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Abstract 

The purpose of this study is to find the suitable covariance matrix for the 

construction of confidence regions of parameters in the Birnbaum-Saunders distribution 

and we need to calculate confidence ellipses and compare the coverage probabilities for 

asymptotic confidence ellipses of parameters in the Birnbaum-Saunders distribution. 

Monte Carlo simulation is used to compare the coverage probabilities of the asymptotic 

confidence ellipses. The result showed that the asymptotic confidence ellipses can work 

very well when the values increase more than 2.0 and the sample sizes (n) increase.  In 

the Birnbaum-Saunders distribution, we can use method of moment estimators instead of 

maximum likelihood estimators for confidence ellipses because of high efficiency of 

coverage probabilities.  

______________________________ 
Keywords: method of moment, method of maximum likelihood, confidence ellipse, 

monte carlo simulation.  
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1. Introduction 

The Birnbaum–Saunders (BS) distribution is introduced by Birnbaum and 

Saunders [1]. It is also commonly known as the fatigue life distribution. Birnbaum–

Saunders distribution is used extensively in reliability applications to model failure times. 

Desmond [2] provided a more general derivation based on a biological model and also 

strengthened the physical justification for the use of this distribution by relaxing the 

assumptions made by Birnbaum and Saunders [1]. Desmond [3] considered the 

relationship between the Birnbaum–Saunders and inverse Gaussian distributions.  

A continuous random variable X  has a Birnbaum-Saunders distribution if X  

has the following cumulative distribution function 
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where
 

(.)  is the cumulative distribution function of the standard normal distribution 

function.   and   are the shape and scale (the median) parameters, respectively. It is 

known that the probability density function of the Birnbaum–Saunders distribution is 

unimodal and although the hazard rate is not an increasing function of these, but the 

average hazard rate is nearly a non-decreasing function of x  [4]. The maximum 

likelihood estimators (MLEs) were first discussed by Birnbaum and Saunders [5] and 

suggested some iterative schemes to solve the required non-linear equation. Ng et al. [6] 

considered the modified moment estimators for the parameters to overcome this 

problem. However, Wu and Wong [7] reported that those expressions for the intervals of 

estimators for   presented incorrectly by Ng et al. [6]. Moreover, there is no guarantee 

that the upper bounds of those intervals are always positive.  

There are some popular distributions for failure data such as Lognormal, 

Weibull, Gamma, Inverse Gaussian, and BS distributions. All of these distributions may 

fit the failure data well within the central region of the distribution, but for a high reliability 

product, it is quite difficult to observe sufficient amount of failure data to distinguish 

among these possible distributions. For example, engineers are interested in predicting 

the lower percentile of the failure distribution. For those cases when the data fits well for 

several distributions, we can pick the distribution with theoretical support. In the fatigue 
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model when failure mechanism follows the set of above conditions, the BS distribution 

could serve as a proper choice. 

Some practical problems need more than one statistical interval to be computed 

from the same data and to be considered simultaneously. For this reason, we find 

simultaneous estimation of both parameters, which in this paper is called elliptical 

confidence regions of parameters for the Birnbaum-Saunders distribution. If we construct 

separate 99 percent confidence intervals for parameters. The difficulty is that the 

confidence of both parameters would not provide 99 percent confidence that the 

conclusions for both parameters are correct. The probability of both being correct would 

be
 

299.0 or only 0.98 (98 percent).   

Therefore, in this paper, we focus only on the Birnbaum–Saunders distribution. 

We are going to construct asymptotic confidence ellipses at 98 percent confidence level 

which includes the investigation the accuracy of the confidence ellipses by the Monte-

Carlo method. For a solution of this problem we compare the actual coverage probability 

with the nominal confidence coefficient. 

 

2. Backgrounds 

2.1 The Birnbaum-Saunders distribution 

The general formula for the probability density function (PDF) of the Birnbaum-

Saunders Distribution is 
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where    and    are the shape and scale (the median) parameter. The expected value, 

variance, skewness and kurtosis are, respectively, 
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the expressions we give for the skewness and kurtosis correct those given by Johnson et 

al. [8]. As noted earlier, if X ~ BS( , ) , then 
1X ~ BS( , 1 ); see Saunders [9]. It 

then follows that 
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2.2 Maximum Likelihood Estimator 

Let  nxxxx ,...,, 21  denote a random sample of size n  from the Birnbaum–

Saunders distribution. The log-likelihood function, apart from an unimportant constant, is 
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Then the maximum likelihood estimators (MLEs) 
 MLE̂  and  MLE̂  of   

and  , respectively, are obtained from the maximization of (9), as the solution to the 

following system of equations: 

 

 



,ln L   =  

 





















n

i i

n

i

i
x

x
n

1
3

1
32

112
1   =  0         (10) 



Pattaya Thonglim 211 

 

 



,ln L  = 


















































n

i i

n

i

i

n

i i x
x

x

n

1
2

1
22

1

1

2

1

2

11

2
= 0        (11) 

From (10) and (11), Birnbaum and Saunders [5] showed that ̂  can be written 

as 
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In order to find ̂  it is necessary to solve a nonlinear equation in  ,that is, ̂

is obtained as the positive root of 
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where     is the harmonic mean function defined by 
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Since (13) is a non-linear equation in  , one needs to use an iterative 

procedure to solve for ̂ . Birnbaum and Saunders [5] proposed two iterative procedures 

(one simple and one complicated) to compute ̂ , but noted that the simple one works 

very well for small  









2

1
 but may not work at all for large   2 . The complicated 

one also does not work in certain range of the sample space. 

Theoretically by using the Delta method for normal approximation it is possible 

to find the asymptotic covariance matrix of two parameter estimates by maximum 

likelihood 
 MLE̂  and  MLE̂  and after to construct an asymptotic confidence ellipse.  
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However, the calculations are extremely cumbersome, and are not 

recommended for practical applications because we cannot find the maximum likelihood 

estimations for parameters   of the Birnbaum-Saunders distribution in the closed form. 

2.3 Method of Moment Estimators 

Let  nxxxx ,...,, 21  denote a random sample of size n  from the Birnbaum–

Saunders distribution. Then the method of moments estimators (MMEs) 
 MME̂  and 

 MME̂ of   and   are solution of these two equations 
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Method of moments estimators of parameters   and   are found by equating 

the first two sample moments to the corresponding two population moments, and solving 

the resulting system of simultaneous equations. Defined as 
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To avoid solving the non-linear equation, moment type estimators of   and   

have been proposed, and they can be obtained in explicit forms. It is basically obtained 

by equating  XE and  1XE  with the arithmetic mean and the harmonic mean of the 

data. They are as follows; 

Defined as 
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Ng et al. [6] showed that the asymptotic joint distribution of 
 MME̂  and  MME̂  is 

bivariate normal and is given by 

 

 

   























































































































2
2

2
2

2

2

2

1
1

4

3
1

0

0
2

,N~
ˆ

ˆ

n

n

MME

MME

 .          (16) 

 

From (16), the covariance matrix is denoted by 
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2.4 The Fisher Information of Parameters for the Birnbaum-Saunders distribution  

Engelhardt et al. [10] showed that the Fisher information matrix of θ , where θ

= ( , ) is a two-dimensional vector of parameters, denoted by  I θ  defined as 
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3. Main Results 

The  1
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For the second model, we take the covariance matrix that comes from the 

Fisher information matrix that defined in (19) and construct a  %1100  confidence 

region that we call “Model II”.  
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which is equivalent 
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ˆ ˆMME MME

n nn  


  θ θ I θ θ θ . 

Model II: The  %1100  confidence region for θ consists of all value   ,  satisfying 
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4. Monte Carlo simulation results 

In order to compare the efficiency of all confidence regions, we performed a 

simulation study for different sample sizes and for different parameters values. We took the 

sample size as n = 10, 100 and 1,000, and the shape parameter as  = 0.1, 0.5, 1.0, 2.0 

and 5.0. Since  is the scale parameter,   was kept fixed at 1.0, without loss of any 

generality. The experimental data are generated by the simulation technique using R 

program version 2.15.2. For each situation, the experiment is repeated 10,000 times to 

obtain the coverage probability. The results so obtained are reported in Table1. 

The 98% confidence regions for   and   based on the method of moment 

estimators are given by 
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Table 1. Method of Moment estimates of  and , their errors and coverage 

probabilities for confidence ellipses at 98% confidence level (Model I).  

n     

Method of Moment 

estimates  

The percentages of 

absolute relative errors Coverage 

probabilities 
 MME

n̂   MME
n̂   MME

n̂   MME
n̂  

10 

0.1 1.0 1.00480 1.00026 904.480 0.260 0 

0.5 1.0 1.10582 1.01146 121.164 2.292 0 

1.0 1.0 1.36450 1.04214 36.450 4.214 0.8854 

2.0 1.0 2.08118 1.10974 4.059 10.974 0.9470 

5.0 1.0 4.59170 1.24829 8.166 24.829 0.9080 

100 

0.1 1.0 1.00493 1.00005 904.930 0.005 0 

0.5 1.0 1.11647 1.00113 123.294 0.113 0 

1.0 1.0 1.40932 1.00316 40.932 0.316 0 

2.0 1.0 2.22008 1.00898 11.004 0.898 0.8622 

5.0 1.0 5.04636 1.01395 0.927 1.395 0.9735 

1,000 

0.1 1.0 1.00498 1.00000 904.480 0.003 0 

0.5 1.0 1.11793 1.00002 123.562 0.005 0 

1.0 1.0 1.41387 1.00006 41.380 0.039 0 

2.0 1.0 2.23500 1.00054 11.739 0.178 0.0019 

5.0 1.0 5.0936 1.00178 1.880 0.210 0.9739 
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Table 2. Method of Moment estimates of  and , their errors and coverage 

probabilities for confidence ellipses at 98% confidence level (Model II).  

n     

Method of Moment 

estimates  

The percentages of 

absolute relative errors Coverage 

probabilities 
 MME

n̂   MME
n̂  

 MME
n̂   MME

n̂  

10 

0.1 1.0 1.00446 1.00050 904.460 0.050 0 

0.5 1.0 1.10564 1.00892 121.128 0.892 0 

1.0 1.0 1.10526 1.01253 60.526 1.253 0 

2.0 1.0 2.08218 1.10586 4.109 10.586 0.9575 

5.0 1.0 4.56994 1.23478 8.601 23.478 0.9604 

100 

0.1 1.0 1.00493 1.00003 904.93 0.003 0 

0.5 1.0 1.11669 1.00110 123.338 0.110 0 

1.0 1.0 1.40914 1.00365 40.914 3.650 0 

2.0 1.0 2.22306 1.00994 11.153 0.994 0.8774 

5.0 1.0 5.05031 1.01211 1.006 1.211 0.9731 

1,000 

0.1 1.0 1.00498 1.00003 904.980 0.003 0 

0.5 1.0 1.11781 1.00005 123.562 0.005 0 

1.0 1.0 1.41380 1.00039 41.380 0.039 0 

2.0 1.0 2.23439 1.00082 11.720 0.082 0.0016 

5.0 1.0 5.09402 1.00210 1.880 0.210 0.9739 

 

From Table 1, the coverage probabilities of confidence ellipses for parameters 

of the Birnbaum-Saunders distribution increase when sample sizes (n) increase for the 

situation of 0.5 when we fix 0.1 . The confidence ellipses that we construct 

cannot work when alpha values are less than 2.0 but they are close to the confidence 

coefficient 0.98 when alpha values are greater than, or equal to  2.0 that except when 

sample sizes (n)  is 1,000, they cannot work well when 0.2 . 

From Table 2, the coverage probabilities of confidence ellipses for parameters 

of the Birnbaum-Saunders distribution of Model II increase when sample sizes (n) 

increase for the situation of 0.5 when we fix 0.1 . The confidence ellipses that we 

construct cannot work when alpha values are less than 2.0 as same as Model I but they 

are close to the confidence coefficient 0.98 when alpha values are greater than, or equal 

to 2.0 that except when sample sizes (n)  is 1,000, they cannot work well when 0.2  

as same as Model I. 

The difference between Model I and Model II is the covariance matrix that we 

obtained from the asymptotic joint distribution and the Fisher information matrix, 
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respectively. From Table 1 and Table 2, the coverage probabilities in Model II is greater 

than Model I of all parameter values and sample sizes that it implies, the covariance matrix 

from the Fisher information matrix can be used in method of moment estimators for the 

Birnbaum-Saunders distribution well. Because of that we substitutes method of moment 

estimates instead of maximum likelihood estimates for asymptotic confidence ellipses of 

parameters for the Birnbaum-Saunders distribution. 

We selected the highest coverage probabilities to construct graphs of 98% 

confidence ellipses of parameters for the Birnbaum-Saunders distribution when 1  

and some cases of the confidence ellipses cannot work when alpha values are less than 

2.0 that showed in Table 3  

From Table 3, these graphs showed the confidence ellipse for parameters when 

,5.0 5  and ,10n  100 and 000,1 for both two models. 

When 5.0 , all of point estimators that calculate from method of moment did 

not fall in the confidence ellipse. On the contrary, most of point estimators that calculate 

from method of moment fell in the confidence ellipse well when 5 . We can refer this 

result from the coverage probabilities values in Table 1.  

 

5. Concluding Remarks 

We have derived the two models (Model I and Model II) of confidence regions 

that can work very well when the  values increase more than 2.0 and the sample sizes 

(n) increase. The difference between Model I and Model II is the covariance matrix that we 

obtained from the asymptotic joint distribution and the Fisher information matrix, 

respectively.    

In the Birnbaum-Saunders distribution, we can use method of moment estimators 

by using the covariance matrix from the Fisher information matrix instead of using the 

covariance matrix from the asymptotic joint distribution for construction confidence ellipses 

because of high efficiency of coverage probabilities. 
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Table 3.  98% Confidence Ellipse of Parameters for the Birnbaum-Saunders distribution 

when 1 . 

n   
 Confidence Ellipse for Parameters  

: Model I 

Confidence Ellipses for Parameter  

: Model II 

10 0.5 

  

100 0.5 

  

1,000 0.5 

  

10 5.0 

  

100 5.0 

 

 

1,000 5.0 
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6. Future Research 

The studies presented in this research suggest some directions for the future 

research as follows: 

1. In the paper, we discussed only study of the Birnbaum-Saunders distribution which is 

useful in managing reliabilities for many parts of our lives. In future research we may 

suggest other distribution such as Weibull, Gamma, Lognormal etc. 

2. We can use an alternative approach to construct confidence intervals and regions. 

An alternative approach to the problem is use of the bootstrap procedure. The 

bootstrap is a method for developing the sampling distribution of a statistic computed 

from a set of data by resampling the data and recomputing the statistic from the 

resampled data.   

3. We can approve estimators by decreasing the bias. An alternative theorem to 

decrease the bias is Rao and Blackwell Theorem. The Rao and Blackwell Theorem is 

a theory for finding the Minimum Variance Unbiased Estimator from a sufficient 

statistic. 
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