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Abstract
Likelihood-based finite sample inference based on synthetic data under the

exponential model is developed in this paper. Two distinct synthetic data gen-

eration scenarios are considered, one based on posterior predictive sampling,

and the other based on plug-in sampling. It is demonstrated that valid in-

ference can be drawn in both scenarios, even for a singly imputed synthetic

dataset. The usual combination rules for drawing inference under multiple syn-

thetic datasets are discussed in the context of likelihood-based data analysis.
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1. Introduction

Statistical agencies are often faced with two conflicting objectives: (1) col-

lect and publish useful datasets for designing public policies and building sci-

entific theories, and (2) protect confidentiality of survey respondents which is

essential to uphold public trust, leading to better response rates and data ac-

curacy. Although cell suppression and swapping are two popular methods for

statistical disclosure control, use of noise-perturbed and synthetic datasets has

gained considerable popularity and importance in recent times.

In regard to noise perturbation of original microdata to protect confiden-

tiality (Kim [1]; Kim and Winkler [2], [3]; Little [4]), recently Nayak et al. [5]

and Sinha et al. [6] discussed some salient features and properties of noise-

multiplied data in general terms; Lin and Wise [7] considered estimation of

regression parameters based on noise-multiplied data; Klein et al. [8] devel-

oped likelihood-based data analysis methods under noise-multiplication based

on samples from exponential, normal and lognormal populations; and Klein and

Sinha [9] proposed an approach to disseminate and analyze noise-multiplied

data using multiple imputation.

The focus of this paper is to address some inferential aspects of statistical

analysis based on synthetic data when real datasets are not released and, as

a substitute, synthetic datasets based on the real data are created for publica-

tion and analysis. Rubin [10] first advocated use of synthetic data for statistical

disclosure control, using the framework of multiple imputation (Rubin [11]), and

argued that synthetic data so created do not correspond to any actual sampling

unit, thus preserving the confidentiality of the respondents. Inferential methods

for fully synthetic data were developed by Raghunathan et al. [12], and inferen-

tial methods for partially synthetic data were developed by Reiter [13]. Reiter

[14] presented an illustration and empirical study of fully synthetic data. An

overview of multiple imputation techniques, including its use in statistical dis-

closure control, is provided by Reiter and Raghunathan [15]. There has been

much research to further develop synthetic data methodology, and a systematic

account of the developments is provided by Drechsler [16]. The methodology

of partially synthetic data has been successfully applied to a number of data

products in the United States as described by Reiter and Kinney [17] and the

references therein.

The two methods considered in this paper for generation and analysis of
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synthetic data are denoted by Case 1 and Case 2. To describe these two meth-

ods, suppose that x = (x1, . . . ,xn) are the original microdata which are jointly

distributed according to the probability density function (pdf) fθ(x), where θ is

the unknown (scalar or vector) parameter.

Case 1: Posterior Predictive Sampling. Assume a prior π(θ) for θ, then

the posterior distribution of θ given x is derived and used to draw m inde-

pendent replications θ∗
1 , . . . ,θ

∗
m (known as posterior draws). Next, for each

such posterior draw of θ, a corresponding replicate of x is generated, namely,

zi = (zi1, . . . , zin) is drawn from the pdf fθ∗
i
(x), where fθ∗

i
(x) denotes the joint

pdf of the original data x, with the unknown θ replaced by the posterior draw

θ∗
i . The synthetic data Z = {zi = (zi1, . . . ,zin) : i = 1, . . . ,m} are then re-

leased to the public. For the scenario described here, the usual practice for

drawing inference on θ from the synthetic data is based on the methods of

Reiter [13] for partially synthetic data. To summarize, suppose Q = Q(θ) is a

scalar parameter of interest. Let η = η(x) denote a point estimator of Q and

let V = V (x) denote an estimator of the variance of η, both computed on the

original data set x. To draw inference on θ based on the synthetic data Z, one

would compute ηi = η(zi) and Vi = V (zi), the analogs of η and V , respectively,

computed on the ith synthetic data set zi. Then the estimator of Q based on

the entire synthetic data Z is

η̄m =
1

m

m∑
i=1

ηi, (1)

and an estimator of the variance of η̄m is

Tm =
Bm
m

+ V̄m, (2)

where Bm = 1
m−1

∑m
i=1(ηi − η̄m)2 and V̄m = 1

m

∑m
i=1 Vi. An approximate level

(1 − γ) confidence interval for Q can be computed as η̄m ± tγ/2,vT
1/2
m where

tγ/2,v is the upper γ/2 quantile of the t distribution with degrees of freedom

v = (m− 1)(1 +R−1
m )2 with Rm = Bm(mV̄m)−1.

Case 2: Plug-in Sampling. An alternative way to generate synthetic data is

to take the observed value of a point estimator θ̂(x) of θ, and plug it into the

joint pdf of x. The resulting pdf, with the unknown θ replaced by the observed

value of the point estimator θ̂ = θ̂(x), is denoted by fθ̂(x). The synthetic data,
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namely, Y = {yi = (yi1, . . . ,yin) : i = 1, . . . ,m} are generated by drawing each

yi independently from the joint pdf fθ̂(x). As discussed by Reiter and Kinney

[17], in this scenario the combination rules of Reiter [13] appear to remain

valid. Thus to draw inference for the scalar parameter Q = Q(θ), one can use

the combination formulas of equations (1) and (2) along with the t confidence

interval discussed above (obviously, with z1, . . . , zm replaced by y1, . . . ,ym,

that is, ηi = η(yi) and Vi = V (yi)).

The motivations for this current research are twofold. First, although syn-

thetic data methodology calls for releasing m > 1 synthetic versions of the

original data, there are situations where this is not feasible, perhaps due to

severe privacy concerns. For example, the Synthetic Longitudinal Business

Database, accessible through the VirtualRDC at Cornell University, is a syn-

thetic version of the U.S. Census Bureau’s Longitudinal Business Database

(LBD). As discussed in Kinney et al. [18], the decision was made to release

only a single version of the LBD in the synthetic file, instead of multiple copies,

to avoid the perception of high disclosure risk. The usual combining rules are

not applicable when only a single synthetic data set is released (i.e. when

m = 1), so one wonders if it is possible to get valid inference in this case. The

results of this paper show that it is indeed possible in some cases, if one fully

utilizes the model structure. Secondly, irrespective of how the synthetic data

are generated, admittedly it is model-based and hence one wonders if rigorous

model-based finite sample inference about Q(θ) can be developed based on Z

(Case 1) or Y (Case 2). The results developed in this paper are used to obtain

such a finite sample inference.

The organization of the paper is as follows. We develop likelihood-based

inference for exponential mean in Section 2, and provide some concluding re-

marks in Section 3. Throughout, we derive the exact likelihood of synthetic data

for both Cases 1 and 2, and carry out inference for the exponential mean. In the

sequel we also allow a general form of the prior π(θ) under Case 1, involving

a hyperparameter α, and make some recommendations about its choice. Our

comparison of the two approaches of synthetic data generation reveals some

very interesting features. The entire treatment is non-asymptotic in nature. We

assume that the data user has knowledge of the form of the parametric model

fθ(x) of the original data, and that this model is used to create the synthetic

data as described above. Furthermore, in Case 1, we assume that knowledge
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of the underlying prior is available to the data user for conducting the analysis.

2. Methodology for Drawing Likelihood Based Inference

Throughout this section, we work under the following notation and model.

Suppose that the original data x1, . . . , xn are independent and identically dis-

tributed (iid) according to the exponential probability density function (pdf)

fθ(x) = 1
θ e

−x/θ, x > 0, where θ > 0 is the unknown parameter. Writing

x = (x1, . . . , xn) and u =
∑n
i=1 xi, note that u is a sufficient statistic for θ, with

u distributed as Gamma(n, θ), and the maximum likelihood estimator (MLE) of

θ based on x is θ̂MLE(x) = x̄ = u/n.

2.1 Case 1: Posterior Predictive Sampling
Inference Based on a Singly Imputed Synthetic Data Set. Under a Bayesian

setting, we would say that the synthetic data z are drawn from the posterior pre-

dictive distribution of x. We take the prior distribution on θ as π(θ) ∝ θ−α, θ > 0.

Using this prior and noting that u is sufficient for θ, suppose that, conditional on

u, a synthetic dataset z = (z1, . . . , zn) is generated as follows.

Step 1. Draw θ∗ from the posterior distribution of θ given u. The posterior

takes the form of the inverse gamma distribution having parame-

ters (n+ α− 1) and u; that is, draw θ∗ from the pdf

π(θ∗|u) = un+α−1

Γ(n+α−1) (θ
∗)−(n+α−1)−1e−

u
θ∗ , θ∗ > 0.

Step 2. Given the value of θ∗ drawn in step 1, draw z1, . . . , zn as iid from

the exponential density fθ(z) = 1
θ e

−z/θ, z > 0 with the unknown θ

replaced by θ∗.

Central to our analysis based on z is its joint pdf or the likelihood function of θ

based on z, given by the following, where we write Z =
∑n
i=1 zi.

Theorem 1. The joint pdf of z is given by

hθ(z) =

∫ ∞

0

[
e−

Zξ
θ ξn

θn

][
ξn+α−2

B(n, n+ α− 1)(1 + ξ)2n+α−1

]
dξ

which, interestingly enough, is a scale mixture of gamma with an F -type mixing

distribution.

Proof. The proof of this result follows from the fact that the marginal pdf of z is
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given by

hθ(z) =

∫ ∞

0

∫ ∞

0

[
e−

1
θ∗ Z

(θ∗)n

][
un+α−1

Γ(n+ α− 1)
(θ∗)−(n+α−1)−1e−

u
θ∗

] [
un−1e−

u
θ

Γ(n)θn

]
dθ∗du,

for z1 > 0, . . . , zn > 0, and thus, upon integrating out θ∗, we get

hθ(z) =

∫ ∞

0

[
Γ(2n+ α− 1)

(Z + u)2n+α−1

] [
un+α−1

Γ(n+ α− 1)

] [
1

Γ(n)θn
un−1e−

u
θ

]
du.

Finally, we make a transformation from u to ξ = u/Z which yields the desired

result. �

The MLE of θ which is obtained by maximizing this pdf is readily given by

θ̂MLE(z) =
Z
ηn,α

where ηn,α is the value of η that maximizes

Q1(η) = ηn
∫ ∞

0

e−ηξξ2n+α−2

(1 + ξ)2n+α−1
dξ.

The mean squared error (MSE) of the MLE is computed as (using expressions

for E(Z) and E(Z2) derived below)

MSE(θ̂MLE(z)) = θ2
[

n2(n+ 1)2

η2n,α(n+ α− 2)(n+ α− 3)
− 2n2

ηn,α(n+ α− 2)
+ 1

]
.

Remark 1. One can verify that Z, which is obviously sufficient for θ, is also

complete. Here is an outline of the proof. Assume Eθ[g(Z)] = 0 for all θ > 0.

Writing ξ
θ = η and changing the order of integration, this is equivalent to

0 =

∫ ∞

0

[∫ ∞

0

e−Zηg(Z)dZ

]
η2n+α−2

(1 + θη)2n+α−1
dη.

Upon defining λ(η) = η2n+α−2[
∫∞
0
e−Zηg(Z)dZ], and noting that∫∞

0
e−u(1+θη)u2n+α−2du = Γ(2n+ α− 1)(1 + θη)−(2n+α−1), we get

0 =

∫ ∞

0

[∫ ∞

0

e−u(1+θη)u2n+α−2du

]
λ(η)dη.

Finally, writing v = uθ, and changing the order of integration, we get

0 =

∫ ∞

0

e−
v
θ v2n+α−2

[∫ ∞

0

e−vηλ(η)dη

]
dv.
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Now completeness of v implies that the inner integral above is 0 for all v (almost

everywhere (a.e.)), which in turn implies λ(η) = 0 for all η (a.e.), and hence

g(Z) = 0 for all Z (a.e.).

Thus, while the computation of the MLE of θ based on the joint pdf of z is

not explicit, the uniformly minimum variance unbiased estimator (UMVUE) of θ

based on Z is obtained as

θ̂UMVUE(z) =
n+ α− 2

n
Z̄, (3)

where Z̄ = Z
n . The variance of the UMVUE is computed (in several steps) as

follows. Note that

E[Var(Z̄|θ∗)] = E

[
(θ∗)2

n

]
=

θ2(n+ 1)

(n+ α− 2)(n+ α− 3)
,

Var[E(Z̄|θ∗)] = Var(θ∗) = E[Var(θ∗|x)] + Var[E(θ∗|x)],
E[Var(θ∗|x)] = E

[
u2

(n+ α− 2)(n+ α− 3)
−

u2

(n+ α− 2)2

]
=

n(n+ 1)θ2

(n+ α− 2)2(n+ α− 3)
,

Var[E(θ∗|x)] = Var
[

u

n+ α− 2

]
=

nθ2

(n+ α− 2)2
.

Combining the above terms, we get

Var(Z̄) = θ2
[

(n+ 1)

(n+ α− 2)(n+ α− 3)
+

n(n+ 1)

(n+ α− 2)2(n+ α− 3)
+

n

(n+ α− 2)2

]
= θ2

(n+ α)(2n+ 1) + n2 − 4n− 2

(n+ α− 2)2(n+ α− 3)
.

Hence, we get

Var(θ̂UMVUE(z)) =
θ2

n2

[
(n+ α)(2n+ 1) + n2 − 4n− 2

(n+ α− 3)

]
=

θ2

n2

[
2n+ 1 +

(n+ 1)2

n+ α− 3

]
. (4)

To construct a confidence interval for θ, one can verify that Z∗ = Z/θ is a

pivot with its distribution given as

h(z∗) =

∫ ∞

0

[
e−z

∗ξ(z∗)n−1ξn

Γ(n)

] [
ξn+α−2

B(n, n+ α− 1)(1 + ξ)2n+α−1

]
dξ.

If cn,α and dn,α satisfy:

∫ dn,α

cn,α

h(z∗)dz∗ = 1− γ, c2n,αh(cn,α) = d2n,αh(dn,α),
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then the shortest 1 − γ level confidence interval for θ based on Z and the

expected length of the confidence interval are obtained, respectively, as[
Z

dn,α
,

Z

cn,α

]
and E[L1(z)] =

n2θ

n+ α− 2

[
1

cn,α
− 1

dn,α

]
,

where L1(z) = Z(1/cn,α − 1/dn,α).

Remark 2. It follows from (3) that only the choice α = 2 makes the standard es-

timator of θ, namely, Z̄, unbiased for θ. This shows that the usual combination

rule (suggesting Z̄) will not be unbiased in this case unless α is appropriately

chosen. However, we note that for fixed α, the bias of Z̄ converges to zero as

n→ ∞.

Inference Based on a Multiply Imputed Synthetic Dataset. Now we sup-

pose that conditional on u, the synthetic dataset consists of m > 1 repli-

cations of the original dataset generated by repeating Steps 1 and 2 (from

the beginning of Section 2.1) a total of m times to get the synthetic data:

(z11, . . . , z1n), . . ., (zm1, . . . , zmn). Thus, for multiple replications of z-values,

which is the usual synthetic data scenario, we denote by zij the jth synthetic

value from the ith replication, j = 1, . . . , n, i = 1, . . . ,m. Let Zi =
∑n
j=1 zij and

Z = (Z1, . . . , Zm). One can check that the vector Z is jointly sufficient for θ.

Theorem 2. The joint pdf of Z = (Z1, . . . , Zm) is

hθ(Z1, . . . , Zm) =

∫ ∞

0

[
m∏
i=1

un+α−1Zn−1
i

B(n, n+ α− 1)(u+ Zi)2n+α−1

][
e−

u
θ un−1

Γ(n)θn

]
du.

Proof. The proof follows upon noting that the conditional joint pdf of (Z1, . . . , Zm),

given u, is the product of individual densities of the form

h(Zi|u) =
un+α−1Zn−1

i

B(n,n+α−1)(u+Zi)2n+α−1 . �

The MLE of θ, which is not explicit, can be obtained by maximizing this joint

pdf with respect to θ. Unlike in the case of m = 1, here Z1, . . . , Zm are jointly

sufficient for θ, and obviously the joint distribution is not complete, implying

there is no obvious estimator of θ based on the Zi’s. Letting ¯̄Z = 1
mn

∑m
i=1 Zi,

it can be shown that

θ̃1 =
n+ α− 2

n
¯̄Z (5)
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is an unbiased estimator of θ with

Var(θ̃1) =
θ2

mn2

[
mn+ n+ 1 +

(n+ 1)2

n+ α− 3

]
. (6)

Likewise, using the fact that E[Zγ1 |u] =
[
B(n+γ,n+α−1−γ)

B(n,n+α−1)

]
uγ , it follows that

E

[
m∏
i=1

Zγi

]
=

[
B(n+ γ, n+ α− 1− γ)

B(n, n+ α− 1)

]m
E[umγ ].

Taking γ = 1
m and noting that E(u) = nθ, a second unbiased estimator of θ

based on the geometric mean of (Z1, . . . , Zm) is given by

θ̃2 =
1

n

[
m∏
i=1

Z
1
m
i

][
B(n+ 1

m , n+ α− 1− 1
m )

B(n, n+ α− 1)

]−m
, (7)

and its variance is

Var(θ̃2) = θ2

[
n+ 1

n

{
B(n, n+ α− 1)B(n+ 2

m , n+ α− 1− 2
m )

B2(n+ 1
m , n+ α− 1− 1

m )

}m
− 1

]
. (8)

It is also possible to suggest other unbiased estimators of θ based on

Z(1) = min{Z1, . . . , Zm} and Z(m) = max{Z1, . . . , Zm}.

Since V = (V1, . . . , Vn) = (Z1

θ , . . . ,
Zm
θ ) is a pivot with the joint pdf

h(v) =

∫ ∞

0

[
m∏
i=1

tn+α−1vn−1
i

B(n, n+ α− 1)(t+ vi)2n+α−1

][
e−ttn−1

Γ(n)

]
dt,

confidence intervals for θ based on suitable combinations of them (arithmetic

mean, geometric mean, minimum, maximum) can be derived, and these can

be compared with the one based on Plug-in Sampling method discussed in the

next section.

2.2 Case 2: Plug-in Sampling
Following Reiter and Kinney [17], here a synthetic data set y = (y1, . . . , yN ) of

size N is generated by drawing y1, . . . , yN as iid from the exponential density

fθ(y) =
1
θ e

−y/θ, y > 0, with the unknown parameter θ set equal to θ̂MLE(x) =

x̄ = u/n. Notice that N , the size of the synthetic sample, is not necessarily

taken to be equal to n, the size of the original sample. In the case of m multiply
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imputed synthetic data sets, one would takeN = nm, while for a singly imputed

synthetic data set, one would simply take N = n. Regardless of the choice of

N , it is assumed that the value of the original sample size n is known to the

data analyst, as this value will be needed to apply the methodology developed

in this section. The goal now is to draw inference on θ based on the synthetic

data y. Central to this goal is the joint pdf of y, or the likelihood function of θ

based on y, which is stated below.

Theorem 3. The joint pdf of y is given by

gθ(y) =

∫ ∞

0

[
nN

uN
e−

n
u

∑N
1 yi

] [
1

Γ(n)θn
un−1e−u/θ

]
du. (9)

Proof. The proof depends on the simple fact that the conditional pdf of y, given
u, is

g(y|u) =
N∏
i=1

[n
u
e−nyi/u

]
=
nN

uN
e−

n
u

∑N
1 yi , y1 > 0, . . . , yN > 0. �

Trivially, the statistic t =
∑N
i=1 yi is sufficient for θ in model (9), and its pdf (by

the same conditional argument) is given by

gθ(t) =

∫ ∞

0

[
nN

Γ(N)uN
tN−1e−

nt
u

] [
1

Γ(n)θn
un−1e−u/θ

]
du, t > 0, (10)

which is a scale mixture of gamma. The MLE of θ can be obtained by maximiz-

ing gθ(t) with respect to θ. Writing ψ = u
θ , gθ(t), apart from a constant, can be

expressed as

gθ(t) ∝
tN−1

θN

∫ ∞

0

e−ψ−
nt
θψψn−N−1dψ.

Putting η = t/θ, we choose η by maximizing

Q2(η) = ηN
∫ ∞

0

e−ψ−
nη
ψ ψn−N−1dψ

over 0 < η < ∞. If ηn,N is the maximizer, the MLE of θ is given by θ̂MLE(y) =
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t
ηn,N

. The mean squared error (MSE) of the MLE is computed as

MSE(θ̂MLE(y)) = E

[
t2

η2n,N
− 2

tθ

ηn,N
+ θ2

]
= θ2

[
N(n+ 1)(N + 1)

nη2n,N
− 2

N

ηn,N
+ 1

]
.

On the other hand, it is easy to verify that the pdf of t given by (10) is

complete. This is because if ω(t) satisfies Eθ[ω(t)] = 0, for all θ, by changing

the order of integration, it follows that
∫∞
0
ω(t)e−

nt
u tN−1dt = 0 for all u, which

implies ω(t) = 0 (a.e.). Hence the UMVUE of θ based on t and its variance are

readily obtained as

θ̂UMVUE(y) = t̄ =
t

N
, (11)

Var(θ̂UMVUE(y)) = Var(t̄) = θ2
[
1

n
+

1

N
+

1

nN

]
. (12)

In the above, Var(t̄) is obtained by using the facts that E(t) = Nθ and E(t2) =
N(N+1)(n+1)

n θ2, which follow by the usual conditional argument based on u.

To construct a confidence interval for θ based on t, we note that t∗ = t/θ is

a pivot. This is because the marginal pdf of t∗ is

gθ(t
∗) =

∫ ∞

0

[
nN

Γ(N)uN
(θt∗)N−1e−

n
u θt

∗
θ

] [
1

Γ(n)θn
un−1e−u/θ

]
du

=

∫ ∞

0

[
nN

Γ(N)uN
θN (t∗)N−1e−

n
u θt

∗
] [

1

Γ(n)θn
un−1e−u/θ

]
du, t∗ > 0.

Writing ξ = u
θ , dξ = du

θ , we can express gθ(t∗) as

g(t∗) =

∫ ∞

0

[
nN

Γ(N)ξN
(t∗)N−1e−

n
ξ t

∗
] [

1

Γ(n)
ξn−1e−ξ

]
dξ

=
nN (t∗)N−1

Γ(N)Γ(n)

∫ ∞

0

e−ξ−
nt∗
ξ ξn−N−1dξ

which is clearly free of θ, and can be used to construct a confidence interval for

θ. Thus, if an,N and bn,N satisfy

∫ bn,N

an,N

g(t∗)dt∗ = 1− γ, a2n,Ng(an,N ) = b2n,Ng(bn,N ),

then the shortest 1−γ level confidence interval for θ based on t and its expected
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length are obtained, respectively, as[
t

bn,N
,

t

an,N

]
and E[L2(y)] = Nθ

[
1

an,N
− 1

bn,N

]
,

where L2(y) = t(1/an,N − 1/bn,N ).

Remark 3. Taking N = n and comparing (4) and (12), it follows that θ̂UMVUE(y)

has a smaller variance than θ̂UMVUE(z), whatever be α.

Remark 4. Table 1 presents a comparison of Cases 1 and 2 based on their

expected length of the 95% confidence intervals for θ, scaled by θ, whenN = n.

The results in the table clearly indicate that Case 2 yields shorter expected

length of confidence intervals than Case 1.

Remark 5. It is interesting to compare the unbiased estimator of θ, namely t̄

defined in (11), with the unbiased estimators θ̃1 and θ̃2 (defined in (5) and (7)),

based on the arithmetic mean and geometric mean, respectively. Some nu-

merical values of the variances of these three estimators appear in Table 2 for

N = nm. Surprisingly enough, θ̃2 turns out to be marginally better than θ̃1 in

the scenarios considered, implying that the usual arithmetic mean combination

approach need not always be preferable. Both θ̃1 and θ̃2 are found to be inferior

to t̄; that is, the unbiased estimator under Case 2 is more efficient than those

obtained under Case 1.

Table 1. Cut-off points and scaled expected length (scaled by θ) of the 95%
confidence interval for the exponential mean θ

Plug-in sampling Posterior predictive sampling
α = 1 α = 2

n an bn
E[L2(y)]

θ
cn,α dn,α

E[L1(z)]
θ

cn,α dn,α
E[L1(z)]

θ
10 4.1 28.2 2.1 3.7 45.0 2.5 3.4 39.1 2.7
15 7.4 33.8 1.6 6.7 46.9 1.9 6.3 43.4 2.0
20 10.8 39.9 1.3 9.9 51.7 1.6 9.6 48.3 1.7
25 14.4 46.3 1.2 13.3 57.2 1.4 12.9 54.1 1.5
30 18.2 52.2 1.1 16.9 62.6 1.3 16.4 60.2 1.3
50 34.1 75.8 0.8 31.9 86.5 1.0 31.5 84.2 1.0
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Table 2. Numerical values of Var(t̄), Var(θ̃1) and Var(θ̃2)

Plug-in sampling Posterior predictive sampling
α = 1 α = 2

m n Var(t̄) Var(θ̃1) Var(θ̃2) Var(θ̃1) Var(θ̃2)
5 10 0.122 0.152 0.147 0.149 0.145

15 0.081 0.098 0.096 0.097 0.095
20 0.061 0.073 0.072 0.072 0.071
25 0.048 0.058 0.057 0.057 0.057
30 0.040 0.048 0.047 0.048 0.047
50 0.024 0.028 0.028 0.028 0.028

3. Concluding Remarks

In this paper, we have derived finite sample likelihood based methods of

inference for synthetic data when the original data follow the exponential model

and the synthetic data are generated either by posterior predictive sampling

(Case 1) or by plug-in sampling (Case 2). We provided some comparisons

between Case 1 and Case 2, and found that in general plug-in sampling yields

more efficient inference than posterior predictive sampling. We have found that

in Case 1, for finite n, the usual suggested estimator of θ based on single or

multiple imputation exhibits bias unless α is suitably chosen. Also, in Case 2, if

the original data are iid and m synthetic data sets are generated, then there is

an arbitrariness in the usual combining rule for estimating variance, since there

is no unique way to partition the data into m synthetic data sets. The methods

developed in this paper however do not have this arbitrary nature.

The inferential methods developed in this paper are naturally somewhat

more complicated to apply than the standard inferences based on the sim-

ple multiple imputation combining formulas. However, the methods in this pa-

per have the desirable property that they are exact, and based on sufficient

statistics. Furthermore, these methods allow a data user to draw valid infer-

ence when only a single synthetic data set is released which is useful in cases

where (perhaps due to privacy concerns or limitations in resources) a statistical

agency releases a single synthetic data set instead of multiple synthetic copies.
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