Thailand Statistician

January 2015; 13(1): 111-124
http://statassoc.or.th
Contributed paper

An Approximation of ARL for Poisson GWMA Using Markov
Chain Approach

Yada Phengsalae, Yupaporn Areepong and Saowanit Sukparungsee*

Department of Applied Statistics, Faculty of Applied Science, King Mongkut's University
of Technology North Bangkok, Bangkok 10800, Thailand.

*Corresponding author; e-mail: swns@kmutnb.ac.th

Received: 26 June 2014
Accepted: 10 October 2014

Abstract

The objective of this research is to propose an approximation of Average Run
Length (ARL) by Markov Chain Approach (MCA) for Generally Weighted Moving
Average Control Chart (GWMA) when observations are from Poisson distribution. The
numerical results obtained from MCA are compared with the results obtained from Monte
Carlo Simulation (MC). The performance of control charts are compared in term of
monitoring of a change in the process mean defined by out-of-control Average Run
Length (ARL1). The results found that the numerical results obtained from MCA are as
good as from MC, however, MCA is very time saving. Furthermore, the performance of

GWMA chart is superior to EWMA chart when the magnitudes of changes are small

(5 <0.20).

Keywords: generally weighted moving average, exponentially weighted moving
average, monitoring, average run length, markov chain approach, monte -carlo

simulation.
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1. Introduction

Statistical Process Control (SPC) is the method for monitoring process quality
characteristic. Through control charts is one of important tool of SPC, because it can
detect whether the present manufacturing process. So, the processes detect the
occurrence of process variations. When the process is in-control it should have minimize
false alarm rate and maximize true alarm rate when the process is out-of-control. The
performance of control charts are measured by the Average Run Length (ARL). The
ARLo is defined as in-control ARL and the ARL: is defined as out-of-control ARL.

A Poisson distribution is often employed to control manufacturing processes

when the quality measure X is the number of nonconformities or defects per unit from

process. For example, number of nonconformities of produce buttons or weaving

clothes. Assume that X11 sz-- are independent and identically distributed with a

mean . When the process is in-control define & = ¢, and & = &; when the process
is out-of-control. The process is out-of-control when the mean changes to some another
value, say, a; >, or a; <. Generally, the control charts have proposed to fast

detect of changes early in a process. These changes probably occur from new controller
that they have not sufficient experience.

Usually, the c chart is a chart for monitoring Poisson observations. However, it

is insensitive to small process changes such O <30. In literatures, various control
charts have been developed to enhance the ability of detection small process changes.
Roberts [1] proposed Exponentially Weighted Moving Average Control Chart (EWMA).
Borror et al. [2] presented EWMA chart for monitoring Poisson observations showed that
the performance of EWMA chart is superior to the ¢ chart. Zhang et al. [3] introduced
Double Exponentially Weighted Moving Average Control Chart (DEWMA) for Poisson
observations and showed that this chart is more sensitive to small process changes than
the EWMA chart, however, it has a larger than standard deviation of in-control average
run length (SARLo) than the EWMA chart. Sheu and Lin [4] developed Generally
Weighted Moving Average Control Chart (GWMA) for monitoring process changes. This
chart has a better than other control charts especially sensitive for detecting small
process changes. Sheu and Yang [5] proposed GWMA chart for monitoring Poisson
observations. The results found that GWMA chart perform better than ¢ and EWMA
charts for large process changes.

In this paper, we propose Markov Chain Approach (MCA) for evaluating
Average Run Length (ARL) of Generally Weighted Moving Average Control Chart
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(GWMA) for Poisson observations and compared the performance of GWMA and EWMA

charts.

2. Control Chart
2.1 Generally Weighted Moving Average Control Chart: GWMA

The GWMA chart was first published by [5] is weighted moving average of
sequential historical observations. Each observation is a different weight that decreases
from the present period to past periods such that it can reflect the important observations

on recent process. This chart is developed and implemented method from EWMA chart

by adding an adjustment smoothing constant (W) If the weighted historical observation

constant equal to =1—A4 and W=1, then the GWMA chart coincides the EWMA

chart.
The statistic of GWMA chart is as following

t R w iw w
Y, = Z(q(l_l) —q )Xt—i+l +qt Yo. @)
i=1

By using geometric series can be rewritten as

1- -1)-(q-1 -1
Yt — ( q)(q ) (q )q(q ) Xt_i+]_ +qWY0 (2)
(@-1-a)
where
Y, is  the GWMA statistic at time t™, where the initial statistic value
Yo =

Xi_i;1 is the Poisson observations at the t—i +1M =23, ..
q is a weighted historical observations constant (0<q <1)

w is an adjustment smoothing constant (W > 0)

. . 2 2
Mean and variance of GWMA statistic are E(Y,) = ayand Var(Y,) = o, = Qo’,

respectively. Therefore, the control limits of GWMA chart are
Upper control limit:  UCL = o, + LO'JQt =h, ©)
Center line: CL=q,

Lower control limit:  LCL =a, —Lo\|Q, =h =0 4
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where

t
Q= Z(q('fl) —q" )? and L is the width of control limit.
i1

We let LCL=h; =0 as we considered GWMA chart for monitoring the case of

increasing of process mean and the number of nonconformities cannot be less than 0.
2.2 Exponentially Weighted Moving Average Control Chart: EWMA
The EWMA chart was first introduced by [2] is a weighted moving average of

sequential historical observations same GWMA chart but the weighted is less than
GWMA chart. It can detect the process mean changes are small (5 < 1.50) [6].

The statistic of EWMA chart is as following

Z =AX +(1-)Z,, (5)
where
Zt is the EWMA statistic at time '[th, where the initial statistic value
Zy=ay
Xt is the Poisson observations at the t™ time;t=1, 2, ...
A is a weighted historical observations constant (0 < A <1).

Mean and variance of EWMA statistic are E(Z,) = ¢, and

Var(Z,) = Gzzt =o? (ﬁ)[l— (1-2)* :I , respectively. Therefore, the control

limits of EWMA chart are

Upper control limit: ~ UCL = ¢, + H G\/ﬁ [1— (1—1)2t:' =h, (6)

Center line: CL=¢,

. A
Lower control limit; LCL=¢,—H G\/ﬂ[l_ (l—/"L)Zt] =h =0 (7

where L is the width of control limit and let LCL=h, =0 as we considered EWMA

chart for monitoring the case of increasing of mean and the number of nonconformities

cannot be less than 0.
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3. Average Run Length: ARL

Average Run Length (ARL) is the expected number of samples obtained before
a change in process is detected. The ARLs have two values, first, ARL before an out-of-
control condition is detected when the process is in control defined as ARLo and second,
ARL before an out-of-control condition is detected after process mean changed defined
as ARL1.
3.1 Approximation of ARL using Markov Chain Approach: MCA

Lucas and Saccucci [7] proposed Markov Chain Approach for approximate ARL

t state is in-control process where they assume that observation X; ; j =12,..Nn is
in-control state and j=n+1 is out-of-control state. The transition probability, Pij ,is the
probability of moving from state I to state j in one step and is given by

Pij :(Xij :Xj|Xt =X). (8)

We can replace to the transition matrix (P) and element of matrix (P;) is

I Pll e Pln | I:)1,n+l
: . : | : P11 T P1(n+l)
P=| P, Pm | Pupal| or P= : K : or
——= === === | === P(n+1)1 P(n+1)(n+1)
| 0 0 | 1
(R (1-R)1
p_|R (=R ©)
_0 1
where
R is the nxn transition probability matrix among the in-control states
| is the nxn identity matrix
1 is the nx1 column vector of ones
0 is the 1xn row vector of zeros
1 is the scalar of one.

An approximation of ARL by using MCA for detecting mean changes of process
is in interval of lower control limit and upper control limit. The region of in-control state

divided into N subintervals.

The jth subinterval of upper control limit (UJ-), jIh subinterval of lower

control limit (Lj) and the i subinterval of midpoint (mi) are given by
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U :hL+ J(h.l _hL)

i

n

m =+ @00 -h)
2n

L :hL+<j—1)(:U -h)

Consequently, the transition probability equation (P”) can be rewritten as
R, =P(L,<Z <U,|Z_=m) (10)

and substitute GWMA statistic (Y,), L;, U; and m; into Eq. (10). This transition
probability equation is

b _p(L <-0(@-D—(a-Daa-q)
! : (@-D@-q)

_ P(L_ _4-9)@-)-@-Dal-9)
’ (@-1)(1-q)

Xt—i+1 + qWYt—l < Uj |Yt—1 = mi)

i Tg'm <U j j

[2nh_+2(j-2)(h, —h ) -2ng"h_—q" (2 -L)(h, —h)I(q-)(I-q) %
_p 2n[(1-a)(@-D-(q-Da-a)] o |
< [2nh, +2j(h, —h)-2ng"h_—q"(2i -1)(h, —h )](q-1)(1-q)
2n[(1-9)(@-1)-(a-1al-a)]

11)
Besides, we substitute EWMA statistic (Z,), L;, U; and m; into Eq. (10).
This transition probability equation can be written as

P, =P(L; <AX,+(1-1)Z_, <U;|Z_ =m)
=P(L; <AX,+{@-A)m <U))

h-h . . . h,-h .. .

=Plh + 2(j-)-(1-A)(21-1))< X, <h + 2]-(1-4)(21-1) |.

[L ZM((J)( )2i-1)) <X, <h 2n;t(J( )(2i-1)
(12)

We define the transition probability matrix from state i to state j in ith order

as
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i [R'Y (=R
o[ 0]

where

(1-R')1 is the nxn transition probability vector state i <n-+1 in i"

order

Ri is the nxn transition probability matrix among the in-control
states in i™ order

0 is the nx1 column vector of ones

1 is the scalar of one

The approximation ARL of MCA is given by
ARL(t) =Y iP(RL =i) (14)
i=1
and then substitute P(RL=i)=p"T(R™ -R")1 in Eq. (14). The ARL can be
rewritten as

ARL(t) = 3 iPYT (R —R')1L

i=1

=ZOO:P(i)TRi_11
i-1
=POT1-R)™ (15)
where PWT s the initial probability vector [O, ..., 0,14 0O ... O]M.

3.2 Approximation of ARL using Monte Carlo Simulation: MC

The Monte Carlo Simulation is the classical method to evaluate the ARL values
which the closed-form formula and the explicit expression are not exist. In addition, the
results obtained from MC use for checking an accuracy the results from other
approaches.
The approximation ARL by MC is given by

N
>R,

ARL =+,
N



118 Thailand Statistician, 2015; 13(1): 111-124

The standard deviations of ARL (SARL) as

N

SARL = LZ(RL[ — ARL)?.
N-13

The time used for simulation ARL (CPU Times) is

N
CPUTimes = Z:Tt
t=1

where

RL: is the number of observations used to monitoring before out-of-control
in simulation t™ round
N is the number simulation each situations, in this paper we assume

that N = 50,000 runs

Tt is CPU Times for simulation ARL t™ round with CPU i-core 5.

4. Numerical Results

In this section, an approximation ARL of GWMA chart using MCA and MC
approaches and comparison of performance between GWMA and EWMA charts for
Poisson observations are presented.

Table 1 to 3 show the accuracy of the numerical results of ARL for GWMA chart

obtained from MCA and MC when observations are from Poisson distribution. We

assumed that the ARLo values are 300, 370 and 500 the mean of process &, =1 and

the magnitudes of change in the process mean & = 0.00, 0.01, 0.05, 0.1 and 0.2,
respectively. The results found that the numerical results obtained from MCA are in good
agreement with the results obtained from MC. Then, we use MCA for evaluating the
ARL of GWMA and EWMA charts.

Table 4 to 6 show comparison of performance of GWMA and EWMA charts by

ARL1. We assume that ARLo values are 300, 370 and 500, the mean of process &, = 1
and the magnitudes of change in the process mean ¢ = 0.00, 0.01, 0.05, 0.1 and 0.2,
respectively. The results found that the performance of GWMA chart is superior to

EWMA chart for all levels of 0.
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Table 1. ARL of GWMA chart by MCA and MC when g =0.10 and ARLo = 300.

Methods

W d MCA MC
0.00 300.036 (79.264) 299.432 % 1.3045 (2580.190)
0.10 0.01 278.175 (81.370) 277.661 + 1.2147 (2382.460)
(h, =8.664) 0.05 209.293 (80.371) 208.219 + 0.9065 (1801.830)
0.10 151.452 (79.093) 151.506 + 0.6489 (1325.010)
0.20 87.149 (79.498) 87.059 + 0.3584 (783.141)
0.00 300.343 (80.761) 299.412 + 1.3171 (2608.210)
0.20 0.01 282.168 (81.792) 281.098 + 1.2437 (2423.730)
(h, =6.174) 0.05 221.942 (81.183) 221.776 + 0.9719 (1935.080)
U 0.10 167.785 (80.606) 165.598 + 0.7306 (1446.270)
0.20 101.919 (80.668) 100.770 + 0.4368  (908.238)
0.00 300.360 (83.851) 300.098 + 1.3402 (2578.030)
0.40 0.01 285.290 (83.820) 285.260 + 1.2719 (2439.480)
(hy = 4.00) 0.05 233.732 (84.132) 233.063 + 1.0364 (2014.130)
0.10 184.733 (84.256) 183.950 + 0.8118 (1641.270)
0.20 120.297 (85.317) 120.245+ 0.5339  (1081.660)
0.00 299.590 (86.503) 301.865 + 1.3414 (2579.320)
0.50 0.01 285.338 (85.676) 284.551 + 1.2634 (2435.680)
(h, = 4.658) 0.05 236.186 (85.582) 237.150 + 1.0579 (2086.750)
U 0.10 188.817 (85.722) 190.765 + 0.8481 (1691.850)
0.20 125.253 (84.974) 125.207 + 0.5601 (1131.270)
0.00 299.928 (85.926) 301.592 + 1.3461 (2594.260)
0.60 0.01 286.416 (85.894) 288.255 + 1.2908 (2468.540)
(h, = 4.561) 0.05 239.544 (86.455) 241.904 + 1.0832 (2086.110)
U 0.10 193.891 (86.440) 194.687 + 0.8634 (1703.390)
0.20 131.582 (86.393) 131.486 + 0.5844 (1178.170)
0.00 301.700 (91.495) 303.884 + 1.3587 (2576.650)
0.80 0.01 288.621 (90.169) 287.895 + 1.2911 (2443.960)
(h, = 4.508) 0.05 243.068 (90.277) 243.884 + 1.0888 (2090.160)
U 0.10 198.376 (90.714) 199.787 + 0.8888 (1754.650)
0.20 136.707 (89.014) 137.859 + 0.6139 (1232.110)

Number in parenthesis () is CPU Times (sec.)
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Table 2. ARL of GWMA chart by MCA and MC when g =0.50 and ARLo = 370.

Methods
W s MCA MC

0.00 370.184 (78.468) 369.181 + 1.5054 (3161.110)

0.10 0.01 334.621 (79.732) 333.794 + 1.3285 (2843.350)

(h =10794) 0.05 231.905 (79.622) 230.702 + 0.8876 (1986.140)
U ‘ 0.10 157.985 (79.139) 157.686 + 0.5694 (1376.490)
0.20 88.823 (77.922) 88.957 + 0.2744 (793.125)

0.00 369.632 (79.249) 367.825 + 1.6015 (3128.330)

0.20 0.01 338.097 (78.718) 336.884 + 1.4490 (2920.790)

(h,, =6.679) 0.05 242.089 (78.376) 239.974 + 1.0237 (2089.620)
u T 0.10 167.176 (78.921) 167.537 + 0.6969 (1468.270)
0.20 91.215 (78.406) 91.091+ 0.3525 (819.146)

0.00 369.866 (81.307) 371.634 + 1.6438 (3170.350)

0.40 0.01 343.294 (79.919) 344.644 + 1.5129 (2927.300)

(h, =4.443) 0.05 258.265 (80.746) 257.763 + 1.1366 (2209.910)
u T 0.10 186.242 (80.075) 185911+ 0.8112 (1616.730)
0.20 105.492 (80.075) 105.675 + 0.4504 (959.796)

0.00 369.728 (80.450) 371.266 + 1.6548 (3136.380)

0.50 0.01 344.658 (81.042) 343,774+ 1.5252 (2913.150)
(hy =3.979) 0.05 263.327 (81.059) 259.685 + 1.1519 (2238.650)
0.10 192.829 (80.902) 191.553 + 0.8461 (1665.750)
0.20 111.355 (81.480) 111.381 + 0.4869 (991.589)

0.00 371.327 (81.276) 369.511 + 1.6469 (3143.420)

0.60 0.01 347.374 (81.667) 348.615 + 1.5540 (3020.160)
(hy = 3.661) 0.05 268.826 (81.854) 268.098 + 1.1903 (2375.160)
0.10 199.476 (80.684) 196.936 + 0.8678 (1713.160)

0.20 117.323 (81.650) 116.510 + 0.5092 (1038.780)

0.00 370.145 (83.975) 368.887 + 1.6526 (3104.800)

0.80 0.01 348.180 (82.993) 346.909 + 1.5630 (2942.690)

(h,) =3.255) 0.05 274.972 (82.696) 275.213 + 1.2169 (2375.180)
U 0.10 208.505 (82.041) 210.662 + 0.9346 (1853.120)
0.20 126.667 (83.383) 126.820 + 0.5588 (1131.010)

Number in parenthesis () is CPU Times (sec.)

5. Conclusion

The numerical results of ARL for GWMA chart obtained from MCA and MC
approaches when observations have Poisson distribution are compared. The results
found that the numerical results obtained from those methods are in good agreement
however, MCA is very time saving with CPU Times about 1 minute whereas MC
consumes CPU Times between 10 minutes to 1 hour per case study. For the case of
ARLo = 500 the GWMA chart is superior to EWMA chart when the magnitudes of
changes are small (& <0.20) and for the case of ARLo = 300 and 370, the GWMA
chart is superior to EWMA chart when the magnitudes of changes are small

(6 £0.10). when the magnitudes of changes are increased (& > 0.10), the EWMA

chart is superior to GWMA chart. Therefore, in order to select the control chart for
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monitoring change in process mean we conclude the optimal control chart when the

process mean changes are small as shown on Table 7.

Table 3. Evaluation of ARL of GWMA chart by MCA and MC when q=0.90 and ARLo =

500.
Methods
W d MCA MC

0.00 500.338 (79.763) 500.198 + 1.1630 (4252.810)
0.10 0.01 458.746 (79.358) 461.519 + 1.0060 (3932.080)
(hy = 0.05 346.863 (80.247) 349.485+ 0.6199 (2988.180)
10.192) 0.10 270.236 (78.859) 271.548+ 0.3889 (2364.370)
0.20 193.555 (79.451) 194.082 + 0.2056 (1733.190)

0.00 499.857 (78.750) 492.795 + 1.6564 (4160.970)

0.20 0.01 444.847 (80.106) 440.027 + 1.4271 (3732.780)

(h, =5.666) 0.05 301.272 (79.420) 299.717 + 0.8529 (2566.200)
U 0.10 210.715 (81.105) 210.895 + 0.5071 (1826.520)
0.20 132.153 (81.651) 132.416 + 0.2359 (1178.990)

0.00 498.748 (78.718) 488.930 + 1.9461 (4149.500)

0.40 0.01 442.061 (80.013) 434.498 + 1.6998 (3775.880)

(h, =3.229) 0.05 288.259 (78.749) 285.461 + 1.0655 (2482.960)
U 0.10 187.765 (78.344) 187.805 + 0.6354 (1702.480)
0.20 102.408 (79.514) 102.979+ 0.2908 (929.719)

0.00 501.973 (77.829) 487.429 + 2.0097 (4193.700)

0.50 0.01 445.880 (78.172) 435.815 + 1.8018 (3722.220)

(h, =2.717) 0.05 290.991 (79.545) 285.632+ 1.1204 (2452.040)
U 0.10 187.409 (80.559) 186.960 + 0.6858 (1625.410)
0.20 98.335 (79.357) 98.020 + 0.3078 (870.127)

0.00 499.354 (77.454) 489.319 + 2.0964 (4126.990)

0.60 0.01 444.881 (77.953) 434.565 + 1.8241 (3661.560)

(h, =2.368) 0.05 292.069 (77.112) 289.313+ 1.1842 (2532.100)
U 0.10 187.537 (78.640) 187.140+ 0.7250 (1657.510)
0.20 96.081 (77.423) 95.905 + 0.3286 (867.147)

0.00 502.733 (76.628) 490.821 + 2.1456 (4236.850)

0.80 0.01 450.252 (78.375) 437.800 + 1.8994 (3929.920)
(hy =1922) 0.05 299.390 (77.766) 295.342 + 1.2758 (2625.120)
0.10 192.373 (77.563) 191.769 + 0.8054 (1672.360)

0.20 95.709 (77.564) 95.441 + 0.3694 (852.187)

Number in parenthesis () is CPU Times (sec.)
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Table 4. Evaluation of ARL of GWMA chart and EWMA chart when q=0.10,4=0.90
and ARLo = 300.

charts GWMA EWMA
w 0.10 0.20 0.40 0.50 0.60 0.80
S hU 8.664 6.174 4.900 4.658 4561 4.508 4.502
0.00 300.036 | 300.343 | 300.360 | 299.590 | 299.928 | 301.700 | 298.578

(79.264) | (80.761) | (83.851) | (86.503) | (85.926) | (91.495) | (89.903)
278.175* | 282.168 | 285290 | 285338 | 286.416 | 288.621 | 285.699

001 | 81370) | (81.792) | (83.820) | (85.676) | (85.894) | (90.169) | (91.932)
005 | 200293" | 221.042 | 233.732 | 236.186 | 239.544 | 243.068 | 240816
: (80.371) | (81.183) | (84.132) | (85.582) | (86.455) | (90.277) | (92.071)
010 | 1514527 | 167.785 | 184.733 | 188.817 | 193891 | 198.376 | 196.737
: (79.093) | (80.606) | (84.256) | (85.722) | (86.440) | (90.714) | (92.493)
020 | 87.149 | 101019 | 120097 | 125253 | 131582 | 136.707 | 135819

(79.498) | (80.668) | (85.317) | (84.974) | (86.393) | (89.014) | (91.183)
* Minimize ARL1 in each J level
Number in parenthesis () is CPU Times (sec.)

Table 5. Evaluation of ARL of GWMA chart and EWMA chart when g =0.50, 4 =0.50
and ARLo = 370.

Charts GWMA EWMA
W 0.10 0.20 0.40 0.50 0.60 0.80
h
S U 10.794 6.679 4.443 3.979 3.661 3.255 3.009
0.00 370.184 369.632 369.866 369.728 371.327 | 370.145 369.764
' (78.468) (79.249) (81.307) (80.450) (81.276) (83.975) (83.258)
0.01 334.621* | 338.097 343.294 344.658 347.374 348.180 349.431
' (79.732) (78.718) (79.919) (81.042) (81.667) (82.993) (83.273)
0.05 231.905* | 242.089 258.265 263.327 268.826 274.972 280.772
) (79.622) (78.376) (80.746) (81.059) (81.854) (82.696) (83.898)
0.10 157.985* 167.176 186.242 192.829 199.476 208.505 217.015
' (79.139) (78.921) (80.075) (80.902) (80.684) (82.041) (82.930)
0.20 88.823* 91.215 105.492 111.355 117.323 126.667 135.978
) (77.922) (78.406) (80.075) (81.480) (81.650) (83.383) (83.929)

* Minimize ARL:1 in each ¢ level
Number in parenthesis () is CPU Times (sec.)
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Table 6. Evaluation of ARL of GWMA chart and EWMA chart when q=0.90,1=0.10
and ARLo = 500.

charts GWMA EWMA
w 0.10 0.20 0.40 0.50 0.60 0.80
h
S5 U 10.192 5.666 3.229 2.717 2.368 1.922 1.647
0.00 500.338 499.857 498.748 501.973 499.354 | 502.733 503.373
' (79.763) | (78.750) | (78.718) | (77.829) | (77.454) | (76.628) | (77.548)
0.01 458.746 444.847 442.061* 445.880 444.881 450.252 452.895
) (79.358) (80.106) (80.013) (78.172) (77.953) (78.375) (78.437)
0.05 346.863 301.272 | 288.259* | 290.991 292.069 299.390 305.064
' (80.247) | (79.420) | (78.749) | (79.545) | (77.112) | (77.766) | (78.235)
0.10 270.236 210.715 187.765 | 187.409* | 187.537 192.373 197.133
' (78.859) (81.105) (78.344) (80.559) (78.640) (77.563) (78.329)
0.20 193.555 132.153 102.408 98.335 96.081 95.709* 96.810
' (79.451) | (81.651) | (79.514) | (79.357) | (77.423) | (77.564) | (77.704)

* Minimize ARL1 in each 6 level
Number in parenthesis () is CPU Times (sec.)

Table 7. Optimal parameter of control charts for the process mean change.

The process mean change .
ARL, Optimal Control Chart
level (0')
0.01 GWMA (g =0.90, W = 0.60)
0.05
300 0.10 GWMA (g =0.90, W = 0.80)
0.20 EWMA (1 =0.10)
0.01
0.05 GWMA (g =0.90, W = 0.60)
370 0.10
0.20 EWMA (4 =0.10)
0.01 GWMA (g =0.90, W = 0.40)
0.05
500 0.10 GWMA (g =0.90, W = 0.50)
0.20 GWMA (g =0.90, W =0.80)
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