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Abstract
In this paper a large sample test is derived for testing the homogeneity of

correlation matrices based on Fisher’s z-transformation, and it is demonstrated

that the test maintains the type I error rate satisfactorily. Towards this, the

asymptotic joint distribution of the sample correlations is derived when the sam-

ples come from a multivariate population that could be non-normal. Assuming

that the homogeneity hypothesis holds, methodology is provided to perform a

meta-analysis of the common correlation matrix. An application to the corre-

lations among the three cholesterol related variables: low-density lipoprotein

(LDL), non-high density lipoprotein (NHDL) and Apolipoprotein B (APOB), in

an investigation of the efficacy of cholesterol lowering drug, Ezetimibe, in com-

bination with statins in patients with hypercholesterolemia, is provided.
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1. Introduction

In this paper we address the problem of meta-analysis involving a set of cor-

relations from a multivariate population. The basic premise is that we have k

multivariate populations each of dimension p involving the same set of variables

X1, · · · , Xp across the populations, representing p characteristics of some phys-

ical entities. We want to test if there is homogeneity among the set of q =

p(p − 1)/2 population pairwise correlations across the k populations, and if

so, how we would infer about the common set of correlations. Our solution is

asymptotic in nature under the assumption that we have samples of a reason-

ably large size from all the k populations so that we can use the multivariate

central limit theorem (MCLT) (Rao [1]). Trivially, for p = 2, the problem boils

down to testing the equality of ordinary pairwise correlations from several bi-

variate populations for which a large sample test based on sample correlations,

or based on their Fisher’s variance stabilized versions, exists in the literature

under the normality assumption (Rao [1], Hartung, Knapp and Sinha [2]). We

should mention about two related papers in this context. Rayner et al. [3]

discussed the likelihood ratio test of equality of covariance matrices (see also

Anderson [4]), and Schott [5] addressed the same problem as ours using Wald

statistic based on sample correlations. Our approach consists of first deriving

the asymptotic multivariate normal distribution of the sample correlations, and

their Fisher’s z-transformed variables. Since the parent populations are not as-

sumed to be normal, such an asymptotic distribution has a covariance matrix

that involves the third and fourth moments of the parent distribution, which are

assumed to exist. Based on such an asymptotic distribution, asymptotic tests

can then be developed in an obvious manner, for testing the equality of the set

of correlations across the k multivariate populations. In the case of a sample

from a bivariate Type A Edgeworth distribution, Gayen [6] had obtained the

asymptotic distribution of the sample correlation. Later, Hawkins [7] derived

the asymptotic distribution of the sample correlation based on samples from

an arbitrary bivariate population; this is obviously a special case of our general

result. Hawkins [7] actually used asymptotic results on U-statistics (Hoeffding

[8]) in order to obtain the asymptotic distribution of the sample correlation. Our

derivation on the other hand is more direct. We provide brief details for dimen-

sions three and four; the general case is rather obvious from the results for

these special cases.
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The organization of the paper is as follows. In Section 2, after some pre-

liminary general discussion, we consider the first non-trivial case of dimension

p = 3 involving a vector of three pairwise population correlations (ρ12, ρ13, ρ23),

and provide details of our asymptotics. We then provide the results for p = 4

and also briefly indicate how they can be used for a general p. A clinical ap-

plication for p = 3 is given in Section 3. Some concluding remarks appear in

Section 4.

Here is our general setup. Consider a p × 1 vector X = (X1, · · · , Xp)′

with correlation matrix R (the population correlation matrix), having the obvious

representation

R =



1 ρ12 ρ13 · · · ρ1p

1 ρ23 · · · ρ2p

1 · · · ρ3p

. . .
...

1 ρp−1p

1


.

The inference problem that we eventually want to address is in the context

of statistical meta-analysis of correlation matrices. That is, given k population

correlation matrices R1, · · · ,Rk, we are interested in testing the homogeneity

of the correlation matrices, i.e., testing the null hypothesis

H0 : R1 = · · · = Rk,

based on samples from each of the k populations. We assume that we have

a large sample of size ni from the ith population, in order to develop a large

sample test.

2. Asymptotic Distributions

In order to develop a large sample test, we shall first derive the asymptotic

joint distribution of the sample correlations based on a sample of size n from

a single multivariate population, where normality is not assumed. Since we

are dealing with correlations, without loss of generality, we assume that the

population mean vector is zero, and the population variances are all equal to

one; i.e., the population covariance matrix is a correlation matrix. Let ρij , i < j
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(i, j = 1, 2, .... p), denote the correlation between the ith and jth variables in the

population. For the sample xl = (x1l, x2l, ...., xpl)′, l = 1, 2, ...., n, we note that

the sample correlations rij ’s, i < j (i, j = 1, 2, .... p), are functions of
∑n

l=1 x2
il/n

(i = 1, 2, .... p), and
∑n

l=1 xilxjl/n, (i < j, i, j = 1, 2, .... p). We shall first derive

the asymptotic multivariate normal distribution of the quantities
∑n

l=1 x2
il/n and∑n

l=1 xilxjl/n, and then obtain the asymptotic multivariate normal distribution

of the rij ’s, i < j (i, j = 1, 2, .... p). We shall illustrate the derivation for

dimensions p = 3 and p = 4. The general case will then be obvious.

2.1 The Case p = 3

Let (X1, X2, X3)′ follow a trivariate population. Let ρij denote the correlation
between Xi and Xj , and write µrst = E(Xr

1Xs
t Xt

3). Based on a random sample
xl = (x1l, x2l, x31)′, l = 1, 2, ...., n, define the 6 × 1 vector

W =

(
n∑

l=1

x2
1l/n,

n∑
l=1

x2
2l/n,

n∑
l=1

x2
3l/n,

n∑
l=1

x1lx2l/n,

n∑
l=1

x1lx3l/n,

n∑
l=1

x2lx3l/n

)′

= (W1, W2, ....., W6)
′. (1)

The mean vector of W, say µ̃, is given by

µ̃ = (1, 1, 1, ρ12, ρ13, ρ23)′.

By the multivariate central limit theorem, the asymptotic joint distribution of
√

n(W − µ̃) is multivariate normal with mean vector zero, and covariance ma-
trix, say Σ, given by

Σ =



µ400 − 1 µ220 − 1 µ202 − 1 µ310 − ρ12 µ301 − ρ13 µ211 − ρ23

µ220 − 1 µ040 − 1 µ022 − 1 µ130 − ρ12 µ121 − ρ13 µ031 − ρ23

µ202 − 1 µ022 − 1 µ004 − 1 µ112 − ρ12 µ103 − ρ13 µ013 − ρ23

µ310 − ρ12 µ130 − ρ12 µ112 − ρ12 µ220 − ρ2
12 µ211 − ρ12ρ13 µ121 − ρ12ρ23

µ301 − ρ13 µ121 − ρ13 µ103 − ρ13 µ211 − ρ12ρ23 µ202 − ρ13ρ23 µ112 − ρ13ρ23

µ211 − ρ23 µ031 − ρ23 µ013 − ρ23 µ121 − ρ12ρ23 µ112 − ρ13ρ23 µ022 − ρ2
23


,

where we recall the notation µrst = E(Xr
1Xs

t Xt
3). The above structure of Σ fol-

lows directly from a close inspection of the elements of W. From the definition

of W given in (1), we see that the three pairwise sample correlations, say r12,

r13 and r23, are given by

r12 =
W4√
W1W2

, r13 =
W5√
W1W3

, r23 =
W6√
W2W3

.
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Applying the delta method, we conclude that
√

n(r12−ρ12, r13−ρ13, r23−ρ23)′ ∼
N(0,Σr), with

Σr =


σ11r σ12r σ13r

σ22r σ23r

σ33r

 ,

where,

σ11r =
ρ2
12

4
(µ400 + µ040 + 2µ220) + µ220 − ρ12(µ310 + µ130)

σ22r =
ρ2
12

4
(µ400 + µ004 + 2µ202) + µ202 − ρ13(µ301 + µ103

σ33r =
ρ2
23

4
(µ040 + µ004 + 2µ022) + µ022 − ρ23(µ031 + µ013)

σ12r = µ211 −
ρ12

2
(µ301 + µ121) −

ρ13

2
(µ310 + µ112) +

ρ12ρ23

4
(µ400 + µ202 + µ220 + µ022)

σ13r = µ121 −
ρ12

2
(µ031 + µ211) −

ρ23

2
(µ130 + µ112) +

ρ12ρ23

4
(µ400 + µ022 + µ220 + µ202)

σ23r = µ111 −
ρ13

2
(µ013 + µ211) −

ρ23

2
(µ103 + µ121) +

ρ13ρ23

4
(µ004 + µ022 + µ202 + µ220).

Now consider the Fisher’s z-transformed variables ( see Morrison [9], p.

101) Z12 = 1
2 ln[ 1+r12

1−r12
], Z13 = 1

2 ln[ 1+r13
1−r13

], and Z23 = 1
2 ln[ 1+r23

1−r23
]. Then (Z12, Z13, Z23)′

has an asymptotic multivariate normal distribution with mean vector (ξ12, ξ13, ξ23)′,

where ξ12 = 1
2 ln[ 1+ρ12

1−ρ12
] etc., and the asymptotic variances and covariances

among (Z12, Z13, Z23)′ are given by

Var(Z12) = (1 − ρ2
12)

−2Var(r12)

Var(Z13) = (1 − ρ2
13)

−2Var(r13)

Var(Z23) = (1 − ρ2
23)

−2Var(r23)

Cov(Z12, Z13) = (1 − ρ2
12)

−1(1 − ρ2
13)

−1Cov(r12, r13)

Cov(Z12, Z23) = (1 − ρ2
12)

−1(1 − ρ2
23)

−1Cov(r12, r23)

Cov(Z13, Z23) = (1 − ρ2
13)

−1(1 − ρ2
23)

−1Cov(r13, r23),

where Var(r12) = σ11r etc. appearing above are the asymptotic variances and

covariances. For p = 2, our expression for σ11r exactly coincides, as expected,

with that derived in Hawkins [7] based on Hoeffding’s [8] projection method.

If the underlying population is multivariate normal, then the above expres-

sions can be simplified, and the asymptotic covariance matrix of (Z12, Z13, Z23)′,

say Σz, is given by
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Σz =
1
n


1 α1 α2

1 α3

1

 , (2)

where

α1 =
2ρ23(1 − ρ2

12 − ρ2
13) + ρ12ρ13(ρ2

12 + ρ2
13 + ρ2

23 − 1)
2(1 − ρ2

12)(1 − ρ2
13)

,

α2 =
2ρ13(1 − ρ2

12 − ρ2
23) + ρ12ρ23(ρ2

12 + ρ2
13 + ρ2

23 − 1)
2(1 − ρ2

12)(1 − ρ2
23)

,

α3 =
2ρ12(1 − ρ2

13 − ρ2
23) + ρ13ρ23(ρ2

12 + ρ2
13 + ρ2

23 − 1)
2(1 − ρ2

13)(1 − ρ2
23)

.

2.2 The Case p = 4

Let (X1, X2, X3, X4)′ follow a four-variate population. Let ρij denote the

correlation between Xi and Xj , and write µrstu = E(Xr
1Xs

2Xt
3X

u
4 ). Based on a

random sample xl = (x1l, x2l, x31, x4l)′, l = 1, 2, ...., n, define the 10 × 1 vector

W =

(
n∑

l=1

x2
1l/n, ....,

n∑
l=1

x2
4l/n,

n∑
l=1

x1lx2l/n, ...,
n∑

l=1

x3lx4l/n

)′

= (W1,W2, ....., W10)′. (3)

The mean vector of W, say µ̃, is given by

µ̃ = (1, 1, 1, 1, ρ12, ρ13, ...., ρ34)′.

By the multivariate central limit theorem, the asymptotic joint distribution of
√

n(W − µ̃) is multivariate normal with mean vector zero. The corresponding

10 × 10 asymptotic covariance matrix, say Σ, can be worked out as a function

of µrstu’s and the ρij ’s. For details, we refer to our technical report Shah et.

al. [10]. The asymptotic joint distribution of the the sample correlations rij ’s

can be derived by the delta method. Upon direct computations, it turns out that

the vector
√

n(r12 − ρ12, .....r34 − ρ34) is asymptotically multivariate normal with

mean vector zero and covariance matrix, say Σr, having elements σijr given
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by

σ11r =
ρ2
12

4
(µ4000 + µ0400 + 2µ2200) + µ2200 − ρ12(µ3100 + µ1300)

σ12r = µ2110 −
ρ12

2
(µ3010 + µ1210) −

ρ13

2
(µ3100 + µ1120)

+
ρ12ρ13

4
(µ4000 + µ2020 + µ2200 + µ0220)

σ16r = µ1111 −
ρ12

2
(µ2011 + µ0211) −

ρ34

2
(µ1120 + µ1102)

+
ρ12ρ34

4
(µ2020 + µ2002 + µ0220 + µ0202).

The expressions for σ22r, ...., σ66r are similar to that of σ11r. The expressions

for σ13r, σ14r, σ15r, σ23r, σ24r, σ26r, σ35r, σ36r, σ45r, σ46r and σ56r are similar

to that of σ16r. Finally, the expressions for σ25r and σ34r are similar to that of

σ16r. Obviously, the asymptotic multivariate normal distribution of the Fisher’s

z-transformed variables can be worked out in a straightforward manner.

2.3 Meta-Analysis of Correlations: an Asymptotic Test

For testing the equality of the correlation matrices across k populations, we

need to test the equality of the vector of correlations, or equivalently, that of

the Fisher’s z-transformed quantities. Let z(j) denote the vector consisting of

the Fishers z-transformed sample correlations based on a sample of size nj

from the jth population. Let Σ(j)
z denote the covariance matrix of the asymp-

totic distribution of z(j) and Σ̂
(j)

z denote its estimate obtained by replacing the

population mixed moments and pairwise correlations with the corresponding

sample mixed moments and sample correlations. Define

T (z) =
k∑

j=1

(z(j) − z̄)′Σ̂
(j)−1

(z(j) − z̄), (4)

where z̄ =
[∑k

j=1 Σ̂
(j)−1]−1[∑k

j=1 Σ̂
(j)−1

z(j)
]
. We reject the hypothesis of

equality of correlation matrices if T (z) > χ2
p(k−1);α, where χ2

r;α denotes the

upper α percentile of a chisquare distribution with df = r. This test is the familiar

and widely used Cochran’s [11] test of homogeneity in meta-analysis.

Suppose the equality of the correlation matrices is accepted, and we want

to derive a confidence set for the common set of correlations. For this, let ζ
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denote the vector of Fisher’s z-transformed population correlations. Note that

z̄ ∼ N

ζ,

 k∑
j=1

(Σ̂(j))−1

−1


An ellipsoidal confidence set (ECS) for ζ is then readily given by

ECS =

ζ : (ζ − z̄)′
k∑

j=1

(Σ̂(j))−1(ζ − z̄) ≤ χ2
p(k−1);α


3. A Clinical Application

In this section we apply the methods developed in the previous section to

a clinical problem involving an investigation of the efficacy of the cholesterol

lowering drug, Ezetimibe, in combination with statins (treatment), compared to

the administration of statins alone (control), based on data from different stud-

ies. Furthermore, the patients in the different studies came from two lines of

therapy: first line therapy, where the patients were not on any statins prior to

entering the study, and second line therapy, where the patients were already

on statins when they entered the study. Our analysis is based on baseline data

set involving three cholesterol related variables: low-density lipoprotein (LDL),

non-high density lipoprotein (NHDL) and Apolipoprotein B (APOB). A similar

analysis can be carried out based on study end data also. We test the homo-

geneity of correlation matrices for overall, line 1 alone, and line 2 alone. The

meta-analysis results are presented below. We also point out that although use

of the typical scale factor (n − 3) in Fisher’s z-transformation produces slightly

better results, in our specific application it does not matter due to the large sam-

ple sizes. The analysis reported below assumes that we have samples from

trivariate normal populations. Thus the asymptotic covariance matrix used is

of the form (2).

3.1. Results of baseline correlation analysis

Table 1 shows the pairwise correlations at baseline from all the studies,

identified by line 1 and 2. Table 2 shows the result from meta-analysis based

on the statistic T (z) in (4). It turns out that the homogeneity hypothesis about

the correlation matrices is rejected for all the three cases we have considered.
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Table 1. Baseline correlation analysis.

Trial n r12 r13 r23 line
1 875 0.9002 0.7448 0.8553 1
2 664 0.8656 0.7001 0.7915 1
3 210 0.8307 0.8750 0.9624 2
4 700 0.9455 0.8732 0.9353 1
5 745 0.9173 0.8558 0.9355 1
6 619 0.9697 0.8771 0.9185 2
7 1528 0.8924 0.7880 0.9117 1
8 2832 0.8926 0.8268 0.9238 2
9 1790 0.8979 0.8283 0.9182 1
10 2854 0.8789 0.7714 0.9098 1
11 1167 0.9028 0.8209 0.9109 1
12 179 0.8582 0.7615 0.8686 2
13 551 0.8448 0.7379 0.8612 2
14 1069 0.8655 0.8250 0.9009 1
15 1021 0.9265 0.6860 0.7750 2
16 465 0.9167 0.8330 0.9175 2
17 296 0.9751 0.9256 0.9482 2
18 237 0.8985 0.7547 0.8350 1
19 545 0.8685 0.6842 0.7735 1
20 531 0.8819 0.7407 0.8061 1
21 625 0.8858 0.7270 0.8004 1
22 100 0.9581 0.8828 0.9132 2
23 406 0.7926 0.6527 0.8663 2
24 362 0.7867 0.6618 0.8503 2
25 170 0.7357 0.6241 0.8939 2
26 269 0.8340 0.6849 0.8826 2
27 422 0.8399 0.7093 0.8866 2
28 627 0.8802 0.8573 0.9569 2
29 593 0.8259 0.5495 0.6901 2

r12 is correlation between LDLC and NHDL;

r13 is correlation between LDLC and APOB;

r23 is correlation between NHDL and APOB

Table 2. Baseline correlation analysis; testing homogeneity of correlation ma-
trices.

T (z) d.f. p-value Decision
Overall 2865.02 84 < .0001 Reject H0

Line 1 alone 820.80 36 < .0001 Reject H0

Line 2 alone 1994.76 45 < .0001 Reject H0
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3.2 Results of study end correlation analysis

A similar meta-analysis can be provided for study-end (post effect) corre-

lations from all the studies identified by line 1 and 2, presented in Table 3. It

turns out that the test of homogeneity hypothesis about the correlation matrices

based on T (z) is rejected for all the cases we have considered (see Shah et al.

[10] for details).

Table 3. Study-end correlations.

Trial n r12 r13 r23 line
1 849 0.9589 0.9074 0.9540 1
2 646 0.9653 0.9371 0.9687 1
3 201 0.8729 0.8332 0.8881 2
4 681 0.9497 0.9140 0.9659 1
5 745 0.9421 0.8923 0.9490 1
6 1509 0.9664 0.9366 0.9689 1
7 2832 0.9237 0.8746 0.9509 2
8 1790 0.9348 0.9048 0.9590 1
9 2854 0.9321 0.8907 0.9621 1
10 1167 0.9156 0.8621 0.9436 1
11 179 0.8736 0.8688 0.8981 2
12 551 0.8887 0.8369 0.9228 2
13 1069 0.9112 0.9005 0.9438 1
14 1021 0.9368 0.8647 0.9092 2
15 467 0.9318 0.8594 0.9329 2
16 296 0.9730 0.9173 0.9582 2
17 231 0.9537 0.8934 0.9496 1
18 535 0.9491 0.9163 0.9588 1
19 523 0.9344 0.8652 0.9187 1
20 614 0.9775 0.9567 0.9772 1
21 407 0.8975 0.8102 0.9253 2
22 363 0.9269 0.8588 0.9222 2
23 170 0.9071 0.8338 0.9450 2
24 271 0.9308 0.8663 0.9497 2
25 423 0.8915 0.8370 0.9380 2
26 636 0.9293 0.9022 0.9713 2
27 593 0.9338 0.8536 0.9223 2

r12 is correlation between LDLC and NHDL;
r13 is correlation between LDLC and APOB;
r23 is correlation between NHDL and APOB
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For an increased scope of the meta-analysis of our data, we have also

compared 3×3 pairwise correlation matrices under the following two scenarios:

• first line and second line correlation matrices at baseline (Table 4).

• baseline and study-end (post effect) correlation matrices by line 1 (Table

5) and line 2 (Table 6).

Our conclusion in terms of rejection of the homogeneity hypothesis remains

the same in all the cases.

Table 4. Baseline, line 1 vs line 2; T (z) = 295.8704 and p-Value < .0001.

n r12 r13 r23

Baseline, line 1 13330 0.9040 0.8215 0.9051
Baseline, line 2 9122 0.9380 0.8648 0.9254

Table 5. Line 1, baseline vs study end; T (z) = 1189.955 and p-Value < .0001.

n r12 r13 r23

Baseline, line 1 13330 0.904 0.8215 0.9051
Study-end, line 1 12238 0.943 0.9087 0.9577

Table 6. Line 2, baseline vs study-end; T (z) = 169.354 and p-Value < .0001.

n r12 r13 r23

Baseline, line 2 9122 0.9380 0.8648 0.9254
Study-end, line 2 8417 0.9361 0.8859 0.9461

We conclude this section with a confirmatory simulation study of the Type I

error rate of our proposed test based on T (z) under the scenario of post effect

overall correlation analysis when the null hypothesis H0 is true. Such a sim-

ulation study is helpful due to the composite nature of the null hypothesis H0.

Under the ith study, we draw a random sample of size ni from a multivariate

normal distribution with mean vector 0 and covariance matrix R, then compute

the sample correlation matrix R̂i, and compute T (z). Our choice of ni’s corre-

sponds to those under the post effect data set (see Table 3), and the following

choices were made for the true correlation matrix R:

R1 =


1 .9 .8

1 .9

1

 , R2 =


1 .9 .8

1 .8

1

 , R3 =


1 .9 .7

1 .8

1

 , R4 =


1 .9 .6

1 .5

1

 ,
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R5 =


1 .9 .6

1 .4

1

 , R6 =


1 .7 .7

1 .4

1

 , R7 =


1 .5 .8

1 .4

1

 , R8 =


1 .6 .5

1 .1

1

 ,

R9 =


1 .9 .3

1 .1

1

 , R10 =


1 .7 .2

1 .4

1

 , R11 =


1 .3 .7

1 .2

1

 , R12 =


1 .3 .5

1 .2

1

 ,

R13 =


1 .4 .2

1 .2

1

 ,R14 =


1 .3 .2

1 .3

1

 , R15 =


1 .1 .2

1 .4

1

 , R16 =


1 .1 .3

1 .1

1

 .

For a few values of the true correlation matrix (from the choices given

above), the estimated Type I error rate using the proposed test are given in

Table 7. It is clear that the proposed test maintains the stipulated Type I error

rate satisfactorily. All throughout, we have used the R software, and assumed

a 5% significance level.

Table 7. Type I error for multivariate test of homogeneity.

R Type I error
R1 0.0632
R2 0.0607
R3 0.0610
R4 0.0622
R5 0.0609
R6 0.0635
R7 0.0610
R8 0.0585
R9 0.0559
R10 0.0609
R11 0.0591
R12 0.0618
R13 0.0608
R14 0.0637
R15 0.0629
R16 0.0631

4. Conclusions

Meta-analysis involving correlation matrices has led to some new theoreti-

cal developments in terms of deriving an asymptotic test. The application to a

real clinical data set is very illuminating, and hopefully the meta-analysis meth-

ods developed in this paper will be used elsewhere. We remark in passing that
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the method for testing homogeneity of correlation matrices based on Fisher’s

Z transformation maintains Type I error quite accurately even in the multivari-

ate case, while the same is not true for the test based on sample correlations

themselves even in dimension one (see Shah et al. [12]).

Acknowledgement: Our sincere thanks are due to Professor P.K. Sen for

pointing out Hoeffding’s [8] excellent paper and its scope in our context.
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