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Abstract 
It is important to find new simple explicit forms for distributions instead of their old implicit 

forms which cause some problems in mathematical properties and generating random numbers. In 
this paper, a simple transformation is applied to the Topp-Leone distribution giving a new distribution 
called the flexible Toppe-Leone distribution having more flexibility in mathematical properties and 
simulation studies specially generating random numbers. Some different methods of estimation are 
used for the flexible Toppe-Leone distribution via classical and Bayesian approaches using a 
progressive Type-II censoring scheme, a simulation study is performed to compare estimators' 
behaviors of the estimation methods.  

 
Keywords: Maximum likelihood estimation, maximum product spacing estimation, least square estimation, 
Bayesian estimation, MCMC, censored Type-II. 
 
1. Introduction  

Lifetime distributions, are used to model the life of an item to study its properties so that 
generalizing lifetime distributions and increasing its flexibility may provide more useful information 
resulting in more effective conclusions and decisions. The bounded Topp-Leone (TL) distribution, 
presented by Topp and Leone (1955), for empirical data with a J-shaped histogram as a powered band 
tool and automatically calculates machine failures. Many authors have studied the Topp-Leone 
distribution as Nadarajah and Kotz (2003), Ghana et al. (2005), van Dorp and Kotz (2006), Kotz and 
Seier (2007), Nadarajah (2009) and Genç (2012). 

The cumulative distribution function (CDF) and the probability density function (PDF), for the 
TL distribution are given as  

 ( )( ) 2 ;0 1; 0,
TL
F x x x x

α
α = − < < >    (1) 

and 

 ( ) ( )11( ) 2 2 1 ;0 1; 0,
TL
f x x x x xααα α−−= − − < < >   (2) 
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one can see Topp and Leone (1955), Nadarajah and Kotz (2003).  
(1) indicates that the TP distribution has an implicit quantile function form which gives some 

problems in mathematical properties and simulation studies especially generating random numbers 
so, in Section 2, a simple transformation will be applied to solve these problems. 

There are many censoring schemes, which are used in life testing experiments such as 
conventional (Type-I and Type-II) censoring. Type-I censoring occurs when a study is designed to 
end after a fixed period T, determined before starting the experiment. The experimental time is fixed, 
but the number of failures is a random variable. Type-II censoring occurs when exactly k  failures 
occur. The failure time of the k  items is observed. The number of failures is fixed, but the 
experimental time is a random variable. 
 
2. The Flexible Topp-Leone Distribution 

A flexible form for the TL distribution can be given by using the square complete transformation 
as follows: 

 
Since 

 
 ( ) ( ) ( ) 11

0

1 1 ;0 1; , 0,
,

x baF x x x dx x a b
B a b

−−= − < < >∫   (3) 

where ( ).,.B  is the beta function,  at 1a =  gives ( ) ( )1 1 ,bF x x= − −  then, replacing X in the last 

equation with (1) leads to 

 ( ) ( )( )1 1 2 ;0 1; , 0,
b

FTLF x x x x b
α

α = − − − < < >                                                 

when 1b =  gives the CDF of the classic TL distribution. 
Using the square complete transformation and adding ±1 inside brackets gives the CDF of 

flexible Topp-Leone (FTL) distribution    

 ( ) 21 1 2 ;0 1; , 0,
b

FTLF x x x x b
α

α  = − − − < < >   
 

hence,                                        

 ( ) ( )21 1 1 1 ;0 1; , 0,
b

FTLF x x x b
α

α
  = − − − − < < >    

  (4) 

one can see that, at ( )0 0FTLF =  and ( )1 1.FTLF =   

Some shapes of the cumulative functions for the FTL distribution are illustrated in Figure 1. 
Differentiating (4) concerning x  gives   

 ( ) ( ) ( ) ( )
112 22 1 1 1 1 1 1 ;0 1; , 0.

b

FTLf x b x x x x b
α α

α α
−−     = − − − − − − < < >        

  (5) 

Some shapes of the density functions for the FTL distribution are illustrated in Figure 2. 
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Figure 1 The FTL cumulative functions 
 

 
 

Figure 2 The FTL probability density function 
 

One can see, in Figure 2, that the density function is unimodal and the density is suitable for 
lifetime, especially the bathtub lifetime curve. 
 
2.1. Expansions for CDF and PDF  

In this section, expansions for the CDF and PDF of the FTL distribution will be given.  
 

2.1.1 An Expansion for the PDF 
Using binomial expansion, 

 ( ) ( ) ( )
1

2 2

0

1
1 1 1 1 1 1 ;0 1; , 0,

b ii

i

b
x x x b

i

α α
α

− ∞

=

−     − − − = − − − < < >           
∑   (6) 

then, using (6) into (5) gives 

( ) ( ) ( ) ( ) ( )
12 2

0

1
2 1 1 1 1 1 1 ;0 1; , 0,

ii

i

b
f x b x x x x b

i

α α
α α

∞−

=

−    = − − − − − − < < >        
∑  

hence, 
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 ( ) ( )2
, 0

2 1 ,j
ij

i j

f x b a xα
∞

=

= −∑   (7) 

where ( ) 1 1
1 .i j

ij
b i

a
i j

α α+ − + −  
= −   

  
 

 
2.1.2 An Expansion for the CDF 

( ) ( )21 1 1 1 ,
b

F x x
α  = − − − −    

 

hence, 

( ) ( ) ( )2
0

1 1 1 1 ,
kk

k

b
F x x

k

α∞

=

   = − − − −     
∑  

moreover, 

( ) ( ) ( ) ( )2
0 0

1 1 1 1 ,k l l

k l

b k
F x x

k l
α∞ ∞

= =

  
= − − − −  

  
∑ ∑  

hence, 

( ) ( ) ( )2
, 0

1 1 1 ,k l l

k l

b k
F x x

k l
α∞

+

=

  
= − − −  

  
∑  

then, 

 ( ) ( )2
0

1 1 ,l
l

l

F x D x
∞

=

= − −∑   (8) 

where ( )
0

1 .k l
l

k

b k
D

k l
α∞

+

=

  
= −   

  
∑

 
 
3. Some Statistical Properties of the FTL Distribution 

In this section, some statistical properties of the FTL distribution will be illustrated as follows 
 
3.1. Quantile and median of the FTL distribution 

We derive the quantile function of the FTL distribution as follows:  
The quantile function of the random variable X  having the CDF of the FTL distribution is given 

by the nonlinear equation 

[ ] 1( ) : 0 1; , 0,ux F x x bα−= < < >  

 ( )

1
1 2

1
1 1 1 1 ;0 1; , 0,

 
  = − − − − < < >  
  

 

bux u u b
α

α   (9) 

in particular, the median ( )M  can be derived from (9) by setting 0.5q =  then the M  is 
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( )

1
1 2

1
1 1 1 1 0.5 ; , 0.bM b

α
α

 
  = − − − − >  
  

 

 

 
3.2 The thr  moment of the FTL distribution 

Generally, the thr  moment of a continuous random variable ,X  is given by 

 ( ) ( ) ; ,r rE X x f x dx x
∞

−∞
= −∞ < < ∞∫   (10) 

substituting (7) into (10) yields 

 ( ) ( )
, 0

2 1,2 1 ,r
ij

i j

E X b a r j dxα β
∞

=

= + +∑   (11) 

where, 

( ) 1 1
1 .i j

ij
b i

a
i j

α α+ − + −  
= −   

  
 

 
3.3 The moment generating function of the FTL distribution 

The moment-generating function of the random variable X  which has the PDF of the FTL 
distribution is given by 

( ) ( ) ( )
1

0

,t X t x
XM t E e e f x dx= = ∫  

substituting (7) into the last equation yields

  ( ) ( )
1

2

, 00

2 1 ,jt x
x j

i j

M t b e a x dxα
∞

=

= −∑∫
 then, 

( ) ( )
1

2

, 0 0

2 1 ,jt x
X ij

i j

M t b a e x dxα
∞

=

= −∑ ∫  

where ( ) 1 1
1 .i j

ij
b i

a
i j

α α+ − + −  
= −   

  
 

 
3.4. The mode of the FTL distribution 

The natural logarithm of the (5) is 

( ) ( ) ( ) ( ) ( ) ( )2 2log 2log log 1 1 log 1 1 1 log 1 1 1 ,f x b x x b x
α

α α
    = + − + − − − + − − − −        

 

differentiating the last equation concerning x   

( )
( ) ( ) ( )

( )

( ) ( ){ } ( )( )

( )

2

2 2

1 1 1 2 1 11 2 1 11log ,
1 1 1 1 1 1

b x xxd f x
dx x x x

α

αα
   − − − − − − − − − − −   −   = + +

− − −  − − −  
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Then, 

 ( ) ( )( )
( )

( ) ( )( )

( )

2

2 2

2 1 1 1 12 1 11log ,
1 1 1 1 1 1

x x bxd f x
dx x x x

α

αα
 − − − −− −   = − + −

− − −  − − −  

 (12) 

where the second derivative is 

 

( )
( ) ( )( ){ }

( )( )

( ) ( ) ( ) ( )

( ){ }

2
2

2 22 2

12 2 22

2
2

2 1 3 1 11log ( )
1 1 1

4 1 1 1 1 1 1

1 1 1

xd f x
dx x x

x b x x

x

α

α

α

α
−

− − −
= − +

− − −


    − − − − − −   −

  − − −  

  

 
( ) ( ) ( ) ( )

( ){ }
2 2 2 22

2
2

8 1 1 1 1 1 1 1
,

1 1 1

    − − − − − − −       −
 − − −   

x b x x

x

α

α

α
 (13) 

Equation (12) is nonlinear and it does not have an analytic solution with respect to x, therefore it has 
to be solved numerically. If 0x  is a root for (12) then it must be verify that 0log ( ) 0.f x′′ <    

 
3.5. The survival and Hazard function of the FTL distribution 

Generally, the survival function of a random variable ,X  (Meeker and Escobar, 1998), can be 
given by 

( ) 1 ( ),S x F x= −  

substituting (4) into the last equation gives 

 ( ) ( )21 1 1 ;0 1; , 0,
b

S x x x b
α

α
  = − − − < < >    

  (14) 

simply, the hazard rate function, Meeker and Escobar (1998), can be given by
 ( ) ( )

( ) ,f xh x
S x

=  

substituting (5) and (14) into the last equation yields 

 ( )
( ) ( )

( )

12

2

2 1 1 1
.

1 1 1

b x x
h x

x

α

α

α
−

 − − −  =
  − − −    

  (15) 

Some shapes of the hazard functions for the identified FTL distribution are illustrated in Figure 
3. One can see, in Figure 3, two types of hazard functions curves of the FTL distribution are described 
as follows: A decreasing then stability then increasing (bathtub) hazard curve and a stability then 
increasing hazard curve. 
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Figure 3 The FTL distribution hazard functions 

 
3.6. The order statistic of the FTL distribution 

A simple random sample 1 1, ,...., vX X X  given from the FTL distribution where X´s are 

identically independent distributed (iid) random variables, has the density : :( )u v u vf x  of the thu  order 
statistic, (Arnold et al. 1992), for 1,2,...,u v=   as follows 

 ( )2 1
: :

0

2( ) 1 ; ,
( , 1)

g
u v u v u u

g

bf x w x x
B u v u

α ∞
+

=

= − −∞ < < ∞
− + ∑                      (16)   

where (.,.)B  is the beta function.                
 
Proof: 

 { }1
: :

1( ) ( ) ( ) 1 ( ) ; ,
( , 1)

v uu
u v u v u u u uf x f x F x F x x

B u v u
−−= − −∞ < < ∞

− +
  (17) 

then, 

( ) ( ) ( )

( ) ( )

112 2
: :

1
2 2

1( ) 2 1 1 1 1 1 1
( , 1)

1 1 1 1 1 1 ; 0 1,

b

u v u v u u u

u v ub b

u u u

f x b x x x
B u v u

x x x

α α

α α

α
−−

− −

    = − − − − − −       − +  

           × − − − − − − < <                  

 

hence, 

( ) ( ) ( )
( ) ( )

( )

112 2
: :

1
2

1( ) 2 1 1 1 1 1 1
( , 1)

          1 1 1 ; 0 1,

− + −−

−

    = − − − − − −       − +  

    × − − − < <      

b b v u

u v u v u u u

ub

u

f x b x x x
B u v u

x x

α α

α

α

 

then, 

0.2 0.4 0.6 0.8
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20 h (0.1, 0.5)
h (1.5, 0.1)
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X

ha
za

rd
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400
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X
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za
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( ) ( ) ( )
( ) ( )

( ) ( )

112 2
: :

1
2

0

1( ) 2 1 1 1 1 1 1
( , 1)

1
           1 1 1 1 ; 0 1,

− + −−

−

=

    = − − − − − −       − +  

−   × − − − − < <      
∑

b b v u

u v u v u u u

bmu
m

u
m

f x b x x x
B u v u

u
x x

m

α α

α

α
 

moreover, 

( ) ( )

( ) ( )
( ) ( )

12
: :

11
2

0

1( ) 2 1 1 1
( , 1)

1
          1 1 1 1 ; 0 1,

−

− + − +−

=

 = − − −  − +

−   × − − − − < <      
∑

u v u v u u

b b v u bmu
m

u
m

f x b x x
B u v u

u
x x

m

α

α

α

 

furthermore, 
 

then, 

( ) ( )

( ) ( ) ( )
( )

1

: :
0 0

12

11( ) 2 1 1
( , 1)

1
            1 1 ; 0 1,

− ∞
+

= =

+ −

− 
= − −  − +  

 − + − +  × − − < <     

∑ ∑
u

m d
u v u v u

m d

d

u

u
f x b x

mB u v u

b b v u bm
x x

d

α α

α

 

since, 

( ) ( )

( ) ( ) ( ) ( ) ( )

1

: :
0 0

2

0

11( ) 2 1 1
( , 1)

1 1
           1 1 ; 0 1,

− ∞
+

= =
∞

=

− 
= − −  − +  

   − + − + + −
× − − < <   
   

∑ ∑

∑

u
m d

u v u v u
m d

gg
u

g

u
f x b x

mB u v u

b b v u bm d
x x

d g

α

α α
 

then, 

( )

( ) ( ) ( ) ( )

1

: :
, 0 0

2 1

11( ) 2 1
( , 1)

1 1
           1 ; 0 1,

∞ −
+ +

= =

+

− 
= −  − +  

  − + − + + −
× − < <  
  

∑ ∑
u

m d g
u v u v

g d m

g
u

u
f x b

mB u v u

b b v u bm d
x x

d g

α

α α
 

hence, 

  ( )2 1
: :

0

2( ) 1 ; 0 1,
( , 1)

g
u v u v u

g

bf x w x x
B u v u

α ∞
+

=

= − < <
− + ∑   (18) 

where ( ) ( ) ( ) ( )1

0 0

1 1 1
1 .

u
d g m

mdg
d m

u b b v u bm d
w

m d g
α α∞ −

+ +

= =

−   − + − + + − 
= −    

    
∑∑  

 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

112
: :

0

2

0

11( ) 2 1 1 1 1
( , 1)

1
          1 1 1 ; 0 1,

−−

=
∞

=

−  = − − − −    − +  

 − + − +  × − − − < <     

∑

∑

u
m

u v u v u u
m

dd
u

d

u
f x b x x

mB u v u

b b v u bm
x x

d

α

α

α
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4. Non-Bayesian Estimation  
In this section, the maximum likelihood estimation, the least square and the maximum product 

spacing methods of the FTL distribution will be applied as follows: 
 

4.1. Maximum likelihood estimation  
Let 1 2, ,..., nX X X  be iid random variables from the FTL ( , )bα  distribution then the likelihood 

function for the  parameters α  and ,b  (Garthwaite et al. 2002), is given by 

( ) ( )
1

, ; , ; ,
n

i

L b x f b xα α
=

=∏  

then, 

( ) ( ) ( ) ( ) ( )
112 2

1 1 1

, ; 2 1 1 1 1 1 1 ,
bn n n

n
i i i

i i i

L b x b x x x
α α

α α
−−

= = =

    = − − − − − −        
∏ ∏ ∏  

the log likelihood function can be written as 

( ) ( ) ( ) ( ) ( )

( ) ( )

2

1 1

2

1

, ; log 2 log 1 1 log 1 1

1 log 1 1 1 ,

n n

i i
i i

n

i
i

b x n b x x

b x
α

α α α
= =

=

 = + − + − − −  

  + − − − −    

∑ ∑

∑



 

the score functions for the parameters α  and b  are given by             

 ( )2
1

log 1 1 1 ,
n

i
i

n x
b b

α

=

 ∂  = + − − −   ∂  
∑   (19) 

and 

   ( )( ) ( )
( )( ) ( )( )

( )( )

2 2
2

21 1

1 1 log 1 1
log 1 1 1 .

1 1 1

n n i i
i

i i
i

x xn x b
x

α

αα α = =

− − − −∂
= + − − − −

∂  
− − − 

 

∑ ∑     (20)       

The unknown parameters of the maximum likelihood estimators (MLEs) are obtained by solving 
the nonlinear (19) and (20) numerically, using a suitable iterative technique such as the Newton–
Raphson algorithm to obtain the estimate. 
 
4.2. Least square method 

Let 1 2, ,..., nX X X  be iid random variables from the FTL ( , ; )b xα  distribution then the summation 
of square for the error term, (Singh et al. 2014; Dey et al. 2017), is given by                              

 ( ){ }22

1 1

,
n n

i i Em
i i

e F x F
= =

= −∑ ∑   (21) 

where EMF  is the empirical CDF of the FTL ( , )bα  distribution based on the mean rank, since,  

 ,
1EM

iF
n

=
+

  (22) 

then, substituting (4) and (22) into (21) gives 
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i i

ie x
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= =

      = − − − − −      +    
∑ ∑  

the score functions for the parameters α  and b  are given by 

 ( ) ( )

2
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2 1 1 1 1 1 1 1
1

−
=
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 
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∑
∑

n
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i i
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e
ib x x

n

α α

α
   

 ( ) ( )( )2 21 1 log 1 1 , × − − − −  i ix x
α

   (23) 

and 

 ( ) ( )

2

2 21

1

2 1 1 1 1 1 1 1
1

=

=

 
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∑
∑

n

i b bn
i

i i
i

e
ix x

b n

α α
 

 ( )2log 1 1 1 .
  × − − −    

ix
α

 (24) 

The unknown parameters of the least square estimators (LSEs) are obtained by solving the 
nonlinear equations numerically, using a suitable iterative technique. 
 
4.3. Maximum product spacing method  

Let 1 2, ,..., nX X X  be iid random variables from the FTL ( , )bα  distribution then the geometric 

mean (GM) for parameters , ,bα  (Singh et al. 2014; Bhatti et al. 2021),  is given by 

 
1

1 1
1

( ) ( ) ; 1, 2,..., 1,
n

n i i
i

GM F x F x i n
+

+ −
=

= − = +  ∏   (25) 

where 0( , ; ) 0F b xα =  and 1( , ; ) 1,nF b xα + =  then, taking the natural logarithm of  (25) yields 

 { }
1

1
1

1log( ) log ( ) ( ) ,
1

n

i i
i

GM F x F x
n

+

−
=

= −  + ∑   (26) 

then, the last equation can be rewritten as follows 

{ } [ ] { }
1

1 1
1

1log( ) log ( ) ( ) log ( ) log 1 ( ) ,
1

n

i i n
i

GM F x F x F x F x
n

+

−
=

  = − + + −       +   
∑  

substituting (4) into (26) leads to 

( ) ( )
1

2 2
1

1

1log( ) log 1 1 1 1 1 1 1 1 ,
1

b bn

i i
i

GM x x
n

α α+

−
=

                = − − − − − − − − −              +          
∑  

the score functions for the parameters α  and b  are given by 
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b
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      (27) 

and 
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+

=
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∑

b

i in

b b
i

i i

x x
GM
b n

x x

α α

α α
  

 
( ) ( )

( ) ( )

2 2
1 1

2 2
1

1 1 1 log 1 1 1
.

1 1 1 1 1 1 1 1

− −

−
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b

i i

b b

i i

x x

x x

α α

α α
    (28) 

The unknown parameters of the maximum product space estimators (MPSEs) are obtained by 
solving the nonlinear (27) and (28) numerically using a suitable iterative technique 
as will be seen in Section 7. 

 
5. Bayesian Estimation  

In this section, the Bayesian estimation for the FTL ( , )bα  distribution parameters is considered 

under the assumption that the random variables ,bα  prior distributions are as follows 

 1( ) ;0 ,aπ α α
α

= < <   (29) 

and 

 1( ) ;0 .b b c
b

π = < <   (30) 

The joint prior density of α and b  can be written as 

 

( )

( )
0 0

, ; ( ) ( )
( , ; ) ;0 ;0 ; 0,

, ; ( ) ( )
c a

L b x b
b x a b c x

L b x b d db

α π α π
π α α

α π α π α

= < < < < >

∫ ∫
 

substituting (29) and (30) into the last equation gives 
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b

b x d db

b x x x
b
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α α

α
α

π α α
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α

−−

= = =
−−

= = =

    − − − − − −        
=

    − − − − − −        

∏ ∏ ∏

∏ ∏ ∏∫∫
 

The marginal posterior distribution of α and b  can be given, respectively, by   

 
0

( ; ) ( , ; ) ;0 ; 0,
c

x b x db b c xπ α π α= < < >∫   (31) 

and  

 
0

( ; ) ( , ; ) ;0 ; 0.
a

b x b x d a xπ π α α α= < < >∫                    (32) 

Estimating α and b  can be obtained using the squared error (SE) loss function or linear 
exponential (LINEX) loss function. 
 
5.1. The SE Loss Function 

In this subsection, estimation of the marginal posterior distributions will be performed using the 
SE loss function, or the quadratic loss function, which is a symmetric loss function for (31) and (32), 
(Guure et al. 2012), as follows 

 
0

( ; ) ( ; ) ;0 ; 0,
a

SEE x x d a xα α π α α α= < < >∫   (33) 

and                              

 
0

( ; ) ( ; ) ;0 ; 0.
c

SEE b x b b x db b c xπ= < < >∫   (34) 

The unknown parameters of the Bayesian technique via integrations (33) and (34) are not 
possible to be obtained numerically so the Markov Chain Monte Carlo (MCMC) method will be used. 
 
5.2. The LINEX loss function 

In this subsection, estimation of the marginal posterior distributions will be performed using the 
LINEX loss function which is an asymmetric loss function for (31) and (32), (Guure et al. 2012), as 
follows 

 
0

1( ; ) ln ( ; ) ;0 ; 0,
a

h
LINEXE x e x d a x

h
αα π α α α−

 
 = − < < >
  
∫  (35)  

and 

 
0

1( ; ) ln ( ; ) ;0 ; 0.
c

hb
LINEXE b x e b x db b c x

h
π−

 
 = − < < >
  
∫     (36) 

On the other hand,  h  is the shape parameter for the LINEX function where the sign of h  reflects 
the direction of asymmetry and its magnitude reflects the degree of asymmetry, when h  closes to 
zero the LINEX loss is approximately SE loss. 
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The unknown parameters of the Bayesian technique via integrations in (35) and (36)  are not 
possible to be obtained numerically so the MCMC method will be used. 
 
5.3. The MCMC method 

In this subsection, the MCMC method will be discussed using the Gibbs sampling procedure. 
The conditional posterior densities of the parameters α  and  b  are given respectively by:  

 ( ) ( )
112 2

, ,2
1

1( , ) 1 1 1 1 1
−−

=

          = − − − − −                
∏

br

i j i j
i

p j x x
α α

α α
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2
,1 1 1 ,

−     × − − −       
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      (37) 

and  
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∏
bb n rr

i j r j
i

q b j b x x
b

α α
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The Bayes estimates of the parameters α  and  b  under squared error loss function respectively are 

 ( )( )
1

1( , ) ( , ),
N

SE Tl II MLE j
j

E b x b x
N

π α π α
=

= ∑   (39) 

and  

 ( )( )
1

1( , ) ( , ),
N

SE Tl II MLE j
j

E b x b x
N

π α π α
=

= ∑   (40)  

where N  is the number of iteration in the MCMC process, the Bayes estimates of the parameter α

and b  under LINEX loss function respectively are 

  ( ) ( , )
( )

1

1 1( , ) ln ,j
N

h b x
LINEX Tl II MLE

j

E b x e
h N

π απ α −

=

 
 = −
 
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∑                         (41) 

and  

 ( ) ( , )
( )

1

1 1( , ) ln ,j
N

h b x
LINEX Tl II MLE

j

E b x e
h N

π απ α −

=

 
 = −
 
 
∑                          (42) 

where N  is the number of iteration in the MCMC process. 
An important sub-class of MCMC methods is Gibbs sampling and more general Metropolis 

within Gibbs samplers. For more information about the Metropolis-Hastings algorithm see 
Metropolis et al. (1953), Amin (2017) and Nassar et al. (2018). 
 
6. Estimation based on Censored Type- II Samples  

In this section, estimating parameters of the FTL distribution will be used based on censored 
Type-II samples. 

 



Hiba Z. Muhammed et al. 219 

6.1. Maximum likelihood estimation  
Let (1) (2) ( ), ,..., rX X X  be the ordered observed failures in a random sample from n  components 

from the FTL ( , )bα  distribution after a predetermined and fixed number of failures r  then the 

censored Type- II likelihood function for parameters α  and ,b  is given by 

( ) ( ) ( ) ( ) ( ) ( )
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      = − − − − − −         −    

  × − − −    

∏ ∏ ∏
 

The log likelihood function can be written as 
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The score functions for the parameters α  and b  are given by 
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and                       
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  (44) 

The MLES of the censored Type- II samples (CII-MLEs) are obtained by solving the nonlinear 
equations numerically, using a suitable iterative technique. 
 
6.2. Bayesian estimation 

Let (1) (2) ( ), ,..., rX X X  be the ordered observed failures in a random sample from n  components 

from the FTL ( , )bα  distribution after a predetermined and fixed number of failures r then the 

censored Type-II likelihood function for parameters α  and ,b  is given by 
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∏ ∏ ∏
 

non-informative prior distributions for parameters α and b  will be used, respectively, from (43) and 
(44), then, the joint posterior distribution is 
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last equation needs a numerical integration technique to be solved using a mathematical package. The 
marginal posterior distribution of α and b  can be given respectively by,                                                             

 
0

( ; ) ( , ; ) ;0 ; 0,
c

CII CIIx b x db b c xπ α π α= < < >∫   (45) 

and 

  
0

( ; ) ( , ; ) ;0 ; 0.
a

CII CIIb x b x d a xπ π α α α= < < >∫  (46) 

Estimation of the marginal posterior distributions will be performed using the SE loss function, 
or the quadratic loss function, which is a symmetric loss function as follows 
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a

CII CIIE x x d a xα α π α α α= < < >∫   (47) 

and 
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c

CII CIIE b x b b x db b c xπ= < < >∫   (48) 

The unknown parameters of the Bayesian estimators are obtained by solving integrations in (47) 
and (48), numerically, using a suitable iterative technique. 
 
6.3. The MCMC method 

In this subsection, the MCMC method will be discussed using the Gibbs sampling procedure. 
The conditional posterior densities of the parameters α and b  are given respectively by  
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The Bayes estimates of the parameter α and b  under squared error loss function, respectively 

are 
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and 
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= ∑   (52) 

 
where N is the number of iteration in the MCMC process, the Bayes estimates of the parameter α

and b  under LINEX loss function, respectively are 

 ( ) ( , )
( )

1

1 1( , ) ln ,j
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h b x
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FTLE b x e

h N
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=
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∑   (53) 

and 
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1
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h b x
LINEX MLE

j
FTLE b x e

h N
π απ α −

=

 −  =
 
 
∑   (54) 

where N  is the number of iteration in the MCMC process. 
An important sub-class of MCMC methods are Gibbs sampling and more general Metropolis 

within Gibbs samplers. For more information about the Metropolis-Hastings algorithm, see 
Metropolis et al. (1953), Amin (2017) and Nassar et al (2018). 
 
7. A simulation study 

In this section, some simulation studies will be performed in order to investigate between 
estimators’ behaviors of estimated methods. 

 
7.1. Complete sample (non-Bayesian)  

In this subsection, the algorithm for MLE, maximum product spacing (MPS), and least square 
(LS) methods under a complete sample using a non-Bayesian approach will be illustrated in the 
following steps: 

Step (1): Generating  random samples 1 2, ,..., nX X X  of sizes n  = (10, 20, 30, 50, 100, 300) 
using the FTL distribution with fixed seeds of random numbers. 

Step (2): Using a set values of parameters as: ( 3, 4).bα = =  
Step (3): Solving normal equations of estimators for every method independently as follows: 

In the MLE method under complete sample: Solve  (19) and (20) , in the LS method with the complete 
sample: Solve(23) and (24), in the MPS method with the complete sample: Solve (27) and (28). 

Step (4): Calculate biases, MLEs, and RMSE (the root of mean squared error) of the FTL 
distribution. 

Step (5): Repeating Step (1) to Step (4), 1000 times. 
In this study, random numbers with fixed seeds are generated via Mathcad package v15 where the 

conjugate gradient iteration method is performed. All results are included in the Appendix I, included 
in Tables 1, 2 and 3.  

From study results, included in appendices; as sample size increases, biases and RMSEs decrease, 
moreover, when sample size increases, the distribution estimators can be more consistent. 
 
7.2. Complete sample (Bayesian) 

In this subsection, the algorithm for MLE method under a complete sample using the Bayesian 
approach with the MCMC method will be illustrated in the following steps: 
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Step (1): Generating a random sample 1 2, ,..., nX X X  of sizes n  = (10, 20, 30, 50, 100, 300) 
using the FTL distribution with fixed seeds of random numbers. 

Step (2): Using a set values of parameters as: ( 3, 4).bα = =  

Step (3): Generating posterior for α  and b  as follows: Generate posterior for α  and b  from 
(37) and (38) where the Bayes estimate of the parameters under SE loss function is given by (39) and 
(40), the Bayes estimate of the parameters under LINEX loss function is given by (41) and(42). 

Step (4): Calculating biases, MLEs and RMSE of the FTL distribution. 
Step (5): Repeating step (1) to step (4), 1,000 times. 
In this study, random numbers with fixed seeds are generated via Mathcad package v15 where 

the conjugate gradient iteration method is performed. All results are included in Tables 4, 5, and 6 
and are indicated in the Appendix I. 

From study results, included in appendices; as sample size increases, biases and RMSEs 
decrease, moreover, when sample size increases, the distribution estimators can be more consistent. 

In Bayesian estimation methods, it is clear that the most efficient estimation method, according 
to biases and RMSEs, is the Bayesian estimation using LINEX loss function, on the other hand, 
Bayesian estimation methods give better efficiency than classical methods. 
 
7.3. Censored Type-II sample (non-Bayesian) 

In this subsection, the algorithm for MLE method under censored Type-II censoring scheme 
using a non-Bayesian approach will be illustrated in the following steps: 

Step (1): Generating a random sample 1 2, ,..., rX X X  of sizes r  = (5, 10, 15, 25, 50, 150) where 
r  represents failures for n  = (10, 20, 30, 50, 100), respectively from the FTL distribution using fixed 
seeds. 

Step (2): Using a set of values of parameters as: ( 3, 4).bα = =  
Step(3): Solving normal equations of estimators in (43) and (44).  
Step (4): Calculate biases, MLEs, and RMSE of the FTL distribution. 
Step (5): Repeating step (1) to step (4), 1,000 times. 
From the simulation results, MLE and MPS methods under censored Type-II censoring scheme 

using the non-Bayesian approach, as sample size increases, biases and RMSEs decrease, moreover, 
when the sample size increases, the consistency of estimators increases. 

One can see that the best efficient estimation method, according to biases and RMSEs, is the 
MPS method. 
 
7.4. Censored sample (Bayesian) 

In this subsection, the algorithm for MLE method under the Type-II censoring scheme using the 
Bayesian approach with the MCMC method will be illustrated in the following steps: 

Step (1): Generating a random sample 1 2, ,..., rX X X of sizes r  = (5, 10, 15, 25, 50, 150) where 
r  represents failures for n  = (10, 20, 30, 50, 100), respectively from the FTL distribution using fixed 
seeds. 

Step (2): Using a set of values of parameters as: ( 3, 4).bα = =  

Step (3): Generating posterior for α  and b  as follows: Generate posterior for α and b from (49) 
and (50) where the Bayes estimate of the parameters under SE loss function is given by (51) and (52), 
the Bayes estimate of the parameters under LINEX loss function is given by (53) and (54). 

Step (4): Calculating biases, MLEs and RMSE of the FTL distribution. 
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Step (5): Repeating step (1) to step (4), 1,000 times. 
From the study results, as sample size increases, biases and RMSEs decrease. When sample size 

increases, the consistency of estimators increases. Moreover, using the Bayesian approach in 
estimation methods under the censored Type-II censoring scheme with the LINEX loss function 
gives, according to biases and RMSEs, more efficient estimators than the SE loss function estimators. 
 
8. Conclusions 

Using the complete square transformation on the FTL distribution gives big flexibility for the 
distribution, especially, in mathematical properties and generating random numbers which helps to 
use different parameter estimation methods. The MPS method is very efficient estimation method 
having a good performance with small biases and RMSEs. Bayesian estimation methods have a better 
performance with the smallest biases and RMSEs when compared with classical estimation methods 
in complete and censored samples. Author encourages researchers to study more about MPS and 
Bayesian estimation methods. 
 
List of abbreviations  

CDF  :  The cumulative distribution function  
PDF  :  The probability density function  
TL  :  The Topp-Leone distribution  
FTL :  Flexible Topp-Leone 
LSEs :  Least square estimators 
GM : Geometric mean 
ML : Maximum likelihood 
MLE :  The maximum likelihood estimation method 
SE :  Standard error 
LINEX  :  Linear exponential 
MCMC :  Markov Chain Monte Carlo 
MSE :  Mean squared errors 
MPS :  Maximum product spacing 
M :  Median  
MLEs :  Maximum likelihood estimators 
LS :  Least square 
RMSE :  The root of mean squared error 
MPS :  Maximum product space 
CII-MLEs :  The MLES of the censored Type-II samples 
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Appendix I 

 
Table (1) MLE method 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.885 −0.115 1.756 0.890 7.651 

4b =  5.752 1.752 7.599 
20 3α =  2.931 −0.069 0.526 0.625 2.296 

4b =  4.522 0.522 2.209 
30 3α =  2.954 −0.046 0.324 0.526 1.653 

4b =  4.320 0.320 1.567 
50 3α =  2.967 −0.033 0.180 0.409 1.195 

4b =  4.177 0.177 1.123 
100 3α =  2.982 −0.018 0.090 0.297 0.831 

4b =  4.088 0.088 0.776 
300 3α =  2.992 −8.436 ×10-3 0.016 0.167 0.435 

4b =  4.014 0.014 0.402 
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Table (2) LS method 
Sample 

Size 
Parameters 

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.388 −0.612 2.409 1.326 46.455 

4b =  6.330 2.330 46.436 
20 3α =  2.668 −0.332 0.335 0.844 3.191 

4b =  3.953 −0.047 3.077 
30 3α =  2.764 −0.236 0.266 0.674 2.065 

4b =  3.876 −0.124 1.952 
50 3α =  2.851 −0.149 0.187 0.501 1.377 

4b =  3.887 −0.113 1.282 
100 3α =  2.923 −0.077 0.094 0.367 0.999 

4b =  3.947 −0.053 0.929 
300 3α =  2.971 −0.029 0.047 0.204 0.531 

4b =  3.963 −0.037 0.490 
 

Table (3) MPS method 
Sample 

Size 
Parameters 

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.145 −0.855 1.250 1.086 3.094 

4b =  3.088 −0.912 2.898 
20 3α =  2.461 −0.539 0.935 0.757 1.722 

4b =  3.236 −0.764 1.546 
30 3α =  2.599 −0.401 0.734 0.618 1.409 

4b =  3.386 −0.614 1.267 
50 3α =  2.721 −0.279 0.532 0.472 1.113 

4b =  3.547 −0.453 1.008 
100 3α =  2.835 −0.165 0.330 0.328 0.809 

4b =  3.715 −0.285 0.739 
300 3α =  

4b =  
2.930 
3.858 

−0.070 
−0.142 

0.159 0.178 
0.407 

0.445 
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Table (4) Bayesian method - SE loss function 
Sample 

Size 
Parameters 

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.572 −0.428 0.432 0.595 1.536 

4b =  3.939 −0.061 1.416 
20 3α =  2.779 −0.221 0.222 0.401 0.995 

4b =  3.975 −0.025 0.910 
30 3α =  2.854 −0.146 0.149 0.314 0.787 

4b =  3.971 −0.029 0.722 
50 3α =  2.909 −0.091 0.091 0.245 0.623 

4b =  3.993 −7.426×10-3 0.573 
100 3α =  2.953 −0.047 0.047 0.173 0.443 

4b =  3.999 −1.145×10-3 0.408 
300 3α =  2.986 −0.014 0.016 0.096 0.244 

4b =  3.991 −9.035×10-3 0.224 
 

Table (5) Bayesian method - LINEX loss function ( 1)h =  
Sample 

Size 
Parameters 

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.493 −0.507 0.851 0.659 1.814 

4b =  3.317 −0.683 1.690 
20 3α =  2.726 −0.274 0.456 0.436 1.125 

4b =  3.635 −0.365 1.038 
30 3α =  2.816 −0.184 0.313 0.335 0.865 

4b =  3.746 −0.254 0.797 
50 3α =  2.884 −0.116 0.196 0.257 0.664 

4b =  3.842 −0.158 0.613 
100 3α =  2.939 −0.061 0.100 0.178 0.459 

4b =  3.920 −0.080 0.423 
300 3α =  2.982 −0.018 0.038 0.097 0.248 

4b =  3.966 −0.034 0.228 
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Table (6) Bayesian method - LINEX loss function ( 1)h = −  
Sample 

Size 
Parameters 

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  2.664 −0.336 2.398 0.540 3.724 

4b =  6.375 2.375 3.684 
20 3α =  2.839 −0.161 0.569 0.376 1.262 

4b =  4.546 0.546 1.205 
30 3α =  2.894 −0.106 0.301 0.300 0.887 

4b =  4.281 0.281 0.834 
50 3α =  2.936 −0.064 0.183 0.238 0.668 

4b =  4.171 0.171 0.624 
100 3α =  2.967 −0.033 0.093 0.171 0.459 

4b =  4.087 0.087 0.426 
300 3α =  2.991 −9.208×10-3 0.019 0.095 0.246 

4b =  4.017 0.017 0.226 
 

Table (7) Censored II scheme 
Sample 

Size 
Parameters r  

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  9 2.568 −0.432 0.471 0.937 5.059 

4b =  3.811 −0.189 4.972 
20 3α =  18 2.484 −0.516 1.751 0.787 4.193 

4b =  2.327 −1.673 4.119 
30 3α =  27 2.449 −0.551 1.673 0.733 1.958 

4b =  2.420 −1.580 1.815 
50 3α =  45 2.386 −0.614 1.905 0.721 2.035 

4b =  2.197 −1.803 1.903 
100 3α =  90 2.299 −0.701 2.145 0.754 2.210 

4b =  1.973 −2.027 2.078 
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Table (8) Censored II scheme:  Bayesian method - SE loss function 
Sample 

Size 
Parameters r  

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  9 2.795 −0.205 1.045 0.519 1.665 

4b =  2.975 −1.025 1.582 
20 3α =  18 3.057 0.057 1.321 0.392 3.521 

4b =  2.680 −1.320 3.499 
30 3α =  27 3.156 0.156 1.247 0.360 1.410 

4b =  2.763 −1.237 1.363 
50 3α =  45 3.235 0.235 1.335 0.359 1.439 

4b =  2.686 −1.314 1.394 
100 3α =  90 3.303 0.303 1.463 0.362 1.516 

4b =  2.568 −1.432 1.472 
 

Table (9) Censored II scheme: Bayesian method - Linex ( 1)h = −  loss function 
Sample 

Size 
Parameters r  

Mean of 
Estimators 

Biases 
Total 
Bias 

RMSE 
Total 

RMSE 
10 3α =  9 2.918 −0.082 0.617 0.499 2.181 

4b =  4.612 0.612 2.123 
20 3α =  18 3.137 0.137 0.803 0.420 3.404 

4b =  3.208 −0.792 3.378 
30 3α =  27 3.211 0.211 1.076 0.391 1.276 

4b =  2.945 −1.055 1.214 
50 3α =  45 3.273 0.273 1.230 0.387 1.348 

4b =  2.801 −1.199 1.291 
100 3α =  90 3.323 0.323 1.408 0.379 1.464 

4b =  2.630 −1.370 1.414 
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