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Abstract
We emphasize problems where fuzzy data appear naturally and need to be

used and analyzed properly within the context of applied statistics. To enlarge

the practice of statistics to this new types of observed data, we need to place

fuzzy data within the context of probability theory. Having a theory of statistics

of fuzzy data, applied statisticians can embark on a promising road of important

applications, especially in economics, whereas otherwise these problems are

either ignored or badly handled.
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1. Introduction

This paper is about theoretical statistics for applied statisticians. Since re-

searchers in theoretical statistics (e.g., developing more general statistical pro-

cedures to enlarge the domain of applicability of statistics) need to read em-

pirical research in order to guide their realistic generalizations, researchers in

applied statistics need to read theories in order to apply their statistical tool box

correctly.

The paper will elaborate on linguistic data which need to be formulated

properly before subjecting to statistical analysis. Linguistic data are modeled

as fuzzy sets in the sense of Zadeh [1]. While fuzzy sets and their associated

logics (see e.g., Nguyen and Walker [2]) are widely used in almost all fields of

science, especially, engineering and computer science (see e.g. Nguyen and

Sugeno [3]), their applications to social problems, such as economics, where

statistics is a dominant investigation strategy, seem lacking. Only recently that

some attempts have surfaced (e.g., Lindstrom [4]). We will elaborate on why?

The paper aims at presenting several real-world problems in which only

linguistic data are available, as well as establishing the foundations for making

inference with fuzzy data.

The paper is organized as follows. First, we take this opportunity to remind

applied statisticians that statistics is firmly based upon probability, and as such,

there is a need to understand the theory of statistics before using statistical

tools. This will explain why we will devote a large portion of this paper to discuss

probabilistic foundations of fuzzy data, before suggesting how to use them in

applied works. Next, we address applied research works where the order of

investigation should be: problems, data, then tools. The point is this. Tools

come last. We review various important types of coarse data (i.e., data of low

quality). The point is this. After all, statistics is about data! Data dictate which

appropriate statistical tools to use. Then, we give a tutorial on modeling of

linguistic data by fuzzy sets, as well as their associated logics which will be

used to proceed data (in fact, to suggest statistical models). The emphasis will

be on how to place fuzzy data within an appropriate statistical theory, recalling

that fuzzy analysis should not be an alternative to statistical analysis, but, as

Lotfi Zadeh has said over and over again that fuzziness should coexist with

randomness in real-world complex (physical and social) systems.
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2. What is Statistics?

Statistics is a methodology to aid discovery of knowledge in experimental

sciences. This is particularly useful when there is uncertainty involved. The

uncertainty due to randomness is quantified by probability (objective or subjec-

tive). The following ”first thing” to remember is essential for understanding why

we need to consider an appropriate probability space to place fuzzy data in a

statistical context in a subsequent section.

A variable is just the name of a quantity of interest, such as X standing

for annual income in some population. It is variable since income can take on

different values. If we can ”assign” values to X, then X is called a deterministic

variable. If we cannot predict values of X with certainty, then X is called a ran-

dom variable (or vector). In this case, the complete information we could have

about X is its ”law” governing its uncertain (random) evolution. This counter-

part of law of motion in physical systems is called the distribution function of

X. For random variables or vectors, i.e., random ”elements” whose ranges (of

values) are euclidean spaces Rd, d ≥ 1, the law of X is simply characterized by

a distribution function F : Rd → [0, 1], where F (x) = P (X ≤ x), with ≤ being

the usual partial order relation, defined componentwise. But then, this concept

requires the operator P (standing for probability). On the other hand, if we run

into other types of random elements (observed outcomes) such as curves (e.g.,

daily stock price fluctuations), or sets (say, in Rd), such as areas affected by

an earthquake of some given magnitude, then how to describe (in fact charac-

terize) the distributions of such non-euclidean outcomes? We need a general

framework to handle all possible types of random elements which could sur-

face on our paths. In fact, we should describe probability spaces first to really

explain what is a random variable and its law. The familiar (and ”informal”) for-

mula F (x) = P (X ≤ x) then comes as a by-product. This is not only rigorous

but also necessary to characterize laws for general random elements. Your

basic probability course for statistics lays down the foundations: Let (Ω,A, P )

be a probability space, and U is an arbitrary set. A map X : Ω → U is called

a random element if there is some σ− field U of subsets of U , such that X is

A − U− measurable, i.e., X−1(U) ⊆ A. Then, the law of X is the probability

measure on U defined by PX = PX−1. When U = Rd, the famous Lebesgue-

Stieltjes theorem established a bijection between PX and distribution functions

F which, for example, when d = 1, is characterized as F : R → [0, 1] satisfying
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i) F (−∞) = 0, F (+∞) = 1

ii) x ≤ y =⇒ F (x) ≤ F (y)

iii) limy↘x F (y) = F (x)

Now consider the situation where U is a finite set, say, U = {u1, u2, ..., uk},

and our random outcomes (of some experiment) are subsets of U . How to de-

scribe the law governing the random evolution of X? Note that this situation is

in fact the very first thing you learnt from your first course in applied statistics,

namely sampling from a finite population (see e.g., Hajek [5]) where a sampling

design is nothing else than a random set X, i.e., a random element, defined

on some probability space (Ω,A, P ) and takes values in the power set 2U (set

of all subsets of U ). While in sampling designs, we only need to specify the

probability converage function π(u) = P (u ∈ X), here, for other statistical anal-

yses, we need the whole ”distribution” of X. On 2U , the partial order relation

to consider is set inclusion ⊆ (contained in). Thus, the counterpart of distribu-

tions on euclidean spaces becomes F (A) = P (X ⊆ A), for A ∈ 2U . Clearly, if

we have P (.), then we get F (.) by this ”formula”. Just like ”ordinary” distribu-

tion functions, we ask ”what are the characteristic properties of a set function

F : 2U → [0, 1] so that P is determined uniquely?” Here is the answer. F (.)

should satisfy

(a) F (∅) = 0, F (U) = 1

(b) For any k ≥ 2, and Aj ∈ 2U , j = 1, 2, ..., k,

F (∪k
j=1Aj) ≥

∑
∅̸=I⊆{1,2,...,k}

F (∩i∈IAi)

Interested reader could find a proof in, e.g., Nguyen [6]). The point here is

that distributions of general random elements are defined so that they corre-

spond bijectively with a probability measure on its range space. We will employ

the same method when considering fuzzy data, i.e., for random elements taking

fuzzy sets as values.

Next, whether we wish to estimate some unknown quantities of interest, or

to validate models for predictions, we need to suggest best estimators, most

powerful tests, and optimal predictors. These desirable properties require re-

sults from probability. For example, even in reality we only have a finite set of

data, estimators should be consistent to be used. Consistency is expressed in

terms of various concepts of convergence of sequences of random variables,
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and often is derived based on results in probability theory such as laws of large

numbers. Any of your ”new” or modified estimators are only valid if they are

at least consistent. Simulations on some cases provide only indicative, but not

conclusive, conclusions.

Since we are going to derive models using rules when dealing with fuzzy

data, let’s say few (important) words about statistical models. Unlike physical

systems, statistical phenomena do not have the luxury of having dynamical

laws, and hence have to rely only on models. Statistical models should be

justified by data, including their validity. You are all familiar with your BB (Bread

and Butter) tool in applied statistics, namely linear regression models, e.g.,

Kutner et al [7]).

As we will see, most of the problems of interests are of the form: investi-

gating the effect of covariates on a variable of interest, such as, knowing that

the determinants of income are e.g. education levels and skill, we wish to

have a quantitative relation between these variables, for, say, prediction pur-

poses. Francis Galton called such analysis a regression problem: regressing

response variables upon covariates (regressors) variables. If we wish to pre-

dict a response variable Y based upon a covariate X, using the mean squared

error concept (MSE), then, since the conditional mean E(Y |X) is an optimal

predictor, the regression model could be

Y = E(Y |X) + ε

where ε is a random error such that E(ε|X) = 0 (so that the above statistical

model is compatible). In general, E(Y |X) is a non linear function of X. The

situation is much simpler if E(Y |X) can be approximated by a linear function

in X, i.e., considering E(Y |X) = θX, leading to the statistical linear regression

model

Y = θX + ε

This is a ”plausible” simple regression model which needs to be validated

(i.e., to see whether it is a good approximation to the true relationship between

X and Y ).

Given, say, a random sample (i.e., an i.i.d. set of observations) (Xi, Yi),

i = 1, 2, ..., n, drawn from (X,Y ), you usually justify and validate your above

linear regression model by computing your R2
n and decide. It is precisely here

that you need to be careful. Do not behave like empirics (people who rely
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solely on practical experience rather than on scientific principles)! Any empir-

ical measures are used as estimates for corresponding population measures

(parameters). But population parameters might not exist (e.g., the mean of a

Cauchy population). What is the population parameter your R2
n is supposed to

estimate? In the above model, assuming that ε is independent of X, we have

V ar(Y ) = V ar(θX + ε) = θ2V ar(X) + V ar(ε)

so that V ar(θX) < V ar(Y ), and hence the ratio θ2V ar(X)
V ar(Y ) ∈ [0, 1] can be used

as an indication of the adequacy of the linear model. Well, if V ar(Y ),V ar(X)

are both finite, then by the strong law of large numbers, R2
n is a consistent

estimator of θ2V ar(X)
V ar(Y ) , otherwise (e.g., when X, Y are heavy-tailed, see, e.g.,

Resnick [8]), the finite quantity R2
n from your data is meaningless!

The point is this. In one hand, be careful when considering a model, and

on the other hand, validation is needed. As an example, suppose you are

interested in the effect of the covariate X on ”large” values of Y , rather its

mean. With an appropriate error concept, the conditional α− quantile qα(Y |X)

is the best predictor of the α− quantile of Y based on X, so that a linear

quantile regression model could be considered:

Y = θαX + εα

with qα(ε|X) = 0. See Koenker [9]. How do you intend to validate it?

In our subsequent exposition, we will discuss how to propose models for

inference with fuzzy data. Here is a typical example in standard statistical

practice.

To increase production efficiency in agricultural economics, say, statistical

analyses of firm production technologies are needed. More realistic models

for quantifying technical efficiency are desirable. Such research is not only

beneficial to agriculture, but, by analogy, also to other economic activities such

as investments (by measuring stock market efficiency).

Quantifying technical efficiency (of firms) from empirical data (e.g., cross

section data) is a problem of concern in production theory. Since an input

(labor, resource, capital,...) can produce various different outputs, depending

on how to ”manage” the input, there is such thing as the ”production frontier”,

namely the maximum output an input can produce

φ(x) = max{y : x → y}
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If we know the frontier φ(.) (of a given technology) then, when observing

(Xi, Yi) from the firm i, we can take Yi

φ(Xi)
as the (degree) of technical efficiency

of firm i.

Things are not just simple as we think, not only because we do not know

the function φ(.), but also, the observed output Yi could be ”above” the frontier!

Let Ψ = {(x, y) : x → y} be the attainable production set. From a statistical

viewpoint, we view Ψ at the range of the random vector (X,Y ), or equivalently,

the support of their joint distribution, i.e., P ((X,Y ) ∈ Ψ) = 1. However, an

output y could be a result, not soly of an input x, but also of random ”shock”,

resulting in a value which could exceed the frontier value φ(x). Thus, the con-

cept of frontier should be extended to a ”stochastic frontier” x → φ(x)+V , with

V being a symmetric random noise, to cover this situation. For φ(.) + V to be

a ”frontier”, we would have Y ≤ φ(X) + V . Thus, let U = φ(X) + V − Y be an-

other random variable, nonnegative (U ≥ 0), representing technical efficiency,

we arrive at the now popular production stochastic frontier model (SFM), see

Kumbhakar and Knox Lovell [10]:

Yi = φ(Xi) + Vi − Ui

The problem is the estimation of efficiency Ui for firm i, given, say, a ran-

dom sample (Xi, Yi), i = 1, 2, ..., n across firms. Note that like Vi, Ui is not

observable. Suppose we could estimate the production function φ(.) by some

estimation method, then we can compute the estimated residuals εi = vi − ui

by yi −
ˆ
φ(xi).

How to predict Ui based on the relevant information
ˆ
εi = yi −

ˆ
φ(xi) ? Well,

the ”observale” value
ˆ
vi −

ˆ
ui =

ˆ
εiis a value of the random variable V − U .

Thus, in MSE sense, the best predictor of U is E(U |V − U =
ˆ
εi), its estimate

is taken to the the estimated technical efficiency of firm i.

Given this machinery, it remains to specify the model, examine the observed

data, and then proposing appropriate estimation techniques. These could be

in fully parametric, semi-parametric, or nonparametric forms. In the parametric

setting, copulas will necessarily enter the analysis, since we need to model the

joint distribution of (V,U). In the semi-parametric specification (parametric form

for φ(.), and unspecified distributions of the error terms), we need to use semi-

parametric statistics. In the nonparametric setting, conditional quantile-based

nonparametric estimation seems attractive.
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3. What is Applied Statistics ?

Just like applied mathematics, perhaps it seems obvious that applied statis-

tics mean ”applying statistical methods to real-world problems”? Yes, of course,

but the delicate thing is this. There is a distinction between ”applications of

statistics” and ”solving problems using statistics”. First of all, while probability

can be considered as a branch of pure mathematics (where theoretical re-

search might take a central stage), statistics is, by its creation and nature, an

applied science. You can say that you are a mathematician without naming any

fields of applications (e.g., algebraic topology), but you cannot simply say that

you are a statistician, even you are only interested in theoretical research. This

is so since statistics is created to provide scientific principles in experiments

to discover knowledge. As such, statistical theories are guided and developed

by applications, and not just investigated at an abstract level like pure mathe-

matics. A striking example is econometrics. It is the desire to solve real-world

problems using statistics that econometricians developed our modern statisti-

cal theories! Like all ”applied” statisticians, they have a repertoire of statistical

tools, but instead of applying statistical tools blindly (e.g., using ”popular” mod-

els without justifying, using untested assumptions, ignoring unusual features

which have not yet handled by standard statistics, etc...) they seriously exam-

ine the real economic problems they face (remember: problems and data first),

and then see whether there are suitable statistical tools in their tool box to solve

the problems. If there is no suitable statistical tools in their tool box (such as

linear regression), then they pause and develop new statistical tools, and after

that come back to apply their new theoretical work to their intended applied

problems. A striking example is James Heckman’s work on sample selection

bias in labor econometrics [11], for which, together with Daniel MacFadden,

they were awarded the Nobel Prize in Economic Sciences in 2000. The essen-

tial of Heckman’s work is on missing data, speeling out loud once again: do not

think about your familiar statistical tools before examining honestly your prob-

lems! A pleasant but important reading about the ”danger” of using wrongly

statistics is Wheelan [12].

In this paper, we will address another problem on missing data, namely

missing data due to unobservability of a certain kind where we will use fuzzy

sets for modeling. The lesson is this. Applied statisticians should investigate

honestly their problems, examine carefully their obtained data, then only then,
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think about how to use statistics to ”solve” their problems. If there is no suitable

statistical tools to handle their actual problems, then ”pause” and do some

theoretical research inspired from their problems in order to come back later

to solve them with their own new statistical tools. This is what we like to call

applied statistics.

Remark. What is theoretical statistics? First, observe that the journal An-

nals of Mathematical Statistics has been changed to simply Annals of Statistics

since there is no need to emphasize the term ”mathematical” in it. Mathemat-

ics is the language of science and hence is implicit in statistics. However,

applied statisticians tend to view this journal and similar journals as theoretical

statistics, a better name for the orientation. Since statistics aims at solving real-

world problems, we recognize that too much assumptions on our models and

data make our machninery far from reality. Therefore, there is a need to relax

standard assumptions in statistics as well as examining carefully the quality of

data. Research in theoretical statistics focus on issues such as these in order

to make statistical theory more efficient and close to reality. Examples of such

needed research are robustness of estimators, bootstrap methods for sampling

distributions, and maximum entropy inference.

4. What is a Fuzzy Set?

So far we have mentioned, at several places, the term ”fuzzy data”. It is

time now to elaborate on it.

Recall that after all, statistics is about data. Data should be understood

as available information concerning problems under investigation. They could

be numerical or else. Data are observed ”outcomes” of variables. Depend-

ing upon the type of outcomes, the corresponding of variables are classified

as quantitative or qualitative variables. Quantitative variables refer to variables

whose values are numerical, whereas qualitative variables take linguistic la-

bels in a natural language as values, for example, ”gender” (with values male,

female), ”disability status” (not disabled, partially disabled, fully disabled). A

more specific name for qualitative variables is linguistic variables.

We are familiar with linguistic variables in statistics in general (e.g., in the

form of categorical data via contingency tables), and in linear regression in

particular (qualitative predictors such as ”quality of sales management”, see,

e.g, Kutner et al. [7]), as well as the way we used to handle them. What we
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are going to do is introducing you to a new way to look at linguistic data. Why?

and what for? These questions will be answered in section 5. For now, we are

going to describe this ”new look” at linguistic data.

When taking natural language to impart knowledge and information, there is

a great deal of imprecision, vagueness or fuzziness. Such statements as ”Mary

is young”, ”John is tall”, where ”young”, ”tall” are fuzzy concepts, are simple ex-

amples. We will discuss the intrinsic notion of fuzziness in natural language,

as well as how to represent, manipulate and draw inferences from such impre-

cise information. Fuzzy sets are mathematical objects to model fuzzy concepts

(in natural language) which contain valuable information for decision-making in

both physical and social sciences. Fuzziness refer to phenomena that do not

have sharply defined boundaries. By modeling quantitatively fuzzy concepts,

the number of objects encountered in human reasoning that can be subjected

to scientific investigation is increased.

We discuss first the formal concept of a fuzzy set, and then explain why

fuzzy sets are models for imprecise data in real-world applications which can

be subjected to statistical analysis in section 5.

Fuzzy data are linguistic data where we use the mathematical theory of

fuzzy sets to model them. As we will see, this is a much more general view than

defuzzifying fuzzy concepts (by putting thresholds on imprecise quantities) or

using ”quantitative indicators”.

To motivate the concept of a fuzzy set, consider the following simple exam-

ple. As we recalled in section 2, events associated with random phenomena

(man-made or natural) are subsets of a universe of discourse U (e.g., Rd ).

For example, the set of monthly incomes larger than 50, 000 baht is the subset

A = {x ∈ R+ : x ≥ 50, 000} of U = R+. How to describe the ”set” of ”high

income”? Well, we need to generalize ordinary (crisp) sets! The question is

how?

A crisp set A ⊆ U can be described by its indicator function, in an equivalent

way. Specifically, there is a bijection between A and the function 1A(.) : U →
{0, 1} where

1A(u) =

{
1 if u ∈ A

0 if u /∈ A

The indicator function 1A(.) has a nice meaning: it is a membership func-

tion, telling us about membership of elements of U . Indeed, if 1A(u) = 1, then
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the element u ∈ U is a member of A, whereas if 1A(v) = 0, v is not a member

of A. Membership is either full or nothing, as indicated by the range {0, 1}.

In coalitional (cooperative) games in economic competition, coalitions are

subsets of the set U of all ”players” involved. If we examine attentively, play-

ers, when joining a coalition, might not necessarily commit their full times, re-

sources, energy to it. Two members of a coalition A might differ by their levels

of commitment and therefore should be classified differently (for, e.g., a capital

risk allocation). We can indicate their ”degrees of membership” in A by the

portions of their committments, which are numbers in the unit interval [0, 1]. By

doing so, we actually model the coalition as a fuzzy set.

As an other example, observations in quality control, based on a classical

six-sigma control chart (under normality assumption) have different degrees of

”in-control” proportional to their positions with respect to the mean. Observa-

tions near the frontier of the control chart should be assigned lower degrees

than those which are nearer to the mean. If we take this ”finer” viewpoint,

then we actually model our observed data as a fuzzy random (closed) set (see

details in section 6 below).

Formally, while we cannot generalize the set A directly, we can use its equiv-

alent representation by its indicator function to do so. Simply extend the range

{0, 1} to the whole unit interval [0, 1], representing the partial (gradual) degrees

of membership. For convenience, we denote also by A(.) : U → [0, 1] the mem-

bership function, where A(u) ∈ [0, 1] represents the degree of membership of

u in the ”fuzzy set” A which could be different than 1 or 0. Fuzziness is a matter

of degree.

For example, let A =”high income”. It is a fuzzy concept since the linguistic

label ”high” does not have a sharply defined boundary (unless you defuzzify

it by a threshold like 50, 000). This fuzzy concept is defined by a membership

function. For example, in thousand of Baht unit,

A(x) =


0 if x < 20

x−20
55 if 20 ≤ x ≤ 75

1 if x > 75

We will discuss how to assign membership functions to fuzzy concepts later.

For the time being, let’s put down a definition

Definition. A fuzzy subset of a set U is a function U → [0, 1]
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Note that ordinary (crisp) subsets are special cases of fuzzy subsets.

Several remarks are in order.

(i) For x = 50, its degree of compatibility with the fuzzy concept of ”high

income” (or its degree of membership in the fuzzy set ”high income”) is A(50) =
30
55 which does not mean that the probability of an income of 50 is high, in other

words, it is not the probability of having a high income. Membership functions

are not probability distributions.

If we wonder whether some connections between fuzziness and random-

ness exist, then here is one which says that fuzziness can be viewed as a

weak form of randomness. Specifically, let f : U → [0, 1] be a given member-

ship function (of some fuzzy subset of U ). For α ∈∈ [0, 1], the α−level set of f

is Lα(f) = {u ∈ U : f(u) ≥ α}. Note that f(.) can be recovered from its level

sets as f(u) =
∫ 1

0
1Lα(f)(x)dα. If we randomize its level sets, i.e., choosing α

as random, i.e., consider α : (Ω,A, P ) → [0, 1], uniformly distributed, then we

create a random set Sf : (Ω,A, P ) → 2U , Sf (ω) = {u : f(u) ≥ α(ω)}. Then,

clearly,

P (u ∈ Sf ) = P (ω : f(u) ≥ α(ω)) = f(u)

i.e., the membership function f on U is the coverage function of the random

set Sf . This correspondence could be used to manipulate membership func-

tions somewhat according to probability calculus. Clearly, given a membership

function f , there might exist many random sets whose coverage functions are

equal to f , i.e., each fuzzy set determines an equivalent class of random sets.

This fact is what we referred to as a weak form of randomness.

The above connection between fuzzy sets and random sets does not im-

ply that fuzziness is subsumed by probability theory. However, it could sug-

gest a way to obtain membership functions. Suppose we wish to obtain the

membership function for ”seriousness” of some illness. Suppose that the ill-

ness under consideration is manifested as subsets of the set of possible symp-

toms Ω = {ω1, ω2, ..., ωk}. Let U be a set of humans. Let S : Ω → 2U be

S(ω) = {u ∈ U : u has the symptom ω}. A measure of seriousness of a person

u could be some numerical measure of the set {ω ∈ Ω : u ∈ S(ω)}. Medical

experts often can provide assessments that can be described as a function

µ : 2Ω → [0, 1], with µ(A) being the degree of seriousness of the illness for

a person having all symptoms in A. As such, a membership function can be

taken as f(u) = µ{ω : u ∈ S(ω)}.
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(ii) Having defined fuzzy sets by their membership functions, we can view

functions U → [0, 1] as representing fuzzy sets. For example, we can view

randomized tests as fuzzy sets. Specifically, recall that the fundamentals of

the theory of testing statistical hypotheses are as follows (see e.g., Nguyen

and Rogers [13]). Since our observable is V = (X1, X2, ..., Xn), we look at

the sample space X = Rn. Consider testing a simple hypothesis Ho against

a simple alternative Ha. A statistical test is a rule for choosing one of Ho and

Ha. It is sensible to base the test on V so that we select a set B as the critical

region: if the observable V ∈ B, we reject Ho, otherwise, we do not reject Ho.

By doing so, we commit two types of errors. Type I error (rejecting Ho when it

is true): α = P (V ∈ B|Ho), and type II error (not rejecting Ho when Ha is true):

β = P (V /∈ B|Ha). Since a decrease in α can be accomplished only be a

”decrease” in B, accompagnized by an ”increase” in Bc and β, thus in general,

there is no way to decrease α and β simultaneously with V fixed. J. Neyman

and E.S. Pearson in 1933 suggested a slight change in the problem. For fixed

α, find the set B to minimize β (leading to the most powerful critical region B∗,

where the power of a test is 1− β). If we denote by Lo and La the densities of

the observable under Ho and Ha, respectively, then

α =

∫
B

Lo....., β =

∫
Bc

La

The problem is to find B∗ in C = {B ∈ B(Rn) (Borel sets),
∫
B
Lo ≤ α} so

that
∫
B∗

Lo = α and
∫
Bc

∗
La ≤

∫
Bc La for all B ∈ C.

The famous Neyman-Pearson lemma says this. Let k > 0 be a constant

such that

B∗ = {V ∈ X : La(V ) > kLo(V )} has
∫
B∗

Lo = α, then
∫
B∗

La ≥
∫
B
La for

all B ∈ C.

However, while the lemma shows that the given B∗ is most powerful, it says

nothing about whether such a k actually exists. The hypothesis of the lemma

is a sufficient condition for the integral inequalities to hold. Now observe that

A(k) = P ({V : La(V ) > kLo(V )|Ho) = P (
La(V )

Lo(V )
> k) = 1− F (k)

where F denote the distribution function of the random variable W = La(V )
Lo(V ) .

If F is continuous then there is a kα such that 1 − F (kα) = α and the lemma

applies to kα. If F is not continuous (in particular if V is discrete) it can happen
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that the given 1 − α ”meets a jump” in F , and hence there is no solution to

A(k) = 1− F (k). Suppose we have that

1− F (ko) < α < 1− F (ko−)

with P (W = ko) = F (ko) − F (ko−) > 0. Then the testing rule is: when

La(V ) > koLo(V ), reject Ho; when La(V ) < koLo(V ), do not reject Ho; and

when La(V ) = koLo(V ), reject Ho with probability π0 = α−1+F (ko)
F (ko)−F (ko−) . With

this rule, we do get the exact significance level prescribed. Note that many

statisticians are not impressed by this randomized test procedure, and prefer

the p-value approach!

In any case, the above randomized test (of size α) is described by a function

τ : X → [0, 1] with E(τ(V )|Ho) = α. Specifically,

τ(V ) =


1 for La(V ) > kLo(V )

πo...for La(V ) = kLo(V )

0 for La(V ) < kLo(V )

Thus, ”formally” the usual randomized test, given as a function τ : X →
[0, 1], is a fuzzy set on X . Note also that often in statistics we need to use lin-

guistic terms to make decisions, such as ”a rationale for rejecting a null hypoth-

esis Ho is based on the fact that, if Ho is true, then it is ”unlikely” that the data

behave as we observed”, where the linguistic term ”unlikely” is a fuzzy proba-

bility, i.e., a fuzzy subset of [0, 1]. But, as usual, we defuzzify it to α ∈ [0, 1].

It is interesting to mention also that R.J. Aumann and L.S. Shapley [14], in

their famous book Values of Non-Atomic Games, needed to generalize ordinary

sets to obtain what they called ”evenly spread sets” to arrive at their notion of

values for games with large masses of players. As they put down in a footnote

(page 142), their ”ideal sets” are formally Zadeh’s fuzzy sets.

We turn now to the manipulation of fuzzy sets. Note that what we have in

mind is using fuzzy sets as our data in statistical analysis. As such, we need to

operate them as generalized sets by extending ordinary set operations, as well

as viewing them as ”quantities” where extensions of arithmetic operations are

required.

Before we extend logical operations of ordinary sets, we recall the reader

that sets are viewed as propositions in a language. Binary logic is a logic for

true-or-false propositions. Fuzzy logic is not a logic which is fuzzy! It is a logic
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for fuzzy propositions, i.e. propositions (in a natural language) which could be

true, false or partially true since they might contain fuzzy concepts. In other

words, it is a multi-valued logic whose truth values lie in the unit interval [0, 1].

Operations on ordinary sets can be expressed in terms on indicator func-

tions. For A,B ∈ 2U , we have

1Ac(.) = 1−1A(.); 1A∩B(.) = (1A.1B)(.) = (1A∧1B)(.), 1A∪B(.) = (1A∨1B)(.)

where x′ = 1− x, x ∧ y = min{x, y}, x ∨ y = max{x, y}.

Replacing indicator functions by membership functions for A,B fuzzy sub-

sets of U , we can first consider the simplest fuzzy logic with fuzzy connectives

for ”not”, ”and” and ”or”, respectively as: negation of A is 1 − A(.) , ”A and B”

is (A ∧ B)(.), and ”A or B” is (A ∨ B)(.). For example, a (finite) fuzzy partition

of a set U is a collection {Ai, i = 1, 2, ..., k} of fuzzy subsets of U such that∑k
i=1 Ai(u) = 1 for all u ∈ U . Such a partition is usually used to coarsen the

domain U (see next section).

More ”sophisticated” fuzzy logics are defined in terms on general negation

operators, t-norms and t-conorms (for details, see e.g., Nguyen and Walker

[2]).

Extensions of arithmetic operations of numbers are generalized to sets and

to fuzzy sets via the extension principle as follows.

Let f : U × V → W . For A,B fuzzy subsets of U, V , respectively. Then

f(A,B) is the fuzzy subset of W whose membership function is given by

f(A,B)(w) = max
{(u,v):f(u,v)=w}

(A(u) ∧B(v))

For example, addition of fuzzy sets is obtained as

(A+B)(w) = max
{(u,v):u+v=w}

(A(u) ∧B(v))

It is sometimes convenient to work with level sets of membership functions.

The following result, known in the literature as Nguyen’s theorem (Nguyen [15];

Fuller and Keresztfalvi [16]; Fuller [17]), is useful.

For f : U1 × ... × Un → V , and A(i), i = 1, 2, ..., n, fuzzy subsets of Ui, and

α ∈ [0, 1], we have

f(A(1)
α , ..., A(n)

α ) = [f(A(1), ..., A(n))]α
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if and only if for each v ∈ V ,

max
{(u1,...,un)∈f−1(v)}

[∧n
i=1A

(i)(ui)]

is attained.

As a final note, for representation of fuzzy information on computer, see

Nguyen and Kreinovich [18].

5. Where Do We Run into Fuzzy Data?

We come now to what you are waiting for! OK, fuzzy concepts in natu-

ral language are informative (for scientific investigations) and can be modeled

mathematically as fuzzy sets, but where do we ”run into” fuzzy data in applied

statistics?

At least as far as applying statistics to economics is concerned, econome-

tricians borrow almost all tools and methodologies from physical sciences, es-

pecially engineering, by obvious reasons: like physical systems, economic sys-

tems are uncertain, dynamical systems. The ”borrowed” tools include Kalman

filter, quantum mechanics (path integrals and Hamiltonian for options and in-

terest rates, see e.g., Baaquie, B.E. [19]).

Since 1965, approaches to modeling and control based on fuzzy method-

ology are familiar in engineering, including a combined method from machine

learning, namely adaptive neural fuzzy inference systems (ANFIS) (see. e.g.,

Nguyen, Prasad, Walker and Walker [20]). The situation is somewhat different

in applied statistics, especially in econometrics. Specifically, why fuzzy analy-

sis in engineering fields seems not to be in the ”mean stream” of statistics in

general, and econometrics, in particular?

In our view, one of the main reasons is that the various attempts to bring in

fuzzy analysis to statistics did not possess an underlying rigorous probability

theory to support them. Some approaches treat fuzzy data without relations to

randomness, while others tend to ”fuzzify” statistics rather than putting fuzzy

data within standard theory of statistics. In either case, there is no statistical

inference involved, so that it looks like applications without theory! A state-

of-the-art of the above description is contained in a special issue of the Jour-

nal Computational Statistics and Data Analysis, Volume 51 (2006), devoted to

”The fuzzy approach to statistical analysis”. In it, the only contributed paper

by Nguyen and Wu [21] is about ”statistics with fuzzy data”, i.e., viewing fuzzy
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data as bona fide statistical data and treating them within the theory of prob-

ability. Indeed, in the section ”An overview of the contributions to this issue”,

the guest editors wrote ”The contribution of Nguyen and Wu focuses on Fuzzy

Statistics seen as ”Statistics with fuzzy data”. In this specific context, statis-

tical data may be point-valued, set-valued or fuzzy-set valued observations.

Random sets (viewed as elements of separable metric spaces) are proposed

at the appropriate mathematical model for set-valued observations. Likewise,

random fuzzy sets are suitable for analyzing random fuzzy data. Some issues

related to these modelization are examined. The proposals stemming from

this investigation may help in strengthening the bases of a sound methodology

for the analysis of imprecise data. In particular, the notion of ”coarsening” is

thoroughly discussed along with the process of generation of a membership

function from available information”.

Another important reason is that, not only real-world situations where fuzzy

data surface seem lacking, but also, when such a situation did occur, there is

no serious discussions about the advantage of considering fuzzy data, rather

than just defuzzifying them.

To elaborate on this reason, let’s look back at how statisticians used to

handle linguistic variables, in the popular tool of linear regression (see a cook

book like Kutner et al. [7]).

Linguistic variables could be intrinsically linguistic (e.g., ability in mathe-

matics, skill of workers), i.e., variables whose values can only be described in

linguistic terms, or due to coarsening schemes (for more on coarsening, see

Nguyen [22]). The second kind of linguistic variables is very important in data

analysis. An essential aspect of human intelligence, say, in making every day

life decisions, is coarsening domains of numerical variables. When we can not

guess with precision the temperature at some location, we coarsen a domain

[a, b] of the variable ”temperature”, i.e., transforming it into a fuzzy partition,

such as ”very cold , cold, medium, hot, very hot”, in order to obtain a correct,

but imprecise, useful information. Formally, a fuzzy partition of a set U is a

collection {Ai : i = 1, 2, ...n} of fuzzy subsets of U such that the sum of their

membership functions is one:
∑n

i=1 Ai(u) = 1, for all u ∈ U . This is clearly a

generalization of the ordinary concept of a (crisp) partition of a set. This ex-

plains why in statistics we consider linguistic values like ”very low, low, normal,

high, excessive” for the variable ”unemployment rate” in regression analysis,
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for example. By doing so, we actually transform a quantitative variable into a

fuzzy variable (in the sense that the values of the latter are fuzzy sets). But,

that transformation, in classical statistics, is only for the purpose of classifica-

tion to collect (counting) data, and not viewing these linguistic values as data

per se.

Here is an example of using ”quantitative indicators” in regression with a

qualitative predictor. In the regression of advertizing expenditures X (quanti-

tative) on the quality of sales management Y (qualitative with two values ”low,

high”), the quantitative indicator of Y is

Y =

{
1 if the quality of sales management is high

0 otherwise

Well, how ”high” is defined here to obtain the indicator of Y ?! Of course,

”high” is defuzzified by using some threshold.

What we have in mind when talking about fuzzy data is at least twofold.

First, even in classical problems as above, defuzzification might entail loss

of information. Is there a better way then sharp defuzzification? e.g., some

smooth procedures. This is perhaps the main reason in using fuzzy modeling

in the newly developed Regression-Discontinuity Analysis, see Klaauw [23].

Secondly, as we will illustrate below, there are important situations where

fuzzy data need to be treated as data, i.e., just like a random sample of nu-

merical observations, so that manipulation, processing of them are necessary.

This is not considered in classical regression with qualitative variables. In fact,

that is impossible since there is no fuzzy modeling available.

Below is just a short list of problems where either fuzzy data appear as valu-

able information, or fuzzy theory is helpful to assist statistical analysis/decision-

making. Typical problems such as these could trigger research for interested

applied statisticians.

Clearly, the first class of problems contains regressions with linguistic vari-

ables (regressors or responses, or both). Regressions with imprecise data are

special cases.

The second class of problems can be viewed as regression with seem-

ingly unobservable variables (SUV). In labor economics, the studies of effects

of covariates (such as education level, skill) on a response variable (such as

salaries of workers) are conducted using linear regression models, in which the

unobservable covariate ”skill” is often ignored. If this covariate is to be taken
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into account, it will be a linguistic variable by its own nature. Clearly, taking it

into account should shed more light on the response variable, since it is (also

clearly!) that skill is an important determinant for workers’ salaries. Usually,

interviews for jobs could reveal applicants’ skill. In our view, this class of prob-

lems is typical for having fuzzy data (on the seemingly unobservable variables)

with which regression with fuzzy data could be developed, thus, improving con-

ventional models in econometrics.

As a concrete example, the problem of finding out how underground econ-

omy (u.e.) affects national economy is important, and has been, as a start,

investigated by Draeseke and Giles [24] and Ene and Hurduc [25]. Note that

these authors only considered fuzzy methods to ”estimate” u.e. size but did not

pursue an SUV regression using statistics of fuzzy data.

Regression of u.e. on national economy is a problem of regression with un-

observable covariate. How can we even consider such a regression, although

it is an important economic problem? If such a regression is to be feasible, we

need data on u.e.. But, by definition (!), u.e. is not reported (to evade taxes),

and hence ”unobservable”. It is precise here that fuzzy data is needed. Not

knowing the u.e. size, we could seek to estimate it from several obvious causal

variables (e.g., taxation rate, GDP per capital, unemployment rate), resulting

in fuzzy data for the estimate. A generated time series (say, annually) of fuzzy

data on u.e. then could be used as inputs to the original SUV regression.

Let’s elaborate a bit on how to estimate u.e. size using fuzzy methods.

Since the ”regression” of causal variables on the response variable ”size of u.e.”

can not be put in the standard format of a linear regression model, we make

the following observation. A standard linear regression model Yi = aXi+ b+ εi

, i = 1, 2, ..., n, is in fact a collection of ”If...Then..” rules, since that equation (in

fact any equation) reads: ”If X is Xi then Y is Yi = aXi + b + εi”. Thus, when

(Xi, Yi) is linguistic (modeled by fuzzy sets (Ai, Bi)), the ”rule” becomes

Ri =”If X is Ai then Y is Bi” or ”Ai(X) =⇒ Bi(Y )”. For example ” If taxation

is high and unemployment is low, then the size of u.e. is medium”. These rules

are, in a sense, common sense. For reasoning with rules that have exceptions,

see Bamber et al. [26].

Given Yi = aXi + b + εi , i = 1, 2, ..., n, we ”combine” them to arrive at

a prediction ”formula” for Y when observing X, by using a statistical proce-

dure, namely least squares. Now, the rule base {Ri = Ai(X) =⇒ Bi(Y ), i =
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1, 2, ...n} is combined as follows to form a nonlinear model for prediction, in-

spired from fuzzy control methodology in engineering (see e.g., Nguyen et al

[20].

First, the rule Ai(X) =⇒ Bi(Y ) represents a fuzzy relation between X and

Y , i.e., for a value of X, the degree to which Y is compatible with the rule is

, say, Ai(X) ∧ Bi(Y ). Combining these fuzzy sets leads to a fuzzy set repre-

senting the ”qualitative” predictor for Y , given a new X: maxi=1,2,...,n(Ai(X) ∧
Bi(Y )).

A third class of problems consists of introducing fuzzy data (in the form of

membership functions of conventional data) into classical statistical setting in

order to improve the performance of statistical procedures. The typical problem

is statistical quality control.

Current research in Statistical Quality Control (SQC) addresses the more

realistic statistical models in which characteristics of manufacturing products

need not follow multivariate normal distributions. In other words, the research

aims at deriving tolerance regions (leading to control charts) in the setting of

multivariate, nonparametric models. This is carried out by recognizing that tra-

ditional tolerance regions are nothing else than level sets of probability density

functions. The recent paper by Verdier [27] brings out the usefulness of us-

ing copulas in modern SQC. The multivariate SQC (see Montgomery [28] is

essentially based on (parametric) normal distributions.

In the univariate case, Shewhart in 1924 first observed that, if the (single)

product characteristic is modeled by a random variable X (due to its possible

variations), then we can detect whether it is ”out of range” (out-of-control) if

the new value is far away from its mean µ = EX by 3 standard deviation

σ =
√
V ar(X) =

√
E(X − µ)2, by using Chebyshev’s inequality:

P (|X − µ| ≤ kσ) ≥ 1− 1

k2

For example, for k = 3,

P (|X − µ| ≤ 3σ) ≥ 0.8889

Remark. Using extension of Chebyshev’s inequality in higher dimensions

(i.e., for random vectors), similar assessments can be obtained.

If we insist that X is normal N(µ, σ2), then the above lower bound is more

accurate, namely

P (|X − µ| ≤ 3σ) ≥ 0.997



Hung T. Nguyen 21

so that the interval [µ− 3σ, µ+ 3σ] could be used as a ”tolerance” zone for

the variations of X. Specifically, since (P (|X−µ| > 3σ) is so small, it is unlikely

that a value of X in |X − µ| > 3σ could come from X. Of course, false alarms

could arise!

The following observation is essential for considering multivariate SQC when

traditional multivariate normal distribution assumption is dropped.

Remark. It is important to remember that making too much model assump-

tions takes us further from realities! The task of a statistician is trying to obtain

models as general as possible.

If we look at the tolerance interval [µ − 3σ, µ + 3σ], we realize that it is

precisely the set

{x ∈ R : f(x) ≥ c}

where

f(x) =
1

σ
√
2π

exp{− 1

2σ2
(x− µ)2}

and c = f(µ+ 3σ), with µ+ 3σ being a quantile of X.

Thus, for general multivariate (joint) density function f , a tolerance region

is of the form

{x ∈ Rd : f(x) ≥ c}

In the univariate normal distribution case, since both µ, σ are unknown, the

tolerance interval [µ− 3σ, µ+3σ] is estimated by [Xn − 3Sn, Xn +3Sn], where

Xn and Sn are sample mean and sample standard deviation of an i.i.d. random

sample X1, X2, ..., Xn drawn from X. Note that, in the multivariate normal case,

we use T 2−Hotelling statistic.

In general, the meaning of

{x ∈ Rd : f(x) ≥ c}

is that

P (f(X) ≥ cα) = α

i.e., the probability that a new observation, say, Xn+1(ω), is in the level set is

some predetermined α.

Now, of course, the joint density f on Rd (e.g., when the manufacturing

product depends on d (related) characteristics) is unknown. As such, the (pop-

ulation) ”parameter” {x ∈ Rd : f(x) ≥ c}, which is a set, needs to be esti-

mated (by some set statistics, i.e., random sets). Such a set statistic is the
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statistical tolerance region for deriving multivariate control charts. Basically, it

consists of, first, estimating the joint density f , nonparametrically by (say, us-

ing Kernel method) fn, then ”plug-in” to obtain the statistical tolerance region

{x ∈ Rd : fn(x) ≥ c}.

Verdier [27] suggested using copulas to model process control in which

a semiparametric model is appropriate. It consists of two steps: First, esti-

mate nonparametrically the marginals densities, second: use some appropri-

ate parametric family of copulas, and use Sklar’s theorem to obtain multivariate

models.

With the above direction of research towards more realistic control charts,

we add to it another way to improve SQC by looking at observed data. As

mentioned previously, data should be classified according to their degrees of

”in or out of control”. As such, we are in fact ”fuzzify” (as opposed to defuzzify)

crisp data, also in order to obtain more realistic control charts.

Another situation where fuzzifying concepts (rather than data) is useful is

in financial econometrics. The following example brings out also an advantage

of using fuzzy methodology in investing economic problems, showing that, in

some cases, fuzzy theory is really indispensable.

The capital risk allocation (CRA) is an important problem in financial risk

management (see, e.g. Denault, [29]). The most recent approach to the solu-

tion of CRA is based upon coalitional game theory, since cost functions can be

expressed in terms of characteristic functions of such games. Unfortunately,

the Shapley value cannot be inside the core of the game for coherent risk mea-

sures. It was suggested that extending (crisp) coaltional games to fuzzy games

(Aubin [30,31]) could lead to a solution.

Extending a coalitional game to a fuzzy game is in the same spirit of SQC

above. Here, it is conceivable that members of a coalition might not always

commit their full resources when joining a coalition. As such, degrees of par-

ticipation in a coalition should be taken into account, for a fair capital risk allo-

cation. When doing so, we actually consider fuzzy coalitions, thus, enlarging

the coalitional game.

6. How to Put Fuzzy Data in a Statistical Setting?

This last section is rather theoretical. But it is a must since we need to put

fuzzy data in a firm footing entirely within probability theory in order to use its
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associated statistical theory for making inferences in an ”acceptable” manner.

Applied statisticians will have an opportunity, not only to know the theory be-

fore applications, but also to learn how ”theoretical” statisticians conduct their

research!

The problem is how to ”view” a new kind of data, namely fuzzy data, as

statistical data? It is here that we need probability theory which is the ”back-

ground” of statistics. It is in a situation such as this that we need to develop

a new theory before considering applications. The new theory is inspired from

empirical observations, and is not from an ”abstract” generalization. In this

sense, according to our view expressed in section 3, it is applied statistics.

Since fuzzy sets generalize crisp (ordinary) sets, let’s us start out with the

theory of random sets. Roughly speaking, a random set is a set obtained at

random! Here is an interesting example of random set observations which

need theoretical justifications to use in statistics.

A well-known graphical method in exploratory data analysis to test (”infor-

mally”) the goodness-of-fit of a sample (e.g., that the sample came from a nor-

mal distribution) is the Quantile-Quantile plot (QQ plot). Let (X1, X2, ..., Xn) be

a random sample drawn from a population X with unknown distribution func-

tion F . To see whether the sample comes from a specific distribution F o, we

compare various quantiles of F o with corresponding empirical quantiles, i.e.,

for α ∈ (0, 1), compare

qα(F
o) = inf{x ∈ R : F o(x) ≥ α}

with qα(Fn) where the empirical distribution function is

Fn(x|X1, X2, ..., Xn) =
1

n

n∑
i=1

1(Xi≤x)

Specifically, we plot qα(Fn) versus qα(F
o) for several values of α. Note that,

unlike moments, a distribution function is characterized by its quantiles, i.e.,

can be recovered from its quantiles. As such, coincidence of quantiles is a

good indication for goodness-of-fit. In the QQ plot, the indication of a good fit

is detected when the QQ plots ”hugs” a straight line through the origin at an

angle of 45 degrees (as often said in the literature, this is a ”quick and dirty”

way of doing statistics!). We have just said that such an inspection reveals

only an indicative conclusion. It is not a conclusive conclusion, i.e., not ”rigor-

ous”. Again, this is a good place to remind applied statisticians about validity
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of empirical analyses! Empirical analyses need to be validated to draw final

conclusions. How to ”validate” the QQ plot? Well, if the sample did come from

F o, then the QQ plot should converge to a straight line as the sample size in-

creases. Here the ”target” is a straight line, a subset of R2 and the QQ plot is

a sequence of random subsets of R2 (see below). As such, we need to know

what do we mean by ”convergence of a sequence of random sets to another

set?”!. If you look at your statistical ”tool box”, you cannot find any ”tool” in

it to investigate the needed problem. It is so since ”standard” data are either

numbers or vectors, but not sets, and we do not have a theory of random sets

in probability theory for statistical inference. We need to pause to do some the-

oretical research and then come back to ”solve” our needed statistical problem

of validating the simplest goodness-of-fit test. It was Das and Resnick [32] who

investigated this problem in a formal theory of random sets.

Remark. Historically, while random sets appeared naturally in many places,

such as stochastic geometry, its formal theory was not rigorously established

until 1975 (by Matheron [33]). When estimating the ”size” (area, volume) of a

random set, Robbins [34] did not really consider a formal concept of a random

set. This so since the size of a random set µ(S) (where µ the Lebesgue mea-

sure on Rd) is in fact a numerical random variable, although it depends on the

random set S. Without a formal concept of random sets, it is not possible to find

the distribution of the nonnegative random variable µ(S) which is a function of

S. The clever result of Robbins is this. As far as the expected value of µ(S) is

concerned, we need much less than the distribution of µ(S). Specifically, the

knowledge on the coverage function of the informal random set S is sufficient

to determine Eµ(S), a ”weaker” form of information. Note that if S is a con-

fidence interval, which is a random set, (say, at 1 − α confidence level), then

µ(S) is its length, and an optimal confidence interval is the one with smallest

length (maximum precision at a given confidence level). The computation of

the expected length of a random set of the form S = [0, X] where X ≥ 0 is a

random variable is simple: the length of S is X, so that

Eµ(S) = EX =

∫ ∞

0

P (X > x)dx =

∫ ∞

0

π(x)dx

where

π(x) = P (x ∈ S) = P (x ∈ [0, X]) = P (X > x)

is the coverage function of the random set S. The Robbins’ formula says that
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the above formula is in fact general: For any random set S on Rd, we have

Eµ(S) =

∫
Rd

π(x)dµ(x)

where π(.) : Rd → [0, 1] is the coverage function of S.

Now, while the qα(F
o) are deterministic, the qα(Fn) are random (depending

upon the sample), and as such the points (qα(Fn), qα(Fn)), for various α, are

random points in the plane, forming a random set (of points). Since the sample

is finite, this random set is a closed subset of the plane R2. Note that a straight

line in R2 is also a closed set, and hence we are facing the problem of, say,

almost sure convergence of random closed sets.

We now outline Matheron’s theory of random closed sets on euclidean

spaces Rd.

The general framework of probability is this. We always consider an ab-

stract probability space (Ω,A, P ) on which all random elements are defined. To

specify a type of random elements X, we specify a measurable space (U,U)
consisting of a set U which is the range of the random element X we have in

mind, and U a suitable σ−field of subsets of U (for the domain of the probability

measures governing the random evolution of X, elements of U are events).

For example, if U = 2V (power set of V ), with V being a finite set, i.e., U is

the set of all subsets of a finite set V , then just take U = power set of 2V since

probability measures can be defined on such U : simply assign Q(A) ∈ [0, 1]

such that
∑

A⊆V Q(A) = 1, and define P (.) on 22
V

by P (A) =
∑

A∈A Q(A).

As for U = R, an infinite, uncountable set, the situation is more delicate.

The power set of R is too big to define probability measures on it. We seek a

largest collection U of subsets of R (but strictly contained in the power set of

R) to be the domain of all probability measures. Inspired by measure theory in

real analysis, it turns out that there is a canonical way of getting such U . We

equip R with a topology (i.e., declare a collection O of subsets as ”open” sets).

For R, the canonical topology is the smallest collection of subsets containing

the open intervals (a, b). Then take the smallest σ−field containing all open

sets, denoted as B(O) (we also say that it is the σ−field generated by O). The

”canonical” σ−field obtained this way is refered to as the Borel σ−field asso-

ciated with the topology O. Just to be self-contained, a σ−field is a collection

of subsets, suitable for defining probability measures on it. A collection B of

subsets (events) of a set U is a σ−field if it satisfies the conditions (i) U ∈ B,
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(ii) If A ∈ B then its complement Ac ∈ B, and (iii) For any countable collection

of elements of B, {An, n ≥ 1}, ∪n≥1An ∈ B.

Now, consider U = F(Rd), the set of closed subsets of Rd. We will proceed

to equip U with a topology τ and take U = B(τ).
Let F ,G,K denote the classes of closed, open and compact subsets of Rd,

respectively. For A ⊆ Rd, let

FA = {F ∈ F : F ∩A ̸= ∅}, FA = {F ∈ F : F ∩A = ∅}

FK
G1G2,...,Gn

= FK ∩ FG1 ∩ FG2 ∩ ... ∩ FGb

B = {FK
G1G2,...,Gn

: K ∈ K, Gi ∈ G, n ̸= 0}

Let τ be the topology generated by the base B. This topology is called the

hit-or-miss topology of F . The associated Borel σ−field is denoted as B(F)

Definition. Let (Ω,A, P ) be a probability space. By a random closed set on Rd,

we mean a map X : Ω → F which is A − B(F)− measurable. The probability

law of X is the probability PX = PX−1 on B(F), i.e., for A ∈ B(F), PX(A) =
P (X ∈ A).

For an elementary exposition on the whole theory of random closed sets,

the reader can consult Nguyen [6]. Here, we just indicate the counterpart of

Lebesgue-Stieltjes theorem for random closed sets. Observe that, if we define

T : K → [0, 1] by

T (K) = P (FK) = P (F ∈ F : F ∩K ̸= ∅}

then T satisfies the following axioms

(1) T (∅) = 0

(2) T is alternating of infinite order, i.e., for any n ≥ 2 and K1,K2, ...,Kn in

K,

T (∩n
i=1Ki) ≤

∑
∅̸=I⊆{1,2,...,n}

T (∪i∈IKi)

(3) If Kn ↘ K in K, then T (Kn) ↘ T (K)

Any function T : K → [0, 1] satisfying the above three axioms is called a ca-

pacity functional. Capacity functionals play the role of distribution functions of



Hung T. Nguyen 27

random variables. The collection of closed sets FK = {F ∈ F : F ∩ K ̸= ∅}
plays the role of intervals (−∞, y] on the real line, in the determination of the

distribution function of a real-valued random variable Y : FY (y) = P (Y ≤ y) =

PY ((−∞, y]).

Like Lebesgue-Stieltjes theorem, the following result simplifies the search

for probability laws governing random evolution of random sets.

Choquet Theorem. If T : K → [0, 1] is a capacity functional, then there

exists a unique probability P on B(F) such that P (FK) = T (K) for all K ∈ K.

Here is another important situation in set estimation where the theory of

random (closed) sets is essential. Let Y be a real-valued random variable.

Suppose that its distribution function F is absolutely continuous so that its prob-

ability density function f exists. Given a random sample (Y1, Y2, ..., Yn) drawn

from Y , of course we can estimate F (pointwise) by the empirical distribution

function Fn(y) =
1
n

∑n
i=1 1(Yi≤y) . However, we cannot derive an estimator for

f(.) from it since the (a.e.) derivative of Fn(.) is identically zero. Nonparametric

estimation of probability density functions reveal more information than that of

their distribution functions. There are various methods for nonparametric esti-

mation of density functions (e.g. kernel, orthogonal functions,...) which require

lots of assumptions. An alternative approach was suggested by Hartigan [35]

when only some simple qualitative information is available. Let Y be a random

vector with values in Rd. Since its (unknown) density f can be recovered from

its level sets A(α) = {y ∈ Rd : f(y) ≥ α}, α ≥ 0, as

f(y) =

∫ ∞

0

1A(α)(y)dα

It suffices to estimate the sets A(α), by, of course, some random set esti-

mator An(α), and use the plug-in estimator

fn(y) =

∫ ∞

0

1An(α)(y)dα

as estimator of f(.).

What is not obvious is how to suggest a ”good” random set estimator An(α),

i.e., a consistent estimator of the set A(α). The following idea, called the ex-

cess mass approach, is due to Hartigan. Recall the way extremum estimators

in statistics are derived: if a population parameter optimizes a theoretical objec-

tive function, then a plausible estimator for it is the statistic optimizing the empir-

ical counterpart of that objective function. Let µ denote the Lebesgue measure
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on Rd and consider the signed measure (dF − αµ)(.) = εα(.) on B(Rd). For

B ∈ B(Rd), writing B = [A(α) ∩ B] ∪ [Ac(α) ∩ B], we have εα(B) ≤ εα(A(α)),

so that A(α) maximizes the objective function B → εα(B). The empirical

counterpart of εα(.) is εα,n(.) = (dFn − αµ)(.), so that, a plausible estimator

of A(α) could be the random set statistic An(α) maximizing εα,n(B) over all

B ∈ C ⊆ B(Rd), where C is some specified class of Borel sets, such as closed

convex sets, ellipsoids. How to ”solve” this set-function optimization? See,

Nguyen [6]. To establish the consistency of An(α), we need a formal theory of

random sets.

We turn now to random fuzzy (closed) sets. First, a fuzzy subset of Rd,

say, is a function A(.) : Rd → [0, 1]. Since a crisp subset A is a closed set

if and only if it indicator function 1A(.) is upper semicontinuous (u.s.c.), i.e.,

for any α ≥ 0, its level set {y : 1A(y) ≥ α} is a closed set, we say that the

fuzzy set A(.) is a fuzzy closed subset of Rd if it is u.s.c., i.e., for any α ≥ 0,

{y : A(y) ≥ α} ∈ F(Rd), the set of closed subsets of Rd. We denote by F∗(Rd)

the set of fuzzy closed subsets of Rd.

How to extend Matheron’s hit-or-miss topology to F∗(Rd)?

Remark. We take this opportunity to say an important thing. Fuzzy sets are

”new” mathematical objects. If we are going to talk about topology, it should be

(ordinary) topology of fuzzy sets, and not ”fuzzy topology”, i.e., a ”new” concept

of topology generalizing ordinary topology in mathematics! a kind of ”topology”

where ordinary neighborhoods of ”points” in Rd become fuzzy. This should

be so since the objects under considerations are fuzzy sets and not points

in Rd. This applied also to the wrong approach by trying to treat fuzzy data

in a context of ”fuzzy statistics”! Fuzzy statistics should be (like fuzzy logics)

ordinary statistics of fuzzy data, and not ”fuzzifying ordinary statistics”!

Now, again, a direct extension of Matheron’s topology for (crisp) closed sets

seems difficult. We need an equivalent way of looking at his topology for the

purpose of extension. Note that this is a ”routine” in mathematical investiga-

tion, as far as extensions of concepts, theories, are concerned. This includes

the extension of Black-Scholes option pricing formula in financial economet-

rics, based on PDE: it is the equivalence in terms of martingales which allows

extensions.

Another look at the hit-or-miss topology of closed sets is this. If we consider

the set containment ⊇ as a partial order relation on F , i.e., for A,B ∈ F , we
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say that B is ”less informative” than A if B ⊇ A (B contains A, the reverse

of standard partial order relation among sets), then (F ,⊇) happens to be a

continuous lattice (see, Gierz et al [36]). As such, there is a canonical topology,

called Lawson topology, generated by ⊇. Without going into technical details,

we simply say that this Lawson topology is precisely the Matheron topology,

see however, Nguyen and Tran [37]. Thus, the σ− field, for defining random

closed sets, is the Borel σ−field of the Lawson topology.

Now, on F∗(Rd), if we consider the partial order relation among u.s.c. func-

tions : f is ”less” than g if f(.) ≥ g(.) (as extension of ⊇ among sets), then,

(F∗(Rd),≥) is also a continuous lattice, and as such we simply take the Borel

σ−field B(L) of its Lawson topology to define random fuzzy (closed) sets.

A random fuzzy (closed) set is then a map Ω → F∗, A−B(L)− measurable.

For the extension of Choquet theorem to random fuzzy sets, see Nguyen,

Wang and Wei [38]. See also Nguyen et al. [39].

The point is this. We have put fuzzy data in a rigorous theory of probability

from which standard concepts for random elements can be meaningfully de-

fined for statistical inference. As such, applied statisticians can be ”confident”

that their empirical works are supported firmly by theory.

Note: Dedicated to Lotfi Zadeh.
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