
 

Thailand Statistician 

January 2014; 12(1): 37-53 

http://statassoc.or.th 

Contributed paper 

 

 

Unifying the Derivations of Kullback Information Criterion and 

Corrected Versions 

Warangkhana Keerativibool 

Department of Mathematics and Statistics, Faculty of Science, Thaksin University, 

Phatthalung 93110, Thailand. 

E-mail: warang27@gmail.com  

 

Received: 12 June 2013 

Accepted: 12 September 2013 

 

Abstract 

The Kullback information criterion (KIC) was proposed by Cavanaugh (1999) to 

serve as an asymptotically unbiased estimator of a variant of Kullback’s symmetric 

divergence between the true and fitted candidate models. It was arguably more sensitive 

than the criterion based on the directed divergence. However, for a small sample size or 

if the dimension of candidate model is large relative to the sample size, it displayed a 

large negative bias. Many authors, Cavanaugh (2004), Seghouane and Bekara (2004), 

Hafidi and Mkhadri (2006), proposed the criteria to correct this bias, i.e., the corrected 

versions of KIC called, respectively, in this paper KICcC, KICcSB,
 
and KICcHM. Because 

they have multiple formulas, the aims of this paper are to unify and examine the 

performance of them relative to the AIC family of criteria, using theoretical and extensive 

simulation study methods. The unifications of the criteria based on Kullback’s symmetric 

divergence show that KICcC is closest to the expected estimated symmetric discrepancy 

and has the strongest penalty function under the condition    1 exp 1,p n p n   

followed, respectively, by KICcSB, KICcHM, and KIC. This result makes KICcC has the 

highest efficiency even though it is likely to select an underfitted model. 

 
______________________________ 



38                                                      Thailand Statistician, 2014; 12(1): 37-53 

Keywords: KIC, KICc, Kullback’s directed divergence, Kullback’s symmetric divergence, 

model selection. 

 

1. Introduction 

The Kulback information criterion (KIC) by Cavanaugh [1] and the corrected 

versions (KICc) by Cavanaugh [2] called KICcC, by Seghouane and Bekara [3] called 

KICcSB, and by Hafidi and Mkhadri [4] called KICcHM were designed based on Kullback’s 

symmetric divergence, also known as the J-divergence, in order to assess the dissimilarity 

between the model generating the data and a fitted candidate model. However, when the 

dimension of candidate model increases compared to the sample size, the corrected 

version of the model selection criterion was better than the original version because it 

produced a bias reduction and strongly improved model selection [2-9]. Although KIC, 

KICcC, KICcSB, and KICcHM share the same fundamental objective, the justifications of 

the criteria proceed along different directions, making it difficult to reconcile how the 

different corrected versions of KIC refine the approximations used to establish KIC in the 

setting of linear regression model. With this motivation, the aims of this paper are to unify 

the derivations of KIC and the corrected versions in order to link the justifications of 

these criteria and the performance of them is then examined by the extensive simulation 

study. The remainder of this paper is organized as follows. In Section 2, we review the 

model selection criteria based on Kullback’s directed and symmetric divergences. In 

Section 3, we show the unifications for the derivations of KIC and the corrected versions. 

Simulation study for 1,000 realizations of multiple regression models to examine the 

performance of the AIC and KIC families of criteria is shown in Section 4. Finally, Section 

5 is the conclusions, discussion, and further study. 

 

2. A review of model selection criteria based on Kullback’s directed and symmetric 

divergences 

Suppose that the true and the candidate models are, respectively, given by 

 0 0 0, y X     2

0, ,n n 0 I  (1) 

 , y X     2, ,n n 0 I  (2) 

where y  is an 1n  dependent random vector of observations, X  is an n p  matrix of 

independent variables with full-column rank, 
0  and   are 1p  parameter vectors of 

regression coefficients, 0  and   are 1n  noise vectors. The true model is assumed to 
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be correctly specified or overfitted by all the candidate models. This means that 
0  has 

0p  nonzero entries with 
00 p p   and the rest of the  0p p  entries are equal to 

zero. The  1 1p    vector of parameters is 
2

0 0 0
      and the maximum likelihood 

estimator of 
0  is 

2ˆ ˆ ̂
 

 
 

 
where

 
 

  
1ˆ 

  X X X y  and    2 ˆ ˆˆ / n


  y X y X  . (3) 

The minus twice log likelihood of the candidate model in (2) when replacing the 

dependent vector y  in (1) is defined by 

       2

0 0 0 0 0 02 2 2

1 1 2
2log log 2 log .L n n 

  
          y X X X         

 (4) 

A well-known measure to separate the discrepancy between two models is 

given by Kullback’s directed divergence or I-divergence [10],  

 
 
 

   
0

0

0 0 0 02 , 2log , ,
L

I E d d
L

  
   

  

y

y



     


, 

where  

    
00 , 2logd E L  y   ,     

00 0 0, 2logd E L  y   , 

and the expectation 
0

E  is taken with respect to the true model. Because  0 0,d    

does not depend on  , any ranking of the candidate models according to  02 ,I    

would be identical to ranking them according to  0 ,d   . Given a set of maximum 

likelihood estimators ̂  in (3), the estimated directed measure  0 ,d    is  

  
 0

ˆ,d  

 

  
0 ˆ

2logE L  y


  

    
2

2 0

0 02 2

1 ˆ ˆˆlog 2 log .
ˆ ˆ

n
n n


 

 


     X X     (5) 

However, the evaluation in (5) is not possible because it requires the knowledge 

of 0 , Akaike [11-12] proposed an asymptotically unbiased estimator of 
 

     00 0
ˆ, ,p E d      (6) 

as 
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  2ˆAIC log 2 1 ,n p    (7) 

     
0 0i.e., AIC 1 , .E o p     

Because of a large negative bias of AIC when the sample size is small or the 

dimension of candidate model is large relative to the sample size, Hurvich and Tsai [5] 

proposed an exactly unbiased estimator of (6) as follows: 

 
 2

2 1
ˆAICc log ,

2

n p
n

n p



 

 
 (8) 

   
0 0i.e., AICc , .E p    

Cavanaugh [1], Seghouane and Bekara [3], Seghouane [13] summarized that 

the directed divergence produced too underfitted value of model selection, and then it 

tended to be large for overparameterized models. An alternate measure to prevent both 

overfitting and underfitting problems is obtained by reversing the roles of two models in 

the definition of the measure, called Kullback’s symmetric divergence or J-divergence,  

             0 0 0 0 0 0 02 , 2 , 2 , , , , , ,J I I d d d d                          

where  

    
00 , 2logd E L  y   ,     

00 0 0, 2logd E L  y   , 

    0 0, 2logd E L  y   , and     , 2log .d E L  y    

Dropping  0 0, ,d    the ranking of the candidate models according to  02 ,J    

is identical to ranking them according to 

       0 0 0, , , , .K d d d           

Given a set of maximum likelihood estimators ̂  in (3), the estimated symmetric 

measure  0 ,K    is  

         0 0 0
ˆ ˆ ˆ ˆ ˆ, , , , ,K d d d           (9) 

where  0
ˆ,d    is exhibited in (5), 

 

  

  0
ˆ,d      0 ˆ

2logE L  y


  

    
2

2

0 0 02 2

0 0

ˆ 1 ˆ ˆlog 2 log ,
n

n n


 
 


     X X     (10) 

and 
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 ˆ ˆ,d       2

ˆ
ˆ2log log 2 log .E L n n n     y


  (11) 

Yet, evaluating  0
ˆ,K    in (9) requires 

0 , Cavanaugh [1] proposed an 

asymptotically unbiased estimator of 
 

     00 0
ˆ, ,p E K      (12) 

as  

   2ˆKIC log 3 1 ,n p    (13) 

     
0 0i.e., KIC 1 , .E o p     

Seghouane and Bekara [3] proposed an exactly unbiased estimator of (12)
 
in 

order to correct a large negative bias of KIC in (13) as follows: 

 
 2

2 1
ˆKICc log log ,

2 2 2

n p n p n
n n n

n p
 

    
      

     
 

   
0 0i.e., KICc , .E p    

Because the phi    or digamma function in KICc has no closed-form solution, 

Cavanaugh [2], Seghouane and Bekara [3], Hafidi and Mkhadri [4] gave the asymptotically 

unbiased estimators of (12)
 
called, respectively, in this paper KICcC, KICcSB,

 
and KICcHM, 

 KICcC  
  

  
2

2 3 2
ˆlog log ,

2

n n p pn
n n

n p n p n p


      
   

    
 (14) 

 KICcSB  
  2

1 3 2
ˆlog ,

2

p n p p
n

n p n p


  
  

  
 (15) 

 KICcHM  
  2

1 3 2
ˆlog .

2

p n p
n

n p


  
 

 
 (16) 

 

3. The unified derivations of KIC and KICc 

To begin the unification of the derivations KIC, KICcC, KICcSB,
 
and KICcHM, we 

consider the expectation of the discrepancies in (5), (10), and (11) with respect to the 

true model [3],  

        
0 0 0 0

2

2 0

0 0 02 2

1ˆ ˆ ˆˆ, log 2 log ,
ˆ ˆ

n
E d n E n E E


 

 

   
        

  
X X        

  (17) 
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      
0 0 0

2
2

0 0 0 02 2

0 0

ˆ 1ˆ ˆ ˆ, log 2 log ,
n

E d n n E E


 
 

   
        

   
X X         

  (18) 

    
0 0

2ˆ ˆ ˆ, log 2 log .E d n E n n       (19) 

From the fact that the terms 

2

2

0

ˆn


 and    0 02

0

1 ˆ ˆ



 X X     are the 

independent 
2  distributions with the degrees of freedom which are, respectively, n – p 

and p, we have 

 
0

2

2

0

ˆn
E n p





 
  

 


 and    
0 0 02

0

1 ˆ ˆE p


 
   

 
X X     . (20) 

Using the facts in (20), we have 

0 0

2 2 2

0

2 2 2

0
ˆ ˆ 2/

n n n
E E

n pn



  

   
    

    
 

 

and 

       
0 0 0

2

0

0 0 0 02 2 2

0

1 1 1ˆ ˆ ˆ ˆ .
ˆ ˆ 2

n np
E E E

n n p



  

     
           

      
X X X X         

  (21) 

Substituting the results in (21) into the expected discrepancy in (17) leads to 

  0 , p       
0 0

2
2

0
ˆ ˆ, log 2 log

2 2

n np
E d n E n

n p n p
     

   
    

    
0

log2 1 AICc ,n E     (22) 

where AICc is the corrected version of AIC that was exhibited in (8). 

Replacing the facts in (20) into the expected discrepancy in (18) yields 

     
0

2

0 0
ˆ, log 2 1 log .E d n n       (23) 

Using the results in (19), (22), and (23), the expected value of  0
ˆ,K    in (9) 

becomes 

         
0 0 0

2

0 0 2

0

ˆˆ, , log 2 1 AICc log ,p E K n E E n





 
       

 
      (24) 

where AICc is the corrected version of AIC that was exhibited in (8). 
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It is noteworthy that, in KIC and various corrected versions derived from 

 0
ˆ,K    in (9), the differences in all formulas come from the last term of the right-hand 

side in (24). Therefore, in order to show the connections of KIC, KICcC, KICcSB,
 
and 

KICcHM, we give the following lemmas. 

Lemma 1. 
 

0

2

2 2

0

ˆ
log log log .

2 2

n p n n n
E n n n o

n p n p





      
                    

  (25) 

Proof.  From [14-15] we have, respectively, 

    
0

2

2

1 1
log log 2 and log o as .

2 2
df

df
E x x x

x x
  

   
        

   
  (26) 

Applying the fact  
0

2 2

0
ˆE n n p     in (20) and the facts in (26), we have  

0

2

2

0

ˆ
logE n





 
  

 


 
0

2

2

0

ˆ
log log log 2 log

2

n n p
E n n n n n n






     
          

   


 

 
 

2

1 1
log log 2 log

2

n p
n o n n n

n p n p

   
               

 

 
 

2
log log .

2 2

n p n n n
n n o

n p n p

    
               

 

Lemma 2.  

   

2

2 2
log log .

2 2

n p n n n n p n
n n o p o o

n p n p nn p n p

       
                            

 

  (27) 

Proof.  Applying the first-order Taylor’s series expansion to expand the term  

  log 2n p  

about 2n , i.e., 

2

log log ,
2 2

n p n p p
o

n n

      
                

 

to obtain the approximation in (27). 

Lemma 3. 
 

   
2

2
1 1 .

n p n
p o o p o

n p n n p

  
             

 (28) 
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Proof.  Rearrange  p n n p   to be    1 .p p n p    As n  and p is held 

constant, the term  

 

2

2

p p n
o o

n p n n p

  
         

 

is  1o  which yields the approximation in (28). 

Appling Lemma 1 into  0 , p   in (24), we obtain 

     
 

00 2
, log 2 1 AICc log log

2 2

n p n n n
p n E n n o

n p n p


    
                  

  

   
 

0 C 2
log 2 1 KICc ,

n
n E o

n p


   
     
    


 

where KICcC is the corrected version of KIC from Cavanaugh [2] that was exhibited in 

(14). 

Appling Lemmas 1 and 2 into  0 , p   in (24), we obtain 

  0 , p      
 

0

2

2
log 2 1 AICc

n p n
n E p o o

n p n n p


  
              

  

   
 

0

2

SB 2
log 2 1 KICc ,

p n
n E o o

n n p


    
             

  

where KICcSB is the corrected version of KIC from Seghouane and Bekara [3] that was 

exhibited in (15). 

Appling Lemmas 1, 2, and 3 into  0 , p   in (24), we obtain  

  0 , p          
0

log2 1 AICc 1 1n E p o       

      
0 HMlog 2 1 KICc 1 ,n E o     

where KICcHM is the corrected version of KIC from Hafidi and Mkhadri [4] that was 

exhibited in (16). 

The connections of KIC, KICcHM, KICcSB,
 
and KICcC are given by 

KICcHM = KIC + 
  2 1 2

,
2

p p

n p

 

 
 (29) 
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KICcSB = KICcHM + ,
p

n p
  (30) 

KICcC = KICcSB + log .
n

n p
n p

 
 

 
  (31) 

From the connection in (29), we found that the term 

 
  2 1 2

2

p p

n p

 

 
 (32) 

is not greater than zero if and only if 2n p   and p belongs to the set of  2, 1  . 

Whereas, the term of the connection in (30), 

 
p

n p
 (33) 

is not greater than zero if and only if 0n p   and p belongs to the set of  , 0 . 

Therefore, we can argue that the terms in (32) and (33) have values of at least zero 

because p represents the number of regression coefficients which is an integer that has 

the value of at least one and both terms in (32) and (33) are very close to zero if the ratio 

of p n  tends to zero. This conclusion links to KICcSB   KICcHM   KIC. While the term 

 log
n

n p
n p

 
 

 
 (34) 

has the value in the range  ,p   where it is close to the lower bound p  if the ratio 

of p n  tends to zero. If the value of p is fixed, this term is the decreasing function of n, 

whereas when the value of n is fixed, it is the increasing function of p. Whenever 

0n p   and the condition  

     1 exp 1p n p n   (35) 

is true, we have the term in (34) being greater than zero. This means that the penalty 

function of KICcC is stronger than other criteria, KICcSB,
 
KICcHM, and KIC, under the 

condition in (35). The strong penalty may cause KICcC to have the maximum frequency 

of the correct order being selected. However, occasionally it causes the model selection 

criterion to select underparameterized models [14]. This confusion is studied by the 

extensive simulation in the next section. 

4. Simulation study 
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To examine the model selection criteria performance, we generated 1,000 

realizations of true multiple regression models in (1) for four cases as follows.  

Model I represents a very weakly identifiable true model with large dimension of 

the model: 

1 2 3 4 5 6 7 8 11 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 .y X X X X X X X           

Model II represents a weakly identifiable true model with small dimension of the 

model: 

2 2 3 21 0.5 0.25 .y X X      

Model III represents a very strongly identifiable true model with small dimension 

of the model:  

3 2 3 4 31 2 3 4 .y X X X       

Model IV represents a strongly identifiable true model with large dimension of 

the model: 

4 2 3 4 5 6 7 8 41 .y X X X X X X X           

Model I and Model II represent the weakly identifiable true models which mean 

they are not easily identified compared to the strongly identifiable true models such as 

Model III and Model IV. From a previous study, Kundu and Murali [16] concluded that the 

criteria performance did not change much when the true variance 
2

0  and the distribution 

of error random variable 
0  in (1) were changed. As a result, we have taken 

0  to be 

normally distributed with zero mean and 
2

0  is assumed to be equal to 1. For each 

model, four different sample sizes are split into two categories: small sample (n = 15, 25) 

and large sample (n = 100, 500). Ten candidate variables, 
1X  until 

10X ,
 
are stored in an 

10n  matrix X  of the candidate model in (2), with a column of ones, followed by nine 

independent identically distributed normal random variables with zero mean and 

variance-covariance matrix equal to identity matrix 
10I . The candidate models include 

the columns of X  in a sequentially nested fashion; i.e., columns 1 to p define the design 

matrix for the candidate model with dimension p. The criteria considered in this 

simulation are divided into two families. Firstly, is the criteria based on Kullback’s 

directed divergence: AIC in (7) and AICc in (8). Secondly, is the criteria based on 

Kullback’s symmetric divergence: KIC in (13), KICcC in (14), KICcSB in (15),
 
and KICcHM 

in (16). Model selection criteria performance is examined by a consistent measure which 

is a measure of counting the frequency of order being selected. Particularly for the case 
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of true model being weakly identifiable, we use an efficient measure which is the 

observed 
2L  efficiency. This is a useful measure when the criteria do not select the 

correct model. The observed 
2L  distance or squared error distance, scaled by 1 n , 

between the true model in (1) and the fitted candidate model in (2) is defined as [8, 17] 

     2 0 0

1 ˆ ˆ .L p
n


  X X     

Observed 
2L  efficiency is defined by the ratio 

 

 
1 2

2

2

min
Observed   efficiency ,

p P

s

L p
L

L p

 
  

where P is the class of all possible candidate models, p is the rank of fitted candidate 

model, and 
sp  is the model selected by specific model selection criterion. The closer the 

selected model is to the true model, the higher the efficiency. Therefore, the best model 

selection criterion will select a model which yields high efficiency even in small samples 

or if the true model is weakly identifiable. For 1,000 realizations, the results of comparing 

the model selection criteria performance are shown in Table 1 and 2. Columns “d” and 

“K” in Table 1 stand for the estimated measures in (5) and (9), respectively. The 

conclusions of this simulation are as follows. In Table 1, for the small sample size and 

the true model is somewhat difficult to identify, such as Model I, Model II for n = 15, 25, 

and Model IV for n = 15, the original criteria AIC and KIC perform better than their 

corrected versions. When the sample size is still small but the true model is easily to 

identify, such as Model III for n = 15, 25 and Model IV for n = 25, the corrected versions 

work better. For the large sample size but the true model is very difficult to detect, such 

as Model I for n = 100, 500, the AIC family of criteria performs better than the KIC family. 

When the sample size is still large and the true model can be specified more easily, such 

as Model II, Model III, and Model IV for n = 100, 500, the KIC family performs the best. 

This simulation also found that when the true model is very difficult to detect, such as 

Model I and the sample size is small n = 15, 25, the estimated symmetric measure in (9) 

has the opportunity to cause more underfitted order being selected than the estimated 

directed measure in (5). This result contributes the criteria in KIC family to having a low 

frequency of choosing the correct model. In Table 2, the observed 2L  efficiency suggests 

that KICcC in KIC family is the best criterion for all sample sizes of a weakly identifiable 

true model. 
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Table 1. Frequency of the model order being selected by each criterion for 1,000 

realizations. 

Model n Order 
Criteria 

AIC AICc KIC KICcHM KICcSB KICcC d K 

I 15 Underfitted 596 1000 837 1000 1000 1000 982 986 

very 
 

Correct 54 0 26 0 0 0 0 0 

weakly 
 

Overfitted 350 0 137 0 0 0 18 14 

identifiable 25 Underfitted 859 998 972 1000 1000 1000 987 992 

(true order 
 

Correct 39 1 11 0 0 0 0 0 

p0 = 8) 
 

Overfitted 102 1 17 0 0 0 13 8 

 
100 Underfitted 944 974 993 998 999 999 998 998 

  
Correct 23 14 5 2 1 1 0 0 

  
Overfitted 33 12 2 0 0 0 2 2 

 
500 Underfitted 958 962 998 998 998 999 1000 1000 

  
Correct 21 21 1 1 1 0 0 0 

  
Overfitted 21 17 1 1 1 1 0 0 

II 15 Underfitted 284 820 542 859 864 875 577 547 

weakly 
 

Correct 132 123 148 111 109 105 423 453 

identifiable 
 

Overfitted 584 57 310 30 27 20 0 0 

(true order 25 Underfitted 374 653 575 716 720 727 368 344 

p0 = 3) 
 

Correct 244 235 264 235 231 226 631 655 

  
Overfitted 382 112 161 49 49 47 1 1 

 
100 Underfitted 109 133 214 230 231 232 34 26 

  
Correct 609 642 676 677 678 680 966 974 

  
Overfitted 282 225 110 93 91 88 0 0 

 
500 Underfitted 0 0 0 0 0 0 0 0 

  
Correct 737 751 890 895 895 896 1000 1000 

  
Overfitted 263 249 110 105 105 104 0 0 
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Table 1. (Continued). 

Model n Order 
Criteria 

AIC AICc KIC KICcHM KICcSB KICcC d K 

III 15 Underfitted 0 0 0 0 0 0 30 0 

very 
 

Correct 325 939 583 964 964 968 970 1000 

strongly 
 

Overfitted 675 61 417 36 36 32 0 0 

identifiable 25 Underfitted 0 0 0 0 0 0 0 0 

(true order 
 

Correct 549 855 749 899 904 920 1000 1000 

p0 = 4) 
 

Overfitted 451 145 251 101 96 80 0 0 

 
100 Underfitted 0 0 0 0 0 0 0 0 

  
Correct 687 756 855 874 874 878 1000 1000 

  
Overfitted 313 244 145 126 126 122 0 0 

 
500 Underfitted 0 0 0 0 0 0 0 0 

  
Correct 713 731 885 889 889 889 1000 1000 

  
Overfitted 287 269 115 111 111 111 0 0 

IV 15 Underfitted 36 887 94 943 955 969 724 554 

strongly 
 

Correct 444 113 532 57 45 31 214 377 

identifiable 
 

Overfitted 520 0 374 0 0 0 62 69 

(true order 25 Underfitted 5 31 9 60 62 67 281 133 

p0 = 8) 
 

Correct 710 950 840 928 928 925 663 846 

  
Overfitted 285 19 151 12 10 8 56 21 

 
100 Underfitted 0 0 0 0 0 0 0 0 

  
Correct 815 882 925 950 950 953 1000 1000 

  
Overfitted 185 118 75 50 50 47 0 0 

 
500 Underfitted 0 0 0 0 0 0 0 0 

  
Correct 854 864 951 956 956 956 1000 1000 

  
Overfitted 146 136 49 44 44 44 0 0 

Note: Boldface type indicates the maximum frequency of correct order being selected. 
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Table 2. Average and standard deviation of the observed 
2L  efficiency over 1,000 

realizations. 

Circumstance Stat. 
Criteria 

AIC AICc KIC KICcHM KICcSB KICcC 

weakly identifiable  

(Model I and Model II),  

small sample size (n = 15, 25) 

Ave. L2 eff. 0.5332 0.7791 0.6826 0.8048 0.8062 0.8098 

Rank 6 4 5 3 2 1 

S.D. L2 eff. 0.3598 0.2765 0.3343 0.2480 0.2462 0.2420 

Rank 6 4 5 3 2 1 

weakly identifiable  

 (Model I and Model II),  

large sample size (n = 100, 500) 

Ave. L2 eff. 0.7239 0.7418 0.7771 0.7808 0.7810 0.7817 

Rank 6 5 4 3 2 1 

S.D. L2 eff. 0.3096 0.3001 0.2601 0.2563 0.2562 0.2554 

Rank 6 5 4 3 2 1 

weakly identifiable  

(Model I and Model II) 

Ave. L2 eff. 0.6286 0.7604 0.7299 0.7928 0.7936 0.7958 

Rank 6 4 5 3 2 1 

S.D. L2 eff. 0.3347 0.2883 0.2972 0.2522 0.2512 0.2487 

Rank 6 4 5 3 2 1 

Note: Boldface type indicates the best performance. 

 

5. Conclusions, discussion, and further study 

This paper presents the derivations to unify the justifications of the criteria 

based on Kullback’s symmetric divergence; the Kulback information criterion (KIC) by 

Cavanaugh [1] and the corrected versions; KICcC by Cavanaugh [2], KICcSB by 

Seghouane and Bekara [3], and KICcHM by Hafidi and Mkhadri [4]. The results show that 

KICcC has the strongest penalty function under the condition in (35), followed, respectively, 

by KICcSB,
 
KICcHM, and KIC. The performance of them is examined by the extensive 

simulation study relative to the criteria based on Kullback’s directed divergence, AIC and 

AICc. Our simulation study indicates that, for the small sample size and the true model is 

somewhat difficult to identify, the performance of the original criteria AIC and KIC is 

better than their corrected versions. When the sample size is still small but the true 

model is easily to identify, the corrected versions perform the best. For the large sample 

size but the true model is very difficult to detect, the AIC family of criteria performs better 

than the KIC family. When the sample size is still large and the true model can be 

specified more easily, the KIC family performs the best. This simulation also found that, 

although the proofs in this study show that the criteria based on Kullback’s symmetric 

divergence are stronger than the criteria based on the directed divergence, sometimes 

the performance of them is worse. This result may be because the estimated symmetric 

measure in (9) contributes to all criteria in KIC family usually having stronger penalty 
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functions than the AIC family. This problem causes a greater number of underfitted orders 

being selected, which then contributes to a low frequency of choosing the correct model. 

However, when the true model is very difficult to detect, such as Model 1; none of the 

criteria correctly identify the true model more than 6% of the time. As a result, the 

frequency of correct order being selected may not be meaningful. For this reason, we 

have also used the observed 
2L  efficiency to assess model selection criteria performance. 

This measure suggests that, in a weakly identifiable true model, whether the sample size 

is small or large, KICcC is the best criterion because it has highest average value of the 

observed 
2L  efficiency and lowest standard deviation. The better performance of KICcC 

may be because its formula is closer to the expected estimated symmetric discrepancy 

than other. But, KICcC is more likely to select an underfitted model than other criterion 

which is because its penalty function is strong. Nevertheless, even if KICcC tends to 

select underfitted models, these selected models are close to the true model. 

In future work, we hope to extend KICcC from Cavanaugh [2] to construct a 

model selection criterion to serve as an asymptotically unbiased estimator of a variant of 

Kullback’s symmetric divergence for multivariate regression, seemingly unrelated regression 

models, and simultaneous equations model. Because, at this time, there exists the 

multivariate model selection based on the extensions of KICcSB [18] and KICcHM [4], and 

there exists only the original version of model selection criterion based on the simultaneous 

equations model [19-20]. 
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