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Abstract 

The aim of this paper is to study the penalty functions of the well-known model 

selection criteria, AIC , BIC , and KIC , which can unify their formulas as  

   2ˆlog 1 / ,  APIC p n    

called Adjusted Penalty Information Criterion. The appropriate value of   for APIC  

has been found to reduce the probabilities of over- and underfitting and also to overcome 

the weak signal-to-noise ratio. The value of   is selected based on four measurements: 

the probability of over- and underfitting, the signal-to-noise ratio, the probability of order 

selected, and the observed 
2L  efficiency. Performance of APIC  is examined by 

theoretical and extensive simulation study. The theoretical results show that, the 

probability of overfitting tends to zero and the signal-to-noise ratio tends to strong if the 

value of   tends to infinity. However, the simulation results show that, when the true 

model is weakly identifiable, the small value of   gives a high probability of correct 

order being selected. But, if the true model is very difficult to detect, the observed 2L  

efficiency is a meaningful measurement than the probability of order selected. The 

observed 2L  efficiency suggests the large value of   causes the high efficiency of 

APIC  which indicates that the correct model is also the closet model, except when the 

true model can be specified more easily and sample sizes are moderate to large, then 
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the small value of   is preferable. For the strongly identifiable true model, the large 

value of   performs well, whereas if the regression coefficients are not large enough 

and the sample sizes are small to moderate, the value of   should be moderate. 

______________________________ 
Keywords: model selection, penalty function, probability of overfitting, signal-to-noise 

ratio, observed 
2L  efficiency. 

 

1. Introduction 

In regression analysis, the choice of an appropriate model from a class of 

candidate models to characterize the study data is a key issue. In real life, we may not 

know what the true model is, but we hope to find a model that is a reasonably accurate 

representation. A model selection criterion represents a useful tool to judge the propriety 

of a fitted model by assessing whether it offers an optimal balance between goodness of 

fit and parsimony. The first model selection criterion to gain widespread acceptance was 

the Akaike information criterion, AIC  [1-3]. This serves as an asymptotically unbiased 

estimator of a variant of Kullback’s directed divergence between the true model and a 

fitted approximating model. The directed divergence, also known as the Kullback-Leibler 

information, the I-divergence, or the relative entropy, assesses the dissimilarity between 

two statistical models. Other well-known criteria were subsequently introduced and 

studied such as Bayesian information criterion, BIC  [4-6], and Kullback information 

criterion, KIC  [7-14]. BIC  is an asymptotic approximation to a transformation of the 

Bayesian posterior probability of a candidate model [5]. KIC  is a symmetric measure, 

meaning that an alternate directed divergence may be obtained by reversing the roles of 

the two models in the definition of the measure. The sum of the two directed divergences 

is Kullback’s symmetric divergence, also known as the J-divergence [7-8]. Although 

AIC  remains arguably the most widely used model selection criterion, BIC  and KIC , 

are popular competitors. In fact, BIC  is often preferred over AIC  by practitioners who 

find appeal in either its Bayesian justification or its tendency to choose more 

parsimonious models than AIC  [5]. Likewise, KIC  is a symmetric measure which 

combines the information in two related, though distinct measures; it functions as a 

gauge of model disparity that is arguably more sensitive than AIC  that corresponds to 

only individual components [7-8]. However, AIC , BIC , and KIC , still have the 

problems of overfitting and weak signal-to-noise ratio due to the weak penalty functions. 
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With this motivation, the aim of this paper is to study the penalty functions based on 

these criteria for the case of univariate regression model in order to find the appropriate 

value of penalty to reduce the probabilities of over- and underfitting and also to 

overcome the weak signal-to-noise ratio. The remainder of this paper is organized as 

follows. In Section 2, we unify AIC , BIC , and KIC , in one form, called Adjusted 

Penalty Information Criterion  APIC . The studies on the probability of overfitting and 

signal-to-noise ratio are also considered in this section. In Section 3, we simulate 1,000 

realizations of multiple regression models in order to study the probability of the order 

selected and the observed 
2L  efficiency of APIC  where the values of   range from 

1 to 14. Finally, Section 4 is the conclusions, discussion, and further study.  

 

2. Model selection criteria, probability of overfitting, and signal-to-noise ratio 

Suppose data are generated by the operating model, i.e., true model [15] 

  2

0 0 0 0 0, , ,  n ny X 0 I     2

0 0 0 0 0, , ,  n ny X 0 I    (1) 

and the candidate or approximating model is in the form [15] 

  2, , ,  n ny X 0 I    2, , ,  n ny X 0 I    (2) 

where y  is an 1n  dependent random vector of observations, 
0X  and X  are 

0n p  

and n p  matrices of independent variables with full-column rank, respectively, 
0  and 

  are 
0 1p  and 1p  parameter vectors of regression coefficients, respectively, 

0  

and   are 1n  noise vectors. The  1 1 p  vector of parameters is 
2

0 0 0

      

and the maximum likelihood estimator of 
0  is 

2ˆ ˆ ˆ
 

 
   where  

 
1ˆ 

  X X X y  and    2 ˆ ˆˆ /


   n y X y X  . 

For each data set, we can construct many fitted candidate models. 

Nevertheless, we cannot know which model is the best. Criterion for model selection is a 

way to solve this problem. AIC , BIC , and KIC , are three well-known criteria to 

consider in this study. We scale these criteria by 1 n  in order to express them as a rate 

per observation. The formulas for them are based on the form of the log of the likelihood 

function of the maximum likelihood estimator of 
2  plus a penalty function, called 

Adjusted Penalty Information Criterion, 
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    2ˆlog 1 / .  APIC p n    (3) 

When the values of   in (3) are equal to 2,  log n , 3; APIC  becomes AIC

, BIC , and KIC , respectively. The appropriate value of   has been found to reduce 

the probabilities of over- and underfitting and also to overcome the weak signal-to-noise 

ratio. The value of   is selected by four measurements: the probability of over- and 

underfitting, the signal-to-noise ratio, the probability of order selected, and the observed 

2L  efficiency. Theoretical and empirical methods are used to examine the performance 

of APIC .  

The terms over- and underfitting can be defined in two ways. Under 

consistency, when a true model is itself a candidate model, overfitting is a situation when 

the model has extra variables with more parameters than the optimal model and 

underfitting is defined as choosing a model that either has too few variables or is 

incomplete. In view of efficiency, overfitting can be defined as choosing a model that has 

more variables than the model identified as closest to the true model, thereby reducing 

efficiency. Underfitting is defined as choosing a model with too few variables compared 

to the closest model, also reducing efficiency. Both over- and underfitting can lead to 

problems with the predictive abilities of a model. An underfitted model may have poor 

predictive ability due to a lack of detail in the model, while an overfitted model may be 

unstable in the sense that repeated samples from the same process can lead to widely 

differing predictions due to variability in the extraneous variables. A criterion that can 

balance the tendencies of over- and underfitted is preferable [16-17]. 

The probability of model selection criterion preferring the overfitted model is 

analyzed here by comparing the true model of order 
0p  to a more complex model or 

overfitted model of order 
0 p l , 0l . Hence for finite n , the probability that APIC  

prefers the overfitted model is defined by 

   
 

 
 

0 0 0 0

0 02 2
1 1

ˆ ˆ= log log 

    
    

  
p l p p l p

p l p
P APIC APIC P

n n

 
     

0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ



  

              
                             

p p p p l

p l p l p l

l l l
P P P

n n n

     

  
. 

 (4) 
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Under the assumption of nested models; 

0p p and 0l , we have 

 2 2 2 2

0
ˆ ˆ

p p l ln     , 
2 2 2

0
ˆ

p n pn   , where 2

k  represents the chi-square distribution 

with k  degrees of freedom, and 
2 2ˆ ˆ

p p l   is independent of 
2ˆ
p l  [16].  (5) 

 Then the probability of overfitting by l  extra variables of APIC  in (4) 

becomes 

  
0 0 0

0

, exp 1  

     
      

   
p l p l n p l

n p l l
P APIC APIC P F

l n


  . (6) 

In (6), we found that APIC ’s probability of overfitting depends on the value of 

  in (3). If the value of   tends to infinity under the same values of the sample size 

 n , the order of true model  0p , and the additional variable  l , APIC  tends to 

less overfitting. When we replace the values of   in (6) by 2,  log n , 3, we get the 

probabilities of overfitting of AIC , BIC , and KIC , respectively. The proof of the 

probability of overfitting can be confirmed numerically in Table 1. The examples of the 

calculation for the probability of overfitting by l  extra variables of APIC  in (6) are as 

follows: for 15n , 
0 3p  

   
0 01 1, 111 1 0.7583 0.4025    p pP APIC APIC P F  

   
0 02 2, 101 1 0.7132 0.5134    p pP APIC APIC P F  

   
0 01 1, 113 3 2.4354 0.1469    p pP APIC APIC P F  

   
0 02 2, 103 3 2.4591 0.1353.    p pP APIC APIC P F  

The explanation of the result in Table 1 is that, e.g. for 15n , 0 3p , and 

1l , the probability of overfitting of 1APIC  is 0.4025, this means that this criterion 

would select the model whose order is higher by one order than true model with a 

probability of 0.4025. Although the large value of   resulted in APIC  having the low 

probability of overfitting, sometimes it will be prone to underfitting. This result will be 

shown in the simulation study.  
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Table 1. Probability of overfitting by l  extra variables of APIC  for different values of 

n , 
0p , and l . 

n p0 l 
Criteria 

      
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 

15 3 1 0.4025 0.2363 0.1469 0.0939 0.0611 0.0402 0.0266 

15 3 2 0.5134 0.2636 0.1353 0.0695 0.0357 0.0183 0.0094 

15 3 3 0.5947 0.2857 0.1287 0.0561 0.0240 0.0101 0.0042 

15 3 4 0.6664 0.3143 0.1305 0.0508 0.0190 0.0070 0.0025 

15 4 1 0.4257 0.2599 0.1676 0.1110 0.0747 0.0509 0.0349 

15 4 2 0.5488 0.3012 0.1653 0.0907 0.0498 0.0273 0.0150 

15 4 3 0.6384 0.3362 0.1667 0.0802 0.0378 0.0176 0.0082 

15 4 4 0.7154 0.3784 0.1780 0.0788 0.0336 0.0140 0.0058 

30 3 1 0.3565 0.1922 0.1102 0.0651 0.0392 0.0239 0.0147 

30 3 2 0.4346 0.1889 0.0821 0.0357 0.0155 0.0067 0.0029 

30 3 3 0.4846 0.1795 0.0617 0.0204 0.0066 0.0021 0.0007 

30 3 4 0.5256 0.1720 0.0482 0.0125 0.0031 0.0007 0.0002 

30 4 1 0.3661 0.2012 0.1175 0.0706 0.0433 0.0268 0.0168 

30 4 2 0.4493 0.2019 0.0907 0.0408 0.0183 0.0082 0.0037 

30 4 3 0.5033 0.1954 0.0705 0.0245 0.0083 0.0028 0.0009 

30 4 4 0.5475 0.1902 0.0568 0.0157 0.0042 0.0011 0.0003 

100 3 1 0.3284 0.1670 0.0905 0.0506 0.0289 0.0167 0.0097 

100 3 2 0.3867 0.1496 0.0578 0.0224 0.0087 0.0033 0.0013 

100 3 3 0.4178 0.1288 0.0367 0.0100 0.0027 0.0007 0.0002 

100 3 4 0.4395 0.1109 0.0236 0.0046 0.0009 0.0002 0.0000 

100 4 1 0.3310 0.1692 0.0922 0.0519 0.0297 0.0173 0.0101 

100 4 2 0.3906 0.1526 0.0596 0.0233 0.0091 0.0036 0.0014 

100 4 3 0.4227 0.1322 0.0382 0.0106 0.0029 0.0008 0.0002 

100 4 4 0.4453 0.1144 0.0248 0.0050 0.0009 0.0002 0.0000 

n p0 l  
Criteria 

  
    

APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017 

15 3 2 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001 

15 3 3 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000 

15 3 4 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 

15 4 1 0.0241 0.0167 0.0117 0.0082 0.0057 0.0040 0.0028 

15 4 2 0.0082 0.0045 0.0025 0.0014 0.0007 0.0004 0.0002 

15 4 3 0.0037 0.0017 0.0008 0.0004 0.0002 0.0001 0.0000 

15 4 4 0.0023 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000 

30 3 1 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006 

30 3 2 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 

30 3 3 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 4 1 0.0106 0.0067 0.0043 0.0027 0.0017 0.0011 0.0007 

30 4 2 0.0017 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000 

30 4 3 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 4 4 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 3 1 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003 

100 3 2 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 

100 3 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 4 1 0.0060 0.0035 0.0021 0.0013 0.0008 0.0005 0.0003 

100 4 2 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 

100 4 3 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 4 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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The signal-to-noise ratio is the second measure used to study the property of 

APIC . McQuarrie and Tsai [16] defined the signal-to-noise ratio as a measurement 

that is basically a ratio of the expectation to the standard deviation of the difference in 

criterion values for two models. The ratio tends to assess whether the penalty function is 

sufficiently strong in relation to the goodness of fit term. From the true model order 
0p  

and a candidate model order 
0 p l  where 0l , the true model is considered better 

than a candidate model if the criterion value of a model of order 
0p  is less than that of 

order 
0 00 ,  p p lp l APIC APIC  . Then, the signal-to-noise ratio that the true model 

has selected compared to a candidate model is defined by 

  
0 0

0 0

,




  


  

p l p

p l p

E APIC APICsignal

noise sd APIC APIC

 

 
 (7) 

where  
0 0   p l pE APIC APIC   

 
 

 
 

0 0

0 02 2
1 1

ˆ ˆlog log

   
    

 
p l p

p l p
E

n n

 
   

0

0

2

2

ˆ
log ,

ˆ


  

   
    

p l

p

l
E

n

 


 

and 
0 0   p l psd APIC APIC   

  
 

 
 

0 0

0 02 2
1 1

ˆ ˆ= log log

   
   

 
p l p

p l p
sd

n n

 
   

0

0

2

2

ˆ
= log .

ˆ


  

  
    

p l

p

l
sd

n

 


 

Applying the second-order of Taylor’s series expansions in order to find the 

signal in (7) is as follows: suppose 
2

pX  , expanding  log X  about   E X p , we 

have  

       
2

2

1 1
log log

2
   X p X p X p

p p
 and    

1
log log   E X p

p
. 

  (8) 
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Using the results in (8) and the assumption in (5), the approximate signal in (7) is  

   
0 0 0 0

2 2
U U ˆ ˆlog log , 

            p l p p l p

l
E E n E nAPIC APIC

n


    

where       
0

2 2

0 0

0

1
ˆlog log log ,

      
   

p lE n n p l
n p l

   

and 

 

     
0

2 2

0 0

0

1
ˆlog log log .     

  
pE n n p

n p
   

Therefore, 

  
  0 0

0
U U

0 0 0

log .

  
           

p l p

n p l l l
E APIC APIC

n p n p l n p n


   (9) 

 Using the assumption in (5) to find the noise in (7) by the Q-statistic which has 

the Beta distribution as follows: 

 0

0

2

0

2

ˆ
,

ˆ 2 2

   
  

 

p l

p

n n p l l
Q Beta

n




, (10) 

and the log-distribution of Q-statistic is  

   0

0

2

0

2

ˆ
log log log - ,

ˆ 2 2


    

        

p l

p

n n p l l
Q Beta

n




. (11) 

Applying the first-order of Taylor’s series expansions when 
2

pX  , we expand 

 log X  about   E X p  as follows: 

      
1

log log  X p X p
p

. (12) 

 Using (12) to expand  log Q  in (11) about  

  E Q
 

 
0 0

0 0

/ 2

/ 2 / 2

   


   

n p l n p l

n p l l n p
, 

we have 

    0 0 0

0 0 0

log log
       

    
      

n p l n p n p l
Q Q

n p n p l n p
. (13) 
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 The variance of  log Q  in (11) is approximated by the variance of  log Q  in 

(13) as follows: 

 var log  Q  0

0

2

0 0 0

2

0 0 0

ˆ
var log var log

ˆ


           

                       

p l
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


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2

0

0
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 
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  
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where  
   

     

0

2

0 0

/ 2 / 2
var

/ 2 / 2 / 2 / 2 1

   


      

n p l l
Q

n p l l n p l l
, 

Therefore,  

  
  0 0

2
var log ,

2
      

l
Q

n p l n p
 (14) 

and the standard deviation of  log Q  in (14) or the approximate noise in (7) is

 

  
  

0

0

2

2

0 0

ˆ 2
log log .

ˆ 2


  

               

p l

p

l l
sd Q sd

n n p l n p

 


 (15) 

 Combined, the approximations of signal in (9) and noise in (15) to be the 

approximate signal-to-noise ratio in (7) is as follows: 

  

  
0 0 0

0 0 0

2
log

2

       
   

      

n p l n p n p lsignal l l

noise n p n p l n p nl


. 

  (16) 

In (16), we found that the signal-to-noise ratio of APIC  depends on the value 

of   in (3). This conclusion is similar to the probability of overfitting, that is if the value of 

  tends to infinity under the same values of n , 
0p , and l , APIC  has a strong 

signal-to-noise ratio. When we replace the values of   in (16) by 2,  log n , and 3, we 

have the approximate signal-to-noise ratios for AIC , BIC , and KIC , respectively. The 

proof of the signal-to-noise ratio can be confirmed numerically in Table 2.  
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Table 2. Signal-to-noise ratio of APIC  for different values of n , 

0p , and l . 

n p0 l 
Criteria 

      
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 

15 3 1 -0.2450 0.3400 0.9250 1.5100 2.0950 2.6800 3.2650 

15 3 2 -0.3884 0.4004 1.1892 1.9780 2.7668 3.5556 4.3444 

15 3 3 -0.5291 0.3874 1.3039 2.2204 3.1370 4.0535 4.9700 

15 3 4 -0.6752 0.3225 1.3203 2.3181 3.3159 4.3136 5.3114 

15 4 1 -0.3042 0.2333 0.7707 1.3082 1.8457 2.3832 2.9207 

15 4 2 -0.4734 0.2477 0.9688 1.6899 2.4110 3.1321 3.8532 

15 4 3 -0.6351 0.1976 1.0302 1.8629 2.6956 3.5282 4.3609 

15 4 4 -0.8002 0.0992 0.9985 1.8979 2.7973 3.6967 4.5961 

30 3 1 -0.1132 0.5340 1.1812 1.8284 2.4756 3.1229 3.7701 

30 3 2 -0.1785 0.7190 1.6166 2.5141 3.4116 4.3092 5.2067 

30 3 3 -0.2414 0.8356 1.9127 2.9897 4.0667 5.1438 6.2208 

30 3 4 -0.3054 0.9120 2.1295 3.3470 4.5644 5.7819 6.9994 

30 4 1 -0.1389 0.4847 1.1083 1.7319 2.3555 2.9791 3.6027 

30 4 2 -0.2149 0.6492 1.5133 2.3774 3.2415 4.1056 4.9697 

30 4 3 -0.2861 0.7499 1.7859 2.8219 3.8579 4.8940 5.9300 

30 4 4 -0.3573 0.8127 1.9827 3.1527 4.3227 5.4927 6.6627 

100 3 1 -0.0324 0.6569 1.3463 2.0356 2.7250 3.4143 4.1037 

100 3 2 -0.0510 0.9188 1.8886 2.8584 3.8282 4.7980 5.7678 

100 3 3 -0.0687 1.1128 2.2942 3.4757 4.6572 5.8387 7.0202 

100 3 4 -0.0867 1.2703 2.6273 3.9843 5.3413 6.6982 8.0552 

100 4 1 -0.0396 0.6426 1.3249 2.0072 2.6895 3.3717 4.0540 

100 4 2 -0.0612 0.8986 1.8584 2.8182 3.7780 4.7378 5.6976 

100 4 3 -0.0813 1.0880 2.2572 3.4264 4.5957 5.7649 6.9341 

100 4 4 -0.1011 1.2417 2.5845 3.9274 5.2702 6.6130 7.9559 

n p0 l 
Criteria 

  
    

APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600 

15 3 2 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661 

15 3 3 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856 

15 3 4 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958 

15 4 1 3.4582 3.9956 4.5331 5.0706 5.6081 6.1456 6.6831 

15 4 2 4.5743 5.2954 6.0166 6.7377 7.4588 8.1799 8.9010 

15 4 3 5.1936 6.0262 6.8589 7.6916 8.5242 9.3569 10.1896 

15 4 4 5.4955 6.3948 7.2942 8.1936 9.0930 9.9924 10.8917 

30 3 1 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006 

30 3 2 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894 

30 3 3 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600 

30 3 4 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216 

30 4 1 4.2263 4.8500 5.4736 6.0972 6.7208 7.3444 7.9680 

30 4 2 5.8338 6.6979 7.5620 8.4261 9.2902 10.1543 11.0184 

30 4 3 6.9660 8.0020 9.0380 10.0740 11.1101 12.1461 13.1821 

30 4 4 7.8327 9.0027 10.1727 11.3427 12.5127 13.6827 14.8527 

100 3 1 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291 

100 3 2 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564 

100 3 3 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905 

100 3 4 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541 

100 4 1 4.7363 5.4186 6.1008 6.7831 7.4654 8.1477 8.8299 

100 4 2 6.6574 7.6171 8.5769 9.5367 10.4965 11.4563 12.4161 

100 4 3 8.1034 9.2726 10.4418 11.6111 12.7803 13.9495 15.1187 

100 4 4 9.2987 10.6415 11.9844 13.3272 14.6700 16.0129 17.3557 
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The examples of the calculation for the signal-to-noise ratio of APIC  in (16) 

are as follows: for 15n , 
0 3p  

  

  

11 14 11 1 1
1, 1; log 0.2450

12 11 12 152

  
       

   

signal
l

noise
  

  

  

10 14 10 2 2
2, 1; log 0.3884

12 10 12 154

  
       

   

signal
l

noise
  

  

  

11 14 11 1 3
1, 3; log 0.9250

12 11 12 152

  
      

   

signal
l

noise
  

  

  

10 14 10 2 6
2, 3; log 1.1892

12 10 12 154

  
      

   

signal
l

noise
 . 

McQuarrie and Tsai [16] concluded that the signal-to-noise ratios are strong or 

weak as follows. A strong signal-to-noise ratio refers to a large positive value (often 

greater than 2) and leads to small probability of overfitting. A weak signal-to-noise ratio 

usually refers to one that is small (less than 0.5) or negative and results in high 

probability of overfitting. The model selection criterion that has strong signal-to-noise 

ratio and lowest probability of overfitting is preferable. 

 

3. Simulation study 

In addition to the proofs of probability of overfitting in (6) and the approximate 

signal-to-noise ratio in (16), we use the simulation data to find the appropriate value of 

  for APIC  in (3). Four cases of the true multiple regression models in (1) are 

constructed as follows.  

Model 1 (very weakly identifiable true model with the true order 
0 7p ):  

1 1 2 3 4 5 6 7 10.5 0.1 0.05 0.01 0.005 0.001 ,       y X X X X X X X   

Model 2 (weakly identifiable true model with the true order 0 3p ):  

2 1 2 3 20.5 0.25 ,   y X X X   

Model 3 (very strongly identifiable true model with the true order 
0 4p ):  

3 1 2 3 4 32 2 2 ,    y X X X X   

Model 4 (strongly identifiable true model with the true order 0 8p ): 

4 1 2 3 4 5 6 7 8 4.        y X X X X X X X X   
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Model 1 and Model 2 represent the weakly identifiable true models which mean 

they are not easily identified compared to the strongly identifiable true models such as 

Model 3 and Model 4. In this study, the true variance 2

0  in (1) is assumed equal to one. 

For each model, we consider 1,000 realizations for three levels of the sample sizes 

which are 15n  (small), 30n  (moderate), and 100n  (large). Ten candidate 

variables, 
1X
 
to 

10X , are stored in an 10n  matrix X  of the candidate model in (2), 

where 
1X  is given as a constant which equals one, followed by nine independent 

identically distributed normal random variables with zero mean and equal variance-

covariance matrix to identity matrix 
10I . The candidate models include the columns of X  

in a sequentially nested fashion; i.e., columns 1 to p  define the design matrix for the 

candidate model with dimension p . Over 1,000 realizations, we apply APIC  in (3) 

with the values of   ranging from 1 to 14 on the datasets y of four models constructed. 

The probability of order selected by APIC  is a measure used to examine the effects of 

weak or strong penalty function in the proposed criterion. In addition to above measure, 

many authors [18-19] use the observed 
2L  efficiency to assess model selection criterion 

performance, especially when the true model is very difficult to detect. The observed 
2L  

distance, scaled by 1 n , between the true model in (1) and the fitted candidate model in 

(2) is defined as  

     2 0 0 0 0
ˆ ˆ /


  L p nX X X X    . 

Observed 
2L  efficiency is defined by the ratio 

Observed 
2L  efficiency = 

 

 
1 2

2

min  p P

s

L p

L p
, 

where P  is the class of all possible candidate models, p  is the rank of fitted candidate 

model, and 
sp  is the model selected by specific model selection criterion. The closer the 

selected model is to the true model, the higher the efficiency. Therefore, the best model 

selection criterion will select a model which yields high efficiency even in small samples 

or the true model is weakly identifiable. In order to summarize the results in this study, 

the average observed 2L  efficiencies over the 1,000 realizations are ranked for APIC  

where the values of   range from 1 to 14. The first rank of average observed 
2L  

efficiencies goes to the highest efficiency criterion and denotes better relative 



Warangkhana Keerativibool                                                                                173 

 
performance. Results of comparing the probability of order selected by APIC  and 

average observed 
2L  efficiencies are shown in Table 3.  

From the results of simulation in Table 3 we found that, for Model 1 and Model 2 

which are the situations where the true model cannot be easily identified, APIC  with 

the small value of   (about 1 to 3) gives the greater probability of correct order being 

selected than the case of large value and also prevents the probability of underfitting. 

While, the observed 
2L  efficiency suggests the large value of   causes the high 

efficiency of APIC , except when the true model can be specified more easily, such as 

Model 2, and sample sizes are moderate to large, the small value of   (about 3 to 4) is 

preferable. For Model 3 and Model 4 which are the situations where the true model is 

strongly identifiable, the value of   should be large (at least 8), except when the 

regression coefficients are not large enough, such as Model 4, and the sample sizes are 

small to moderate, the value of   should be moderate (about 4 to 6). 

For all models, if the value of   tends to infinity, the probability of overfitted 

tends to decrease whereas the probability of underfitting tends to increase. The point 

that has the optimal probability of over- and underfitting always presents the maximum 

probability of correct order being selected. 

 

4. Conclusions, discussion, and further study 

In this paper, we study the penalty functions based on the well-known model 

selection criteria, AIC , BIC , and KIC  which can be unified in the form of the log 

likelihood function of the maximum likelihood estimator of 
2  plus a penalty function, 

called Adjusted Penalty Information Criterion, i.e., 

   2ˆlog 1 / ,  APIC p n    

when the values of   are equal to 2,  log n , 3; APIC  becomes AIC , BIC , and 

KIC  respectively. Each criterion has a different value due to its penalty function, the 

differences in strong or weak penalty affecting the probabilities of over- and underfitting, 

including the problem of signal-to-noise ratio being weak.  
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Table 3. Probability of the order selected by APIC   and average observed 

2L  

efficiencies over 1,000 realizations. 

Model n Order 
Criteria 

      
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 

1 15 Underfitted 0.191 0.560 0.809 0.931 0.980 0.997 0.997 
very 

 
Correct 0.055 0.044 0.018 0.006 0.001 0.000 0.000 

weakly 
 

Overfitted 0.754 0.396 0.173 0.063 0.019 0.003 0.003 

identifiable 
 

Ave. L2 eff. 0.266 0.483 0.687 0.811 0.890 0.922 0.937 
(true order 

 
Rank 14 13 12 11 10 9 8 

p0 = 7) 30 Underfitted 0.441 0.853 0.982 0.998 0.999 1.000 1.000 

  
Correct 0.067 0.029 0.006 0.001 0.001 0.000 0.000 

  
Overfitted 0.492 0.118 0.012 0.001 0.000 0.000 0.000 

  
Ave. L2 eff. 0.386 0.646 0.795 0.858 0.885 0.913 0.923 

  
Rank 14 13 12 11 10 9 8 

 
100 Underfitted 0.588 0.927 0.996 0.999 1.000 1.000 1.000 

  
Correct 0.079 0.022 0.001 0.000 0.000 0.000 0.000 

  
Overfitted 0.333 0.051 0.003 0.001 0.000 0.000 0.000 

  
Ave. L2 eff. 0.470 0.642 0.703 0.723 0.735 0.748 0.756 

  
Rank 14 13 12 11 10 9 8 

2 15 Underfitted 0.058 0.288 0.545 0.721 0.826 0.890 0.930 
weakly 

 
Correct 0.038 0.136 0.167 0.158 0.123 0.090 0.061 

identifiable 
 

Overfitted 0.904 0.576 0.288 0.121 0.051 0.020 0.009 

(true order 
 

Ave. L2 eff. 0.301 0.469 0.615 0.703 0.746 0.771 0.786 
p0 = 3) 

 
Rank 14 13 12 11 10 9 8 

 
30 Underfitted 0.102 0.376 0.584 0.712 0.799 0.857 0.900 

  
Correct 0.124 0.282 0.271 0.234 0.183 0.135 0.096 

  
Overfitted 0.774 0.342 0.145 0.054 0.018 0.008 0.004 

  
Ave. L2 eff. 0.402 0.602 0.663 0.670 0.659 0.648 0.642 

  
Rank 14 13 2 1 3 8 12 

 
100 Underfitted 0.029 0.118 0.223 0.333 0.417 0.499 0.582 

  
Correct 0.271 0.575 0.663 0.628 0.565 0.496 0.415 

  
Overfitted 0.700 0.307 0.114 0.039 0.018 0.005 0.003 

  
Ave. L2 eff. 0.515 0.748 0.806 0.782 0.732 0.679 0.616 

  
Rank 9 3 1 2 4 5 6 

Model n Order 
Criteria 

      
APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 15 Underfitted 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
very 

 
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

weakly 
 

Overfitted 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

identifiable 
 

Ave. L2 eff. 0.952 0.960 0.961 0.962 0.964 0.965 0.966 
(true order 

 
Rank 7 6 5 4 3 2 1 

p0 = 7) 30 Underfitted 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Overfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.929 0.934 0.935 0.939 0.941 0.942 0.942 

  
Rank 7 6 5 4 3 1.5 1.5 

 
100 Underfitted 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Overfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.765 0.772 0.778 0.782 0.784 0.784 0.786 

  
Rank 7 6 5 4 3 2 1 

2 15 Underfitted 0.955 0.970 0.978 0.986 0.990 0.990 0.992 
weakly 

 
Correct 0.042 0.030 0.022 0.014 0.010 0.010 0.008 

identifiable 
 

Overfitted 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

(true order 
 

Ave. L2 eff. 0.797 0.802 0.805 0.808 0.810 0.810 0.811 
p0 = 3) 

 
Rank 7 6 5 4 2.5 2.5 1 

 
30 Underfitted 0.927 0.941 0.959 0.972 0.978 0.982 0.990 

  
Correct 0.069 0.057 0.039 0.028 0.022 0.018 0.010 

  
Overfitted 0.004 0.002 0.002 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.643 0.643 0.646 0.650 0.650 0.652 0.656 

  
Rank 11 10 9 7 6 5 4 

 
100 Underfitted 0.652 0.704 0.768 0.814 0.847 0.876 0.892 

  
Correct 0.346 0.295 0.231 0.186 0.153 0.124 0.108 

  
Overfitted 0.002 0.001 0.001 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.562 0.524 0.479 0.449 0.427 0.407 0.397 

  
Rank 7 8 10 11 12 13 14 

Note: Boldface type indicates the maximum value. 
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Table 3. (Continued). 

Model n Order 
Criteria 

      
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 

3 15 Underfitted 0.000 0.000 0.000 0.002 0.005 0.008 0.010 
very 

 
Correct 0.091 0.312 0.558 0.728 0.851 0.909 0.944 

strongly 
 

Overfitted 0.909 0.688 0.442 0.270 0.144 0.083 0.046 

identifiable 
 

Ave. L2 eff. 0.435 0.568 0.719 0.828 0.906 0.942 0.964 
(true order 

 
Rank 14 13 12 10 8 5 2 

p0 = 4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.223 0.602 0.789 0.890 0.937 0.961 0.978 

  
Overfitted 0.777 0.398 0.211 0.110 0.063 0.039 0.022 

  
Ave. L2 eff. 0.525 0.753 0.868 0.928 0.958 0.973 0.984 

  
Rank 14 13 12 11 10 9 8 

 
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.307 0.684 0.855 0.932 0.961 0.982 0.989 

  
Overfitted 0.693 0.316 0.145 0.068 0.039 0.018 0.011 

  
Ave. L2 eff. 0.577 0.805 0.910 0.955 0.974 0.988 0.992 

  
Rank 14 13 12 11 10 9 8 

4 15 Underfitted 0.011 0.036 0.094 0.171 0.300 0.503 0.680 
strongly 

 
Correct 0.253 0.444 0.532 0.555 0.517 0.384 0.251 

identifiable 
 

Overfitted 0.736 0.520 0.374 0.274 0.183 0.113 0.069 

(true order 
 

Ave. L2 eff. 0.788 0.815 0.830 0.812 0.746 0.602 0.449 
p0 = 8) 

 
Rank 4 2 1 3 5 6 7 

 
30 Underfitted 0.001 0.001 0.003 0.006 0.011 0.019 0.047 

  
Correct 0.489 0.759 0.875 0.932 0.964 0.967 0.944 

  
Overfitted 0.510 0.240 0.122 0.062 0.025 0.014 0.009 

  
Ave. L2 eff. 0.848 0.912 0.950 0.969 0.982 0.981 0.962 

  
Rank 8 7 5 3 1 2 4 

 
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.593 0.815 0.925 0.966 0.985 0.995 0.999 

  
Overfitted 0.407 0.185 0.075 0.034 0.015 0.005 0.001 

  
Ave. L2 eff. 0.857 0.919 0.960 0.980 0.991 0.997 0.999 

  
Rank 14 13 12 11 10 9 7.5 

Model n Order 
Criteria 

      
APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 15 Underfitted 0.020 0.030 0.042 0.062 0.099 0.144 0.192 

very 
 

Correct 0.948 0.946 0.942 0.929 0.895 0.851 0.805 

strongly 
 

Overfitted 0.032 0.024 0.016 0.009 0.006 0.005 0.003 

identifiable 
 

Ave. L2 eff. 0.964 0.961 0.955 0.941 0.909 0.867 0.823 

(true order 
 

Rank 1 3 4 6 7 9 11 

p0 = 4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.984 0.989 0.991 0.996 1.000 1.000 1.000 

  
Overfitted 0.016 0.011 0.009 0.004 0.000 0.000 0.000 

  
Ave. L2 eff. 0.988 0.993 0.994 0.997 1.000 1.000 1.000 

  
Rank 7 6 5 4 2 2 2 

 
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.993 0.997 0.997 0.999 0.999 1.000 1.000 

  
Overfitted 0.007 0.003 0.003 0.001 0.001 0.000 0.000 

  
Ave. L2 eff. 0.995 0.998 0.998 0.999 0.999 1.000 1.000 

  
Rank 7 5.5 5.5 3.5 3.5 1.5 1.5 

4 15 Underfitted 0.834 0.922 0.968 0.995 0.997 0.998 0.999 

strongly 
 

Correct 0.140 0.069 0.028 0.003 0.002 0.001 0.000 

identifiable 
 

Overfitted 0.026 0.009 0.004 0.002 0.001 0.001 0.001 

(true order 
 

Ave. L2 eff. 0.311 0.224 0.171 0.134 0.129 0.124 0.121 

p0 = 8) 
 

Rank 8 9 10 11 12 13 14 

 
30 Underfitted 0.104 0.209 0.350 0.560 0.736 0.871 0.947 

  
Correct 0.895 0.790 0.649 0.440 0.264 0.129 0.053 

  
Overfitted 0.001 0.001 0.001 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.917 0.820 0.688 0.485 0.317 0.185 0.109 

  
Rank 6 9 10 11 12 13 14 

 
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  
Correct 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

  
Overfitted 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

  
Ave. L2 eff. 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

  
Rank 7.5 3.5 3.5 3.5 3.5 3.5 3.5 

Note: Boldface type indicates the maximum value. 
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The theoretical results show that, when the value of   tends to infinity, the 

probability of overfitting tends to zero and the signal-to-noise ratio tends to strong. At the 

same time, the results of simulation based on values of   for APIC  ranging from 1 to 

14 suggest that, when the true model is weakly identifiable, the value of   should be 

small to give a high probability of correct order being selected and to prevent the 

probability of underfitting. However in the case of the true model is very difficult to detect, 

such as Model 1; none of the criteria correctly identify the true model more than 8% of 

the time. As a result, the probability of correct order being selected may not be 

meaningful. For this reason, we used the observed 
2L  efficiency to assess the 

appropriate value of  . This measure suggests the large value of   causes the high 

efficiency of APIC  which indicates that the correct model is also the closet model, 

except when the true model can be specified more easily, such as Model 2, and sample 

sizes are moderate to large, then the small value of   is preferable. For the strongly 

identifiable true model, the large value of   performs well. Because the problem of 

underfitting does not occur in this situation, the underfitted order often gives the 

maximum value of the estimated mean squared error and hence, under the model 

selection criterion, it is not possible to select the underfitted model. In the situation where 

the regression coefficients are not large enough, such as Model 4, and the sample sizes 

are small to moderate, the value of   should be moderate. 

In further work, we attempt to construct the model selection criteria to overcome 

the probability of over- and underfitting in the multivariate regression and simultaneous 

equations models. 

 

Acknowledgements 

This project is financial supported by The Thailand Research Fund, Office of 

The Higher Education Commission, and Thaksin University under grant No. 

MRG5480044. I would like to give special thanks to Prof. Dr. Joseph E. Cavanaugh, 

Department of Biostatistics, College of Public Health, University of Iowa, USA, Assoc. 

Prof. Dr. Jirawan Jitthavech, and Assoc. Prof. Dr. Vichit Lorchirachoonkul, National 

Institute of Development Administration (NIDA), THAILAND for all comments and 

suggestions. The author wishes to express his gratitude to an anonymous referee for 

carefully reading and constructively critiquing this manuscript. 

 

  



Warangkhana Keerativibool                                                                                177 

 
References 

[1] Akaike, H., Information theory and an extension of the maximum likelihood principle, 

In 2
nd

 International Symposium on Information Theory, B.N. Petrov and F. Csaki, eds. 

Akademiai Kiado, Budapest, 1973: 267-281. 

[2] Akaike, H., A new look at the statistical model identification, IEEE Transactions on 

Automatic Control, 1974; 19: 716-723.  

[3] Bedrick, E.J., and Tsai, C.L., Model selection for multivariate regression in small 

samples, Biometrics, 1994; 50: 226-231. 

[4] Schwarz, G., Estimating the dimension of a model, The Annals of Statistics, 1978; 6: 

461-464. 

[5] Neath, A., and Cavanaugh, J.E., Regression and time series model selection using 

variants of the schwarz information criterion, Communications in Statistics-Theory 

and Methods, 1997; 26: 559-580. 

[6] McQuarrie, A.D., A Small-Sample correction for the Schwarz SIC model selection 

criterion, Statistics & Probability Letters, 1999; 44: 79-86. 

[7] Cavanaugh, J.E., A large-sample model selection criterion based on Kullback’s 

symmetric divergence, Statistics & Probability Letters, 1999; 42: 333-343. 

[8] Cavanaugh, J.E., Criteria for linear model selection based on Kullback’s symmetric 

divergence, Australian & New Zealand Journal of Statistics, 2004; 46: 257-274. 

[9] Seghouane, A.K., and Bekara, M., A small sample model selection criterion based 

on Kullback’s symmetric divergence, IEEE Transactions on Signal Processing, 2004; 

52: 3314-3323.  

[10] Kim, H.J., and Cavanaugh, J.E., Model selection criteria based on kullback 

information measures for nonlinear regression, Journal of Statistical Planning and 

Inference, 2005; 134: 332-349. 

[11] Seghouane, A.K., Bekara, M., and Fleury, G., A criterion for model selection in the 

presence of incomplete data based on Kullback’s symmetric divergence, Signal 

Processing, 2005; 85: 1405-1417. 

[12] Hafidi, B., A Small-Sample criterion based on Kullback’s symmetric divergence for 

vector autoregressive modeling, Statistics & Probability Letters, 2006; 76: 1647-

1654. 

[13] Hafidi, B., and Mkhadri, A., A corrected akaike criterion based on Kullback’s 

symmetric divergence: Applications in Time Series, Multiple and Multivariate 

Regression, Computational Statistics & Data Analysis, 2006; 50: 1524-1550.  



178                                                                  Thailand Statistician, 2014; 12(2): 161-178 

 
[14] Seghouane, A.K., Multivariate regression model selection from small samples using 

Kullback’s symmetric divergence, Signal Processing, 2006; 86: 2074-2084. 

[15] Montgomery, D.C., Peck, E.A., and Vining, G.G., Introduction to Linear Regression 

Analysis, 4
th
 ed., New York, Wiley, 2006.  

[16] McQuarrie, A.D., and Tsai, C.L., Regression and Time Series Model Selection, 

Singapore, World Scientific, 1998. 

[17] Seghouane, A.K., A note on overfitting properties of KIC and KICc. Signal Process 

2006; 86: 3055-3060. 

[18] McQuarrie, A.D., Shumway, R., and Tsai, C.L., The model selection criterion AICu. 

Statistics & Probability Letters, 1997; 34: 285-292. 

[19] Seghouane, A.K., Multivariate regression model selection from small samples using 

Kullback’s symmetric divergence, Signal Processing, 2006; 86: 2074-2084. 

 


