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Abstract
The aim of this paper is to study the penalty functions of the well-known model

selection criteria, AIC, BIC, and KIC , which can unify their formulas as
APICa =log(6°)+a(p+1)/n,

called Adjusted Penalty Information Criterion. The appropriate value of « for APIC«
has been found to reduce the probabilities of over- and underfitting and also to overcome

the weak signal-to-noise ratio. The value of « is selected based on four measurements:
the probability of over- and underfitting, the signal-to-noise ratio, the probability of order
selected, and the observed L, efficiency. Performance of APIC«a is examined by
theoretical and extensive simulation study. The theoretical results show that, the
probability of overfitting tends to zero and the signal-to-noise ratio tends to strong if the
value of & tends to infinity. However, the simulation results show that, when the true
model is weakly identifiable, the small value of & gives a high probability of correct
order being selected. But, if the true model is very difficult to detect, the observed L,
efficiency is a meaningful measurement than the probability of order selected. The

observed L, efficiency suggests the large value of «a causes the high efficiency of

APICa which indicates that the correct model is also the closet model, except when the

true model can be specified more easily and sample sizes are moderate to large, then
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the small value of « is preferable. For the strongly identifiable true model, the large
value of o performs well, whereas if the regression coefficients are not large enough

and the sample sizes are small to moderate, the value of & should be moderate.

Keywords: model selection, penalty function, probability of overfitting, signal-to-noise

ratio, observed L, efficiency.

1. Introduction

In regression analysis, the choice of an appropriate model from a class of
candidate models to characterize the study data is a key issue. In real life, we may not
know what the true model is, but we hope to find a model that is a reasonably accurate
representation. A model selection criterion represents a useful tool to judge the propriety
of a fitted model by assessing whether it offers an optimal balance between goodness of
fit and parsimony. The first model selection criterion to gain widespread acceptance was
the Akaike information criterion, AIC [1-3]. This serves as an asymptotically unbiased
estimator of a variant of Kullback’s directed divergence between the true model and a
fitted approximating model. The directed divergence, also known as the Kullback-Leibler
information, the I-divergence, or the relative entropy, assesses the dissimilarity between
two statistical models. Other well-known criteria were subsequently introduced and
studied such as Bayesian information criterion, BIC [4-6], and Kullback information
criterion, KIC [7-14]. BIC is an asymptotic approximation to a transformation of the
Bayesian posterior probability of a candidate model [5]. KIC is a symmetric measure,
meaning that an alternate directed divergence may be obtained by reversing the roles of
the two models in the definition of the measure. The sum of the two directed divergences
is Kullback’s symmetric divergence, also known as the J-divergence [7-8]. Although
AIC remains arguably the most widely used model selection criterion, BIC and KIC ,
are popular competitors. In fact, BIC is often preferred over AIC by practitioners who
find appeal in either its Bayesian justification or its tendency to choose more
parsimonious models than AIC [5]. Likewise, KIC is a symmetric measure which
combines the information in two related, though distinct measures; it functions as a
gauge of model disparity that is arguably more sensitive than AIC that corresponds to
only individual components [7-8]. However, AIC , BIC , and KIC , still have the

problems of overfitting and weak signal-to-noise ratio due to the weak penalty functions.
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With this motivation, the aim of this paper is to study the penalty functions based on
these criteria for the case of univariate regression model in order to find the appropriate
value of penalty to reduce the probabilities of over- and underfitting and also to
overcome the weak signal-to-noise ratio. The remainder of this paper is organized as

follows. In Section 2, we unify AIC, BIC, and KIC , in one form, called Adjusted
Penalty Information Criterion (APICa) . The studies on the probability of overfitting and

signal-to-noise ratio are also considered in this section. In Section 3, we simulate 1,000

realizations of multiple regression models in order to study the probability of the order
selected and the observed L, efficiency of APICa where the values of a range from

1 to 14. Finally, Section 4 is the conclusions, discussion, and further study.

2. Model selection criteria, probability of overfitting, and signal-to-noise ratio

Suppose data are generated by the operating model, i.e., true model [15]
Y =X,B, +8, & ~N, (0, a3l,), )
and the candidate or approximating model is in the form [15]
y=XB+& &~N,(0, o°l,), @
where y is an nx1 dependent random vector of observations, X, and X are nxp,
and nx p matrices of independent variables with full-column rank, respectively, B, and

B are p,x1 and px1 parameter vectors of regression coefficients, respectively, g,

/
and € are nx1 noise vectors. The (p+1)><l vector of parameters is 6, =[Bg 0'5]

and the maximum likelihood estimator of 0, is (:)z[ﬁ’ &2] where

B=(XX)" XYy and &’ :(y—xfs) (y—xfs)/n.
For each data set, we can construct many fitted candidate models.

Nevertheless, we cannot know which model is the best. Criterion for model selection is a

way to solve this problem. AIC, BIC , and KIC , are three well-known criteria to
consider in this study. We scale these criteria by 1/n in order to express them as a rate
per observation. The formulas for them are based on the form of the log of the likelihood

function of the maximum likelihood estimator of o plus a penalty function, called

Adjusted Penalty Information Criterion,
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APICa =log(6%)+a(p+1)/n. A3)

When the values of & in (3) are equal to 2,log(n), 3; APICa becomes AIC

, BIC, and KIC , respectively. The appropriate value of & has been found to reduce
the probabilities of over- and underfitting and also to overcome the weak signal-to-noise
ratio. The value of & is selected by four measurements: the probability of over- and
underfitting, the signal-to-noise ratio, the probability of order selected, and the observed

L, efficiency. Theoretical and empirical methods are used to examine the performance

of APIC«x .

The terms over- and underfitting can be defined in two ways. Under
consistency, when a true model is itself a candidate model, overfitting is a situation when
the model has extra variables with more parameters than the optimal model and
underfitting is defined as choosing a model that either has too few variables or is
incomplete. In view of efficiency, overfitting can be defined as choosing a model that has
more variables than the model identified as closest to the true model, thereby reducing
efficiency. Underfitting is defined as choosing a model with too few variables compared
to the closest model, also reducing efficiency. Both over- and underfitting can lead to
problems with the predictive abilities of a model. An underfitted model may have poor
predictive ability due to a lack of detail in the model, while an overfitted model may be
unstable in the sense that repeated samples from the same process can lead to widely
differing predictions due to variability in the extraneous variables. A criterion that can
balance the tendencies of over- and underfitted is preferable [16-17].

The probability of model selection criterion preferring the overfitted model is

analyzed here by comparing the true model of order p, to a more complex model or

overfitted model of order p, +1, 1 >0. Hence for finite N, the probability that APIC

prefers the overfitted model is defined by

P{AP|C0(pO+| < APlCapo} = P{IOQ(&;)H )+M < Iog(oA'i0 )+M}

62 6?2 6 -62
= P{log| > Al p B >exp(ﬂj =P ”‘)Tp‘“'>exp£a—lj—l .
Gp0+l n O-p0+l n O-p0+l n

4




Warangkhana Keerativibool 165

Under the assumption of nested models; p=p, and >0, we have

2

n(c?'ﬁ -67, ) ~ oot NG ~ o4yt . where y? represents the chi-square distribution

with k degrees of freedom, and 6'5 —oA'fH, is independent of 6';, [16]. (5)

Then the probability of overfitting by | extra variables of APICa in (4)

becomes
P{APICa, , < APICa, | = P{FI . >¥°_I{exp(ﬂJ—l}}. ®)
0 0 i 0 n

In (6), we found that APIC« ’s probability of overfitting depends on the value of

a in (3). If the value of & tends to infinity under the same values of the sample size

(n), the order of true model (p,), and the additional variable (1), APIC« tends to

less overfitting. When we replace the values of & in (6) by 2,log(n), 3, we get the
probabilities of overfiting of AIC, BIC , and KIC , respectively. The proof of the
probability of overfitting can be confirmed numerically in Table 1. The examples of the
calculation for the probability of overfitting by | extra variables of APIC« in (6) are as

follows: for n=15, p, =3

P{APICL, ,, < APIC1, | = P{F, ,, >0.7583 | = 0.4025
P{APICL, , < APIC1, | = P{F, ,, >0.7132 | = 05134
P{APIC3, , < APIC3, | = P{F,,, >2.4354 | =0.1469
P{APIC3, , < APIC3, } =P{F,, >2.4591} = 0.1353

The explanation of the result in Table 1 is that, e.g. for n=15, p, =3, and

I =1, the probability of overfitting of APICL is 0.4025, this means that this criterion
would select the model whose order is higher by one order than true model with a
probability of 0.4025. Although the large value of « resulted in APICa having the low
probability of overfitting, sometimes it will be prone to underfitting. This result will be

shown in the simulation study.
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Table 1. Probability of overfitting by | extra variables of APIC & for different values of

n, p,,and I.
| Criteria
n Po APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7
15 3 1 0.4025 0.2363 0.1469 0.0939 0.0611 0.0402 0.0266
15 3 2 0.5134 0.2636 0.1353 0.0695 0.0357 0.0183 0.0094
15 3 3 0.5947 0.2857 0.1287 0.0561 0.0240 0.0101 0.0042
15 3 4 0.6664 0.3143 0.1305 0.0508 0.0190 0.0070 0.0025
15 4 1 0.4257 0.2599 0.1676 0.1110 0.0747 0.0509 0.0349
15 4 2 0.5488 0.3012 0.1653 0.0907 0.0498 0.0273 0.0150
15 4 3 0.6384 0.3362 0.1667 0.0802 0.0378 0.0176 0.0082
15 4 4 0.7154 0.3784 0.1780 0.0788 0.0336 0.0140 0.0058
30 3 1 0.3565 0.1922 0.1102 0.0651 0.0392 0.0239 0.0147
30 3 2 0.4346 0.1889 0.0821 0.0357 0.0155 0.0067 0.0029
30 3 3 0.4846 0.1795 0.0617 0.0204 0.0066 0.0021 0.0007
30 3 4 0.5256 0.1720 0.0482 0.0125 0.0031 0.0007 0.0002
30 4 1 0.3661 0.2012 0.1175 0.0706 0.0433 0.0268 0.0168
30 4 2 0.4493 0.2019 0.0907 0.0408 0.0183 0.0082 0.0037
30 4 3 0.5033 0.1954 0.0705 0.0245 0.0083 0.0028 0.0009
30 4 4 0.5475 0.1902 0.0568 0.0157 0.0042 0.0011 0.0003
100 3 1 0.3284 0.1670 0.0905 0.0506 0.0289 0.0167 0.0097
100 3 2 0.3867 0.1496 0.0578 0.0224 0.0087 0.0033 0.0013
100 3 3 0.4178 0.1288 0.0367 0.0100 0.0027 0.0007 0.0002
100 3 4 0.4395 0.1109 0.0236 0.0046 0.0009 0.0002 0.0000
100 4 1 0.3310 0.1692 0.0922 0.0519 0.0297 0.0173 0.0101
100 4 2 0.3906 0.1526 0.0596 0.0233 0.0091 0.0036 0.0014
100 4 3 0.4227 0.1322 0.0382 0.0106 0.0029 0.0008 0.0002
100 4 4 0.4453 0.1144 0.0248 0.0050 0.0009 0.0002 0.0000
| Criteria

n Po APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
15 3 1 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017
15 3 2 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001
15 3 3 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000
15 3 4 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000
15 4 1 0.0241 0.0167 0.0117 0.0082 0.0057 0.0040 0.0028
15 4 2 0.0082 0.0045 0.0025 0.0014 0.0007 0.0004 0.0002
15 4 3 0.0037 0.0017 0.0008 0.0004 0.0002 0.0001 0.0000
15 4 4 0.0023 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000
30 3 1 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006
30 3 2 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000
30 3 3 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
30 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 4 1 0.0106 0.0067 0.0043 0.0027 0.0017 0.0011 0.0007
30 4 2 0.0017 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000
30 4 3 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
30 4 4 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 3 1 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003
100 3 2 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
100 3 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 3 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 4 1 0.0060 0.0035 0.0021 0.0013 0.0008 0.0005 0.0003
100 4 2 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
100 4 3 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 4 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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The signal-to-noise ratio is the second measure used to study the property of
APICqa . McQuarrie and Tsai [16] defined the signal-to-noise ratio as a measurement
that is basically a ratio of the expectation to the standard deviation of the difference in

criterion values for two models. The ratio tends to assess whether the penalty function is

sufficiently strong in relation to the goodness of fit term. From the true model order p,
and a candidate model order p, +1 where | >0, the true model is considered better
than a candidate model if the criterion value of a model of order p, is less than that of
order p, +1, APICap, < APICo p, 41 - Then, the signal-to-noise ratio that the true model
has selected compared to a candidate model is defined by

signal  E[ APICa,.i— APICay, |
noise  sd| APICa .1~ APICay, |

@)

where E[APICapoﬂ - APICapo]

= E|:|Og(&§o+l)+w_|og(o‘-2 )_a(po +1)}

n Po n

~2
= E[Iog[af—f'J+a—|],
62 ] n

and  sd[ APICa;, .~ APICay, |

=Sd{|09(&§u+u)+w—log(&z )__“(p”l)}

Po n
~2
) al
=sd | log| 2% [+ = |,
G, n

Applying the second-order of Taylor's series expansions in order to find the
signal in (7) is as follows: suppose X ~ ;(i expanding |Og(X) about E(X)= p, we

have

Iog(X)éIog(p)+%(X—p)— lz(X—p)2 and E[Iog(x)]&log(p)—%.

2p
®
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Using the results in (8) and the assumption in (5), the approximate signal in (7) is

E[ APICauy, 1 ~ APICau,, |=E[ log(né2 )|~ E[ log(ns? )}%‘

where E[Iog(n&;ﬁ,)}:|Og(0'§)+|og(ﬂ—po—|)_—n_;o_|,
and E[Iog(n&;ﬂ:|09(U§)+|09(“_po)_n_lpo'
Therefore,
B n—p,—I 3 I al
E[APICO‘UPOH_APICO‘U%J_IOQ[ n—op0 ] (n_po—l)(n—po)+ n- o

Using the assumption in (5) to find the noise in (7) by the Q-statistic which has

the Beta distribution as follows:

né? —p —
Q=—2"- Beta[%‘)l,lﬂ , (10)
no-Po
and the log-distribution of Q-statistic is
né> n-p,—1 |
lo =log| —2 |~ log-Beta| —2—,— |. 11
9(Q) g[n&;] 9 ( 5 2) (11)

Applying the first-order of Taylor's series expansions when X ~ ;(i , we expand

log(X) about E(X)=p as follows:
1
Iog(X)élog(p)+B(X—p). (12)

Using (12) to expand log(Q) in (11) about

(n-p,-1)/2  n-p,-I

E(Q)= (n—p,—1)/2+1/2  n-p,

we have

log(Q) = log N—p—l), Nn=-p Q—n_pO_I . (13)
n—op, n—p,—I n—op,
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The variance of log(Q) in (11) is approximated by the variance of log(Q) in

(13) as follows:

V"’“['O@J(Q)]=va{log[L”g*'Hivar[log['”‘"’0"}+ n—p LQ_n—po—lﬂ
o, n-p, ) n-—p,-I n—p,
=(—n_p° ] var(Q),

n—p,—I
[(n-p-1)/2])01/2)
((n=py=1)/2+1712) ((n=py=1)/ 2+1/2+1)

where var(Q) =

Therefore,

Var[log(Q)]:(n—po—l)z(ln—p0+2)’ (14)

and the standard deviation of log(Q) in (14) or the approximate noise in (7) is

=sd| lo S Iy 2l
sd[log(Q)]= d{l g{ 5 J n} \/(n—po—l)(n—p0+2)' (15)

Combined, the approximations of signal in (9) and noise in (15) to be the

approximate signal-to-noise ratio in (7) is as follows:

signali\/(n—po—|)(n—po+2){log{n—p0—lJ_( ! La]

noise 21 n—p, n—p,—1)(n-p,) n

(16)
In (16), we found that the signal-to-noise ratio of APIC« depends on the value

of a in (3). This conclusion is similar to the probability of overfitting, that is if the value of

o tends to infinity under the same values of n, p,, and |, APICa has a strong

signal-to-noise ratio. When we replace the values of « in (16) by 2, Iog(n) ,and 3, we

have the approximate signal-to-noise ratios for AIC, BIC , and KIC , respectively. The

proof of the signal-to-noise ratio can be confirmed numerically in Table 2.
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Table 2. Signal-to-noise ratio of APIC & for different values of n, p,, and | .

Criteria

n Po ! APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7
15 3 1 -0.2450 0.3400 0.9250 1.5100 2.0950 2.6800 3.2650
15 3 2 -0.3884 0.4004 1.1892 1.9780 2.7668 3.5556 4.3444
15 3 3 -0.5291 0.3874 1.3039 2.2204 3.1370 4.0535 4.9700
15 3 4 -0.6752 0.3225 1.3203 2.3181 3.3159 4.3136 5.3114
15 4 1 -0.3042 0.2333 0.7707 1.3082 1.8457 2.3832 2.9207
15 4 2 -0.4734 0.2477 0.9688 1.6899 2.4110 3.1321 3.8532
15 4 3 -0.6351 0.1976 1.0302 1.8629 2.6956 3.5282 4.3609
15 4 4 -0.8002 0.0992 0.9985 1.8979 2.7973 3.6967 45961
30 3 1 -0.1132 0.5340 1.1812 1.8284 2.4756 3.1229 3.7701
30 3 2 -0.1785 0.7190 1.6166 2.5141 3.4116 4.3092 5.2067
30 3 3 -0.2414 0.8356 1.9127 2.9897 4.0667 5.1438 6.2208
30 3 4 -0.3054 0.9120 2.1295 3.3470 4.5644 5.7819 6.9994
30 4 1 -0.1389 0.4847 1.1083 1.7319 2.3555 2.9791 3.6027
30 4 2 -0.2149 0.6492 1.5133 2.3774 3.2415 4.1056 4.9697
30 4 3 -0.2861 0.7499 1.7859 2.8219 3.8579 4.8940 5.9300
30 4 4 -0.3573 0.8127 1.9827 3.1527 4.3227 5.4927 6.6627
100 3 1 -0.0324 0.6569 1.3463 2.0356 2.7250 3.4143 4.1037
100 3 2 -0.0510 0.9188 1.8886 2.8584 3.8282 4.7980 5.7678
100 3 3 -0.0687 1.1128 2.2942 3.4757 4.6572 5.8387 7.0202
100 3 4 -0.0867 1.2703 2.6273 3.9843 5.3413 6.6982 8.0552
100 4 1 -0.0396 0.6426 1.3249 2.0072 2.6895 3.3717 4.0540
100 4 2 -0.0612 0.8986 1.8584 2.8182 3.7780 4.7378 5.6976
100 4 3 -0.0813 1.0880 2.2572 3.4264 4.5957 5.7649 6.9341
100 4 4 -0.1011 1.2417 2.5845 3.9274 5.2702 6.6130 7.9559

| Criteria

n Po APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
15 3 1 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600
15 3 2 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661
15 3 3 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856
15 3 4 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958
15 4 1 3.4582 3.9956 45331 5.0706 5.6081 6.1456 6.6831
15 4 2 45743 5.2954 6.0166 6.7377 7.4588 8.1799 8.9010
15 4 3 5.1936 6.0262 6.8589 7.6916 8.5242 9.3569 10.1896
15 4 4 5.4955 6.3948 7.2942 8.1936 9.0930 9.9924 10.8917
30 3 1 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006
30 3 2 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894
30 3 3 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600
30 3 4 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216
30 4 1 4.2263 4.8500 5.4736 6.0972 6.7208 7.3444 7.9680
30 4 2 5.8338 6.6979 7.5620 8.4261 9.2902 10.1543 11.0184
30 4 3 6.9660 8.0020 9.0380 10.0740 11.1101 12.1461 13.1821
30 4 4 7.8327 9.0027 10.1727 11.3427 12.5127 13.6827 14.8527
100 3 1 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291
100 3 2 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564
100 3 3 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905
100 3 4 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541
100 4 1 4.7363 5.4186 6.1008 6.7831 7.4654 8.1477 8.8299
100 4 2 6.6574 7.6171 8.5769 9.5367 10.4965 11.4563 12.4161
100 4 3 8.1034 9.2726 10.4418 11.6111 12.7803 13.9495 15.1187
100 4 4 9.2987 10.6415 11.9844 13.3272 14.6700 16.0129 17.3557
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The examples of the calculation for the signal-to-noise ratio of APIC« in (16)

are as follows: for n=15, p, =3

. signal . y/(11)(14) [Iog(

=1 a=1 -
noise 2

=
N

“signal . +/(10)(14) 10 2
-20-5 e ['OQ(EJ_M
_signal . (11)(14) 11 1
|=l,a=3, ngise = \E |:|0 (E]—M-F—
_signal . (10)(14) 10 2
=2 a=3 ngise N {Io [E)_(lo

11
@ s =-0.
J— 5 (12)+15} 2450

)(12) " 15

McQuarrie and Tsai [16] concluded that the signal-to-noise ratios are strong or

weak as follows. A strong signal-to-noise ratio refers to a large positive value (often

greater than 2) and leads to small probability of overfitting. A weak signal-to-noise ratio
usually refers to one that is small (less than 0.5) or negative and results in high
probability of overfitting. The model selection criterion that has strong signal-to-noise

ratio and lowest probability of overfitting is preferable.

3. Simulation study

In addition to the proofs of probability of overfitting in (6) and the approximate

signal-to-noise ratio in (16), we use the simulation data to find the appropriate value of

a for APICa in (3). Four cases of the true multiple regression models in (1) are

constructed as follows.

Model 1 (very weakly identifiable true model with the true order p, =7 ):

y, = X, +0.5X, +0.1X, +0.05X, +0.01X, +0.005X, +0.001X, + &,

Model 2 (weakly identifiable true model with the true order p, =3):

Y, = X, +0.5X, +0.25X, +&,,

Model 3 (very strongly identifiable true model with the true order p, =4 ):

Yy =X, +2X, +2X,+2X, + &,

Model 4 (strongly identifiable true model with the true order p, =8):

Y, = X+ X, + X+ X, + X+ X+ X, + X+ &,



172 Thailand Statistician, 2014; 12(2): 161-178

Model 1 and Model 2 represent the weakly identifiable true models which mean

they are not easily identified compared to the strongly identifiable true models such as
Model 3 and Model 4. In this study, the true variance 002 in (1) is assumed equal to one.

For each model, we consider 1,000 realizations for three levels of the sample sizes

which are n=15 (small), n=30 (moderate), and n=100 (large). Ten candidate
variables, X, to X,,, are stored in an nx10 matrix X of the candidate model in (2),
where X, is given as a constant which equals one, followed by nine independent

identically distributed normal random variables with zero mean and equal variance-

covariance matrix to identity matrix I,,. The candidate models include the columns of X
in a sequentially nested fashion; i.e., columns 1 to p define the design matrix for the
candidate model with dimension p. Over 1,000 realizations, we apply APICa in (3)

with the values of & ranging from 1 to 14 on the datasets y of four models constructed.
The probability of order selected by APIC« is a measure used to examine the effects of
weak or strong penalty function in the proposed criterion. In addition to above measure,

many authors [18-19] use the observed L, efficiency to assess model selection criterion
performance, especially when the true model is very difficult to detect. The observed L,

distance, scaled by 1/n, between the true model in (1) and the fitted candidate model in

(2) is defined as
L, (p)=(XoB, —XB) (X8, —XB)/n.
Observed L, efficiency is defined by the ratio

minlﬁpsP I‘2 ( p)
I‘2 ( ps)

where P is the class of all possible candidate models, p is the rank of fitted candidate

Observed L, efficiency =

model, and p, is the model selected by specific model selection criterion. The closer the

selected model is to the true model, the higher the efficiency. Therefore, the best model
selection criterion will select a model which yields high efficiency even in small samples

or the true model is weakly identifiable. In order to summarize the results in this study,

the average observed L, efficiencies over the 1,000 realizations are ranked for APIC«

where the values of « range from 1 to 14. The first rank of average observed L,

efficiencies goes to the highest efficiency criterion and denotes better relative
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performance. Results of comparing the probability of order selected by APICa and
average observed L, efficiencies are shown in Table 3.

From the results of simulation in Table 3 we found that, for Model 1 and Model 2
which are the situations where the true model cannot be easily identified, APICa with
the small value of ¢ (about 1 to 3) gives the greater probability of correct order being
selected than the case of large value and also prevents the probability of underfitting.

While, the observed L, efficiency suggests the large value of « causes the high

efficiency of APIC« , except when the true model can be specified more easily, such as
Model 2, and sample sizes are moderate to large, the small value of & (about 3 to 4) is
preferable. For Model 3 and Model 4 which are the situations where the true model is
strongly identifiable, the value of & should be large (at least 8), except when the
regression coefficients are not large enough, such as Model 4, and the sample sizes are
small to moderate, the value of & should be moderate (about 4 to 6).

For all models, if the value of & tends to infinity, the probability of overfitted
tends to decrease whereas the probability of underfitting tends to increase. The point
that has the optimal probability of over- and underfitting always presents the maximum
probability of correct order being selected.

4. Conclusions, discussion, and further study

In this paper, we study the penalty functions based on the well-known model
selection criteria, AIC, BIC, and KIC which can be unified in the form of the log
likelihood function of the maximum likelihood estimator of o plus a penalty function,

called Adjusted Penalty Information Criterion, i.e.,

APICa =log(6°)+a(p+1)/n,

when the values of & are equal to 2, log(n), 3; APICa becomes AIC, BIC, and

KIC respectively. Each criterion has a different value due to its penalty function, the
differences in strong or weak penalty affecting the probabilities of over- and underfitting,

including the problem of signal-to-noise ratio being weak.
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Table 3. Probability of the order selected by APIC o and average observed L,

efficiencies over 1,000 realizations.

Model ord Criteria
ode n raer APICL ___APIC2 __APIC3___APIC4 ___APIC5 __APIC6 __APICY
1 15 Underfitted 0.191 0.560 0.809 0.931 0.980 0.997 0.997
very Correct 0.055 0.044 0.018 0.006 0.001 0.000 0.000
weakly Overfitted 0.754 0.396 0.173 0.063 0.019 0.003 0.003
identifiable Ave. L, eff, 0.266 0.483 0.687 0.811 0.890 0.922 0.937
(true order Rank 14 13 12 11 10 9 8
Po=7) 30 Underfitted 0.441 0.853 0.982 0.998 0.999 1.000 1.000
Correct 0.067 0.029 0.006 0.001 0.001 0.000 0.000
Overfitted 0.492 0.118 0.012 0.001 0.000 0.000 0.000
Ave. L, eff, 0.386 0.646 0.795 0.858 0.885 0.913 0.923
Rank 14 13 12 11 10 9 8
100 Underfitted 0.588 0.927 0.996 0.999 1.000 1.000 1.000
Correct 0.079 0.022 0.001 0.000 0.000 0.000 0.000
Overfitted 0.333 0.051 0.003 0.001 0.000 0.000 0.000
Ave. L eff. 0.470 0.642 0.703 0.723 0.735 0.748 0.756
Rank 14 13 12 11 10 9 8
2 15 Underfitted 0.058 0.288 0.545 0.721 0.826 0.890 0.930
weakly Correct 0.038 0.136 0.167 0.158 0.123 0.090 0.061
identifiable Overfitted 0.904 0.576 0.288 0.121 0.051 0.020 0.009
(true order Ave. L eff. 0.301 0.469 0.615 0.703 0.746 0.771 0.786
po = 3) Rank 14 13 12 11 10 9 8
30 Underfitted 0.102 0.376 0.584 0.712 0.799 0.857 0.900
Correct 0.124 0.282 0.271 0.234 0.183 0.135 0.096
Overfitted 0.774 0.342 0.145 0.054 0.018 0.008 0.004
Ave. L, eff. 0.402 0.602 0.663 0.670 0.659 0.648 0.642
Rank 14 13 2 1 3 8 12
100 Underfitted 0.029 0.118 0.223 0.333 0417 0.499 0.582
Correct 0.271 0.575 0.663 0.628 0.565 0.496 0.415
Overfitted 0.700 0.307 0.114 0.039 0.018 0.005 0.003
Ave. L, eff. 0515 0.748 0.806 0.782 0.732 0.679 0.616
Rank 9 3 1 2 4 5 6
Criteria
Model n Order APIC8 __ APIC9 __ _APICI0 _APICIL __APIC12 _APIC13 _ APICl4
1 15 Underfitted 0.999 1.000 1.000 1.000 1.000 1.000 1.000
very Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000
weakly Overfitted 0.001 0.000 0.000 0.000 0.000 0.000 0.000
identifiable Ave. L, eff. 0.952 0.960 0.961 0.962 0.964 0.965 0.966
(true order Rank 7 6 5 4 3 2 1
Po=7) 30 Underfitted 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Overfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L, eff. 0.929 0.934 0.935 0.939 0.941 0.942 0.942
Rank 7 6 5 4 3 15 15
100 Underfitted 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correct 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Overfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L, eff. 0.765 0.772 0.778 0.782 0.784 0.784 0.786
Rank 7 6 5 4 3 2 1
2 15 Underfitted 0.955 0.970 0.978 0.986 0.990 0.990 0.992
weakly Correct 0.042 0.030 0.022 0.014 0.010 0.010 0.008
identifiable Overfitted 0.003 0.000 0.000 0.000 0.000 0.000 0.000
(true order Ave. L, eff. 0.797 0.802 0.805 0.808 0.810 0.810 0.811
po = 3) Rank 7 6 5 4 25 25 1
30 Underfitted 0.927 0.941 0.959 0.972 0.978 0.982 0.990
Correct 0.069 0.057 0.039 0.028 0.022 0.018 0.010
Overfitted 0.004 0.002 0.002 0.000 0.000 0.000 0.000
Ave. L, eff. 0.643 0.643 0.646 0.650 0.650 0.652 0.656
Rank 11 10 9 7 6 5 4
100 Underfitted 0.652 0.704 0.768 0814 0.847 0.876 0.892
Correct 0.346 0.295 0.231 0.186 0.153 0.124 0.108
Overfitted 0.002 0.001 0.001 0.000 0.000 0.000 0.000
Ave. L, eff. 0.562 0.524 0.479 0.449 0.427 0.407 0.397
Rank 7 8 10 11 12 13 14

Note: Boldface type indicates the maximum value.
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Table 3. (Continued).
Criteria
Model n Order APICL ___APIC2 __ APIC3___APIC4 _ APIC5 ___APIC6 __ APICY
3 15 Underfitted 0.000 0.000 0.000 0.002 0.005 0.008 0.010
very Correct 0.091 0.312 0.558 0.728 0.851 0.909 0.944
strongly Overfitted 0.909 0.688 0.442 0.270 0.144 0.083 0.046
identifiable Ave. L, eff. 0.435 0.568 0.719 0.828 0.906 0.942 0.964
(true order Rank 14 13 12 10 8 5 2
Po=4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.223 0.602 0.789 0.890 0.937 0.961 0.978
Overfitted 0.777 0.398 0.211 0.110 0.063 0.039 0.022
Ave. L, eff. 0.525 0.753 0.868 0.928 0.958 0.973 0.984
Rank 14 13 12 11 10 9 8
100  Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.307 0.684 0.855 0.932 0.961 0.982 0.989
Overfitted 0.693 0.316 0.145 0.068 0.039 0.018 0.011
Ave. L, eff. 0.577 0.805 0.910 0.955 0.974 0.988 0.992
Rank 14 13 12 11 10 9 8
4 15 Underfitted 0.011 0.036 0.094 0.171 0.300 0.503 0.680
strongly Correct 0.253 0.444 0.532 0.555 0.517 0.384 0.251
identifiable Overfitted 0.736 0.520 0.374 0.274 0.183 0.113 0.069
(true order Ave. L, eff. 0.788 0.815 0.830 0.812 0.746 0.602 0.449
Po=8) Rank 4 2 1 3 5 6 7
30 Underfitted 0.001 0.001 0.003 0.006 0.011 0.019 0.047
Correct 0.489 0.759 0.875 0.932 0.964 0.967 0.944
Overfitted 0.510 0.240 0.122 0.062 0.025 0.014 0.009
Ave. L, eff. 0.848 0.912 0.950 0.969 0.982 0.981 0.962
Rank 8 7 5 3 1 2 4
100  Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.593 0.815 0.925 0.966 0.985 0.995 0.999
Overfitted 0.407 0.185 0.075 0.034 0.015 0.005 0.001
Ave. L, eff. 0.857 0.919 0.960 0.980 0.991 0.997 0.999
Rank 14 13 12 11 10 9 7.5
Model n Order Criteria
APIC8 APIC9  APICI1I0 APICI1 _ APIC12  APIC13 _ APIC14
3 15 Underfitted 0.020 0.030 0.042 0.062 0.099 0.144 0.192
very Correct 0.948 0.946 0.942 0.929 0.895 0.851 0.805
strongly Overfitted 0.032 0.024 0.016 0.009 0.006 0.005 0.003
identifiable Ave. L, eff. 0.964 0.961 0.955 0.941 0.909 0.867 0.823
(true order Rank 1 3 4 6 7 9 11
Po = 4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.984 0.989 0.991 0.996 1.000 1.000 1.000
Overfitted 0.016 0.011 0.009 0.004 0.000 0.000 0.000
Ave. L, eff. 0.988 0.993 0.994 0.997 1.000 1.000 1.000
Rank 7 6 5 4 2 2 2
100  Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.993 0.997 0.997 0.999 0.999 1.000 1.000
Overfitted 0.007 0.003 0.003 0.001 0.001 0.000 0.000
Ave. L, eff. 0.995 0.998 0.998 0.999 0.999 1.000 1.000
Rank 7 55 55 35 35 15 15
4 15 Underfitted 0.834 0.922 0.968 0.995 0.997 0.998 0.999
strongly Correct 0.140 0.069 0.028 0.003 0.002 0.001 0.000
identifiable Overfitted 0.026 0.009 0.004 0.002 0.001 0.001 0.001
(true order Ave. L, eff. 0.311 0.224 0.171 0.134 0.129 0.124 0.121
Po = 8) Rank 8 9 10 11 12 13 14
30 Underfitted 0.104 0.209 0.350 0.560 0.736 0.871 0.947
Correct 0.895 0.790 0.649 0.440 0.264 0.129 0.053
Overfitted 0.001 0.001 0.001 0.000 0.000 0.000 0.000
Ave. L, eff. 0.917 0.820 0.688 0.485 0.317 0.185 0.109
Rank 6 9 10 11 12 13 14
100  Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Overfitted 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L, eff. 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Rank 75 35 35 35 35 35 35

Note: Boldface type indicates the maximum value.
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The theoretical results show that, when the value of & tends to infinity, the
probability of overfitting tends to zero and the signal-to-noise ratio tends to strong. At the
same time, the results of simulation based on values of & for APIC« ranging from 1 to
14 suggest that, when the true model is weakly identifiable, the value of a should be
small to give a high probability of correct order being selected and to prevent the
probability of underfitting. However in the case of the true model is very difficult to detect,
such as Model 1; none of the criteria correctly identify the true model more than 8% of
the time. As a result, the probability of correct order being selected may not be
meaningful. For this reason, we used the observed L, efficiency to assess the
appropriate value of « . This measure suggests the large value of & causes the high
efficiency of APICa which indicates that the correct model is also the closet model,
except when the true model can be specified more easily, such as Model 2, and sample
sizes are moderate to large, then the small value of « is preferable. For the strongly
identifiable true model, the large value of o performs well. Because the problem of
underfitting does not occur in this situation, the underfitted order often gives the
maximum value of the estimated mean squared error and hence, under the model
selection criterion, it is not possible to select the underfitted model. In the situation where
the regression coefficients are not large enough, such as Model 4, and the sample sizes
are small to moderate, the value of & should be moderate.

In further work, we attempt to construct the model selection criteria to overcome
the probability of over- and underfitting in the multivariate regression and simultaneous

equations models.
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