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Abstract
Assessing agreement between two methods of continuous measurement

plays a vital role in deciding if one of the methods (newer or cheaper) can be

adopted in future experiments. Assuming a bivariate normal distribution for the

responses from the two methods, we derive the likelihood ratio test for a com-

bined hypothesis of equality of means, equality of variances and a known high

value of pairwise correlation based on unbalanced paired data. This situation

arises when one observes multiple replications of one response (cheaper) for a

specified single value of the other response (costlier) from sampled units. Our

results provide a generalization of Yimprayoon, Tiensuwan and Sinha (2006).

An example in the context of a USEPA application is highlighted.

Keywords: Agreement, Concordance correlation coefficient, Fisher’s test, Likelihood ratio test,
Unbalanced data.
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1. Introduction
Assessing agreement between two methods of measurement plays a vi-

tal role in deciding if one of the methods (newer or cheaper) can be adopted

in future experiments. There are numerous examples in clinical, medical and

criminal trials that illustrate these situations requiring measurement of agree-

ment between two data-generating sources [1]. Evaluation of agreement start-

ing from the fundamental works of Cohen [2], [3] and Landis and Koch [4] for

qualitative responses has recently received considerable attention when the

response is continuous. In the latter case, methods based on correlation coef-

ficient, regression analysis, paired t-tests, least squares analysis for intercept

and slope, and within-subject coefficient of variation have been traditionally

used. It is however the notion of concordance correlation coefficient (CCC) due

to Lin [5] which provided a breakthrough for assessing agreement between two

distinct methods for continuous data.

Lin [5] defines the degree of concordance or agreement (CCC) between two

variables X and Y by the mean of their squared difference (MSD), and CCC

as

CCC = ρC = 1− E(X − Y )2

Eindep(X − Y )2
=

2σxy

σ2
x + σ2

y + (µx − µy)2
(1)

where Eindep represents expectation under independence of X and Y , and

µx = E(X), µy = E(Y ), σ2
x = V ar(X), σ2

y = V ar(Y ), and σxy = Cov(X,Y ).

CCC translates the MSD = E(X − Y )2 into a correlation coefficient that mea-

sures the agreement along the identity line, and satisfies: −1 ≤ CCC ≤ +1

with −1 indicating perfect disagreement (or reverse agreement, Y = −X), 0

indicating no agreement, and +1 indicating perfect agreement (Y = X). A

sample estimate of CCC based on paired data [(xi, yi), i = 1, · · · , n] is readily

obtained by plugging in the standard estimates of the five parameters by their

sample analogues.

Several generalizations of Lin [5]’s idea exist in the literature (Chinchilli et al.

[6]; Vonesh et al. [7]; Vonesh and Chinchilli [8]; Barnhart [9]; King and Chinchilli

[10, 11]; Lin [12]). Lin et al. [1] provided a review and comparison of various

measures in this field, including CCC, by evaluating the powers of tests (i)

µx = µy, (ii) σx = σy, and (iii) ρ = ρ0 where ρ0 is a given value. Yimprayoon

et al. [13] extended the work of Lin et al. [1] by deriving the likelihood ratio test

(LRT) of the combined hypothesis H0 : µx = µy, σx = σy, ρ = ρ0 where ρ0 is a
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given value. In both Lin et al. [1] and Yimprayoon et al. [13], inference is based

on usual paired data on X and Y under the assumption of a bivariate normal

population.

The objective of this paper is to generalize the results in Yimprayoon et

al. [13] in two directions: nature of null hypothesis and nature of data. We

test the null hypothesis H0 : µx = µy, σx = σy, ρ ≥ ρ0. We believe that,

unlike in Yimprayoon et al. [13], the null hypothesis for ρ, namely, ρ ≥ ρ0

makes more sense. Regarding the nature of data, we deal with an unbal-

anced data of the type [(xi, yi1, · · · , yimi), i = 1, · · · , n], representing multiple

replications of Y corresponding to one observation on X. This situation may

arise when one variable (Y ) is much cheaper than the other variable (X), re-

sulting in multiple observations of Y all corresponding to a single value of X.

A recent USEPA study (California Environmental Protection Agency Air Re-

sources Board Report [14]) providing an application of this scenario deals with

demonstrating equivalence between primary and secondary methods for mea-

suring formaldehyde emissions from composite wood products. The primary

method is based on a large chamber test (generating x-values) while the sec-

ondary method on a small chamber test (generating y-values), and there are

often three y-values corresponding to every x-value. However, the formalde-

hyde study used a more limited test for agreement based only on the mean

and standard deviation of the sample differences di = xi − ȳi, i = 1, · · · , n
as if equality of population means and population variances would guarantee

equivalence! That this is not true follows from a simple example of paired

data of the type [(10, 22), (15, 12), (18, 10), (25, 17), (17, 25), (22, 18), (12, 15)] for

which d̄ = 0 and also s2x = s2y but with obvious severe discrepancies between

the two datasets. Moreover, a high correlation by itself also does not guar-

antee equivalence because the variables may have an almost linear relation

without their means and variances being equal. The dataset [(10, 15), (15, 25),

(18, 25), (20, 26), (25, 30), (30, 36)] for which rxy = 0.965, d̄ = −6.5, s2x = 50.67,

s2y = 47.77 demonstrates this fact. We will return to this EPA example in Section

4. The case when m1 = · · · = mn = m is referred to as balanced.

The paper is organized as follows. We derive the LRT of H0 in Section 2

and provide its critical values by simulation in some cases. We also compute its

power for some choices of the alternative hypothesis. In Section 3 we propose

new tests based on combinations of p-values of the component tests under
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H01 : µx = µy, H02 : σx = σy, and H03 : ρ ≥ ρ0. A comparison of the power

of such tests with that of the LRT is also done. We return to two EPA datasets,

including the one discussed above, in Section 4. An appendix contains some

technical results.

2. Main Results

Case 1. We begin with the restricted dataset

[(xi, ȳi), i = 1, . . . , n] (2)

where only the means of the Y variable are provided. The likelihood func-

tion can be based on the marginal likelihood of xi, which is univariate normal

N(µx, σ
2
x), and conditional likelihood of ȳi, given xi, which is again univariate

normal with conditional mean linear in xi and conditional variance independent

of xi, namely,

ȳi|xi ∼ N [µy + ρ
σy

σx
(xi − µx),

σ2
y(1− ρ2)

mi
] (3)

resulting into the overall likelihood

L(µx, µy, σx, σy, ρ|data) ∝ (σxσy)
−n(1− ρ2)−n/2

exp
[
− 1

2

n∑
i=1

(xi − µx)
2

σ2
x

− 1

2σ2
y(1− ρ2)

n∑
i=1

mi(ȳi − µy − ρ
σy

σx
(xi − µx))

2
]
. (4)

Note that here since only ȳi is available, the above likelihood represents the

joint pdf of [(xi, ȳi), i = 1, · · · , n]. Let us define

A =
n∑

i=1

(xi − x̄)2, C =
n∑

i=1

mi(xi − ¯̄x)2

D =
n∑

i=1

mi(ȳi − ¯̄y)2, E =
n∑

i=1

mi(xi − ¯̄x)(ȳi − ¯̄y)

x̄ =

∑n
i=1 xi

n
, ¯̄x =

∑
mixi

M
, ¯̄y =

∑
miȳi
M

, M =
∑

mi. (5)

Unrestricted maximization. It can be verified that the unrestricted maximiza-

tion yields the following estimates:

µ̂x = x̄, µ̂y = ¯̄y +
E

C
(x̄− ¯̄x) (6)
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σ̂2
x =

A

n
, σ̂2

y =
1

n
[D +

MAE2

nC2
− E2

C
], ρ̂2 =

E2σ̂2
x

C2σ̂2
y

. (7)

Plugging in equations (6) and (7) into (4) gives the following unrestricted maxi-

mum of the likelihood (apart from some constants):[
C

A(DC − E2)

]n/2
. (8)

Details appear in the Appendix.

Restricted maximization. To maximize the likelihood under H0 : µx = µy,

σx = σy, ρ ≥ ρ0, we first fix ρ ≥ ρ0, and maximize it with respect to the com-

mon mean µ and common variance σ2. A direct maximization of the likelihood

with respect to µ yields

µ̂(ρ) =
nx̄(1 + ρ) +M(¯̄y − ρ¯̄x)

M(1− ρ) + n(1 + ρ)
. (9)

Also, the MLE of σ2 is given by

σ̂2(ρ) =
A+ n(x̄− µ̂)2 +

∑n
i=1 mi[ȳi−µ̂−ρ(xi−µ̂)]2

1−ρ2

2n
(10)

which can be simplified as 2nσ̂2(ρ) = Q1(ρ) with

Q1(ρ) = A+
D + Cρ2 − 2Eρ

1− ρ2
(11)

+
nM [¯̄y − x̄+ ρ(x̄− ¯̄x)]2

(1− ρ)[M(1− ρ) + n(1 + ρ)]
.

Details appear in the Appendix. It is easy to verify that the likelihood func-

tion, maximized with respect to µ and σ2 for fixed ρ, simplifies to

L1(ρ|data) ∝ [(1− ρ2)
1
2 ×Q1(ρ)]

−n. (12)

To maximize the above expression with respect to ρ ≥ ρ0, which is equiv-

alent to minimization of U1(ρ) = [(1 − ρ2)
1
2 × Q1(ρ)], an analytical approach

turns out to be quite difficult. However, one can use numerical computations to

evaluate it. It then follows from (8) and (12) that the LRT statistic λ1(ρ) defined

by

λ1(ρ) =
supH0

L(µx, µy, σ
2
x, σ

2
y, ρxy| data )

supunrestricted L(µx, µy, σ2
x, σ

2
y, ρxy|data)

(13)
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is equivalent to rejecting H0 for large values of T1 given by

T1 = [minρ≥ρ0U1(ρ)]× [
C

A(DC − E2)
]
1
2 . (14)

Remark 1. Obviously, when the design is balanced, namely, m1 = · · · = mn =

m, C = nA, and hence the ratio C
A can be dropped from T1 along with some

obvious changes in D, C and E.

It is easy to verify that, under H0, T1 is location and scale invariant. In

view of the composite nature of the null hypothesis H0 in terms of ρ, the cut-off

point c1 to be used for rejecting H0 based on T1 must satisfy the size condition

for all values of ρ ≥ ρ0. Our simulation studies reveal that taking ρ = ρ0 and

determining the resulting cut-off point c1(ρ0) does satisfy the size condition

for values of ρ larger than ρ0. We have simulated (null) values of T1 under

the bivariate normal distribution N [0, 0, 1, 1, ρ0] for various values of ρ0, n and

m1, · · · ,mn. Table 1 shows the cut-off points c1(ρ0) for α = 0.05, and Table 2

shows the estimated Type I error rates when ρ > ρ0; notice that the estimated

Type I error rates are always smaller than 0.05. To get an idea about the power

of the LRT, we have taken seven kinds of alternatives: (i) means and variances

are the same (µ = 0, σ = 1), but ρ < ρ0; (ii) means are unequal, but variances

are the same (σ = 1) and ρ = ρ0; (iii) means are the same (µ = 0), but

variances are unequal and ρ = ρ0; (iv) means are unequal, variances are

unequal, ρ = ρ0; (v) means are unequal, variances are equal (σ = 1), ρ < ρ0;

(vi) means are equal (µ = 0), variances are unequal and ρ < ρ0; (vii) means

are unequal, variances are unequal and ρ < ρ0. Tables 7-13 in the Appendix

provide the power of the LRT under the above alternatives. It turns out that the

power is a maximum when the means are different, and a minimum when the

correlation is smaller than ρ0 or when the variances are not the same. Even so,

when the sample size is moderate, the LRT performs reasonably.

Case 2. Here we assume that unrestricted or full data, namely, [xi, (yi1, · · · , yimi)],

i = 1, · · · , n] are available. The likelihood function given in (4) is modified as

L(µx, µy, σx, σy, ρ|data) ∝ (σx)
−n[σ2

y(1− ρ2)]−M/2

exp
[
− 1

2

n∑
i=1

(xi − µx)
2

σ2
x

− 1

2σ2
y(1− ρ2)

{
n∑

i=1

mi(ȳi − µy − ρ
σy

σx
(xi − µx))

2 +Wy}
]

(15)
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where Wy =
∑n

i=1

∑mi

j=1(yij− ȳi)
2 is the within sum of squares of the y-values.

The derivation of the above likelihood follows from the simple fact that, condi-

tionally given xi, (yi1, · · · , yimi) is a random sample of size mi from the con-

ditional (normal) distribution of Y with conditional mean linear in xi and condi-

tional variance independent of xi, as in Case 1.

Unrestricted maximization. The unrestricted MLEs of the parameters are

obtained as

µ̂x = x̄, µ̂y = ¯̄y +
E

C
(x̄− ¯̄x), σ̂2

x =
A

n
(16)

σ̂2
y =

1

M
[Wy +D +

MAE2

nC2
− E2

C
], ρ̂ =

Eσ̂x

Cσ̂y
. (17)

This results in the unrestricted maximum value of the likelihood as (apart from

some constants)
1

A
n
2 × [D − E2

C +Wy]
M
2

. (18)

Restricted maximization. As before, we first fix ρ and maximize the likelihood

under the hypothesis of a common mean µ and a common variance σ2. It is

easy to see that the restricted MLE of the common mean µ is the same as in

the previous case (see (9)), and the restricted MLE of the common variance σ2

is obtained as (n+M)σ̂2(ρ) = Q2(ρ) where

Q2(ρ) = A+
D + Cρ2 − 2Eρ+Wy

1− ρ2
+

nM{¯̄y − x̄+ ρ(x̄− ¯̄x)}2

(1− ρ){M(1− ρ) + n(1 + ρ)}
. (19)

Hence, the likelihood when maximized with respect to µ and σ2 for fixed ρ

simplifies to

L2(ρ|data) ∝ [(1− ρ2)
M
2 ×Q2(ρ)

n+M
2 ]−1. (20)

Thus in this case to maximize the likelihood under H0 we need to minimize

U2(ρ) = (1−ρ2)×(Q2(ρ))
1+ n

M with respect to ρ for values larger than ρ0. Again,

in any specific application, it can be easily done numerically. The LRT in this

case is equivalent to rejecting H0 for large values of T2 where

T2 =
1

A
×

[
minρ≥ρ0U2(ρ)

D − E2

C +Wy

]M
n

. (21)

Details of the above computations appear in the Appendix.
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Remark 2. Again, when the design is balanced, apart from C = nA, there

will be some obvious simplifications in Q2(ρ), and in particular, the last term

of Q2(ρ) changes to nm(ȳ−x̄)2

(1−ρ)[m(1−ρ)+(1+ρ)] . As before, in view of the location and

scale invariance of T2, the critical value c2(ρ0) for rejection of H0 can be deter-

mined by setting µ = 0, σ = 1 and ρ = ρ0, and then verifying that the type I

error holds at the stipulated level α for values of ρ > ρ0. We omit the details

here.

Table 1: Cutoff points for likelihood
method, Case I.

ρ0 n mi α cutoff
0.9 5 1 0.05 6.4759
0.9 10 1 0.05 3.1456
0.9 15 1 0.05 2.6378
0.9 5 3 0.05 6.3867
0.9 10 3 0.05 3.1185
0.9 15 3 0.05 2.6402

Table 2: Estimated Type I error
rates for ρ > ρ0 = 0.9, Case I.

ρ n mi α
0.92 5 1 0.0439
0.92 10 1 0.0396
0.92 15 1 0.0371
0.92 5 3 0.0452
0.92 10 3 0.0409
0.92 15 3 0.0335
0.95 5 1 0.033
0.95 10 1 0.0299
0.95 15 1 0.0274
0.95 5 3 0.0374
0.95 10 3 0.0305
0.95 15 3 0.0237
0.99 5 1 0.0299
0.99 10 1 0.0254
0.99 15 1 0.0253
0.99 5 3 0.0309
0.99 10 3 0.0277
0.99 15 3 0.0266

3. Tests based on combinations of p-values

In this section we propose several tests based on combinations of p-values

for testing the overall null hypothesis H0 using tests for the component null

hypotheses H01 : µx = µy versus both-sided alternatives, H02 : σx = σy versus

both-sided alternatives, and H03 : ρ ≥ ρ0 versus H13 : ρ < ρ0.

1. Assume m1 = · · · = mn = m. A standard test for H01 : µx = µy is

the paired t-test, rejecting H01 for large values of |td| = |
√
nd̄
sd
| where

di = xi − ȳi, d̄ =
∑n

i=1 di

n , and s2d =
∑n

i=1(di−d̄)2

n−1 . The p-value here is
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defined as

p1 = Pr[|tn−1| > |td|]. (22)

2. For testing H02, we assume ρ = ρ0, and define the modified Pitman-

Morgan test based on ui = xi+ȳi[
mi

1+(mi−1)ρ2
0
]
1
2 and vi = xi−ȳi[ mi

1+(mi−1)ρ2
0
]
1
2 .

Then H02 is equivalent to H∗
02 : ρuv = 0, for which a standard test is based

on tuv = ruv(n−2)
1
2

(1−r2uv)
1
2

. The p-value for this test is defined as

p2 = Pr[|tn−2| > |tuv|]. (23)

3. Assume again m1 = · · · = mn = m. Noting that ρxȳ = [ mρ2

1+(m−1)ρ2 ] = ρ∗,

a test for H03 is readily based on the sample correlation r∗ between x and

ȳ. Defining z∗ = 1
2 ln

1+r∗

1−r∗ and ζ∗ = 1
2 ln

1+ρ∗
0

1−ρ∗
0
, where ρ∗0 = [

mρ2
0

1+(m−1)ρ2
0
],

the p-value here is defined as

p3 = Pr[N(0, 1) < (z∗ − ζ∗)(n− 3)
1
2 ]. (24)

Following Hartung et al. [15], we now propose the following three tests for

H0 based on combinations of the above p-values. Note however that, unlike

in standard problems, here the p-values are not independent even under H0!

This means that the usual standard null sampling distributions of the following

combined tests under independence of the p-values cannot be used in our

context because here the p-values are not independent.

1. Tippett’s test. This test rejects H0 when p(1) = min(p1, p2, p3) < c1.

2. Fisher’s test. This test rejects H0 when −2[ln p1 + ln p2 + ln p3] > c2.

3. Stouffer’s test. This test rejects H0 when |Φ−1(p1)+Φ−1(p2)+Φ−1(p3)| <
c3.

We have evaluated the values of c1, c2, c3 by simulations and also computed

simulated powers for the same scenarios as in Section 2. Table 3 shows the

cutoff values for each test in the scenario where µx = µy = 0, σ2
x = σ2

y =

1, ρ0 = 0.9. Table 4 displays the estimated Type I error rates for ρ > ρ0 = 0.9;

notice that for most cases these values are smaller than 0.05, but Tippett’s test

and Fisher’s test have estimated Type I error rates > 0.05 (shown in bold) in

the case where ρ = 0.99 and m = 3. Tables 14-20 in the Appendix provide the

power of the tests under various alternatives. As with the LRT approach, the
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power is a maximum when the means are different and a minimum when the

correlation is smaller than the hypothesized value. In general, Fisher’s test has

the highest power. Stouffer’s test has a higher power when the sample size is

rather small (n = 5). The LRT approach gives comparable power to Fisher’s

test, and sometimes a higher power.

Table 3: Cutoff points for p-value methods

ρ n mi Tippett Fisher Stouffer
0.9 5 1 0.0223 10.4968 -1.8364
0.9 10 1 0.0198 10.9312 -2.1755
0.9 15 1 0.0185 11.5213 -2.3712
0.9 5 3 0.0226 10.6629 -1.8838
0.9 10 3 0.0186 11.4212 -2.2772
0.9 15 3 0.0185 11.3721 -2.2879

Table 4: Estimated Type I error rates for ρ > ρ0 = 0.9

ρ n mi Tippett α Fisher α Stouffer α
0.92 5 1 0.0498 0.0481 0.0358
0.92 10 1 0.0468 0.0439 0.0327
0.92 15 1 0.0409 0.0343 0.0248
0.92 5 3 0.0484 0.0448 0.0349
0.92 10 3 0.0416 0.0354 0.0271
0.92 15 3 0.0412 0.0402 0.0271
0.95 5 1 0.0457 0.0402 0.0183
0.95 10 1 0.0388 0.0314 0.0092
0.95 15 1 0.039 0.025 0.0053
0.95 5 3 0.0474 0.0442 0.0172
0.95 10 3 0.0473 0.0421 0.0116
0.95 15 3 0.0551 0.0427 0.0088
0.99 5 1 0.0399 0.0309 0.0007
0.99 10 1 0.0386 0.0262 0
0.99 15 1 0.0388 0.023 0
0.99 5 3 0.1112 0.1067 0.0018
0.99 10 3 0.3148 0.2344 0.0001
0.99 15 3 0.5378 0.4211 0

4. Applications

In this section we first elaborate on the EPA dataset, indicated in Section
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1, dealing with comparing the performances of large chamber (x) and small

chamber (y) experiments to quantify formaldehyde emissions from composite

wood products. Here large chamber measurements are observed once and the

corresponding small chamber measurements are observed three times (m1 =

m2 = m3 = m = 3). Denoting by di = xi − ȳi, the mean differences between

the two methods, the statistical method suggested by the ARB staff of the State

of California, borrowing ideas from TOST (Schuirmann [16, 17]), recommends

equivalence when

TEPA = |d̄|+ 0.88Sd ≤ C (25)

for a suggested value of C (for low, mid, high ranges). The fundamental as-

sumption behind TOST is that (X,Y ) follows a lognormal distribution, and we

are interested in testing if the ratio of means is close to 1, without any infor-

mation as to their variances or correlation! In the log scale, this amounts to

testing if the difference of two means is small. That closeness or even equality

of means alone does not guarantee equivalence has been elaborated earlier.

The second EPA application deals with comparing conventional purging and

low-flow sampling method with HydraSleeve sampling method in order to quan-

tify concentrations of VOCs, SVOCs, metals, dissolved gases, and perchlorate

in groundwater. Here equivalence is nicely assessed by applying standard

regression analysis, and sign and Wilcoxon nonparametric tests (TRC Report:

HydraSleeve Comparison Study, Letter report to California Department of Toxic

Substances Control [18]). Under the assumption of a bivariate normal distribu-

tion of the contamination samples collected from groundwater, we can apply

the methods discussed in our paper. Towards this end, we have selected two

compounds: TCE (Trichloroethylene) and DCA (Dichloroacetic acid), and car-

ried out the analysis below. It is interesting to note that in both the cases all the

proposed tests agree in the final conclusion.

4.1 TCE: a case of agreement

In this case we tested the hypothesis H0 : µx = µy, σx = σy, ρ ≥ 0.9. Figure

1 shows a scatterplot of X (the conventional low-flow sampling method mea-

surements) and Y (the average of one or two measurements from the new Hy-

draSleeve sampling method). The measurements come from 23 distinct wells.
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Figure 1: Scatterplot of TCE measurements

The conventional sampling method measurements have a sample mean of

54.6087 and a sample variance of 3,856.09, while the HydraSleeve measure-

ments have a sample mean of 46.5435 and a sample variance of 3,888.58.

The sample correlation between the measurements is 0.8619. Table 5 gives

the results for the tests, leading to acceptance of the agreement hypothesis.

Table 5: Results of TCE analysis.

Test Cutoff Test statistic Conclusion
LRT 2.3755 2.2061 Accept H0

Tippett 0.01803 0.22175 Accept H0

Fisher 11.7477 5.8498 Accept H0

Stouffer -2.4731 0.4399 Accept H0
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4.2 DCA: a case of non-agreement

Here we tested the hypothesis H0 : µx = µy, σx = σy, ρ ≥ 0.9. Figure 2 shows

a scatterplot of X (the conventional low-flow sampling method measurements)

and Y (the average of one or two measurements from the new HydraSleeve

sampling method). The measurements come from 19 distinct wells.

Figure 2: Scatterplot of DCA measurements

The conventional sampling method measurements has a sample mean of

3.6421 and a sample variance of 14.0103, while the HydraSleeve measure-

ments has a sample mean of 2.4 and a sample variance of 9.9425. The sample

correlation between the measurements is 0.5925 which is rather low. Table 6

gives the results for the tests, leading to rejection of the agreement hypothesis.
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Table 6: Results of DCA analysis

Test Cutoff Test statistic Conclusion
LRT 2.4621 3.6415 Reject H0

Tippett 0.0186 0.00078 Reject H0

Fisher 11.6593 20.7273 Reject H0

Stouffer -2.4187 -4.7037 Reject H0
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Appendix

Here we provide details of the derivations of the MLEs of the model param-

eters in Cases 1 and 2.

Case 1. Based on the likelihood L(µx, µy, σx, σy, ρ|data) displayed in (4), taking

its logarithm and successtive derivaties with respect to the parameters, we get

the following:

1. ∂lnL(.|.)
∂µx

= 0→ n(x̄−µx)
σx

=
Mρ[¯̄y−µy−ρ

σy
σx

(¯̄x−µx)]

σy(1−ρ2) .

2. ∂lnL(.|.)
∂µy

= 0→ µy = ¯̄y + ρ
σy

σx
(µx − ¯̄x).

Combining the above two equations, we readily get

µ̂x = x̄, µ̂y = ¯̄y + ρ
σy

σx
(x̄− ¯̄x). (26)

Using the above solutions for µx and µy, we get the following:

n∑
i=1

mi[ȳi − µ̂y − ρ
σy

σx
(xi − µ̂x)]

2 = D + Cρ2
σ2
y

σ2
x

− 2Eρ
σy

σx
(27)

and

n∑
i=1

mi(xi − x̄)[ȳi − µ̂y − ρ
σy

σx
(xi − µ̂x)] = E − ρ

σy

σx
C. (28)

Using all of the above facts, we observe that

1. ∂lnL(.|.)
∂σ2

x
= 0→ A

σ2
x
= n+

ρ(E− ρσy
σx

C)

σxσy(1−ρ2) .

2. ∂lnL(.|.)
∂σ2

y
= 0→ n(1− ρ2)σ2

y + E
ρσy

σx
= D → nσ2

y + E
ρσy

σx
−D = nρ2σ2

y.

3. ∂lnL(.|.)
∂ρ = 0→ nρσ2

y = Cρ
σ2
y

σ2
x
− E

σy

σx
+ ρ

(1−ρ2) × [D + Cρ2
σ2
y

σ2
x
− 2Eρ

σy

σx
].

4. Multiplying both sides of (3) above by ρ and using (2):

Cρ2
σ2
y

σ2
x
− Eρ

σy

σx
+ ρ2

1−ρ2

[
D + Cρ2

σ2
y

σ2
x
− 2Eρ

σy

σx

]
= nσ2

y + Eρ
σy

σx
−D.

5. Simplifying (4): nσ2
y = 1

1−ρ2

[
Cρ2

σ2
y

σ2
x
− 2Eρ

σy

σx
+D

]
.

6. Using (2) and (5) from above:
nσ2

y(1−ρ2)−D

C = ρ2
σ2
y

σ2
x
− ρ

2Eσy

Cσx
= −Eρσy

Cσx
→ ρ

σy

σx
= E

C .
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Using the last two results, we readily get

σ2
y =

D − E2

C

n[1− E2σ2
x

C2σ2
y
]

(29)

←→ nσ2
y −

nE2σ2
x

C2
= D − E2

C

→ σ2
y =

1

n
[D + nσ2

x

E2

C2
− E2

C
].

Using the above, we get σ̂2
x = A

n , and hence all the unrestricted MLEs are

evaluated. Finally, since

σ̂2
y(1− ρ̂2) = σ̂2

y −
E2

C2
σ̂2
x =

1

n
[D − E2

C
] (30)

it follows from the expression of the likelihood function that the exponent of

the maximum likelihood is a constant, and hence the maximum value of the

unrestricted likelihood turns out to be (apart from constants)

supunrestrictedL(.|data) ∼
1

A
n
2 [D − E2

C +Wy]
n
2

. (31)

On the other hand, under H0, the likelihood function simplifies as

L(µ, σ|data) ∼ σ−2n (32)

×exp[− 1

2σ2
{

n∑
i=1

(xi − µx)
2 +

∑n
i=1 mi(ȳi − µ− ρ(xi − µ))2

1− ρ2
}].

This yields the MLE of the common mean µ, for fixed ρ, as

µ̂(ρ) =
nx̄(1 + ρ) +M(¯̄y − ρ¯̄x)

M(1− ρ) + n(1 + ρ)
. (33)

Additionally, the MLE of the common variance σ2, for fixed ρ, is given by

σ̂2 =
1

2n
[A+ n(x̄− µ̂(ρ))2 +

∑n
i=1 mi[ȳi − µ̂(ρ)− ρ(xi − µ̂(ρ))]2

1− ρ2
]. (34)

To simplify the above expression, note that

x̄− µ̂(ρ) =
M [x̄(1− ρ)− (¯̄y − ρ¯̄x)]

M(1− ρ) + n(1 + ρ)
. (35)

Writing

ȳi − µ̂(ρ)− ρ(xi − µ̂(ρ)) = [(ȳi − ¯̄y)− ρ(xi − ¯̄x)] + [¯̄y − ρ¯̄x− µ̂(ρ)(1− ρ)] (36)



130 Thailand Statistician, 2014; 12(2): 113-134

and noting that

¯̄y − ρ¯̄x− µ̂(ρ)(1− ρ) =
n(1 + ρ)[¯̄y − x̄+ ρ(x̄− ¯̄x)]

M(1− ρ) + n(1 + ρ)
(37)

we get
n∑

i=1

mi[ȳi−µ̂(ρ)−ρ(xi−µ̂(ρ))]2 = D+Cρ2−2Eρ+
Mn2(1 + ρ)2[x̄(1− ρ)− (¯̄y − ρ¯̄x)]2

[M(1− ρ) + n(1 + ρ)]2
.

(38)

Since

nM2[x̄(1− ρ)− (¯̄y − ρ¯̄x)]2

[M(1− ρ) + n(1 + ρ)]2
+

Mn2(1 + ρ)2[x̄(1− ρ)− (¯̄y − ρ¯̄x)]2

(1− ρ2)[M(1− ρ) + n(1 + ρ)]2
(39)

=
Mn[x̄(1− ρ)− (¯̄y − ρ¯̄x)]2

(1− ρ)[M(1− ρ) + n(1 + ρ)]

we finally get 2nσ̂2 = Q1(ρ) as

Q1(ρ) = A+
D + Cρ2 − 2Eρ

1− ρ2
(40)

+
nM [¯̄y − x̄+ ρ(x̄− ¯̄x)]2

(1− ρ)[M(1− ρ) + n(1 + ρ)]
.

Since the null likelihood function L1(ρ) for fixed ρ, maximized wrt µ and σ2,

simplifies to L1(ρ) ∼ [(1− ρ2)
1
2 ×Q1(ρ)]

−n = [U1(ρ)]
−n, it follows that the LRT

statistic λ defined by

λ =
supH0

L(µx, µy, σ
2
x, σ

2
y, ρxy| data )

supunrestricted L(µx, µy, σ2
x, σ

2
y, ρxy|data)

(41)

is equivalent to rejecting H0 for large values of T1 given by

T1 = [minρ≥ρ0U1(ρ)]× [
C

A(DC − E2)
]
1
2 . (42)

This is precisely what is stated in (14).

Case 2. A close inspection of the likelihood L(µx, µy, σx, σy, ρ|data) in this case

shows a striking similarity and very minor differences with the likelihood under

Case 1. Obviously, the unrestricted MLEs of µx and µy are the same as in

Case 1, namely,

µ̂x = x̄, µ̂y = ¯̄y + ρ
σy

σx
(x̄− ¯̄x). (43)

As before, we then have
n∑

i=1

mi[ȳi − µ̂y − ρ
σy

σx
(xi − µ̂x)]

2 = D + Cρ2
σ2
y

σ2
x

− 2Eρ
σy

σx
(44)
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and
n∑

i=1

mi(xi − x̄)[ȳi − µ̂y − ρ
σy

σx
(xi − µ̂x)] = E − ρ

σy

σx
C. (45)

Using all of the above facts, we observe that

1. ∂lnL(.|.)
∂σ2

x
= 0→ A

σ2
x
= n+

ρ(E− ρσy
σx

C)

σxσy(1−ρ2) .

2. ∂lnL(.|.)
∂σ2

y
= 0→M(1−ρ2)σ2

y+E
ρσy

σx
= D+Wy →Mσ2

y+E
ρσy

σx
−(D+Wy) =

Mρ2σ2
y.

3. ∂lnL(.|.)
∂ρ = 0→Mρσ2

y = Cρ
σ2
y

σ2
x
−E σy

σx
+ ρ

(1−ρ2)×[D+Wy+Cρ2
σ2
y

σ2
x
−2Eρ

σy

σx
].

4. Multiplying both sides of (3) above by ρ and using (2): Cρ2
σ2
y

σ2
x
− Eρ

σy

σx
+

ρ2

(1−ρ2) × [D +Wy + Cρ2
σ2
y

σ2
x
− 2Eρ

σy

σx
] = Mσ2

y + E
ρσy

σx
− (D +Wy).

5. Mσ2
y = 1

1−ρ2 [D +Wy + Cρ2
σ2
y

σ2
x
− 2Eρ

σy

σx
].

6. Using (2) and (5) from above:
Mσ2

y(1−ρ2)−D−Wy

C = ρ2
σ2
y

σ2
x
− 2Eρσy

Cσx
= −Eρσy

Cσx
→ ρ

σy

σx
= E

C .

Using the last two results, we readily get

σ2
y =

D +Wy − E2

C

M [1− E2σ2
x

C2σ2
y
]

(46)

←→Mσ2
y −

ME2σ2
x

C2
= D +Wy −

E2

C

→ σ2
y =

1

M
[D +Wy +

Mσ2
xE

2

C2
− E2

C
].

This yields σ̂2
x = A

n , and hence all the unrestricted MLEs are evaluated. Finally,

since

σ̂2
y(1− ρ̂2) = σ̂2

y −
E2

C2
σ̂2
x =

1

M
[D +Wy −

E2

C
] (47)

it follows from the expression of the likelihood function that the exponent of

the maximum likelihood is a constant, and hence the maximum value of the

unrestricted likelihood turns out to be (apart from constants)

supunrestrictedL(.|data) ∼
1

A
n
2 [D − E2

C +Wy]
M
2

. (48)
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On the other hand, under H0 and for fixed ρ, the MLE of the common mean

µ is the same as in Case 1, namely,

µ̂(ρ) =
nx̄(1 + ρ) +M(¯̄y − ρ¯̄x)

M(1− ρ) + n(1 + ρ)
(49)

and, following the computations under H0 in Case 1, the MLE of the common

variance σ2 is given by σ̂2(ρ) = Q2(ρ)
n+M , where

Q2(ρ) = A+
D + Cρ2 − 2Eρ+Wy

1− ρ2
+

nM [¯̄y − x̄+ ρ(x̄− ¯̄x)]2

(1− ρ)[M(1− ρ) + n(1 + ρ)]
. (50)

Combining the above results and arguing as in Case 1 results in the expres-

sion of the LRT given in (21).

Table 7: ρ = 0.5 < ρ0 = 0.9
n mi power
5 1 0.2458
10 1 0.642
15 1 0.8527
5 3 0.42657
10 3 0.8875
15 3 0.9723

Table 8: µy = 1 ̸= µx = 0

n mi power
5 1 0.8815
10 1 0.9999
15 1 1
5 3 0.9996
10 3 1
15 3 1

Table 9: σ2
y = 4 ̸= σ2

x = 1

n mi power
5 1 0.5481
10 1 0.961
15 1 0.9984
5 3 0.9096
10 3 0.9996
15 3 1

Table 10: µy = 1 ̸= µx = 0 and
σ2
y = 4 ̸= σ2

x = 1

n mi power
5 1 0.8197
10 1 0.9976
15 1 1
5 3 0.9885
10 3 1
15 3 1

Table 11: ρ = 0.5 < ρ0 = 0.9 and
µy = 1 ̸= µx = 0

n mi power
5 1 0.6795
10 1 0.9836
15 1 0.9988
5 3 0.9515
10 3 1
15 3 1

Table 12: ρ = 0.5 < ρ0 = 0.9 and
σ2
y = 4 ̸= σ2

x = 1

n mi power
5 1 0.5043
10 1 0.9442
15 1 0.9955
5 3 0.5077
10 3 0.9486
15 3 0.9888
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Table 13: ρ = 0.5 < ρ0 = 0.9 and σ2
y = 4 ̸= σ2

x = 1 and µy = 1 ̸= µx = 0

n mi power
5 1 0.6653
10 1 0.9862
15 1 0.9995
5 3 0.8536
10 3 0.9978
15 3 0.9998

Table 14: ρ = 0.5 < ρ0 = 0.9
n mi Tippett power Fisher power Stouffer power
5 1 0.2151 0.2762 0.3224
10 1 0.6453 0.6981 0.5593
15 1 0.8661 0.8714 0.6836
5 3 0.2984 0.3835 0.4372
10 3 0.8323 0.8956 0.7832
15 3 0.9764 0.9898 0.9391

Table 15: µy = 1 ̸= µx = 0

n mi Tippett power Fisher power Stouffer power
5 1 0.8507 0.8843 0.6941
10 1 0.9998 0.9998 0.9243
15 1 1 1 0.9796
5 3 0.9981 0.9984 0.8461
10 3 1 1 0.9781
15 3 1 1 0.9987

Table 16: σ2
y = 4 ̸= σ2

x = 1

n mi Tippett power Fisher power Stouffer power
5 1 0.403 0.4249 0.3596
10 1 0.9154 0.9615 0.754
15 1 0.994 0.9984 0.9189
5 3 0.6942 0.7543 0.5457
10 3 0.9971 0.9994 0.916
15 3 1 1 0.9925
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Table 17: µy = 1 ̸= µx = 0 and σ2
y = 4 ̸= σ2

x = 1

n mi Tippett power Fisher power Stouffer power
5 1 0.5252 0.7668 0.7903
10 1 0.9759 0.9979 0.9904
15 1 0.9991 0.9999 0.9993
5 3 0.823 0.9734 0.9505
10 3 1 1 0.9994
15 3 1 1 1

Table 18: ρ = 0.5 < ρ0 = 0.9 and µy = 1 ̸= µx = 0

n mi Tippett power Fisher power Stouffer power
5 1 0.4099 0.6822 0.7232
10 1 0.9163 0.9835 0.9622
15 1 0.9957 0.9997 0.9963
5 3 0.6486 0.9415 0.9381
10 3 0.995 0.9999 0.9993
15 3 1 1 1

Table 19: ρ = 0.5 < ρ0 = 0.9 and σ2
y = 4 ̸= σ2

x = 1

n mi Tippett power Fisher power Stouffer power
5 1 0.3051 0.5042 0.5782
10 1 0.8448 0.9602 0.9209
15 1 0.9982 0.9969 0.9846
5 3 0.3223 0.458 0.5203
10 3 0.8789 0.9489 0.8779
15 3 0.9886 0.9962 0.9783

Table 20: ρ = 0.5 < ρ0 = 0.9 and σ2
y = 4 ̸= σ2

x = 1 and µy = 1 ̸= µx = 0

n mi Tippett power Fisher power Stouffer power
5 1 0.3575 0.6788 0.7638
10 1 0.8987 0.9887 0.979
15 1 0.9929 0.9995 0.9984
5 3 0.5109 0.852 0.8831
10 3 0.9769 0.9987 0.9964
15 3 0.9999 1 0.9998


