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Abstract

The Kullback information criterion (KIC) was proposed by Cavanaugh (1999) to
serve as an asymptotically unbiased estimator of a variant of Kullback’s symmetric
divergence between the true and fitted candidate models. It was arguably more sensitive
than the criterion based on the directed divergence. However, for a small sample size or
if the dimension of candidate model is large relative to the sample size, it displayed a
large negative bias. Many authors, Cavanaugh (2004), Seghouane and Bekara (2004),
Hafidi and Mkhadri (2006), proposed the criteria to correct this bias, i.e., the corrected
versions of KIC called, respectively, in this paper KICcc, KICcsg, and KICcum. Because
they have multiple formulas, the aims of this paper are to unify and examine the
performance of them relative to the AIC family of criteria, using theoretical and extensive
simulation study methods. The unifications of the criteria based on Kullback’s symmetric

divergence show that KICcc is closest to the expected estimated symmetric discrepancy

and has the strongest penalty function under the condition (1—p/n)exp(p/n)<1,

followed, respectively, by KiCcsg, KICcum, and KIC. This result makes KICcc has the
highest efficiency even though it is likely to select an underfitted model.
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1. Introduction

The Kulback information criterion (KIC) by Cavanaugh [1] and the corrected
versions (KICc) by Cavanaugh [2] called KICcc, by Seghouane and Bekara [3] called
KICcsg, and by Hafidi and Mkhadri [4] called KICcwm were designed based on Kullback’s
symmetric divergence, also known as the J-divergence, in order to assess the dissimilarity
between the model generating the data and a fitted candidate model. However, when the
dimension of candidate model increases compared to the sample size, the corrected
version of the model selection criterion was better than the original version because it
produced a bias reduction and strongly improved model selection [2-9]. Although KIC,
KICcc, KICcsg, and KlICcuym share the same fundamental objective, the justifications of
the criteria proceed along different directions, making it difficult to reconcile how the
different corrected versions of KIC refine the approximations used to establish KIC in the
setting of linear regression model. With this motivation, the aims of this paper are to unify
the derivations of KIC and the corrected versions in order to link the justifications of
these criteria and the performance of them is then examined by the extensive simulation
study. The remainder of this paper is organized as follows. In Section 2, we review the
model selection criteria based on Kullback’s directed and symmetric divergences. In
Section 3, we show the unifications for the derivations of KIC and the corrected versions.
Simulation study for 1,000 realizations of multiple regression models to examine the
performance of the AIC and KIC families of criteria is shown in Section 4. Finally, Section

5 is the conclusions, discussion, and further study.

2. A review of model selection criteria based on Kullback’s directed and symmetric
divergences

Suppose that the true and the candidate models are, respectively, given by
y =XB, +&5, &~N, (0, o¢1,), 1)
y=XB+g &~N, (0, o°l,), @
where y is an nx1 dependent random vector of observations, X is an Nx p matrix of
independent variables with full-column rank, B, and B are px1 parameter vectors of

regression coefficients, €, and € are nx1 noise vectors. The true model is assumed to
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be correctly specified or overfitted by all the candidate models. This means that f, has

p, nonzero entries with 0 < p, < p and the rest of the (p— po) entries are equal to

zero. The (p+1)><1 vector of parameters is 9, = [B(’) o; ]’ and the maximum likelihood
estimator of 9, is é:[ﬁ' 6'2] where

B=(X'X)" XYy and &° =(y—Xﬁ) (y—XB)/n . (3)
The minus twice log likelihood of the candidate model in (2) when replacing the
dependent vector Yy in (1) is defined by

1 1 . 2
—2log L(9|y):nIoan+nIogaz+?sgeo+?(Bo—[3) X’X(BO—B)+?85X([30—B).
4

A well-known measure to separate the discrepancy between two models is
given by Kullback’s directed divergence or I-divergence [10],

21(6,,0)=E, {Zlog%}:d(eo,e)—d(eo,eo),

where

d(6,,0) = E, {-2logL(8]y)}, d(8,,6,)=E, {-2l0gL(8,|y)},
and the expectation E, is taken with respect to the true model. Because d(6,.6,)
does not depend on 0, any ranking of the candidate models according to 2l (90,6)
would be identical to ranking them according to d(eo,e). Given a set of maximum

likelihood estimators 6 in (3), the estimated directed measure d (90,6) is

d(6,,8) = &, {-2logL(8]y)}|

0=0

2

., No,
=nlog2z+nlogé? +—2
o

1 A\ oy A
+=(Bo—B) XX(B,-B) (5)
However, the evaluation in (5) is not possible because it requires the knowledge

of 0,, Akaike [11-12] proposed an asymptotically unbiased estimator of

A(8,,p) = Eeu{d(eo,é)} )

as
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AIC=nlogé® +2(p+1), 7

ie, Eq { AIC}+0(1)=A(8,,p).
Because of a large negative bias of AIC when the sample size is small or the

dimension of candidate model is large relative to the sample size, Hurvich and Tsai [5]

proposed an exactly unbiased estimator of (6) as follows:
2n(p+1)

AlCc=nlogé? + ,
n-p-2

®

ie., Eq { AICC}=A(6,,p).

Cavanaugh [1], Seghouane and Bekara [3], Seghouane [13] summarized that
the directed divergence produced too underfitted value of model selection, and then it
tended to be large for overparameterized models. An alternate measure to prevent both
overfitting and underfitting problems is obtained by reversing the roles of two models in

the definition of the measure, called Kullback’s symmetric divergence or J-divergence,
2J(6,.0)=21(6,,0)+21(6,6,)=[d(6,,6)—d(6,,6,)]+[d(6,6,)—-d(6,6)],
where
d(6,,0) =E, {-2logL(8]y)}, d(8,,6,)=E, {-2l0gL(8,y)},
d(6,8,)=E,{-2logL(8, |y)}, and d(6,8)=E, {-2logL(6]y)}.
Dropping d (6,,8, ), the ranking of the candidate models according to 2J (6,,0)

is identical to ranking them according to

K (6,,8)=d(8,,8)+d(6,6,)—d(6,0).
Given a set of maximum likelihood estimators  in (3), the estimated symmetric

measure K(8,,0) is
K(0,,0)=d(0,,6)+d(6,0,)-d(8,6), ©)
where d(eo,é) is exhibited in (5),

d(6,0,) = E, {-2logL(8, |y)}] .

=n|ogZ7r+nIogo-§+n;&22+i2(fi Bo), ’X(B BO), (10)
0 0

and
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d(é,é) = Ee{—2log L(e|y)}‘ .= nlog27z+nlogé? +n. (11)

0=

Yet, evaluating K(Go,é> in (9) requires @, , Cavanaugh [1] proposed an

asymptotically unbiased estimator of
Q(6,,p)=E, { K(eo,é)} (12)

as
KIC=nlogé? +3(p+1), 13)
ie., By {KIC}+0(1)=Q(8,, p).
Seghouane and Bekara [3] proposed an exactly unbiased estimator of (12) in
order to correct a large negative bias of KIC in (13) as follows:

2 1 -
KICc=nlogé® + n(p+ )_nw(n pj+n|og(ﬂj,
n-p-2 2 2

ie., By { KICC}=Q(6,, p).
Because the phi (l//) or digamma function in KICc has no closed-form solution,

Cavanaugh [2], Seghouane and Bekara [3], Hafidi and Mkhadri [4] gave the asymptotically

unbiased estimators of (12) called, respectively, in this paper KICcc, KICcsg, and KICcnwm,

n J+n[(n—p)(2p+3)—2] )

KICcc =nlogé? +n Iog[

n-p (n-p-2)(n-p)
KiCcsg =nlogd? +(p+1)(3n— p—2)+ P , (15)
n-p-2 n-p
(p+1)(3n- p—2). (16)

KICchu = nlogé? +
n-p-2

3. The unified derivations of KIC and KICc
To begin the unification of the derivations KIC, KICcc, KICcsg, and KICcum, we

consider the expectation of the discrepancies in (5), (10), and (11) with respect to the

true model [3],

A

E,, {d(6,.0)} =nlog27+E, {nlogs?} +E, {”Gif}+ E,, {012 (B, —B) X% (B, —B)},
17
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1 /a4 "o (A
o7 }+Eeo {G—g(ﬁ—ﬁo) XX(ﬁ—BU)},

(18)

E,, {d(é,eo)}:nIogZ;rJrnIogo—g+Eeo {n&z

Eo, {d(é,A)}znlog27r+Eeo {nlog6*}+n.

(19)
~2
From the fact that the terms

2

= and Gioz(ﬁ—ﬁo )' X'X(ﬁ—[}o) are the

independent ;(2 distributions with the degrees of freedom which are, respectively, n — p
and p, we have

Eo, {%}:n— p and E, {O_ig(ﬁ—ﬁo), X’X(ﬁ—ﬁo)}: P

. (20)
Using the facts in (20), we have

no; n? n?
Bo,1 =2 [=Fe ~2 | 2
i ey ° | n6° /o,
and

=n—p—2

1 o Voorla _1_ [nog L B-p. ) xX(B-p =P
E, {g(ﬁ—ﬁo) XX(B—BO)}——E% {?}Eeo {a_g(ﬁ Bo) X%(B Bo)}—

n n-p-2
(21)
Substituting the results in (21) into the expected discrepancy in (17) leads to

A(6o,P) :Eeo{d(emé)}=ﬂ|0Q|27r+E(,o {nlog6*}+ np

+
n-p-2 n-p-2
=n(log27z+1)+E, {AlCc},

(22)
where AICc is the corrected version of AIC that was exhibited in (8).
Replacing the facts in (20) into the expected discrepancy in (18) yields
Ee, { d (é,eo)} =n(log2z+1)+nlogoy.

(23)
Using the results in (19), (22), and (23), the expected value of K(eo,é) in (9)
becomes

(8, p) = B, { K(8,,0) } =n(log27+1)+ E, {AICc}-E, {

~2
n Ioga—2 , (24)

o
where AICc is the corrected version of AIC that was exhibited in (8).
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It is noteworthy that, in KIC and various corrected versions derived from

K (90,(:)) in (9), the differences in all formulas come from the last term of the right-hand

side in (24). Therefore, in order to show the connections of KIC, KICcc, KICcsg, and

KICcwwm, we give the following lemmas.

é° n—p) n (n) n
L 1. -E, <nlog— {=-nlog| —— |+——+nlog| — |+0 . 25
emma 90{ gag} 9( 5 " p 9|3 (n—p)2 (25)

Proof. From [14-15] we have, respectively,

Ey, {log 7 | :W(%jﬂogZ and y (x) = log X_2_1x+o[x_12j as X >, (26)

Applying the fact Eq {n&z/aj} =n—p in (20) and the facts in (26), we have

A2 ~2 _
—Es, {nloga—z} =-E,, {nlog naz }+nlogn:—n[w[ujJrlogZ}nlogn
oy o, 2
=-n Iog(n_pj— CH = ||-nlog2+nlogn
2/ n=p {(n-p)

——nlog(HjJrLJrnlog(EjJro n
2 n-p 2 (n_p)z -
Lemma 2.

-n Iog[n;zpj+rnp+nlog(gj+o{ﬁJ: p+nTnp+o(p72j+o{(n_np)2}.

Proof. Applying the first-order Taylor’'s series expansion to expand the term

log((n-p)/2)

e HER O)

to obtain the approximation in (27).

aboutn/2, i.e.,

Lemma3. p+ n +o£p—2J+o n =(p+1)+o(1). (28)
n=p \n) A(n-py
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Proof. Rearrange p+n/(n—p) to be (p+1)+p/(n—p). As n—>o and p is held

constant, the term

is 0(1) which yields the approximation in (28).

Appling Lemma 1 into Q(6,, p) in (24), we obtain

=n(log27+1)+E, {KICCC +o[m]},

where KlCcc is the corrected version of KIC from Cavanaugh [2] that was exhibited in
(14).

Q(8,, p) =n(log 2z +1) + E,, {A'CC}_nlog(%}LLJrnlog[g}ro{(“‘np)zj

Appling Lemmas 1 and 2 into (8, p) in (24), we obtain

2
Q(6,, p) =n(log2z+1)+E, {AlCc}+ p+ﬁ+o(%j+o( n J

= n(log 27 +1)+ By, {KlCCSB +o[%2]+o[(n_”p)2 }

where KlCcsg is the corrected version of KIC from Seghouane and Bekara [3] that was
exhibited in (15).

Appling Lemmas 1, 2, and 3 into Q(Oo, p) in (24), we obtain
Q(6,, p) =n(log2z+1)+E, {AlCc}+(p+1)+0(1)
=n(log27z +1)+E, {KICc,, +0(1)},
where KlCcuw is the corrected version of KIC from Hafidi and Mkhadri [4] that was

exhibited in (16).

The connections of KIC, KICcuwm, KICcsg, and KICcc are given by

KICcum = KIC + w, (29)

n-p-2
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KICcsg =KICchm + P , (30)
n-p
n
KiCcc =KIlCcsg + nlog (—j— p. (31)
n-p
From the connection in (29), we found that the term
2(p+1)(p+2
(P+1)(p+2) 32
n-p-2

is not greater than zero if and only if n—p>2 and p belongs to the set of [—2, —1] .

Whereas, the term of the connection in (30),
n-p

is not greater than zero if and only if n—p>0 and p belongs to the set of(—oo, 0].

Therefore, we can argue that the terms in (32) and (33) have values of at least zero

because p represents the number of regression coefficients which is an integer that has

the value of at least one and both terms in (32) and (33) are very close to zero if the ratio

of p/n tends to zero. This conclusion links to KICcsg > KICcum > KIC. While the term

nlog (Lj— p (34)
p

has the value in the range [—p, oo) where it is close to the lower bound —p if the ratio

of p/n tends to zero. If the value of p is fixed, this term is the decreasing function of n,

whereas when the value of n is fixed, it is the increasing function of p. Whenever

n—p >0 and the condition

(1-p/n)exp(p/n) <1 (35)
is true, we have the term in (34) being greater than zero. This means that the penalty
function of KICcc is stronger than other criteria, KlCcsg, KICcum, and KIC, under the
condition in (35). The strong penalty may cause KICcc to have the maximum frequency
of the correct order being selected. However, occasionally it causes the model selection
criterion to select underparameterized models [14]. This confusion is studied by the
extensive simulation in the next section.

4. Simulation study
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To examine the model selection criteria performance, we generated 1,000
realizations of true multiple regression models in (1) for four cases as follows.
Model | represents a very weakly identifiable true model with large dimension of
the model:
y, =14+0.5X, +0.1X, +0.05X, +0.01X, +0.005X, +0.001X, +0.0005X, +&,.

Model Il represents a weakly identifiable true model with small dimension of the

model:
y, =1+0.5X, +0.25X; +&,.
Model Il represents a very strongly identifiable true model with small dimension
of the model:
Y, =1+2X, +3X,; +4X, +&;.
Model IV represents a strongly identifiable true model with large dimension of
the model:

Y, =14+ X, + Xy + X, + Xy + X + X, + X, +6,.
Model | and Model Il represent the weakly identifiable true models which mean

they are not easily identified compared to the strongly identifiable true models such as
Model 11l and Model IV. From a previous study, Kundu and Murali [16] concluded that the

criteria performance did not change much when the true variance aj and the distribution
of error random variable g, in (1) were changed. As a result, we have taken g; to be

normally distributed with zero mean and of is assumed to be equal to 1. For each
model, four different sample sizes are split into two categories: small sample (n = 15, 25)

and large sample (n = 100, 500). Ten candidate variables, X, until X,,, are stored in an

nx10 matrix X of the candidate model in (2), with a column of ones, followed by nine
independent identically distributed normal random variables with zero mean and

variance-covariance matrix equal to identity matrix 1,,. The candidate models include

the columns of X in a sequentially nested fashion; i.e., columns 1 to p define the design
matrix for the candidate model with dimension p. The criteria considered in this
simulation are divided into two families. Firstly, is the criteria based on Kullback’s
directed divergence: AIC in (7) and AICc in (8). Secondly, is the criteria based on
Kullback’s symmetric divergence: KIC in (13), KICcc in (14), KICcsg in (15), and KICcum
in (16). Model selection criteria performance is examined by a consistent measure which

is a measure of counting the frequency of order being selected. Particularly for the case
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of true model being weakly identifiable, we use an efficient measure which is the

observed L, efficiency. This is a useful measure when the criteria do not select the

correct model. The observed L, distance or squared error distance, scaled by 1/n,

between the true model in (1) and the fitted candidate model in (2) is defined as [8, 17]
1 A\ s A
Lz ( p) = E(Bo _ﬁ) X X(Bo _B)
Observed L, efficiency is defined by the ratio

i L
Observed L, efficiency = w
L2 ( Ps )

where P is the class of all possible candidate models, p is the rank of fitted candidate

model, and p, is the model selected by specific model selection criterion. The closer the

selected model is to the true model, the higher the efficiency. Therefore, the best model
selection criterion will select a model which yields high efficiency even in small samples
or if the true model is weakly identifiable. For 1,000 realizations, the results of comparing
the model selection criteria performance are shown in Table 1 and 2. Columns “d” and
“‘K” in Table 1 stand for the estimated measures in (5) and (9), respectively. The
conclusions of this simulation are as follows. In Table 1, for the small sample size and
the true model is somewhat difficult to identify, such as Model I, Model Il for n = 15, 25,
and Model IV for n = 15, the original criteria AIC and KIC perform better than their
corrected versions. When the sample size is still small but the true model is easily to
identify, such as Model Il for n = 15, 25 and Model IV for n = 25, the corrected versions
work better. For the large sample size but the true model is very difficult to detect, such
as Model | for n = 100, 500, the AIC family of criteria performs better than the KIC family.
When the sample size is still large and the true model can be specified more easily, such
as Model Il, Model Ill, and Model IV for n = 100, 500, the KIC family performs the best.
This simulation also found that when the true model is very difficult to detect, such as
Model | and the sample size is small n = 15, 25, the estimated symmetric measure in (9)
has the opportunity to cause more underfitted order being selected than the estimated

directed measure in (5). This result contributes the criteria in KIC family to having a low
frequency of choosing the correct model. In Table 2, the observed L, efficiency suggests

that KICcc in KIC family is the best criterion for all sample sizes of a weakly identifiable

true model.
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Table 1. Frequency of the model order being selected by each criterion for 1,000

realizations.
Model n Order Criteria
AlC AlCc KIC KICcHM  KICcSB  KlICcC d K
| 15  Underfitted 596 1000 837 1000 1000 1000 982 986
very Correct 54 0 26 0 0 0 0 0
weakly Overfitted 350 0 137 0 0 0 18 14
identifiable 25 Underfitted 859 998 972 1000 1000 1000 987 992
(true order Correct 39 1 11 0 0 0 0 0
pPo=28) Overfitted 102 1 17 0 0 0 13 8
100  Underfitted 944 974 993 998 999 999 998 998
Correct 23 14 5 2 1 1 0 0
Overfitted 33 12 2 0 0 0 2 2
500 Underfitted 958 962 998 998 998 999 1000 1000
Correct 21 21 1 1 1 0 0 0
Overfitted 21 17 1 1 1 1 0 0
Il 15  Underfitted 284 820 542 859 864 875 577 547
weakly Correct 132 123 148 111 109 105 423 453
identifiable Overfitted 584 57 310 30 27 20 0 0
(true order 25 Underfitted 374 653 575 716 720 727 368 344
pPo=3) Correct 244 235 264 235 231 226 631 655
Overfitted 382 112 161 49 49 47 1 1
100  Underfitted 109 133 214 230 231 232 34 26
Correct 609 642 676 677 678 680 966 974
Overfitted 282 225 110 93 91 88 0 0
500 Underfitted 0 0 0 0 0 0 0 0
Correct 737 751 890 895 895 896 1000 1000

Overfitted 263 249 110 105 105 104 0 0
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Table 1. (Continued).
Criteria
Model n Order
AlC AlCc KIC KICcHM  KICcSB  KlICcC d K
1l 15 Underfitted 0 0 0 0 0 0 30 0
very Correct 325 939 583 964 964 968 970 1000
strongly Overfitted 675 61 417 36 36 32 0 0
identifiable 25 Underfitted 0 0 0 0 0 0 0 0
(true order Correct 549 855 749 899 904 920 1000 1000
po=4) Overfitted 451 145 251 101 96 80 0 0
100  Underfitted 0 0 0 0 0 0 0 0
Correct 687 756 855 874 874 878 1000 1000
Overfitted 313 244 145 126 126 122 0 0
500 Underfitted 0 0 0 0 0 0 0 0
Correct 713 731 885 889 889 889 1000 1000
Overfitted 287 269 115 111 111 111 0 0
\% 15  Underfitted 36 887 94 943 955 969 724 554
strongly Correct 444 113 532 57 45 31 214 377
identifiable Overfitted 520 0 374 0 0 0 62 69
(true order 25 Underfitted 5 31 9 60 62 67 281 133
pPo=28) Correct 710 950 840 928 928 925 663 846
Overfitted 285 19 151 12 10 8 56 21
100  Underfitted 0 0 0 0 0 0 0 0
Correct 815 882 925 950 950 953 1000 1000
Overfitted 185 118 75 50 50 47 0 0
500  Underfitted 0 0 0 0 0 0 0 0
Correct 854 864 951 956 956 956 1000 1000
Overfitted 146 136 49 44 44 44 0 0

Note: Boldface type indicates the maximum frequency of correct order being selected.
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Table 2. Average and standard deviation of the observed L, efficiency over 1,000

realizations.
Criteria
Circumstance Stat.
AlC AlCc KIC KICchm KICcsp KICcc
Ave. L, eff. 0.5332 0.7791  0.6826  0.8048 0.8062  0.8098
weakly identifiable
Rank 6 4 5 3 2 1
(Model | and Model I1),
. S.D. L, eff. 0.3598 0.2765  0.3343  0.2480 0.2462  0.2420
small sample size (n = 15, 25)
Rank 6 4 5 3 2 1
Ave. L, eff. 0.7239 0.7418 0.7771  0.7808 0.7810  0.7817
weakly identifiable
Rank 6 5 4 3 2 1
(Model I and Model I1),
_ S.D. L, eff. 0.3096 0.3001  0.2601  0.2563 0.2562  0.2554
large sample size (n = 100, 500)
Rank 6 5 4 3 2 1
Ave. L, eff. 0.6286 0.7604  0.7299  0.7928 0.7936  0.7958
weakly identifiable Rank 6 4 5 3 2 1
(Model | and Model 1) S.D. L, eff. 0.3347 0.2883  0.2972  0.2522 0.2512  0.2487
Rank 6 4 5 3 2 1

Note: Boldface type indicates the best performance.

5. Conclusions, discussion, and further study

This paper presents the derivations to unify the justifications of the criteria
based on Kullback's symmetric divergence; the Kulback information criterion (KIC) by
Cavanaugh [1] and the corrected versions; KlCcc by Cavanaugh [2], KICcsg by
Seghouane and Bekara [3], and KICcum by Hafidi and Mkhadri [4]. The results show that
KICcc has the strongest penalty function under the condition in (35), followed, respectively,
by KICcsg, KICcum, and KIC. The performance of them is examined by the extensive
simulation study relative to the criteria based on Kullback’s directed divergence, AIC and
AlCc. Our simulation study indicates that, for the small sample size and the true model is
somewhat difficult to identify, the performance of the original criteria AIC and KIC is
better than their corrected versions. When the sample size is still small but the true
model is easily to identify, the corrected versions perform the best. For the large sample
size but the true model is very difficult to detect, the AIC family of criteria performs better
than the KIC family. When the sample size is still large and the true model can be
specified more easily, the KIC family performs the best. This simulation also found that,
although the proofs in this study show that the criteria based on Kullback's symmetric
divergence are stronger than the criteria based on the directed divergence, sometimes
the performance of them is worse. This result may be because the estimated symmetric
measure in (9) contributes to all criteria in KIC family usually having stronger penalty
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functions than the AIC family. This problem causes a greater number of underfitted orders
being selected, which then contributes to a low frequency of choosing the correct model.
However, when the true model is very difficult to detect, such as Model 1; none of the
criteria correctly identify the true model more than 6% of the time. As a result, the
frequency of correct order being selected may not be meaningful. For this reason, we

have also used the observed L, efficiency to assess model selection criteria performance.

This measure suggests that, in a weakly identifiable true model, whether the sample size

is small or large, KICcc is the best criterion because it has highest average value of the

observed L, efficiency and lowest standard deviation. The better performance of KICcc

may be because its formula is closer to the expected estimated symmetric discrepancy
than other. But, KICcc is more likely to select an underfitted model than other criterion
which is because its penalty function is strong. Nevertheless, even if KICcc tends to
select underfitted models, these selected models are close to the true model.

In future work, we hope to extend KICcc from Cavanaugh [2] to construct a
model selection criterion to serve as an asymptotically unbiased estimator of a variant of
Kullback’'s symmetric divergence for multivariate regression, seemingly unrelated regression
models, and simultaneous equations model. Because, at this time, there exists the
multivariate model selection based on the extensions of KICcsg [18] and KICcum [4], and
there exists only the original version of model selection criterion based on the simultaneous

equations model [19-20].
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