give better efficiency than classical methods.

7.3. Censored Type-II sample (non-Bayesian)

In this subsection, the algorithm for MLE method under censored Type-II censoring scheme
using a non-Bayesian approach will be illustrated in the following steps:

Step (1): Generating a random sample X, X,,...,X, ofsizes r =(5, 10, 15, 25, 50, 150) where

r represents failures for n = (10, 20, 30, 50, 100), respectively from the FTL distribution using fixed
seeds.
Step (2): Using a set of values of parameters as: (a =3,b=4).

Step(3): Solving normal equations of estimators in (43) and (44).

Step (4): Calculate biases, MLEs, and RMSE of the FTL distribution.

Step (5): Repeating step (1) to step (4), 1,000 times.

From the simulation results, MLE and MPS methods under censored Type-II censoring scheme
using the non-Bayesian approach, as sample size increases, biases and RMSEs decrease, moreover,
when the sample size increases, the consistency of estimators increases.

One can see that the best efficient estimation method, according to biases and RMSEs, is the
MPS method.

7.4. Censored sample (Bayesian)

In this subsection, the algorithm for MLE method under the Type-II censoring scheme using the
Bayesian approach with the MCMC method will be illustrated in the following steps:

Step (1): Generating a random sample X, X,,...,X, of sizes r = (5, 10, 15, 25, 50, 150) where
r represents failures for n = (10, 20, 30, 50, 100), respectively from the FTL distribution using fixed
seeds.

Step (2): Using a set of values of parameters as: (a =3,b=4).

Step (3): Generating posterior for & and b as follows: Generate posterior for o and b from (49)
and (50) where the Bayes estimate of the parameters under SE loss function is given by (51) and (52),
the Bayes estimate of the parameters under LINEX loss function is given by (53) and (54).

Step (4): Calculating biases, MLEs and RMSE of the FTL distribution.
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Step (5): Repeating step (1) to step (4), 1,000 times.

From the study results, as sample size increases, biases and RMSEs decrease. When sample size
increases, the consistency of estimators increases. Moreover, using the Bayesian approach in
estimation methods under the censored Type-II censoring scheme with the LINEX loss function
gives, according to biases and RMSEs, more efficient estimators than the SE loss function estimators.

8. Conclusions

Using the complete square transformation on the FTL distribution gives big flexibility for the
distribution, especially, in mathematical properties and generating random numbers which helps to
use different parameter estimation methods. The MPS method is very efficient estimation method
having a good performance with small biases and RMSEs. Bayesian estimation methods have a better
performance with the smallest biases and RMSEs when compared with classical estimation methods
in complete and censored samples. Author encourages researchers to study more about MPS and
Bayesian estimation methods.

List of abbreviations

CDF : The cumulative distribution function

PDF . The probability density function

TL :  The Topp-Leone distribution

FTL :  Flexible Topp-Leone

LSEs :  Least square estimators

GM : Geometric mean

ML :  Maximum likelihood

MLE : The maximum likelihood estimation method

SE : Standard error

LINEX . Linear exponential

MCMC :  Markov Chain Monte Carlo

MSE : Mean squared errors

MPS :  Maximum product spacing

M : Median

MLEs : Maximum likelihood estimators

LS :  Least square

RMSE : The root of mean squared error

MPS : Maximum product space

CII-MLEs . The MLES of the censored Type-II samples
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Appendix I
Table (1) MLE method

Ot e w0 e

10 a=3 2.885 —-0.115 1.756 0.890 7.651
b=4 5.752 1.752 7.599

20 a=3 2.931 —-0.069 0.526 0.625 2.296
b=4 4.522 0.522 2.209

30 a=3 2.954 —0.046 0.324 0.526 1.653
b=4 4.320 0.320 1.567

50 a=3 2.967 —-0.033 0.180 0.409 1.195
b=4 4.177 0.177 1.123

100 a=3 2.982 -0.018 0.090 0.297 0.831
b=4 4.088 0.088 0.776

300 a=3 2.992 -8.436 x10°3 0.016 0.167 0.435
b=4 4.014 0.014 0.402
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Table (2) LS method
Sample Mean of . Total Total
SIi)ze Parameters Estimators Biases Bias RMSE RMSE
10 a=3 2.388 -0.612 2.409 1.326 46.455
b=4 6.330 2.330 46.436
20 a=3 2.668 -0.332 0.335 0.844 3.191
b=4 3.953 —-0.047 3.077
30 a=3 2.764 —-0.236 0.266 0.674 2.065
b=4 3.876 -0.124 1.952
50 a=3 2.851 -0.149 0.187 0.501 1.377
b=4 3.887 -0.113 1.282
100 a=3 2.923 -0.077 0.094 0.367 0.999
b=4 3.947 —-0.053 0.929
300 a=3 2.971 -0.029 0.047 0.204 0.531
b=4 3.963 —-0.037 0.490
Table (3) MPS method
Sample Mean of . Total Total
SIi)Ze Parameters Estimators Biases Bias RMSE RMSE
10 a=3 2.145 —-0.855 1.250 1.086 3.094
b=4 3.088 -0.912 2.898
20 a=3 2.461 -0.539 0.935 0.757 1.722
b=4 3.236 -0.764 1.546
30 a=3 2.599 —-0.401 0.734 0.618 1.409
b=4 3.386 -0.614 1.267
50 a=3 2.721 -0.279 0.532 0.472 1.113
b=4 3.547 —-0.453 1.008
100 a=3 2.835 —0.165 0.330 0.328 0.809
b=4 3.715 —-0.285 0.739
300 a=3 2.930 -0.070 0.159 0.178 0.445
b=4 3.858 -0.142 0.407
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Table (4) Bayesian method - SE loss function

Sample Mean of . Total Total

SI;ze Parameters Estimators Biases Bias RMSE RMSE

10 a=3 2.572 —0.428 0.432 0.595 1.536
b=4 3.939 —-0.061 1.416

20 a=3 2.779 -0.221 0.222 0.401 0.995
b=4 3.975 —-0.025 0.910

30 a=3 2.854 —-0.146 0.149 0.314 0.787
b=4 3.971 —-0.029 0.722

50 a=3 2.909 —-0.091 0.091 0.245 0.623
b=4 3.993 ~7.426x1073 0.573

100 a=3 2.953 —0.047 0.047 0.173 0.443
b=4 3.999 -1.145x1073 0.408

300 a=3 2.986 -0.014 0.016 0.096 0.244
b=4 3.991 -9.035x1073 0.224

Table (5) Bayesian method - LINEX loss function (4 =1)

Sample Mean of Total Total

Slijze Parameters Estimators Biases Bias RMSE RMSE

10 a=3 2.493 -0.507 0.851 0.659 1.814
b=4 3.317 —0.683 1.690

20 a=3 2.726 —-0.274 0.456 0.436 1.125
b=4 3.635 —-0.365 1.038

30 a=3 2.816 —-0.184 0.313 0.335 0.865
b=4 3.746 —-0.254 0.797

50 a=3 2.884 —-0.116 0.196 0.257 0.664
b=4 3.842 —-0.158 0.613

100 a=3 2.939 —-0.061 0.100 0.178 0.459
b=4 3.920 —-0.080 0.423

300 a=3 2.982 —-0.018 0.038 0.097 0.248
b=4 3.966 —-0.034 0.228
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Table (6) Bayesian method - LINEX loss function (4 =-1)

ampl Mean of Total Total

i SIi)Z: Parameters Estirflato(;s Biases ];)ias RMSE RN?SE

10 a=3 2.664 -0.336 2.398 0.540 3.724
b=4 6.375 2.375 3.684

20 a=3 2.839 -0.161 0.569 0.376 1.262
b=4 4.546 0.546 1.205

30 a=3 2.894 —-0.106 0.301 0.300 0.887
b=4 4.281 0.281 0.834

50 a=3 2.936 —-0.064 0.183 0.238 0.668
b=4 4.171 0.171 0.624

100 a=3 2.967 —-0.033 0.093 0.171 0.459
b=4 4.087 0.087 0.426

300 a=3 2.991 -9.208x1073 0.019 0.095 0.246
b=4 4.017 0.017 0.226

Table (7) Censored 11 scheme

s e e o wee o

10 a=3 9 2.568 —-0.432 0.471 0.937 5.059
b=4 3.811 —-0.189 4.972

20 a=3 18 2.484 -0.516 1.751 0.787 4.193
b=4 2.327 -1.673 4.119

30 a=3 27 2.449 -0.551 1.673 0.733 1.958
b=4 2.420 —-1.580 1.815

50 a=3 45 2.386 -0.614 1.905 0.721 2.035
b=4 2.197 —-1.803 1.903

100 a=3 90 2.299 -0.701 2.145 0.754 2.210
b=4 1.973 -2.027 2.078
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Table (8) Censored II scheme: Bayesian method - SE loss function

Sa;rir;[:e Parameters r Elz/iierileit(())fs Biases 1;:;1 RMSE ;&t;]lz

10 a=3 9 2.795 —-0.205 1.045 0.519 1.665
b=4 2.975 -1.025 1.582

20 a=3 18 3.057 0.057 1.321 0.392 3.521
b=4 2.680 -1.320 3.499

30 a=3 27 3.156 0.156 1.247 0.360 1.410
b=4 2.763 —-1.237 1.363

50 a=3 45 3.235 0.235 1.335 0.359 1.439
b=4 2.686 -1.314 1.394

100 a=3 90 3.303 0.303 1.463 0.362 1.516
b=4 2.568 —-1.432 1.472

Table (9) Censored II scheme: Bayesian method - Linex (4 =-1) loss function

Sample Mean of . Total Total

Slijze Parameters g Estimators Biases Bias RMSE RMSE

10 a=3 9 2918 —-0.082 0.617 0.499 2.181
b=4 4.612 0.612 2.123

20 a=3 18 3.137 0.137 0.803 0.420 3.404
b=4 3.208 -0.792 3.378

30 a=3 27 3.211 0.211 1.076 0.391 1.276
b=4 2.945 —-1.055 1.214

50 a=3 45 3.273 0.273 1.230 0.387 1.348
b=4 2.801 -1.199 1.291

100 a=3 90 3.323 0.323 1.408 0.379 1.464
b=4 2.630 -1.370 1.414
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