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Abstract

Nonlinear models pervade the statistical literature on drug development,
and specifically in pharmacokinetics (PK), pharmacodynamics (PD), and the
biological and physical sciences in general. Obtaining efficient experimental
designs for such models is non-trivial due to the well-documented parameter-
sensitivity problem. Bayesian methods, which integrate prior information about
the model parameters into the design process, have been proposed as a so-
lution to the problem. In implementing such methods, the assumption is made
that a single prior distribution exists for the parameters which may not be the
case. In this research, we discuss situations in which there may be multiple (or
competing) prior distributions and propose a robust design criterion for obtain-
ing efficient designs in such cases.
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1. Introduction

Experimentation, critical to the scientific method and manufacturing, is also
an efficient way of learning about the world. While most of the pioneering
work in experimental design started in the field of agriculture, notably by R.
A. Fisher, experiments are performed in the educational, biological, chemical
and physical sciences. These and many other fields have benefited immensely
over the past century from the extensive research in the design of experiments.
Fisher is largely credited with the role of statistics in experimental design and
perhaps more importantly, the role of the statistician in experimentation: from
being an after-the-fact technician to being an active collaborator at all stages
of an investigation [1].

The importance of a statistically sound experimental design cannot be over-
emphasized. Response surface designs including central composite designs,
Plackett-Burman designs, as well as full and fractional factorial designs [2] have
been used to model relationships such as those between a chemical endpoint
or response and a set of input variables. Response surface designs are widely
used in industrial experiments to determine optimal operating conditions for
a system. Optimal two-stage studies are used in epidemiological studies to
maximize information gain [3]. Fedorov and Leonov [4] discuss optimal exper-
imental designs in the drug development literature, especially in the study of
pharmacokinetics (PK) and pharmacodynamics (PD).

The procedure of designing an experiment, according to Atkinson and Bai-
ley [5] in their review of design of experiments, consists of three important
phases:

i. Choice of treatments,
ii. Choice of experimental units and,

iii. Deciding which treatment to apply to which experimental unit.

The authors mention that the relative importance of each phase depends
on the application. in many clinical trials, patients enter the trial sequentially in
which case phase (ii) is very important, and where there is structure, for exam-
ple sex or age, in the experimental units, phase (iii) becomes important. In this
paper, we will focus on phase (i), that is, the choice of treatments. Following [5],
in an experimental setting, the choice of treatments may be qualitative or quan-
titative (or both in some cases, like in the chemical industry). In a clinical trial,
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for example, the efficacy of two drugs can be compared to a placebo in which
case the treatments are qualitative. In the foregoing case, the choice of treat-
ment is important but not mathematically sophisticated. For example, there
are no intermediate levels for the treatments. As Chaloner and Verdinelli [6]
point out, the main idea behind experimental design is that statistical inference
about quantities of interest can be improved remarkably by appropriately se-
lecting the values of the treatment or control variables. This makes the choice
of treatments in an experiment quite critical if we hope to learn anything about
a particular system (like in PK studies) or a process. For example in Atkinson,
Chaloner, Herzberg, and Juritz [7], the question is asked, “When a horse is in-
jected with a drug, at what times must blood be drawn from the animal in order
to model the passage of the drug through the bloodstream?”. In dose-response
studies where quantal models are used, the question is asked: “What quantity
of a dose will result in, for example, a 50% success rate?”. Questions of this
sort are common in practice and have led to so-called optimal experimental
designs [8]. Optimal designs are experimental designs that are based on one
or more design optimality criteria. For a complete review of optimal designs in
terms of applications, see Berger and Wong [9].

In this paper, we focus on situations when treatments are quantitative, that
is, having potential levels throughout an interval I of R. Also, we assume that
a model is known a priori. Section 2 discusses the theory of optimal designs
and more importantly, design optimality criteria. In Section 3, we focus on the
optimal design problem for nonlinear models and discuss some potential so-
lutions. Section 4 specifically addresses a Bayesian solution to the nonlinear
design problem. We introduce our solution to the design problem in Section 5
and apply it to the four-parameter logistic (4PL) model in section 6, and con-
clude with a discussion in Section 7.

2. Overview of Optimality Theory and Design Optimality Criteria

Although not often mentioned in the optimal design literature, the work of
Smith [10] was a precursor to Kiefer [8] and Kiefer and Wolfowitz [11] as far
as the theory of optimal design is concerned. For example, in her seminal
work, [10] obtained optimal designs for a polynomial in one factor over a [—1, 1]
design region. However, the concept of optimal designs is largely credited to
Kiefer and his colleagues. Expositions on the subject of optimality theory have
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been given in Fedorov [12], Pukelsheim [13] and Atkinson et al. [14]. Optimal
designs were originally for linear models, in particular, response surface mod-
els over regular regions [5]. More recently, optimal designs have been widely
studied in the context of nonlinear models.

To motivate the theory of optimal design, consider a univariate linear model

yi = n(xi,0) + € (1)

where y; is the response for the ith experiment, the functional form of n(z;, 0) is
assumed to be known, 6 is a p x 1 vector of unknown parameters, ¢; w N(0,0?)
is the ith random error, and z; is the value of the explanatory variable x for the
ith experiment. The optimal design goal is to choose r distinct design points in
the design space X" such that the optimal design

5:{ I, o, e s Ly } (2)
wy, W2, . . . ,Wp

produces experimental data for estimating some function of the p-dimensional
parameter vector 6 with high efficiency. Here wy, k = 1, ..., r, is the amount of
experimental effort at the kth design point. Thus, the w; weights are positive
and sum to one. These weights are often irrational in which case the optimal
design is said to be continuous. Otherwise, if n; out of of a total of n observa-
tions are made at the kth support point, then wy = n,/n and the design is said
to be exact. Although continuous designs are not implementable in practice,
the mathematical problem of finding optimal designs is simplified by treating ¢
as a design measure [15] which satisfies:

&(x) >0, z€ X and / Edx = 1. (3)
X

Pukelsheim and Reider [16] show how optimum continuous designs can be
converted into near-optimum exact designs, with minimum loss in efficiency, so
that they can be used in practice.

The information matrix, apart from a multiplicative constant, for a continuous
design is given by

M(£.0) = /X F(.0) 17 (z,0)¢(dx) (4)

where f(x,0) is the vector of partial derivatives of n(z, §) with respect to 6. For
the linear model, the dependence of M on # can be dropped in general unless
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interest is in estimating a nonlinear function of the parameters. Consequently,
it is important to note that for linear models, the information matrix A depends
only on the support points, z. Optimal design theory is concerned with maxi-
mization (or minimization) of a concave (or convex) function of the information
matrix M. In general, the optimal design problem is a constrained nonlinear
mathematical programming problem. The experimental objective in a partic-
ular setting, determines the suitable convex function of M to be optimized.
Functions of this sort are known as design optimality criteria.

In most applications the experimental objective is efficient estimation of
model parameters. For example, for certain fixed-effects analysis of variance
models, Wald [17] proposed maximizing the determinant |A|, or equivalently
minimizing |M ~1], in an attempt to maximize the power of the F-ratio for test-
ing a linear hypothesis on the parameters. This criterion, called the D-optimality
criterion in Kiefer and Wolfowitz [18], is the most widely-used optimality crite-
rion. An equivalent criterion is log | M (£)|. Maximizing the D criterion is equiv-
alent to maximizing the product of the eigenvalues of M. Often, in analysis
of variance models, estimating a set of contrasts with minimum variance is of
interest. In this case, the C-optimality criterion is used, and the function to
be minimized is tr{CTM~1(£)C}, where the rows of the s x p matrix CT are
the vectors of constants corresponding to the contrasts. In response surface
methodology, minimizing the maximum prediction variance in the design space
is often of interest. In this regard, [10] proposed what is now known as the G-
optimality criterion. In a G—optimal design, the maximum value of the variance
of prediction

d(z,€) = [T (x)M () f () (5)

over the design space is minimized. Other optimality criteria exist for different
experimental objectives. When more than one objective is necessary, com-
binations of optimality criteria can be used. See Chapter 10 of [14] for other
optimality criteria.

Kiefer [8,11, 18-21] and other authors developed the general theory of opti-
mal designs. The most important theoretical result is the general equivalence
theorem (GET). The GET is practically useful in that it led to the development
of algorithmic methods for optimal design construction and methods for check-
ing the optimality of a proposed design. It is must be noted that, in general, the
GET applies to continuous designs but not exact designs. However, a family
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of algorithms have been derived based on the theorem [22]. Another impor-
tant result of the theorem is that G— and D—optimal continuous designs are
equivalent. Although the work of Kiefer and his colleagues is focused on lin-
ear models, White [23] extended it to nonlinear models which is discussed in
Section 3. To conclude our overview of optimality theory, we point out that,
in general, the optimal design for a k—parameter model has % distinct sup-
port points. An advantage over classical designs is that the number of support
points is minimized. However, this also poses a problem because the inade-
quacy (or lack-of-fit) of the model cannot be checked and is the main criticism
of optimal designs. O’Brien [24] and others suggest ways this can be over-
come. An important consequence of this problem is the published research on
robust designs.

3. Optimal Design Problem for Nonlinear Models

There are many cases in practice where a linear regression model is not
appropriate for data analysis. For example, the true relationship between the
response and the predictor is a differential equation or a solution to a differen-
tial equation. In nonlinear models, the expectation function is not linear in the
model parameters. Nonlinear situations can also arise in linear models when
interest is in estimating a nonlinear function of the parameters. The impor-
tance of nonlinear models cannot be overstated given their use in the biolog-
ical, chemical and physical sciences as well as in industry. Bates and Watts
[25] and Seber and Wild [26] provide a thorough discussion of nonlinear re-
gression analysis. Traditionally, researchers have resorted to transformations
that linearize the nonlinear model in order to use estimation methods that are
applicable to linear models. Common among the transformations used is the
natural logarithmic transformation, which has worked quite well in many cases.
However, it is important to point out here that in cases where the errors are ad-
ditive, rather than multiplicative, the use of natural logarithmic transformation
may not be advisable [27].

The Michaelis-Menten model [25] for enzyme kinetics relates the initial ve-
locity of an enzymatic reaction to the substrate concentration. To illustrate the
optimal design problem for nonlinear models, consider the expectation function
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for the ith observation of the Michaelis-Menten model

- 017
- 0o + x;

n(xs,0) (6)

where n(x;, 6) is the mean velocity of the reaction given a substrate concentra-
tion x;. The vector of partial derivatives is

v o 891 892 o 92 —+ x; (92 + QCZ')Q

Then for a continuous design with » support points and weights wy, wo, . .., w,,
the information matrix is given by

M(£,0) = wif (i, 0)f(x:,0)" (8)

i=1
which depends on 6 = (6, 62). In particular, the ith information matrix
x? 791:1:?
Mi(£,60) = [“’331??2 %ﬁs”] 9)
(92+11’L)3 (92“1’1;1‘)4

clearly depends on 6. The optimal design problem for nonlinear models is a re-
sult of the dependence of the information matrix on the unknown parameters.
To put things in context, experiments are designed to learn about unknown
model parameters. The dependence of the information matrix on these un-
known parameters means that to obtain, for example, a D—optimal design for
the Michaelis-Menten model, the experimenter needs to have prior knowledge
of the model parameters. This paradox was noted as an absurd bargain be-
tween experimenter and statistician by Cochran [28]: “You tell me the value of
6 and | promise to design the best experiment for estimating 6.

Various approaches have been proposed in the literature for addressing this
issue. The earliest and perhaps simplest approach is the idea of local optimal-
ity by Chernoff [29] and Box and Lucas [30]. If a guess of the parameter vector
can be made, then an optimal design can be obtained at this local value of the
parameter vector, and the resulting design is said to be locally optimal. Obvi-
ously, locally optimal designs seem reasonable in single parameter models or
where most of the parameters are conditionally linear, like 65 in the Michaelis-
Menten model. In fact, locally optimal designs will approximate the true optimal
designs quite closely if reasonable guesses of the parameter vector can be
made. These designs, however, can be very inefficient if the true parameter
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values are not close to the guesses. Although they may not be practical in
many situations, Ford, Titterington, and Kitsos [31] identify some very impor-
tant uses of locally optimal designs. Box and Hunter [32], Chernoff [33], and
others have proposed sequential experimental designs in situations where ini-
tial experiments have been done to obtain prior parameter estimates. Although
conceptually ideal, sequential designs are not desirable in problems where the
cost of data collection is large. Quite popular in the literature and more suited
to our purposes in this paper is the subject of Bayesian optimal designs which
we discuss in the next section.

4. Bayesian Optimal Designs

Often prior information will exist before an experiment is performed. This
information may be in the form of prior point estimates and/or distributions of
model parameters, or observations from a previous experiment. Another im-
portant source of prior information is expert opinion. It is the opinion of the
authors that expert opinion constitutes the most important form of prior infor-
mation especially in the case of nonlinear design problems where, paradoxi-
cally, knowledge of the unknown parameters is required in order to obtain an
optimal design. This is because prior observations or point estimates are fre-
quently unavailable before an experiment is conducted while expert opinion will
be available. The availability of prior information makes the Bayesian paradigm
useful in experimental design as it provides the framework to incorporate such
information. A detailed review of the Bayesian approach to experimental design
is given by [6] and DasGupta [34].

In the Bayesian paradigm, the design problem for both linear and nonlinear
models is treated as a decision problem [35] and prior information is quantified
by a prior probability distribution, p(6). Following [6], the experimental design ¢
is chosen from a set of possible designs =, and data y is then observed, and
followed by a terminal decision d € D. The decision is in two parts:

1. The selection of the design ¢ € = and,

2. The terminal decision (or goal) of the experiment.

The terminal decision reflects the objective of the experiment and a util-
ity function U(d, &, 0,y) is specified accordingly. The Bayesian solution to the
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design problem is then to find the design £* that maximizes expected utility
U(©) = [ max [ U(@€0.0p010.9) - p(ole)a0dy. (10)
y d

Intuitively, the Bayesian decision-theoretic approach to design, according to [6],
is to

1. Specify a utility function that reflects the experimental objective,

2. Regard the design choice as a decision problem and,

3. Select a design that maximizes expected utility.

Bayesian equivalents of several optimality criteria can be obtained through
the use of appropriate utility (or loss) functions. For example, for the model
in (1), use of Shannon information [36] results in the Bayesian D-optimality
criterion. For the normal linear model in (1), if the prior distribution of ¢ is such
that 0|02 ~ N(6y,02R™1), then the Bayesian D-optimality criterion is [6]

¢(&) = logdet{ M (&) + R}, (11)

where R is the p x p prior precision matrix with known elements. Thus, (11)
is maximized to obtain the Bayesian D-optimal design for (1). It is important
to note that the design does not depend on the prior location of # but on the
precision matrix R. This makes intuitive sense since the optimal design, in the
case of a linear model, does not depend on the model parameters. The prior
information matrix, o2 R~! is in a sense equivalent to some (not necessarily an
integer) Ny prior observations. Also notable is the fact that if prior information
about 0 is weak, that is, R — 0, then ¢(£) — log det M (£) which is the classical
D-optimality criterion.

However, in the case of nonlinear models, the exact expected utility is often
a complicated integral [6], and so a normal approximation is used. Following
[14], by ignoring the prior information matrix, the design maximizing expected
Shannon information will maximize

B(¢) = / log [M (€, 6)|p(6)de. (12)

Unlike in a linear model, the optimal design depends both on the prior location
and the precision matrix. In Section 2, we mentioned the fact that (a non-
Bayesian) optimal design for a k-parameter model typically has & unique sup-
port points. Bayesian designs generally differ from classical optimal designs
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because the number of support points increases as prior information becomes
more disperse or less informative. This also is intuitive in the sense that more
support points are needed to estimate @ if the amount of information about 6
prior to the experiment is uninformative. Similarly, where substantial prior infor-
mation is available, fewer support points are needed to estimate 4. Chaloner
and Larntz [37] give the Bayesian version of the Kiefer-Wolfowitz equivalence
theory results for Bayesian designs.

Bayesian experimental designs are based on a single prior distribution and
are quite sensitive to its choice [38]. In most practical situations, the statisti-
cian will elicit prior information from more than one subject matter expert. This
inevitably results in multiple prior distributions, and hence, increases the vari-
ability of the model parameters. For example, Tsai and Chaloner [39] describe
a design problem where prior distributions are elicited from over 50 clinical ex-
perts. This paper focuses on a method of designing experiments efficiently in
situations where there are multiple prior distributions.

5. Robust Design Criterion for Nonlinear Models

Authors have looked into the issue of robustness in Bayesian experimental
designs. The earliest work we could find as far as robustness of the optimal
design to the particular prior distribution is [40] who obtained optimal robust
designs that minimize Bayes risk for a fixed prior distribution subject to being
robust to misspecification of the prior. Also, [41] and [42] also examine the
situation where there is a class of plausible prior distributions in the context of
analysis of variance (ANOVA). Work by Dasgupta, Mukhopadhyay, and Stud-
den [43] is also relevant. Common among the foregoing is the fact that they
examined the problem in the context of linear models only.

For nonlinear models, we propose the robust design criterion

K 3
W) = (H / r<§,9>pz-<e>d9> (13)

where k is the number of plausible priors, p;(0) is the ith prior distribution and
I'(¢,0) is any of the alphabetic optimality criteria. The optimal robust or com-
promise design is then

(o = argm?X\If(ﬁ). (14)
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The criterion introduced here is really an extension of the existing Bayesian de-
sign criterion. It is clear that if there is no variability in the prior information, i.e,
for k = 1, then the criterion reduces to (10). Essentially, the criterion is a geo-
metric mean of the Bayesian optimality criterion values for k prior distributions,
and it has at least one important advantage. A design found using this criterion
is guaranteed to perform efficiently for a wide range of values of 6 than one
which is based on an arithmetic mean. This property is particularly important
given that the objective of this criterion is to arrive at compromise designs in
the face of varying prior distributional assumptions. Weights that suggest the
likelihood of the priors are ignored in this definition of the criterion.

6. Application to 4PL Model

Biological assays are methods that investigate the biological properties of
a compound (e.g., a drug) by the analysis of its effects on living matter. In a
typical bioassay, a stimulus (e.g., a dose of drug) is applied to a subject yielding
a change in a measurable characteristic (or response) of the subject. In drug
development research, the relationship between the dose of a drug and a clini-
cal endpoint (response) is of paramount interest. Consequently, estimating the
parameters of the model describing the dose-response relationship is critical.
In most pharmacological studies, the four-parameter logistic (4PL) model has
been found to adequately model this relationship. The mean number of cells at
log concentration z is given by

04 — 03

A S

(15)

where 6, is often denoted as EDsg; 05 is a slope parameter; 03 and 6, are
lower and upper asymptotes [4]. In designing an experiment that will optimally
estimate the model parameters, suppose that prior elicitation results in two
multivariate Normal distributions p; () and p2(#) with means and covariance
matrices u1, Vi and us, Vo respectively, where

pr = (15.03,1.31,530,1587),  V; = diag(1.00,0.01, 1,0.50) and
(5.01,0.44, 177, 529), V2 = diag(2.00,0.02, 2.00, 1.00).

M2

It is insightful to look at the distribution of logistic curves under these two prior
distributions. Figure 1 contains logistic curves based on a random sample of
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200 sets of parameter values from each of the two prior distributions. The plots
show that there is a large number of different profiles (or shapes) that the 4PL
curve can assume. Our aim is then to find a design that performs sufficiently
well, for estimation purposes, for example, across these different profiles.

1600 T 500

Logistic curves under pq,Vi Logistic curves under 2, Va.

1400
1200
1000 |

800 -

Expected Number of Cells
Expected Number of Cells

600 -

400 . . . . 150 . . . .
-2 o 2 a 6 8 -2 o 2 a 6 8
log Concentration log Concentration

Figure 1: Distribution of a random sample of logistic curves under two prior
parameter distributions.

The distribution of curves under ps, Vo are more variable compared to
those under 11, V1 due to the relatively larger variability in the second prior.
The objective of this section is to show that a design that is a function of the
two information (or precision) matrices is more desirable than one that is based
on exactly one of the prior distributions.

The following Bayesian D-optimal designs are obtained by maximizing the
criterion in (12) using priors p1(0) and py(6):

(16)

£p1 = 0.0338 1.9794 3.5168 6.1215
Pt 0.2726 0.2611 0.1943 0.2719

and

(17)

¢, _ 0039 15555 3TH01 61409
P27 02152 01721 03496 0.2631

respectively. The proposed criterion in (13) is also maximized to obtain the
robust design

—0.0138 1.8378 3.5650 6.1625
o = { } ) (18)

0.2416 0.2431 0.2801 0.2352
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To evaluate the performance of the robust design, we use relative efficiency.
For two design measures &; and &, the relative D-efficiency of £&; compared to
& is

1/
MO 19)

Dra-ss0) = { iy
where p is the number of model parameters. Thus, D,c;_.f¢ > 1 implies & is
more efficient than &, for estimating 6. In particular, we obtain the efficiency of
&c relative to locally optimal designs based on each of the prior distributions.
Thus, we compute

M, )N
Dracest®) = { i gy} )
where 6' € p,(6), and
Mg, )M
Deacest®) = { i) @y

where 02 € py(6), and &n and &y- are locally optimal designs at ¢! and 62,
respectively.

Drel,eff(ﬁl) under ,u,l,V]_ Drelfeff(QQ) under ILL2,V2.

a5

o
0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

Figure 2: Empirical distribution of relative efficiencies of the robust design, ¢¢
across two prior distributions.

In Figure 2, we provide plots of the distribution of relative efficiencies of {&
(based on a random sample of 200 sets of parameter values from each of the
two prior distributions) across the two prior distributions. Numerical summaries
of the these plots are also given in Table 1. The relative efficiencies are gen-
erally greater than 1 or within a small neighborhood of it, as shown in Table 1.
This suggests the robustness of ¢ to the two prior distributions.




62 Thailand Statistician, 2015; 13(1): 49-66

Table 1: Numerical summaries of the empirical distribution of the relative fre-
quency of the robust (or composite) design across the two priors.

Summary | Relative D-efficiencies
StatiSTiC M1, Vl Ha, Vz

Minimum 0.972 0.910
Maximum | 1.030 1.013
Median 1.000 0.972
Mean 1.000 0.970

Drelfeff given /’Llavl Drelfeff given MZaV2-

0.85 0.9 0.95

Figure 3: Empirical distribution of relative efficiency of the robust design relative
to locally optimal designs across two prior distributions.

The essential features of the distributions in Figure 3 are summarized in Table 2
below where it is worth noting that the relative efficiencies are all less than 1.
This is indicative of the sub-optimality of the £p, for p2(6) and also £p- for p; (0).

7. Discussion

Multiple prior distributions can occur when multiple experts are consulted or
when different amounts of information are available to these experts. Variation
in the training of experts (in a group) can also result in variable prior distri-
butional assumptions of model parameters. We have shown in the previous
section that when there are two prior distributions (or assumptions) about the
parameters of a model, both priors should be accounted for in the design stage.
A design that is optimal with respect to a particular prior is not necessarily op-
timal for another prior. As a result, it makes sense to design an experiment
such that the resulting experimental design is a function of both information
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Table 2: Numerical summaries of the distribution of relative efficiencies of the
Bayesian optimal designs {p1 and p2 on p2(6) and p,(#), respectively.

Summary Relative D-efficiencies
Statistic Ep1 0N 2, Vo Epa 0N g, Vi
Minimum 0.857 0.832
Maximum 0.954 0.977
Median 0.916 0.890
Mean 0.913 0.889

matrices. Ignoring one of the priors can lead to sub-optimal designs.

The criterion proposed here is an extension of the Bayesian optimality cri-
terion when there is more than one prior. Essentially, it is a product of expec-
tations. An intuition for the criterion can be gained by assuming, for example,
that for some one-parameter nonlinear model, 6* and 6** are assumed to be
the true parameter values by two different experts with similar training. In this
case, we can think of two different locally optimal designs £* and £**, respec-
tively, corresponding to the two expert guesses. If 8* is actually the truth but
0** is used in the design stage, then the resulting experimental design will be
sub-optimal for 6*, and vice versa. A reasonable approach in this situation is
to obtain a design ¢ that optimizes, for example, the product of information ma-
trices corresponding to the two guesses. This idea is similar to that of product
optimality suggested by Atkinson and Cox [44]. In the present context, instead
of considering degenerate distributions like in the case of local optimality, we
restrict our attention to the more practical situation of prior distributions and
propose a criterion which is essentially the product of expected information
matrices.

In many cases, expert opinions, usually in the form of probability distribu-
tions, are pooled or aggregated [45] with the view to obtaining a consensus
distribution. Typically, non-negative weights w; such that >~ w; = 1 are used in
the pooling process to reflect confidence in an expert’s opinion. Weights can
be seamlessly incorporated into the proposed criterion so that the resulting de-
sign has better efficiency over the prior with larger weight. In fact, the criterion
in (13) belongs to a class of possible criteria for nonlinear models that will be
discussed in a subsequent paper.
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