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Abstract
Nonlinear models pervade the statistical literature on drug development,

and specifically in pharmacokinetics (PK), pharmacodynamics (PD), and the

biological and physical sciences in general. Obtaining efficient experimental

designs for such models is non-trivial due to the well-documented parameter-

sensitivity problem. Bayesian methods, which integrate prior information about

the model parameters into the design process, have been proposed as a so-

lution to the problem. In implementing such methods, the assumption is made

that a single prior distribution exists for the parameters which may not be the

case. In this research, we discuss situations in which there may be multiple (or

competing) prior distributions and propose a robust design criterion for obtain-

ing efficient designs in such cases.
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1. Introduction
Experimentation, critical to the scientific method and manufacturing, is also

an efficient way of learning about the world. While most of the pioneering

work in experimental design started in the field of agriculture, notably by R.

A. Fisher, experiments are performed in the educational, biological, chemical

and physical sciences. These and many other fields have benefited immensely

over the past century from the extensive research in the design of experiments.

Fisher is largely credited with the role of statistics in experimental design and

perhaps more importantly, the role of the statistician in experimentation: from

being an after-the-fact technician to being an active collaborator at all stages

of an investigation [1].

The importance of a statistically sound experimental design cannot be over-

emphasized. Response surface designs including central composite designs,

Plackett-Burman designs, as well as full and fractional factorial designs [2] have

been used to model relationships such as those between a chemical endpoint

or response and a set of input variables. Response surface designs are widely

used in industrial experiments to determine optimal operating conditions for

a system. Optimal two-stage studies are used in epidemiological studies to

maximize information gain [3]. Fedorov and Leonov [4] discuss optimal exper-

imental designs in the drug development literature, especially in the study of

pharmacokinetics (PK) and pharmacodynamics (PD).

The procedure of designing an experiment, according to Atkinson and Bai-

ley [5] in their review of design of experiments, consists of three important

phases:

i. Choice of treatments,

ii. Choice of experimental units and,

iii. Deciding which treatment to apply to which experimental unit.

The authors mention that the relative importance of each phase depends

on the application. in many clinical trials, patients enter the trial sequentially in

which case phase (ii) is very important, and where there is structure, for exam-

ple sex or age, in the experimental units, phase (iii) becomes important. In this

paper, we will focus on phase (i), that is, the choice of treatments. Following [5],

in an experimental setting, the choice of treatments may be qualitative or quan-

titative (or both in some cases, like in the chemical industry). In a clinical trial,
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for example, the efficacy of two drugs can be compared to a placebo in which

case the treatments are qualitative. In the foregoing case, the choice of treat-

ment is important but not mathematically sophisticated. For example, there

are no intermediate levels for the treatments. As Chaloner and Verdinelli [6]

point out, the main idea behind experimental design is that statistical inference

about quantities of interest can be improved remarkably by appropriately se-

lecting the values of the treatment or control variables. This makes the choice

of treatments in an experiment quite critical if we hope to learn anything about

a particular system (like in PK studies) or a process. For example in Atkinson,

Chaloner, Herzberg, and Juritz [7], the question is asked, “When a horse is in-

jected with a drug, at what times must blood be drawn from the animal in order

to model the passage of the drug through the bloodstream?”. In dose-response

studies where quantal models are used, the question is asked: “What quantity

of a dose will result in, for example, a 50% success rate?”. Questions of this

sort are common in practice and have led to so-called optimal experimental

designs [8]. Optimal designs are experimental designs that are based on one

or more design optimality criteria. For a complete review of optimal designs in

terms of applications, see Berger and Wong [9].

In this paper, we focus on situations when treatments are quantitative, that

is, having potential levels throughout an interval I of R. Also, we assume that

a model is known a priori. Section 2 discusses the theory of optimal designs

and more importantly, design optimality criteria. In Section 3, we focus on the

optimal design problem for nonlinear models and discuss some potential so-

lutions. Section 4 specifically addresses a Bayesian solution to the nonlinear

design problem. We introduce our solution to the design problem in Section 5

and apply it to the four-parameter logistic (4PL) model in section 6, and con-

clude with a discussion in Section 7.

2. Overview of Optimality Theory and Design Optimality Criteria

Although not often mentioned in the optimal design literature, the work of

Smith [10] was a precursor to Kiefer [8] and Kiefer and Wolfowitz [11] as far

as the theory of optimal design is concerned. For example, in her seminal

work, [10] obtained optimal designs for a polynomial in one factor over a [−1, 1]

design region. However, the concept of optimal designs is largely credited to

Kiefer and his colleagues. Expositions on the subject of optimality theory have



52 Thailand Statistician, 2015; 13(1): 49-66

been given in Fedorov [12], Pukelsheim [13] and Atkinson et al. [14]. Optimal

designs were originally for linear models, in particular, response surface mod-

els over regular regions [5]. More recently, optimal designs have been widely

studied in the context of nonlinear models.

To motivate the theory of optimal design, consider a univariate linear model

yi = η(xi, θ) + ϵi (1)

where yi is the response for the ith experiment, the functional form of η(xi, θ) is

assumed to be known, θ is a p×1 vector of unknown parameters, ϵi
iid∼N(0, σ2)

is the ith random error, and xi is the value of the explanatory variable x for the

ith experiment. The optimal design goal is to choose r distinct design points in

the design space X such that the optimal design

ξ =

{
x1, x2, . . . , xr

w1, w2, . . . , wr

}
(2)

produces experimental data for estimating some function of the p-dimensional

parameter vector θ with high efficiency. Here wk, k = 1, ..., r, is the amount of

experimental effort at the kth design point. Thus, the wi weights are positive

and sum to one. These weights are often irrational in which case the optimal

design is said to be continuous. Otherwise, if nk out of of a total of n observa-

tions are made at the kth support point, then wk = nk/n and the design is said

to be exact. Although continuous designs are not implementable in practice,

the mathematical problem of finding optimal designs is simplified by treating ξ

as a design measure [15] which satisfies:

ξ(x) ≥ 0, x ∈ X and
∫
X
ξdx = 1. (3)

Pukelsheim and Reider [16] show how optimum continuous designs can be

converted into near-optimum exact designs, with minimum loss in efficiency, so

that they can be used in practice.

The information matrix, apart from a multiplicative constant, for a continuous

design is given by

M(ξ, θ) =

∫
X
f(x, θ)fT (x, θ)ξ(dx) (4)

where f(x, θ) is the vector of partial derivatives of η(x, θ) with respect to θ. For

the linear model, the dependence of M on θ can be dropped in general unless
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interest is in estimating a nonlinear function of the parameters. Consequently,

it is important to note that for linear models, the information matrix M depends

only on the support points, x. Optimal design theory is concerned with maxi-

mization (or minimization) of a concave (or convex) function of the information

matrix M . In general, the optimal design problem is a constrained nonlinear

mathematical programming problem. The experimental objective in a partic-

ular setting, determines the suitable convex function of M to be optimized.

Functions of this sort are known as design optimality criteria.

In most applications the experimental objective is efficient estimation of

model parameters. For example, for certain fixed-effects analysis of variance

models, Wald [17] proposed maximizing the determinant |M |, or equivalently

minimizing |M−1|, in an attempt to maximize the power of the F -ratio for test-

ing a linear hypothesis on the parameters. This criterion, called the D-optimality

criterion in Kiefer and Wolfowitz [18], is the most widely-used optimality crite-

rion. An equivalent criterion is log |M(ξ)|. Maximizing the D criterion is equiv-

alent to maximizing the product of the eigenvalues of M . Often, in analysis

of variance models, estimating a set of contrasts with minimum variance is of

interest. In this case, the C-optimality criterion is used, and the function to

be minimized is tr{CTM−1(ξ)C}, where the rows of the s × p matrix CT are

the vectors of constants corresponding to the contrasts. In response surface

methodology, minimizing the maximum prediction variance in the design space

is often of interest. In this regard, [10] proposed what is now known as the G-

optimality criterion. In a G−optimal design, the maximum value of the variance

of prediction

d(x, ξ) = fT (x)M−1(ξ)f(x) (5)

over the design space is minimized. Other optimality criteria exist for different

experimental objectives. When more than one objective is necessary, com-

binations of optimality criteria can be used. See Chapter 10 of [14] for other

optimality criteria.

Kiefer [8,11, 18-21] and other authors developed the general theory of opti-

mal designs. The most important theoretical result is the general equivalence

theorem (GET). The GET is practically useful in that it led to the development

of algorithmic methods for optimal design construction and methods for check-

ing the optimality of a proposed design. It is must be noted that, in general, the

GET applies to continuous designs but not exact designs. However, a family
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of algorithms have been derived based on the theorem [22]. Another impor-

tant result of the theorem is that G− and D−optimal continuous designs are

equivalent. Although the work of Kiefer and his colleagues is focused on lin-

ear models, White [23] extended it to nonlinear models which is discussed in

Section 3. To conclude our overview of optimality theory, we point out that,

in general, the optimal design for a k−parameter model has k distinct sup-

port points. An advantage over classical designs is that the number of support

points is minimized. However, this also poses a problem because the inade-

quacy (or lack-of-fit) of the model cannot be checked and is the main criticism

of optimal designs. O’Brien [24] and others suggest ways this can be over-

come. An important consequence of this problem is the published research on

robust designs.

3. Optimal Design Problem for Nonlinear Models

There are many cases in practice where a linear regression model is not

appropriate for data analysis. For example, the true relationship between the

response and the predictor is a differential equation or a solution to a differen-

tial equation. In nonlinear models, the expectation function is not linear in the

model parameters. Nonlinear situations can also arise in linear models when

interest is in estimating a nonlinear function of the parameters. The impor-

tance of nonlinear models cannot be overstated given their use in the biolog-

ical, chemical and physical sciences as well as in industry. Bates and Watts

[25] and Seber and Wild [26] provide a thorough discussion of nonlinear re-

gression analysis. Traditionally, researchers have resorted to transformations

that linearize the nonlinear model in order to use estimation methods that are

applicable to linear models. Common among the transformations used is the

natural logarithmic transformation, which has worked quite well in many cases.

However, it is important to point out here that in cases where the errors are ad-

ditive, rather than multiplicative, the use of natural logarithmic transformation

may not be advisable [27].

The Michaelis-Menten model [25] for enzyme kinetics relates the initial ve-

locity of an enzymatic reaction to the substrate concentration. To illustrate the

optimal design problem for nonlinear models, consider the expectation function
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for the ith observation of the Michaelis-Menten model

η(xi, θ) =
θ1xi

θ2 + xi
(6)

where η(xi, θ) is the mean velocity of the reaction given a substrate concentra-

tion xi. The vector of partial derivatives is

f(xi, θ) =

[
∂η(xi, θ)

∂θ1

∂η(xi, θ)

∂θ2

]T
=

[
xi

θ2 + xi

−θ1xi

(θ2 + xi)2

]T
. (7)

Then for a continuous design with r support points and weights w1, w2, . . . , wr,

the information matrix is given by

M(ξ, θ) =
r∑

i=1

wif(xi, θ)f(xi, θ)
T (8)

which depends on θ = (θ1, θ2). In particular, the ith information matrix

Mi(ξ, θ) =

[
x2
i

(θ2+xi)2
−θ1x

2
i

(θ2+xi)3

−θ1x
2
i

(θ2+xi)3
θ2
1x

2
i

(θ2+xi)4

]
(9)

clearly depends on θ. The optimal design problem for nonlinear models is a re-

sult of the dependence of the information matrix on the unknown parameters.

To put things in context, experiments are designed to learn about unknown

model parameters. The dependence of the information matrix on these un-

known parameters means that to obtain, for example, a D−optimal design for

the Michaelis-Menten model, the experimenter needs to have prior knowledge

of the model parameters. This paradox was noted as an absurd bargain be-

tween experimenter and statistician by Cochran [28]: “You tell me the value of

θ and I promise to design the best experiment for estimating θ.”

Various approaches have been proposed in the literature for addressing this

issue. The earliest and perhaps simplest approach is the idea of local optimal-

ity by Chernoff [29] and Box and Lucas [30]. If a guess of the parameter vector

can be made, then an optimal design can be obtained at this local value of the

parameter vector, and the resulting design is said to be locally optimal. Obvi-

ously, locally optimal designs seem reasonable in single parameter models or

where most of the parameters are conditionally linear, like θ2 in the Michaelis-

Menten model. In fact, locally optimal designs will approximate the true optimal

designs quite closely if reasonable guesses of the parameter vector can be

made. These designs, however, can be very inefficient if the true parameter
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values are not close to the guesses. Although they may not be practical in

many situations, Ford, Titterington, and Kitsos [31] identify some very impor-

tant uses of locally optimal designs. Box and Hunter [32], Chernoff [33], and

others have proposed sequential experimental designs in situations where ini-

tial experiments have been done to obtain prior parameter estimates. Although

conceptually ideal, sequential designs are not desirable in problems where the

cost of data collection is large. Quite popular in the literature and more suited

to our purposes in this paper is the subject of Bayesian optimal designs which

we discuss in the next section.

4. Bayesian Optimal Designs

Often prior information will exist before an experiment is performed. This

information may be in the form of prior point estimates and/or distributions of

model parameters, or observations from a previous experiment. Another im-

portant source of prior information is expert opinion. It is the opinion of the

authors that expert opinion constitutes the most important form of prior infor-

mation especially in the case of nonlinear design problems where, paradoxi-

cally, knowledge of the unknown parameters is required in order to obtain an

optimal design. This is because prior observations or point estimates are fre-

quently unavailable before an experiment is conducted while expert opinion will

be available. The availability of prior information makes the Bayesian paradigm

useful in experimental design as it provides the framework to incorporate such

information. A detailed review of the Bayesian approach to experimental design

is given by [6] and DasGupta [34].

In the Bayesian paradigm, the design problem for both linear and nonlinear

models is treated as a decision problem [35] and prior information is quantified

by a prior probability distribution, p(θ). Following [6], the experimental design ξ

is chosen from a set of possible designs Ξ, and data y is then observed, and

followed by a terminal decision d ∈ D. The decision is in two parts:

1. The selection of the design ξ ∈ Ξ and,

2. The terminal decision (or goal) of the experiment.

The terminal decision reflects the objective of the experiment and a util-

ity function U(d, ξ, θ, y) is specified accordingly. The Bayesian solution to the
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design problem is then to find the design ξ∗ that maximizes expected utility

U(ξ) =

∫
y

max
d∈D

∫
U(d, ξ, θ, y)p(θ|y, ξ) · p(y|ξ)dθdy. (10)

Intuitively, the Bayesian decision-theoretic approach to design, according to [6],

is to

1. Specify a utility function that reflects the experimental objective,

2. Regard the design choice as a decision problem and,

3. Select a design that maximizes expected utility.

Bayesian equivalents of several optimality criteria can be obtained through

the use of appropriate utility (or loss) functions. For example, for the model

in (1), use of Shannon information [36] results in the Bayesian D-optimality

criterion. For the normal linear model in (1), if the prior distribution of θ is such

that θ|σ2 ∼ N(θ0, σ
2R−1), then the Bayesian D-optimality criterion is [6]

ϕ(ξ) = log det{M(ξ) +R}, (11)

where R is the p × p prior precision matrix with known elements. Thus, (11)

is maximized to obtain the Bayesian D-optimal design for (1). It is important

to note that the design does not depend on the prior location of θ but on the

precision matrix R. This makes intuitive sense since the optimal design, in the

case of a linear model, does not depend on the model parameters. The prior

information matrix, σ2R−1 is in a sense equivalent to some (not necessarily an

integer) N0 prior observations. Also notable is the fact that if prior information

about θ is weak, that is, R → 0, then ϕ(ξ) → log detM(ξ) which is the classical

D-optimality criterion.

However, in the case of nonlinear models, the exact expected utility is often

a complicated integral [6], and so a normal approximation is used. Following

[14], by ignoring the prior information matrix, the design maximizing expected

Shannon information will maximize

Φ(ξ) =

∫
log |M(ξ, θ)|p(θ)dθ. (12)

Unlike in a linear model, the optimal design depends both on the prior location

and the precision matrix. In Section 2, we mentioned the fact that (a non-

Bayesian) optimal design for a k-parameter model typically has k unique sup-

port points. Bayesian designs generally differ from classical optimal designs
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because the number of support points increases as prior information becomes

more disperse or less informative. This also is intuitive in the sense that more

support points are needed to estimate θ if the amount of information about θ

prior to the experiment is uninformative. Similarly, where substantial prior infor-

mation is available, fewer support points are needed to estimate θ. Chaloner

and Larntz [37] give the Bayesian version of the Kiefer-Wolfowitz equivalence

theory results for Bayesian designs.

Bayesian experimental designs are based on a single prior distribution and

are quite sensitive to its choice [38]. In most practical situations, the statisti-

cian will elicit prior information from more than one subject matter expert. This

inevitably results in multiple prior distributions, and hence, increases the vari-

ability of the model parameters. For example, Tsai and Chaloner [39] describe

a design problem where prior distributions are elicited from over 50 clinical ex-

perts. This paper focuses on a method of designing experiments efficiently in

situations where there are multiple prior distributions.

5. Robust Design Criterion for Nonlinear Models

Authors have looked into the issue of robustness in Bayesian experimental

designs. The earliest work we could find as far as robustness of the optimal

design to the particular prior distribution is [40] who obtained optimal robust

designs that minimize Bayes risk for a fixed prior distribution subject to being

robust to misspecification of the prior. Also, [41] and [42] also examine the

situation where there is a class of plausible prior distributions in the context of

analysis of variance (ANOVA). Work by Dasgupta, Mukhopadhyay, and Stud-

den [43] is also relevant. Common among the foregoing is the fact that they

examined the problem in the context of linear models only.

For nonlinear models, we propose the robust design criterion

Ψ(ξ) =

(
k∏

i=1

∫
Γ(ξ, θ)pi(θ)dθ

) 1
k

(13)

where k is the number of plausible priors, pi(θ) is the ith prior distribution and

Γ(ξ, θ) is any of the alphabetic optimality criteria. The optimal robust or com-

promise design is then

ξC = argmax
ξ

Ψ(ξ). (14)
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The criterion introduced here is really an extension of the existing Bayesian de-

sign criterion. It is clear that if there is no variability in the prior information, i.e,

for k = 1, then the criterion reduces to (10). Essentially, the criterion is a geo-

metric mean of the Bayesian optimality criterion values for k prior distributions,

and it has at least one important advantage. A design found using this criterion

is guaranteed to perform efficiently for a wide range of values of θ than one

which is based on an arithmetic mean. This property is particularly important

given that the objective of this criterion is to arrive at compromise designs in

the face of varying prior distributional assumptions. Weights that suggest the

likelihood of the priors are ignored in this definition of the criterion.

6. Application to 4PL Model

Biological assays are methods that investigate the biological properties of

a compound (e.g., a drug) by the analysis of its effects on living matter. In a

typical bioassay, a stimulus (e.g., a dose of drug) is applied to a subject yielding

a change in a measurable characteristic (or response) of the subject. In drug

development research, the relationship between the dose of a drug and a clini-

cal endpoint (response) is of paramount interest. Consequently, estimating the

parameters of the model describing the dose-response relationship is critical.

In most pharmacological studies, the four-parameter logistic (4PL) model has

been found to adequately model this relationship. The mean number of cells at

log concentration x is given by

η(x, θ) = θ3 +
θ4 − θ3

1 + (x/θ1)θ2
(15)

where θ1 is often denoted as ED50; θ2 is a slope parameter; θ3 and θ4 are

lower and upper asymptotes [4]. In designing an experiment that will optimally

estimate the model parameters, suppose that prior elicitation results in two

multivariate Normal distributions p1(θ) and p2(θ) with means and covariance

matrices µ1,V1 and µ2,V2 respectively, where

µ1 = (15.03, 1.31, 530, 1587), V1 = diag(1.00, 0.01, 1, 0.50) and

µ2 = (5.01, 0.44, 177, 529), V2 = diag(2.00, 0.02, 2.00, 1.00).

It is insightful to look at the distribution of logistic curves under these two prior

distributions. Figure 1 contains logistic curves based on a random sample of
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200 sets of parameter values from each of the two prior distributions. The plots

show that there is a large number of different profiles (or shapes) that the 4PL

curve can assume. Our aim is then to find a design that performs sufficiently

well, for estimation purposes, for example, across these different profiles.

Logistic curves under µ1,V1 Logistic curves under µ2,V2.

−2 0 2 4 6 8
400

600

800

1000

1200

1400

1600

log Concentration

Ex
pe

cte
d N

um
be

r o
f C

ell
s

Four−parameter logistic function

−2 0 2 4 6 8
150

200

250

300

350

400

450

500

log Concentration

Ex
pe

cte
d N

um
be

r o
f C

ell
s

Four−parameter logistic function

−2 0 2 4 6 8
400

600

800

1000

1200

1400

1600

log Concentration

Ex
pe

cte
d N

um
be

r o
f C

ell
s

Four−parameter logistic function

−2 0 2 4 6 8
150

200

250

300

350

400

450

500

log Concentration

Ex
pe

cte
d N

um
be

r o
f C

ell
s

Four−parameter logistic function

Figure 1: Distribution of a random sample of logistic curves under two prior

parameter distributions.

The distribution of curves under µ2,V2 are more variable compared to

those under µ1,V1 due to the relatively larger variability in the second prior.

The objective of this section is to show that a design that is a function of the

two information (or precision) matrices is more desirable than one that is based

on exactly one of the prior distributions.

The following Bayesian D-optimal designs are obtained by maximizing the

criterion in (12) using priors p1(θ) and p2(θ):

ξD1 =

{
0.0338 1.9794 3.5168 6.1215

0.2726 0.2611 0.1943 0.2719

}
(16)

and

ξD2 =

{
0.0379 1.5555 3.7501 6.1409

0.2152 0.1721 0.3496 0.2631

}
(17)

respectively. The proposed criterion in (13) is also maximized to obtain the

robust design

ξC =

{
−0.0138 1.8378 3.5650 6.1625

0.2416 0.2431 0.2801 0.2352

}
. (18)
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To evaluate the performance of the robust design, we use relative efficiency.

For two design measures ξ1 and ξ2, the relative D-efficiency of ξ1 compared to

ξ2 is

Drel−eff (θ) =

{
|M(ξ1, θ)|
|M(ξ2, θ)|

}1/p

, (19)

where p is the number of model parameters. Thus, Drel−eff > 1 implies ξ1 is

more efficient than ξ2 for estimating θ. In particular, we obtain the efficiency of

ξC relative to locally optimal designs based on each of the prior distributions.

Thus, we compute

Drel−eff (θ
1) =

{
|M(ξC , θ

1)|
|M(ξθ1 , θ1)|

}1/p

, (20)

where θ1 ∈ p1(θ), and

Drel−eff (θ
2) =

{
|M(ξC , θ

2)|
|M(ξθ2 , θ2)|

}1/p

, (21)

where θ2 ∈ p2(θ), and ξθ1 and ξθ2 are locally optimal designs at θ1 and θ2,

respectively.

Drel−eff (θ
1) under µ1,V1 Drel−eff (θ

2) under µ2,V2.
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Figure 2: Empirical distribution of relative efficiencies of the robust design, ξC
across two prior distributions.

In Figure 2, we provide plots of the distribution of relative efficiencies of ξC
(based on a random sample of 200 sets of parameter values from each of the

two prior distributions) across the two prior distributions. Numerical summaries

of the these plots are also given in Table 1. The relative efficiencies are gen-

erally greater than 1 or within a small neighborhood of it, as shown in Table 1.

This suggests the robustness of ξC to the two prior distributions.
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Table 1: Numerical summaries of the empirical distribution of the relative fre-
quency of the robust (or composite) design across the two priors.

Summary Relative D-efficiencies
Statistic µ1,V1 µ2,V2

Minimum 0.972 0.910
Maximum 1.030 1.013
Median 1.000 0.972
Mean 1.000 0.970

Drel−eff given µ1,V1 Drel−eff given µ2,V2.
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Figure 3: Empirical distribution of relative efficiency of the robust design relative

to locally optimal designs across two prior distributions.

The essential features of the distributions in Figure 3 are summarized in Table 2

below where it is worth noting that the relative efficiencies are all less than 1.

This is indicative of the sub-optimality of the ξD1 for p2(θ) and also ξD2 for p1(θ).

7. Discussion

Multiple prior distributions can occur when multiple experts are consulted or

when different amounts of information are available to these experts. Variation

in the training of experts (in a group) can also result in variable prior distri-

butional assumptions of model parameters. We have shown in the previous

section that when there are two prior distributions (or assumptions) about the

parameters of a model, both priors should be accounted for in the design stage.

A design that is optimal with respect to a particular prior is not necessarily op-

timal for another prior. As a result, it makes sense to design an experiment

such that the resulting experimental design is a function of both information
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Table 2: Numerical summaries of the distribution of relative efficiencies of the
Bayesian optimal designs ξD1 and ξD2 on p2(θ) and p1(θ), respectively.

Summary Relative D-efficiencies
Statistic ξD1 on µ2, V2 ξD2 on µ1, V1

Minimum 0.857 0.832
Maximum 0.954 0.977
Median 0.916 0.890
Mean 0.913 0.889

matrices. Ignoring one of the priors can lead to sub-optimal designs.

The criterion proposed here is an extension of the Bayesian optimality cri-

terion when there is more than one prior. Essentially, it is a product of expec-

tations. An intuition for the criterion can be gained by assuming, for example,

that for some one-parameter nonlinear model, θ∗ and θ∗∗ are assumed to be

the true parameter values by two different experts with similar training. In this

case, we can think of two different locally optimal designs ξ∗ and ξ∗∗, respec-

tively, corresponding to the two expert guesses. If θ∗ is actually the truth but

θ∗∗ is used in the design stage, then the resulting experimental design will be

sub-optimal for θ∗, and vice versa. A reasonable approach in this situation is

to obtain a design ξ that optimizes, for example, the product of information ma-

trices corresponding to the two guesses. This idea is similar to that of product

optimality suggested by Atkinson and Cox [44]. In the present context, instead

of considering degenerate distributions like in the case of local optimality, we

restrict our attention to the more practical situation of prior distributions and

propose a criterion which is essentially the product of expected information

matrices.

In many cases, expert opinions, usually in the form of probability distribu-

tions, are pooled or aggregated [45] with the view to obtaining a consensus

distribution. Typically, non-negative weights wi such that
∑

wi = 1 are used in

the pooling process to reflect confidence in an expert’s opinion. Weights can

be seamlessly incorporated into the proposed criterion so that the resulting de-

sign has better efficiency over the prior with larger weight. In fact, the criterion

in (13) belongs to a class of possible criteria for nonlinear models that will be

discussed in a subsequent paper.
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