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Abstract 

The objective of this research is to propose an approximation of Average Run 

Length (ARL) by Markov Chain Approach (MCA) for Generally Weighted Moving 

Average Control Chart (GWMA) when observations are from Poisson distribution. The 

numerical results obtained from MCA are compared with the results obtained from Monte 

Carlo Simulation (MC). The performance of control charts are compared in term of 

monitoring of a change in the process mean defined by out-of-control Average Run 

Length (ARL1). The results found that the numerical results obtained from MCA are as 

good as from MC, however, MCA is very time saving. Furthermore, the performance of 

GWMA chart is superior to EWMA chart when the magnitudes of changes are small 

( 0.20).   

______________________________ 
Keywords: generally weighted moving average, exponentially weighted moving 

average, monitoring, average run length, markov chain approach, monte carlo 

simulation. 
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1. Introduction 

 Statistical Process Control (SPC) is the method for monitoring process quality 

characteristic. Through control charts is one of important tool of SPC, because it can 

detect whether the present manufacturing process. So, the processes detect the 

occurrence of process variations. When the process is in-control it should have minimize 

false alarm rate and maximize true alarm rate when the process is out-of-control. The 

performance of control charts are measured by the Average Run Length (ARL). The 

ARL0 is defined as in-control ARL and the ARL1 is defined as out-of-control ARL. 

 A Poisson distribution is often employed to control manufacturing processes 

when the quality measure X  is the number of nonconformities or defects per unit from 

process. For example, number of nonconformities of produce buttons or weaving 

clothes. Assume that 1 2,  ,...X X  are independent and identically distributed with a 

mean .  When the process is in-control define 
0   and 

1  when the process 

is out-of-control. The process is out-of-control when the mean changes to some another 

value, say, 1 0   or 1 0  . Generally, the control charts have proposed to fast 

detect of changes early in a process. These changes probably occur from new controller 

that they have not sufficient experience. 

 Usually, the c chart is a chart for monitoring Poisson observations. However, it 

is insensitive to small process changes such 3 .   In literatures, various control 

charts have been developed to enhance the ability of detection small process changes. 

Roberts [1] proposed Exponentially Weighted Moving Average Control Chart (EWMA). 

Borror et al. [2] presented EWMA chart for monitoring Poisson observations showed that 

the performance of EWMA chart is superior to the c chart. Zhang et al. [3] introduced 

Double Exponentially Weighted Moving Average Control Chart (DEWMA) for Poisson 

observations and showed that this chart is more sensitive to small process changes than 

the EWMA chart, however, it has a larger than standard deviation of in-control average 

run length (SARL0) than the EWMA chart. Sheu and Lin [4] developed Generally 

Weighted Moving Average Control Chart (GWMA) for monitoring process changes. This 

chart has a better than other control charts especially sensitive for detecting small 

process changes. Sheu and Yang [5] proposed GWMA chart for monitoring Poisson 

observations. The results found that GWMA chart perform better than c and EWMA 

charts for large process changes. 

 In this paper, we propose Markov Chain Approach (MCA) for evaluating 

Average Run Length (ARL) of Generally Weighted Moving Average Control Chart 
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(GWMA) for Poisson observations and compared the performance of GWMA and EWMA 

charts. 

 

2. Control Chart 

2.1 Generally Weighted Moving Average Control Chart: GWMA 

 The GWMA chart was first published by [5] is weighted moving average of 

sequential historical observations. Each observation is a different weight that decreases 

from the present period to past periods such that it can reflect the important observations 

on recent process. This chart is developed and implemented method from EWMA chart 

by adding an adjustment smoothing constant  .w  If the weighted historical observation 

constant equal to 1q    and 1,w   then the GWMA chart coincides the EWMA 

chart. 

The statistic of GWMA chart is as following 
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where  

 tY   is the GWMA statistic at time 
tht , where the initial statistic value 

0 0Y   

 1itX  is the Poisson observations at the 
thit 1 ; t = 2, 3, … 

 q   is a weighted historical observations constant  (0 1)q   

  w   is an adjustment smoothing constant  ( 0)w   

Mean and variance of GWMA statistic are 0( )tE Y  and  
2 2( ) ,
tt Y tVar Y Q    

respectively. Therefore, the control limits of GWMA chart are  

Upper control limit: 0 t UUCL L Q h         (3) 

Center line: 0CL     

Lower control limit: 0 0t LLCL L Q h         (4) 
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where  
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   and L  is the width of control limit. 

 We let 0 LhLCL  as we considered GWMA chart for monitoring the case of 

increasing of process mean and the number of nonconformities cannot be less than 0. 

2.2 Exponentially Weighted Moving Average Control Chart: EWMA 

 The EWMA chart was first introduced by [2] is a weighted moving average of 

sequential historical observations same GWMA chart but the weighted is less than 

GWMA chart. It can detect the process mean changes are small  1.5   [6].   

The statistic of EWMA chart is as following 

1(1 )t t tZ X Z             (5) 

where  

 tZ   is the EWMA statistic at time ,tht  where the initial statistic value  

   0 0Z   

 tX   is the Poisson observations at the 
tht  time; t = 1, 2, … 

    is a weighted historical observations constant (0 1).   

Mean and variance of EWMA statistic are 0( )tE Z   and 

2 2 2( ) 1 (1 ) ,
2t

t

t ZVar Z


  


 
        

 respectively. Therefore, the control 

limits of EWMA chart are  

Upper control limit:   2

0 1 (1 )
(2 )

t

UUCL H h


  


      
 (6) 

Center line:   0CL      

Lower control limit:   2

0 1 (1 ) 0
(2 )

t

LLCL H h


  


       
 (7) 

where L  is the width of control limit and let 0 LhLCL  as we considered EWMA 

chart for monitoring the case of increasing of mean and the number of nonconformities 

cannot be less than 0. 
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3. Average Run Length: ARL 

 Average Run Length (ARL) is the expected number of samples obtained before 

a change in process is detected. The ARLs have two values, first, ARL before an out-of-

control condition is detected when the process is in control defined as ARL0 and second, 

ARL before an out-of-control condition is detected after process mean changed defined 

as ARL1. 

3.1 Approximation of ARL using Markov Chain Approach: MCA 

 Lucas and Saccucci [7] proposed Markov Chain Approach for approximate ARL 

t state is in-control process where they assume that observation jx ;  1,2,...,j n   is 

in-control state and 1 nj  is out-of-control state. The transition probability, ijP , is the 

probability of moving from state i  to state j  in one step and is given by 

( ).ij ij j t iP X x X x        (8) 

 We can replace to the transition matrix )(P  and element of matrix )( ijP  is  
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where   

  R  is the nn  transition probability matrix among the in-control states

   I  is the nn  identity matrix 

   1  is the 1n  column vector of ones 

   0  is the n1  row vector of zeros 

  1 is the scalar of one. 

 An approximation of ARL by using MCA for detecting mean changes of process 

is in interval of lower control limit and upper control limit. The region of in-control state 

divided into n  subintervals. 

 The 
thj  subinterval of upper control limit ( )jU , 

thj  subinterval of lower 

control limit  ( )jL  and the  
thi  subinterval of midpoint ( )im  are given by 
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 Consequently, the transition probability equation ( )ijP  can be rewritten as 

1( )ij j t j t iP P L Z U Z m        (10) 

and substitute GWMA statistic ( ),  ,  t j jY L U  and im  into Eq. (10). This transition 

probability equation is 
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 Besides, we substitute EWMA statistic ( ),  ,  t j jZ L U  and im  into Eq. (10). 

This transition probability equation can be written as 

1 1( (1 ) )ij j t t j t iP P L X Z U Z m             

( (1 ) )j t i jP L X m U          

(2( 1) (1 )(2 1)) (2 (1 )(2 1)) .
2 2
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 We define the transition probability matrix from state i  to state j  in 
thi  order 

as 
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where  

 1RI )( i  is the nn  transition probability vector state 1 ni  in 
thi   

  order 

 
i

R  is the nn  transition probability matrix among the in-control  

  states in 
thi  order  

 0  is the 1n  column vector of ones 

 1 is the scalar of one 

 

The approximation ARL of MCA is given by 

1
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ARL t iP RL i
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       (14) 

and then substitute 1RRp )()( 1)( iiTiiRLP    in Eq. (14).  The ARL can be 

rewritten as 
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where 
Ti)(

P  is the initial probability vector  
1

0, , 0, 1, 0, , 0 .
n

 

3.2 Approximation of ARL using Monte Carlo Simulation: MC 

 The Monte Carlo Simulation is the classical method to evaluate the ARL values 

which the closed-form formula and the explicit expression are not exist. In addition, the 

results obtained from MC use for checking an accuracy the results from other 

approaches. 

The approximation ARL by MC is given by 

1 .
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The standard deviations of ARL (SARL) as 
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The time used for simulation ARL (CPU Times) is 
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N

t
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where  

  RLt is the number of observations used to monitoring before out-of-control  

   in simulation 
tht  round 

  N is the number simulation each situations, in this paper we assume  

   that N = 50,000 runs                      

  Tt is CPU Times for simulation ARL 
tht  round with CPU i-core 5.  

 

4. Numerical Results 

 In this section, an approximation ARL of GWMA chart using MCA and MC 

approaches and comparison of performance between GWMA and EWMA charts for 

Poisson observations are presented. 

 Table 1 to 3 show the accuracy of the numerical results of ARL for GWMA chart 

obtained from MCA and MC when observations are from Poisson distribution. We 

assumed that the ARL0 values are 300, 370 and 500 the mean of process 0 1   and 

the magnitudes of change in the process mean   = 0.00, 0.01, 0.05, 0.1 and 0.2, 

respectively. The results found that the numerical results obtained from MCA are in good 

agreement with the results obtained from MC.  Then, we use MCA for evaluating the 

ARL of GWMA and EWMA charts. 

 Table 4 to 6 show comparison of performance of GWMA and EWMA charts by 

ARL1. We assume that ARL0  values are 300, 370 and 500, the mean of process 0 1   

and the magnitudes of change in the process mean   = 0.00, 0.01, 0.05, 0.1 and 0.2, 

respectively. The results found that the performance of GWMA chart is superior to 

EWMA chart for all levels of .   
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Table 1.  ARL of GWMA chart by MCA and MC when 10.0q  and ARL0 = 300. 

w    
Methods 

MCA MC 

0.10 

( Uh  = 8.664) 

0.00 300.036  (79.264) 299.432 1.3045 (2580.190) 

0.01 278.175  (81.370) 277.661  1.2147   (2382.460) 

0.05 209.293  (80.371) 208.219  0.9065   (1801.830) 

0.10 151.452  (79.093) 151.506  0.6489   (1325.010) 

0.20 87.149  (79.498) 87.059  0.3584   (783.141) 

0.20 

( Uh  = 6.174) 

0.00 300.343  (80.761) 299.412  1.3171  (2608.210) 

0.01 282.168  (81.792) 281.098  1.2437   (2423.730) 

0.05 221.942  (81.183) 221.776  0.9719   (1935.080) 

0.10 167.785  (80.606) 165.598  0.7306   (1446.270) 

0.20 101.919  (80.668) 100.770  0.4368    (908.238) 

0.40 

( Uh  = 4.900) 

0.00 300.360  (83.851) 300.098  1.3402   (2578.030) 

0.01 285.290  (83.820) 285.260  1.2719   (2439.480) 

0.05 233.732  (84.132) 233.063  1.0364   (2014.130) 

0.10 184.733  (84.256) 183.950  0.8118   (1641.270) 

0.20 120.297  (85.317) 120.245  0.5339   (1081.660) 

0.50 

( Uh  = 4.658) 

0.00 299.590  (86.503) 301.865  1.3414  (2579.320) 

0.01 285.338  (85.676) 284.551  1.2634   (2435.680) 

0.05 236.186  (85.582) 237.150  1.0579   (2086.750) 

0.10 188.817  (85.722) 190.765  0.8481   (1691.850) 

0.20 125.253  (84.974) 125.207  0.5601   (1131.270) 

0.60 

( Uh  = 4.561) 

0.00 299.928  (85.926) 301.592  1.3461  (2594.260) 

0.01 286.416  (85.894) 288.255  1.2908   (2468.540) 

0.05 239.544  (86.455) 241.904  1.0832   (2086.110) 

0.10 193.891  (86.440) 194.687  0.8634   (1703.390) 

0.20 131.582  (86.393) 131.486  0.5844   (1178.170) 

0.80 

( Uh  = 4.508) 

0.00 301.700  (91.495) 303.884  1.3587   (2576.650) 

0.01 288.621  (90.169) 287.895  1.2911   (2443.960) 

0.05 243.068  (90.277) 243.884  1.0888   (2090.160) 

0.10 198.376  (90.714) 199.787  0.8888   (1754.650) 

0.20 136.707  (89.014) 137.859  0.6139   (1232.110) 

 Number in parenthesis () is CPU Times (sec.) 
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Table 2.  ARL of GWMA chart by MCA and MC when 50.0q  and ARL0 = 370. 

w    
Methods 

MCA MC 

0.10 

( Uh  = 10.794) 

0.00 370.184  (78.468) 369.181  1.5054  (3161.110) 

0.01 334.621  (79.732) 333.794  1.3285  (2843.350) 

0.05 231.905  (79.622) 230.702  0.8876  (1986.140) 

0.10 157.985  (79.139) 157.686  0.5694   (1376.490) 

0.20   88.823  (77.922) 88.957  0.2744   (793.125) 

0.20 

( Uh  = 6.679) 

0.00 369.632  (79.249) 367.825  1.6015   (3128.330) 

0.01 338.097  (78.718) 336.884  1.4490   (2920.790) 

0.05 242.089  (78.376) 239.974  1.0237   (2089.620) 

0.10 167.176  (78.921) 167.537  0.6969   (1468.270) 

0.20   91.215  (78.406) 91.091  0.3525   (819.146) 

0.40 

( Uh  = 4.443) 

0.00 369.866  (81.307) 371.634  1.6438   (3170.350) 

0.01 343.294  (79.919) 344.644  1.5129   (2927.300) 
0.05 258.265  (80.746) 257.763  1.1366   (2209.910) 
0.10 186.242  (80.075) 185.911  0.8112   (1616.730) 
0.20 105.492  (80.075)       105.675  0.4504  (959.796) 

0.50 

( Uh  = 3.979) 

 

0.00 369.728  (80.450) 371.266  1.6548   (3136.380) 
0.01 344.658  (81.042) 343.774  1.5252   (2913.150) 

0.05 263.327  (81.059) 259.685  1.1519   (2238.650) 

0.10 192.829  (80.902) 191.553  0.8461   (1665.750) 

0.20 111.355  (81.480)       111.381  0.4869  (991.589) 

0.60 

( Uh  = 3.661) 

0.00 371.327  (81.276) 369.511  1.6469  (3143.420) 
0.01 347.374  (81.667) 348.615  1.5540   (3020.160) 

0.05 268.826  (81.854) 268.098  1.1903   (2375.160) 

0.10 199.476  (80.684) 196.936  0.8678   (1713.160) 

0.20 117.323  (81.650) 116.510  0.5092   (1038.780) 

0.80 

( Uh  = 3.255) 

0.00 370.145  (83.975) 368.887  1.6526   (3104.800) 
0.01 348.180  (82.993) 346.909  1.5630   (2942.690) 
0.05 274.972  (82.696) 275.213  1.2169   (2375.180) 
0.10 208.505  (82.041) 210.662  0.9346   (1853.120) 
0.20 126.667  (83.383) 126.820  0.5588   (1131.010) 

 Number in parenthesis () is CPU Times (sec.) 

 

5. Conclusion 

 The numerical results of ARL for GWMA chart obtained from MCA and MC 

approaches when observations have Poisson distribution are compared. The results 

found that the numerical results obtained   from those methods are in good agreement 

however, MCA is very time saving with CPU Times about 1 minute whereas MC 

consumes CPU Times between 10 minutes to 1 hour per case study. For the case of 

ARL0 = 500 the GWMA chart is superior to EWMA chart when the magnitudes of 

changes are small ( 0.20)   and for the case of ARL0 = 300 and 370, the GWMA 

chart is superior to EWMA chart when the magnitudes of changes are small 

( 0.10).   When the magnitudes of changes are increased ( 0.10),   the EWMA 

chart is superior to GWMA chart. Therefore, in order to select the control chart for 
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monitoring change in process mean we conclude the optimal control chart when the 

process mean changes are small as shown on Table 7. 

Table 3. Evaluation of ARL of GWMA chart by MCA and MC when 90.0q  and ARL0 = 

500. 

w    
Methods 

MCA MC 

0.10 

( Uh  = 

10.192)  

0.00 500.338  (79.763) 500.198  1.1630   (4252.810) 

0.01 458.746  (79.358)  461.519  1.0060   (3932.080) 

0.05 346.863  (80.247) 349.485  0.6199   (2988.180) 

0.10 270.236  (78.859) 271.548  0.3889   (2364.370) 

0.20 193.555  (79.451) 194.082  0.2056   (1733.190) 

0.20 

( Uh  = 5.666)   

0.00 499.857  (78.750) 492.795  1.6564   (4160.970) 

0.01 444.847  (80.106) 440.027  1.4271   (3732.780) 

0.05 301.272  (79.420) 299.717  0.8529   (2566.200) 

0.10 210.715  (81.105) 210.895  0.5071   (1826.520) 

0.20 132.153  (81.651) 132.416  0.2359   (1178.990) 

0.40 

( Uh  = 3.229)  

0.00 498.748  (78.718) 488.930  1.9461   (4149.500) 

0.01 442.061  (80.013) 434.498  1.6998   (3775.880) 

0.05 288.259  (78.749) 285.461  1.0655   (2482.960) 

0.10 187.765  (78.344) 187.805  0.6354   (1702.480) 

0.20 102.408  (79.514) 102.979  0.2908    (929.719) 

0.50 

( Uh  = 2.717)  

0.00 501.973  (77.829) 487.429  2.0097   (4193.700) 

0.01 445.880  (78.172) 435.815  1.8018   (3722.220) 

0.05 290.991  (79.545) 285.632  1.1204   (2452.040) 

0.10 187.409  (80.559) 186.960  0.6858   (1625.410) 

0.20 98.335  (79.357) 98.020  0.3078   (870.127) 

0.60 

( Uh  = 2.368)  

0.00 499.354  (77.454) 489.319  2.0964   (4126.990) 

0.01 444.881  (77.953) 434.565  1.8241   (3661.560) 

0.05 292.069  (77.112) 289.313  1.1842   (2532.100) 

0.10 187.537  (78.640) 187.140  0.7250   (1657.510) 

0.20 96.081  (77.423) 95.905  0.3286   (867.147) 

0.80 

( Uh  = 1.922) 

0.00 502.733  (76.628) 490.821  2.1456  (4236.850) 

0.01 450.252  (78.375) 437.800  1.8994   (3929.920) 

0.05 299.390  (77.766) 295.342  1.2758   (2625.120) 

0.10 192.373  (77.563) 191.769  0.8054   (1672.360) 

0.20 95.709  (77.564) 95.441  0.3694   (852.187) 

 Number in parenthesis () is CPU Times (sec.) 
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Table 4. Evaluation of ARL of GWMA chart and EWMA chart when 90.0,10.0  q  

and ARL0 = 300. 

charts GWMA 
EWMA 

w  0.10 0.20 0.40 0.50 0.60 0.80 

Uh  

   
8.664 6.174 4.900 4.658 4.561 4.508 4.502 

0.00 
300.036 
(79.264) 

300.343 
(80.761) 

300.360 
(83.851) 

299.590 
(86.503) 

299.928 
(85.926) 

301.700 
(91.495) 

298.578 
(89.903) 

0.01 
278.175* 
(81.370) 

282.168 
(81.792) 

285.290 
(83.820) 

285.338 
(85.676) 

286.416 
(85.894) 

288.621 
(90.169) 

285.699 
(91.932) 

0.05 
209.293* 
(80.371) 

221.942 
(81.183) 

233.732 
(84.132) 

236.186 
(85.582) 

239.544 
(86.455) 

243.068 
(90.277) 

240.816 
(92.071) 

0.10 
151.452* 
(79.093) 

167.785 
(80.606) 

184.733 
(84.256) 

188.817 
(85.722) 

193.891 
(86.440) 

198.376 
(90.714) 

196.737 
(92.493) 

0.20 
87.149* 
(79.498) 

101.919 
(80.668) 

120.297 
(85.317) 

125.253 
(84.974) 

131.582 
(86.393) 

136.707 
(89.014) 

135.819 
(91.183) 

  * Minimize ARL1 in each   level 

 Number in parenthesis () is CPU Times (sec.) 

Table 5.  Evaluation of ARL of GWMA chart and EWMA chart when 50.0,50.0  q  

and ARL0 = 370.                         

Charts GWMA 
EWMA 

w  0.10 0.20 0.40 0.50 0.60 0.80 

Uh  

  
10.794 6.679 4.443 3.979 3.661 3.255 3.009 

0.00 
370.184 
(78.468) 

369.632 
(79.249) 

369.866 
(81.307) 

 369.728 
(80.450) 

 371.327 
(81.276) 

370.145 
(83.975) 

369.764 
(83.258) 

0.01 
334.621* 
(79.732) 

338.097 
(78.718) 

343.294 
(79.919) 

344.658 
(81.042) 

347.374 
(81.667) 

348.180 
(82.993) 

349.431 
(83.273) 

0.05 
231.905* 
(79.622) 

242.089 
(78.376) 

258.265 
(80.746) 

263.327 
(81.059) 

268.826 
(81.854) 

274.972 
(82.696) 

280.772 
(83.898) 

0.10 
157.985* 
(79.139) 

167.176 
(78.921) 

186.242 
(80.075) 

192.829 
(80.902) 

199.476 
(80.684) 

208.505 
(82.041) 

217.015 
(82.930) 

0.20 
88.823* 
(77.922) 

91.215 
(78.406) 

105.492 
(80.075) 

111.355 
(81.480) 

117.323 
(81.650) 

126.667 
(83.383) 

135.978 
(83.929) 

  * Minimize ARL1 in each   level 

 Number in parenthesis () is CPU Times (sec.) 
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Table 6. Evaluation of ARL of GWMA chart and EWMA chart when 10.0,90.0  q  

and ARL0 = 500. 

charts GWMA 
EWMA 

w  0.10 0.20 0.40 0.50 0.60 0.80 

Uh  

  
10.192 5.666 3.229 2.717 2.368 1.922 1.647 

0.00 
500.338 
(79.763) 

499.857 
(78.750) 

498.748 
(78.718) 

 501.973 
(77.829) 

 499.354 
(77.454) 

502.733 
(76.628) 

503.373 
(77.548) 

0.01 
458.746 
(79.358) 

444.847 
(80.106) 

442.061* 
(80.013) 

445.880 
(78.172) 

444.881 
(77.953) 

450.252 
(78.375) 

452.895 
(78.437) 

0.05 
346.863 
(80.247) 

301.272 
(79.420) 

288.259* 
(78.749) 

290.991 
(79.545) 

292.069 
(77.112) 

299.390 
(77.766) 

305.064 
(78.235) 

0.10 
270.236 
(78.859) 

210.715 
(81.105) 

187.765 
(78.344) 

187.409* 
(80.559) 

187.537 
(78.640) 

192.373 
(77.563) 

197.133 
(78.329) 

0.20 
193.555 
(79.451) 

132.153 
(81.651) 

102.408 
(79.514) 

98.335 
(79.357) 

96.081 
(77.423) 

95.709* 
(77.564) 

96.810 
(77.704) 

 * Minimize ARL1 in each   level 

 Number in parenthesis () is CPU Times (sec.) 

Table 7. Optimal parameter of control charts for the process mean change. 

ARL0 
The process mean change 

level ( ) 
Optimal Control Chart 

300 

0.01 GWMA ( q  = 0.90, w  = 0.60) 
0.05 

0.10 GWMA ( q  = 0.90, w  = 0.80) 

0.20 EWMA ( = 0.10 ) 

370 

0.01 
GWMA ( q  = 0.90, w  = 0.60) 0.05 

0.10 

0.20 EWMA ( = 0.10 ) 

500 

0.01 GWMA ( q  = 0.90, w  = 0.40) 
0.05 

0.10 GWMA ( q  = 0.90, w  = 0.50) 

0.20 GWMA ( q  = 0.90, w  = 0.80) 
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