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Abstract

The purpose of this study is to find the suitable covariance matrix for the
construction of confidence regions of parameters in the Birnbaum-Saunders distribution
and we need to calculate confidence ellipses and compare the coverage probabilities for
asymptotic confidence ellipses of parameters in the Birnbaum-Saunders distribution.
Monte Carlo simulation is used to compare the coverage probabilities of the asymptotic
confidence ellipses. The result showed that the asymptotic confidence ellipses can work
very well when the « values increase more than 2.0 and the sample sizes (n) increase. In
the Birnbaum-Saunders distribution, we can use method of moment estimators instead of
maximum likelihood estimators for confidence ellipses because of high efficiency of
coverage probabilities.

Keywords: method of moment, method of maximum likelihood, confidence ellipse,
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1. Introduction

The Birnbaum-Saunders (BS) distribution is introduced by Birnbaum and
Saunders [1]. It is also commonly known as the fatigue life distribution. Birnbaum-—
Saunders distribution is used extensively in reliability applications to model failure times.
Desmond [2] provided a more general derivation based on a biological model and also
strengthened the physical justification for the use of this distribution by relaxing the
assumptions made by Birnbaum and Saunders [1]. Desmond [3] considered the
relationship between the Birnbaum—Saunders and inverse Gaussian distributions.

A continuous random variable X has a Birnbaum-Saunders distribution if X

has the following cumulative distribution function

N |-

1
F(x;oc,[i):(l)i [§J2+[E) , Xx>0,00>0,>0, 1)
o [\B X

where ®(.) is the cumulative distribution function of the standard normal distribution
function. a and B are the shape and scale (the median) parameters, respectively. It is

known that the probability density function of the Birnbaum—Saunders distribution is
unimodal and although the hazard rate is not an increasing function of these, but the
average hazard rate is nearly a non-decreasing function of X [4]. The maximum
likelihood estimators (MLEs) were first discussed by Birnbaum and Saunders [5] and
suggested some iterative schemes to solve the required non-linear equation. Ng et al. [6]
considered the modified moment estimators for the parameters to overcome this
problem. However, Wu and Wong [7] reported that those expressions for the intervals of

estimators for B presented incorrectly by Ng et al. [6]. Moreover, there is no guarantee

that the upper bounds of those intervals are always positive.

There are some popular distributions for failure data such as Lognormal,
Weibull, Gamma, Inverse Gaussian, and BS distributions. All of these distributions may
fit the failure data well within the central region of the distribution, but for a high reliability
product, it is quite difficult to observe sufficient amount of failure data to distinguish
among these possible distributions. For example, engineers are interested in predicting
the lower percentile of the failure distribution. For those cases when the data fits well for
several distributions, we can pick the distribution with theoretical support. In the fatigue
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model when failure mechanism follows the set of above conditions, the BS distribution
could serve as a proper choice.

Some practical problems need more than one statistical interval to be computed
from the same data and to be considered simultaneously. For this reason, we find
simultaneous estimation of both parameters, which in this paper is called elliptical
confidence regions of parameters for the Birnbaum-Saunders distribution. If we construct
separate 99 percent confidence intervals for parameters. The difficulty is that the
confidence of both parameters would not provide 99 percent confidence that the

conclusions for both parameters are correct. The probability of both being correct would

be 0.992 or only 0.98 (98 percent).

Therefore, in this paper, we focus only on the Birnbaum—Saunders distribution.
We are going to construct asymptotic confidence ellipses at 98 percent confidence level
which includes the investigation the accuracy of the confidence ellipses by the Monte-
Carlo method. For a solution of this problem we compare the actual coverage probability
with the nominal confidence coefficient.

2. Backgrounds
2.1 The Birnbaum-Saunders distribution

The general formula for the probability density function (PDF) of the Birnbaum-
Saunders Distribution is

f(X):Zaﬁ;ﬂ (gjh(gj exp{—zaiz[%+%—2ﬂ L x>0,a>03>0 (2)

where o and S are the shape and scale (the median) parameter. The expected value,

variance, skewness and kurtosis are, respectively,

E(X)=B(1+%oc2j ®)

Var(X)Z(aB)z[l-i-%Otzj (4)
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the expressions we give for the skewness and kurtosis correct those given by Johnson et

al. [8]. As noted earlier, if X ~BS(a,B) , then X1~ BS(a,B1); see Saunders [9]. It

then follows that

E(X ) :[3—1(1+%a2j 7
and
Var(X 1) =(x2[3_2[1+%a2j. ®)

2.2 Maximum Likelihood Estimator
Let x= (xl,xz,...,xn) denote a random sample of size n from the Birnbaum—

Saunders distribution. The log-likelihood function, apart from an unimportant constant, is
InL(o,B)= (B2 (B2 1 (X B g
nLlo,p ——nIn(aB)+ZIn ="+ = |- ZZ d_E2 9)

Then the maximum likelihood estimators (MLEs) &MLE) ang p(MLE) of o
and g  respectively, are obtained from the maximization of (9), as the solution to the

following system of equations:

) 2 1 < 11
glnL(a, ) = —£(1+—2J+TBZXi+%Z—_ =0 (10)
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From (10) and (11), Birnbaum and Saunders [5] showed that ¢ can be written

as
+§_2}2 12)

13 01
where s==>» x; and r = —

A

In order to find ,B it is necessary to solve a nonlinear equation in f ,thatis,

is obtained as the positive root of

B2 —plar +K(B)]+ rls+K(B)]=0 (13)

where K(S) is the harmonic mean function defined by

sothat = K(O)

Since (13) is a non-linear equation in f, one needs to use an iterative
procedure to solve for § . Birnbaum and Saunders [5] proposed two iterative procedures

(one simple and one complicated) to computeﬁ , but noted that the simple one works
very well for small « (< %) but may not work at all for large « (> 2). The complicated

one also does not work in certain range of the sample space.
Theoretically by using the Delta method for normal approximation it is possible
to find the asymptotic covariance matrix of two parameter estimates by maximum

(MLE)

likelihood & and ,B(MLE) and after to construct an asymptotic confidence ellipse.
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However, the calculations are extremely cumbersome, and are not
recommended for practical applications because we cannot find the maximum likelihood

estimations for parameters § of the Birnbaum-Saunders distribution in the closed form.

2.3 Method of Moment Estimators

Let x=(x1,x2,...,xn) denote a random sample of size N from the Birnbaum-—

Saunders distribution. Then the method of moments estimators (MMES) d(MME) and
B(MME)of o and 3 are solution of these two equations
1

1 2

G (MME) _ |5 (ijz 1 (14)
r

A (MME) !
B =(rs)2 (15)

-1

18 11
where s=—>» x; and r=|—» — .
nié' (nzxi]

i=1
Method of moments estimators of parameters o and B are found by equating

the first two sample moments to the corresponding two population moments, and solving

the resulting system of simultaneous equations. Defined as

m{:%ixi T E(X):ﬂ(1+%a2j
i=1

m, =%Zn:xf, 1y = E(Xz):ﬂz(ga4+2a2+lj
i=1

To avoid solving the non-linear equation, moment type estimators of « and g
have been proposed, and they can be obtained in explicit forms. It is basically obtained
by equating E(X)and E(X _1) with the arithmetic mean and the harmonic mean of the

data. They are as follows;

Defined as
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Ng et al. [6] showed that the asymptotic joint distribution of & MME) and p(MME) jg

bivariate normal and is given by

_ , ;
(04
o 0
~ (MME) o 3
a
(ﬁWME)}NZ [BJ o el e || (o)
)
1+ -a
L 2 .

e 0
2n
= 2| 14242 . 17)
o (@B) | T4°
2
n
(1+1a2J
2

2.4 The Fisher Information of Parameters for the Birnbaum-Saunders distribution

Engelhardt et al. [10] showed that the Fisher information matrix of 0 , where 0

=(a ,P) is a two-dimensional vector of parameters, denoted by | (9) defined as
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= 0
1(6) = 1) - °‘O {a(zn)f;(am} )
with h(e)= & %—nez{l—q{%ﬂ .

Note that the expression we give for Fisher's information matrix only involves
numerical integration through the evaluation of the standard normal distribution function
t2

(I)(t) , where ®(t) = L e 2.

Jor

We need to compare the difference of confidence regions for two derivations of
covariance matrix, so we assume that the method of moments estimators (MMES) are

under certain regularity conditions on f(x; 9), the MME d™MMB) of @ based on sample
sizes N from f(x; 0) is asymptotic normal distribution (the same principle of MLES).
The vector of estimates 8% = (&n(MME),ﬁn(MME)) has a two-dimensional normal

distribution with the mean equal to the vector of true values of the parameters, that is

0’ =(a,ﬂ) and the covariance matrix equal the inverse to the Fisher information

matrix, denoted by A = 1;11 (9) . Thatis, asn — o, én(MME)'“NZ (('), A).

And the inverse of the Fisher information matrix is computed as

0
A=I;(0)=

o a’ Bt . (19)

[a(zﬂ)‘i h(a)+1}

«
2
0

S|
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3. Main Results

The Nz(ﬂ,zfl) distribution assigns probability 1-« to the ellipse
{GH(MME) Z(OH(MME) —9) xt (Bn(MME) —G)S ;((22)(0()}, where ;(é)(a) denotes

the upper 100« ™ percentile of the ;((22) distribution.

For the first model, we take covariance matrix that comes from the asymptotic
joint distribution that defined in (17) and construct a lOO(l—a)% confidence region that

we call “Model I”.

A 100(1—a)% confidence region for parameters G'z(a,ﬂ) of a two-

dimensional normal distribution is the ellipse determined by all @ such that

(én(MME) _9)’ ¥l (én(MME) _9) < Z(Zz) (05)

where

!

(én(MME) —9) ¥l (én(MME) _9) _

~ (MME)

. a —a
~ (MME MME -1 n

(an( '—a B )—ﬂ) )2 ﬁ)(MME) 5

n

Model I: The 100(1—0:)% confidence region for @ consists of all value (a,ﬂ) satisfying

1 2
2n > (1+2a2j 2

A~ (MME) _ A (MME) < 2

4

(20)

For the second model, we take the covariance matrix that comes from the
Fisher information matrix that defined in (19) and construct a 100(1—06)0/0 confidence

region that we call “Model II”.
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A 100(l—a)% confidence region for parameters B'Z(Ot,ﬁ) of a two-

dimensional normal distribution is the ellipse determined by all @ such that

!

(én(MME) _0) Al (én(MME) —19) < Z(Zz) (0{)

From (19),

(6, ~0) 1,(0)(6,"" -0) < 22, ()
which is equivalent
(6,"" —0) n1(0)(8," -0) < 17, ().

Model II: The 100(1—0{)% confidence region for @ consists of all value (a,ﬁ) satisfying

(B pf | <yb(@).

4. Monte Carlo simulation results

In order to compare the efficiency of all confidence regions, we performed a
simulation study for different sample sizes and for different parameters values. We took the
sample size as n = 10, 100 and 1,000, and the shape parameter as « = 0.1, 0.5, 1.0, 2.0
and 5.0. Since gis the scale parameter, g was kept fixed at 1.0, without loss of any
generality. The experimental data are generated by the simulation technique using R
program version 2.15.2. For each situation, the experiment is repeated 10,000 times to
obtain the coverage probability. The results so obtained are reported in Tablel.

The 98% confidence regions for « and B based on the method of moment

estimators are given by
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Table 1. Method of Moment estimates of « andf, their errors and coverage

probabilities for confidence ellipses at 98% confidence level (Model I).

Method of Moment The percentages of
n o B estimates absolute relative errors | COverage
_ _ probabilities
&n(MME) ﬁn(MME) &n(MME) BH(MME)
0.1 1.0 1.00480 1.00026 904.480 0.260 0
0.5 1.0 1.10582 1.01146 121.164 2.292 0
10 1.0 1.0 1.36450 1.04214 36.450 4.214 0.8854
2.0 1.0 2.08118 1.10974 4.059 10.974 0.9470
5.0 1.0 4.59170 1.24829 8.166 24.829 0.9080
0.1 1.0 1.00493 1.00005 904.930 0.005 0
0.5 1.0 1.11647 1.00113 123.294 0.113 0
100 | 1.0 | 1.0 | 1.40932 | 1.00316 40.932 0.316 0
2.0 1.0 2.22008 1.00898 11.004 0.898 0.8622
5.0 1.0 5.04636 1.01395 0.927 1.395 0.9735
0.1 1.0 1.00498 1.00000 904.480 0.003 0
0.5 1.0 1.11793 1.00002 123.562 0.005 0
1,000 | 10 | 1.0 | 1.41387 | 1.00006 41.380 0.039 0
2.0 1.0 2.23500 1.00054 11.739 0.178 0.0019
5.0 1.0 5.0936 1.00178 1.880 0.210 0.9739
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Table 2. Method of Moment estimates of « andf, their errors and coverage

probabilities for confidence ellipses at 98% confidence level (Model ).

Method of Moment The percentages of
0 a B estimates absolute relative errors | Coverage
_ _ probabilities
an(MME) Bn(MME) an(MME) Bn(MME)
0.1 1.0 1.00446 1.00050 904.460 0.050 0
0.5 1.0 1.10564 1.00892 121.128 0.892 0
10 1.0 | 1.0 | 1.10526 | 1.01253 60.526 1.253 0
2.0 1.0 2.08218 1.10586 4.109 10.586 0.9575
5.0 1.0 4.56994 1.23478 8.601 23.478 0.9604
0.1 1.0 1.00493 1.00003 904.93 0.003 0
0.5 1.0 1.11669 1.00110 123.338 0.110 0
100 |10 | 1.0 | 1.40914 | 1.00365 40.914 3.650 0
2.0 1.0 2.22306 1.00994 11.153 0.994 0.8774
5.0 1.0 5.05031 1.01211 1.006 1.211 0.9731
0.1 1.0 1.00498 1.00003 904.980 0.003 0
0.5 1.0 1.11781 1.00005 123.562 0.005 0
1000 | 10 | 1.0 | 1.41380 | 1.00039 41.380 0.039 0
2.0 1.0 2.23439 1.00082 11.720 0.082 0.0016
5.0 1.0 5.09402 1.00210 1.880 0.210 0.9739

From Table 1, the coverage probabilities of confidence ellipses for parameters
of the Birnbaum-Saunders distribution increase when sample sizes (n) increase for the
situation of a=5.0when we fixp=1.0. The confidence ellipses that we construct
cannot work when alpha values are less than 2.0 but they are close to the confidence
coefficient 0.98 when alpha values are greater than, or equal to 2.0 that except when
sample sizes (n) is 1,000, they cannot work well when a.=2.0.

From Table 2, the coverage probabilities of confidence ellipses for parameters
of the Birnbaum-Saunders distribution of Model Il increase when sample sizes (n)
increase for the situation of a =5.0when we fix 3 =1.0. The confidence ellipses that we
construct cannot work when alpha values are less than 2.0 as same as Model | but they
are close to the confidence coefficient 0.98 when alpha values are greater than, or equal
to 2.0 that except when sample sizes (n) is 1,000, they cannot work well when o = 2.0
as same as Model I.

The difference between Model | and Model Il is the covariance matrix that we

obtained from the asymptotic joint distribution and the Fisher information matrix,
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respectively. From Table 1 and Table 2, the coverage probabilities in Model Il is greater
than Model | of all parameter values and sample sizes that it implies, the covariance matrix
from the Fisher information matrix can be used in method of moment estimators for the
Birnbaum-Saunders distribution well. Because of that we substitutes method of moment
estimates instead of maximum likelihood estimates for asymptotic confidence ellipses of
parameters for the Birnbaum-Saunders distribution.

We selected the highest coverage probabilities to construct graphs of 98%

confidence ellipses of parameters for the Birnbaum-Saunders distribution when £ =1

and some cases of the confidence ellipses cannot work when alpha values are less than
2.0 that showed in Table 3

From Table 3, these graphs showed the confidence ellipse for parameters when
a=0.5,5 and n=10, 100 and 1,000 for both two models.

When o =0.5, all of point estimators that calculate from method of moment did
not fall in the confidence ellipse. On the contrary, most of point estimators that calculate
from method of moment fell in the confidence ellipse well when o =5 . We can refer this

result from the coverage probabilities values in Table 1.

5. Concluding Remarks

We have derived the two models (Model | and Model Il) of confidence regions
that can work very well when the o values increase more than 2.0 and the sample sizes
(n) increase. The difference between Model | and Model Il is the covariance matrix that we
obtained from the asymptotic joint distribution and the Fisher information matrix,
respectively.

In the Birnbaum-Saunders distribution, we can use method of moment estimators
by using the covariance matrix from the Fisher information matrix instead of using the
covariance matrix from the asymptotic joint distribution for construction confidence ellipses

because of high efficiency of coverage probabilities.
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Table 3. 98% Confidence Ellipse of Parameters for the Birnbaum-Saunders distribution
when f=1.

Confidence Ellipse for Parameters | Confidence Ellipses for Parameter

n o
: Model | : Model 1l
% g -
H H
10 | 05 |° - ,
10 11 ' 13
G(MME)
m ] g ]
100 | 05 | ] :
B(MME) A(MmE)

(WE)

F(MME)

1,000| 0.5 8

A(MME)

10 | 50 | ¥
100 | 5.0 | -
1,000| 5.0 |- I :

A(MME)
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6. Future Research

The studies presented in this research suggest some directions for the future

research as follows:

1.

In the paper, we discussed only study of the Birnbaum-Saunders distribution which is
useful in managing reliabilities for many parts of our lives. In future research we may

suggest other distribution such as Weibull, Gamma, Lognormal etc.

. We can use an alternative approach to construct confidence intervals and regions.

An alternative approach to the problem is use of the bootstrap procedure. The
bootstrap is a method for developing the sampling distribution of a statistic computed
from a set of data by resampling the data and recomputing the statistic from the
resampled data.

We can approve estimators by decreasing the bias. An alternative theorem to
decrease the bias is Rao and Blackwell Theorem. The Rao and Blackwell Theorem is
a theory for finding the Minimum Variance Unbiased Estimator from a sufficient

statistic.
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