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Abstarct 

In this paper, several confidence intervals for estimating the population 

Signal-to-Noise Ratio (SNR) are compared using simple random sampling (SRS) and 

ranked set sampling (RSS). A simulation study is conducted to compare the performance 

of the interval estimators using random data generated from normal distribution with 

specified population parameters so that the same values of SNR are obtained, with 

sample sizes =15,25,50n . The criteria for performance comparison is based on 

coverage probability and interval width. From simulation study it is observed that the 

confidence intervals based on the RSS have the higher coverage probabilities and smaller 

or equal widths compared to the confidence intervals based on SRS.  
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1. Introduction 

In analog and digital communications, the Signal-to-Noise ratio (SNR) is a 

measure of signal strength relative to background noise, while in quality control, the SNR 

represents the magnitude of the mean of a process compared to its variation. The SNR 

measures how much signal has been corrupted by noise, see McGibney and Smith [1] for 

a discussion. An alternative definition of the SNR is as the reciprocal of the coefficient of 

variation, i.e., the ratio of mean to standard deviation of a signal or measurement. Such an 

alternative definition is only useful for variables that are always non-negative (such as 

photon counts and luminance). SNR is commonly used in image processing, where the 

SNR of an image is usually calculated as the ratio of the mean pixel value to the standard 

deviation of the pixel values over a given neighborhood. For a population with mean   

and standard deviation  , the SNR is defined as the ratio of the population mean to the 

population standard deviation, i.e. SNR /= , but in real life situations, the population 

parameters   and   are estimated by x  and s , respectively. Hence a sample 

estimate of the population SNR is given by 𝑆𝑁𝑅̂ = 𝑥̅
𝑠⁄ . The coefficient of variation ( ) of a 

distribution is considered as one of the useful descriptive measures of variability and is 

defined as  /= . It is a unit free measure that quantifies the standard deviation as a 

proportion of the mean and used for comparing data from different distributions or those 

measured using different scales. Thus the sample estimate of the population SNR is the 

reciprocal of sample estimate of  . 

It is of great interest to find confidence interval estimate for SNR. Confidence 

interval estimation allows the researcher to have an idea about the precision of the point 

estimate rather than only a p value for rejection or no rejection of a specified null 

hypothesis. Confidence intervals for the SNR are very limited in the literature. The only 

result is by Sharma and Krishna [2] who developed the asymptotic distribution of the SNR 

without making any assumption about the distribution. For this reason, confidence 

intervals available for estimating   will be used to estimate SNR by simply noting the 

inverse relationship between   and SNR. In this regard, George and Kibria [3] performed 

a simulation study that compares several confidence intervals estimate for estimating 

SNR. In this paper, rather than using the usual simple random sampling (SRS) technique, 

the more powerful ranked set sampling (RSS) technique will be used to generate the 

samples. This makes the current paper very unique in using RSS to estimate SNR rather 

than SRS. 
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Recently, RSS gained a solid ground for estimating more efficient population 

parameter. RSS has been shown to provide more precise and efficient estimates of the 

mean and variance when measurements on the variable of interest are difficult to obtain or 

too expensive to get, but ranking the elements in the sample is relatively easy. Moreover, 

RSS can provide an estimator for the variance which is unbiased and more efficient even 

for underlying non-normal distribution and where judgment rankings are not perfect. 

McIntyre [4] was the first to suggest using RSS to estimate the population mean instead of 

SRS and the idea was later developed by Takahasi and Wakimoto [5] using mathematical 

theory to support their claim. Takahashi and Wakimoto [5] proved that the sample mean 

obtained using RSS is unbiased and has smaller variance compared to that obtained 

using SRS using the same sample size, see Samawi and Muttlak [6], and Samawi [7] for 

discussion. Stokes [8] proposed an estimator for the variance of a ranked set sample data 

and showed that the estimator is asymptotically unbiased and asymptotically more 

efficient than the sample variance of a simple random sample of the same number of 

observations. MacEachern et al. [9] proposed an alternative estimator for the variance 

which is unbiased and more efficient than Stokes’s estimator even when the underlying 

distribution is not normal and the ranking of the elements is not perfect. MacEachern et al. 

[9] estimator of 
2  performs well for small to moderate sample sizes and is 

asymptotically equivalent to Stokes [8] estimator. 

Many papers compared performance of different confidence intervals for   

under different settings. McKay [10] derived a confidence interval for   that was modified 

later by Vangel [11] and shown to be nearly exact under the normality assumption. Also, 

Verrill [12] discussed confidence intervals for   when the population is normal or 

log-normal distributed. Panichkitkosolkul [13] compared the performance of three 

confidence intervals for estimating   for normal data. Also, Panichkitkosolkul [14] 

proposed an asymptotic confidence interval for   of a Poisson distribution and compared 

its performance with those of McKay [10] and Vangel [11], while Albrecher et. al. [15] 

presented Asymptotic of the Sample Coefficient of Variation. Terpstra and Nelson [16] 

used unbalanced RSS to compare maximum likelihood estimator (MLE) and weighted 

average (WA) estimate for the population proportion. Later Terpstra and Wang [17] 

compared several confidence intervals for estimating the population proportion using 

RSS, which is by far the only work found about implementation and discussing 

corresponding properties of RSS in interval estimation for the population proportion. On 

the other hand, Samawi and Muttlak [6] compared RSS to SRS in estimating ratio and 

proved that the efficiency of the estimator has increased when using RSS relative to SRS. 
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In this paper, a performance comparison of several confidence intervals for 

estimating SNR using the concept of RSS compared with the usual SRS technique is 

performed. Data were simulated from Normal distributions  with µ =10 and σ=10, 5, 3, 1 

so that their respective  SNR are 1, 2, 3.33 and 10. The paper is organized as follows: 

Section 2 presents balanced RSS sampling, while Section 3 presents statistical 

methodology and confidence intervals for SNR. Simulation technique and results are 

presented in Section 4. Finally some concluding remarks are presented in Section 5. 

 

2. Unbiased estimates of   and   using RSS 

 Suppose that we are interested in obtaining a RSS of size k  from a population. 

First, a SRS of size k  observations are selected and rank ordered on an attribute of 

interest. The observation that is determined to be the smallest is the first element of the 

RSS and is denoted [1]X  and the remaining 1k  units are discarded. A second SRS 

of size k  is selected from the population and ranked the same way and the second 

smallest observation is selected and denoted [2]X . In a similar fashion, 

][[4][3] ,...,, kXXX  are selected, hence ][[2][1] ,...,, kXXX  represent our first 

balanced RSS of size k . To obtain a balanced RSS of size kmn = , the process is 

repeated m  independent cycles yielding the balanced RSS of size n  shown in Table 1. 

 

Table 1. Balanced RSS with m  cycles and set size k . 

 

Cycle 1 [1]1X  [1]2X  [1]3X  ... kX [1]  

Cycle 2 [2]1X  [2]2X  [2]3X  ... kX [2]  

Cycle 3 [3]1X  [3]2X  [3]3X  ... kX [3]  

      

      

Cycle m ]1[mX  ]2[mX  ]3[mX  ... kmX ][  

 

 The complete balanced RSS with set size k  and m  cycles is given by 

}1,2,...,=;1,2,...,=:{ ][ kimrX ir . The term irX ][  is called the r th judgment 

order statistic from the i th cycle. It is the observation that is judged to be the r th order 

statistic from one of the k  sets in the i th cycle, see MacEachern et al. [9] for discussion. 
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Assume that the underlying distribution has finite mean   and variance 
2 . Stokes [8] 

proposed an estimator of 
2  based on RSS given by  
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Stokes [8] showed that this estimator is a biased estimator of 
2 , but it is asymptotically 

unbiased as either n  or m  approach  . Moreover, Stokes [8] indicated that the RSS 

estimator ̂  has more precision over the sample mean, say Y  obtained using SRS 

because of independence of the order statistics composing the ranked set sample. In fact, 

the author showed that 
2n  var(Y )   

2n  var( ̂ ). 

The balanced RSS is used in this paper. The estimator of the variance of a RSS 

proposed by MacEachern et al. [9] given below will be implemented in the simulations. 

 

2 1
ˆ = {( 1) ( 1)k MST nk k MSE

nk
        (2)              

                      

Where MSE and MST are the mean-square error and mean-square treatment from an 

analysis of variance performed on the ranked set sample data with the judgment class 

used as a factor. This estimator has been shown to perform very well for small as well as 

large ranked set samples, which is an improvement on Stokes [8] estimator. The 

comparison will be based on the factors: coverage probability and width which seems to 

be the major factors for comparison, see Mahmoudvand and Hassani [18], Terpstra and 

Wang [17], Panichkitkosolkul [13], Panichkitkosolkul [14], and Kang and Schmeiser [19] 

for discussion. 

 

3. Statistical Methodology 

Let 1X , 2X , ...... nX  be an independently and identically distributed (iid) 

random sample of size n  from a population with finite mean,  , and finite variance, 

2 . Let x  be the sample mean and s  be the sample standard deviation. Then  
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𝑆𝑁𝑅̂ =
𝑥̅

𝑠
 would be the estimated value of the population SNR = (




) and  𝜏̂ =

𝑠

𝑥̅
 

would be the estimated value of the population coefficient of variation, )(=



 . The 

main objective is to estimate )100%(1   confidence intervals for the population 

SNR=
1)(   while using the merits of RSS over SRS. George and Kibria [3] have 

reviewed and proposed several confidence intervals for the SNR parameter. Based on 

their simulation study they have recommended some promising intervals. In this section 

we will consider those recommended intervals by George and Kibria and compare the 

performance of those intervals based on RSS and SRS. The following confidence intervals 

will be implemented in the simulations.  

  
1. Method 1. Miller [20] Confidence Interval for normal distribution(Mill): Miller 

[14] showed that 
x

s
 approximates an asymptotic normal distribution with mean, 
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2. Method 2. McKay [10] Confidence Interval using Chi-square distribution:   

The )100%(1   approximate confidence interval for the population inverted SNR is    
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  Therefore the )100%(1   approximate confidence interval for the population SNR 

can be expressed as   
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 3. Method 3: Median Modified Miller Estimator Kibria [21] and Shi and Kibria [22] 

claimed that for a skewed distribution, the median describes the center of the distribution 

better than the mean. Thus, for skewed data it makes more sense to measure sample 

variability in terms of the median rather than the mean. Then following Shi and Kibria [22], 

the )100%(1   CI for the SNR are obtained for four of the existing estimators and 

provided below. These median modifications are made in attempt to improve the 

performance of the original intervals. The modified intervals represent both parametric and 

non-parametric methods.    
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4. Method 4: Median Modification of McKay 
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5. Method 5: Median Modification of Modified McKay
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6. Method 6: Median Modified Curto and Pinto[23]    
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where Z(α/2) is the 100(α/2)th percentile of the standard normal distribution . Both of x  

and s  will be replaced by ̂  and ̂  in equation (1) to obtain the corresponding 

confidence intervals for RSS, while regular formulas for x  and s  will be used for SRS. 

 

4. Simulation Study 

The objective of the paper is to compare the performance of several interval 

estimators of SNR using SRS compared to RSS. Since, a theoretical comparison is not 

possible, a simulation study has been conducted in this section using R


 statistical 

software. Data were randomly generated from normal. The nominal confidence level is set 

to 95%. 

4.1. Simulation Technique 

In these simulations, random samples of sizes =15,25,50n  are generated 

with specific parameters from Normal distribution. To better assess and compare the 
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performance of the confidence intervals, comparisons will be made under the same 

setting. For each combination of n  and SNR, 5000 replications were generated. 

Normal Distribution 

Let nxxx ,,, 21   be iid  random sample from a Normal distribution with finite 

mean   and variance 
2 . For a random variable X such that

2( , )X N   , the 

population SNR /= . Thus, for 10,5,3,1=  and 10=  the corresponding 

population values of SNR are 1, 2, 3.33, and 10 and the corresponding simulated 

coverage probabilities and widths are presented in Tables 2 to 5 respectively. 

 

Table 2. The estimated coverage probabilities and average widths for Normal 

10)=10,=(  and SNR=1. 

 Method   One  Two  Three  Four   Five   Six 

n=15      SRS        

Cover  0.843   0.884   0.844   0.894   0.902   0.853  

Lower   0.101   0.112   0.092   0.102   0.094   0.098  

Upper   0.052   0.000   0.060   0.000   0.000   0.049  

Width   2.203   5.073   2.514   4.992   4.174   1.971  

   RSS    

Cover  0.952   0.959   0.951  0.964   0.969   0.958  

Lower   0.031   0.041   0.030   0.032   0.031  0.033  

Upper   0.012   0.000   0.011  0.000   0.000   0.010  

Width   1.882   6.061   2.432   5.962   4.892   1.183  

n=25              

   SRS    

Cover  0.912   0.912  0.920   0.921  0.921  0.919  

Lower   0.080   0.084   0.072   0.079   0.071  0.077  

Upper   0.004   0.000   0.004   0.000   0.000   0.003  

Width   1.374   3.060  1.441  3.023   2.640   1.333  

   RSS    

Cover  0.973   0.974   0.980   0.972   0.980   0.977  

Lower   0.023   0.022   0.020   0.024   0.020   0.023  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   1.324   3.731   1.323   3.693   2.851  1.282  

n=50              

   SRS    

Cover  0.934   0.934   0.934   0.933   0.942   0.936  

Lower   0.062   0.062  0.062   0.063   0.054   0.064  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   0.789   1.403   0.784   1.399   1.223   0.778  

   RSS    

Cover  0.981  0.981   0.983   0.982   0.981  0.982  

Lower   0.019   0.019   0.013   0.014   0.011  0.018  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   0.782   1.312   0.782   1.309   1.154   0.772  
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Table 3. The estimated coverage probabilities and average widths for Normal

5)=10,=(  and SNR=2. 

 Method   One  Two  Three  Four   Five   Six 

n=15              

   SRS    

Cover  0.909  0.904   0.919   0.911  0.913   0.915  

Lower   0.091  0.092   0.081  0.081  0.083   0.085  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   2.384   2.939   2.364   2.883   2.573   2.244  

   RSS    

Cover  0.969  0.964   0.971  0.970   0.972   0.971  

Lower   0.031  0.032   0.021  0.030   0.024   0.029  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   2.324   2.824   2.301  2.779   2.490   2.188  

n=25              

   SRS    

Cover  0.931   0.923   0.933   0.933   0.932   0.934  

Lower   0.069   0.073  0.063   0.063   0.064   0.066  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   1.610   1.754   1.600   1.731  1.669   1.560  

   RSS    

Cover  0.972   0.964   0.971  0.973   0.974   0.974  

Lower   0.024   0.032   0.021  0.023   0.022   0.026  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   1.593   1.731   1.583   1.713   1.649   1.543  

n=50              

   SRS    

Cover  0.933   0.933   0.940   0.939   0.941  0.937  

Lower   0.061  0.063  0.053   0.061  0.054   0.059  

Upper   0.003   0.000  0.003   0.000   0.001  0.004  

Width   1.043   1.092   1.040   1.083   1.070   1.028  

   RSS    

Cover  0.974   0.972   0.972   0.971  0.972   0.975  

Lower   0.021   0.024   0.024   0.021  0.024   0.025  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   1.033  1.082   1.034   1.080   1.064   1.022  
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Table 4. The estimated coverage probabilities and average widths for Normal

3)=10,=(  and SNR=3.33 . 

 Method   One  Two  Three  Four   Five   Six 

n=15              

   SRS    

Cover  0.913   0.914  0.923   0.923   0.923   0.922  

Lower   0.083   0.082  0.073   0.073   0.073   0.078  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   3.350   3.423   3.304   3.363   3.284   3.151  

   RSS    

Cover  0.959   0.952   0.964   0.961  0.962   0.960  

Lower   0.041   0.044   0.032   0.039   0.034   0.039  

Upper   0.000   0.000   0.000   0.000   0.000   0.000  

Width   3.261   3.342   3.222   3.282   3.209   3.073  

n=25              

   SRS    

Cover  0.931   0.930   0.932   0.932   0.932   0.933  

Lower   0.062   0.064   0.060   0.063   0.061  0.063  

Upper   0.003   0.001   0.004   0.002   0.002   0.005  

Width   2.070   2.094  2.053   2.073   2.054   2.016  

   RSS    

Cover  0.961   0.964  0.964   0.963   0.963   0.966  

Lower   0.034   0.031  0.031  0.033   0.032   0.033  

Upper   0.000  0.000   0.001  0.001  0.001  0.001  

Width   2.044   2.064  2.031  2.052   2.033   1.991  

n=50              

   SRS    

Cover  0.939   0.940   0.944   0.942   0.944   0.941  

Lower   0.051   0.053   0.050   0.052   0.051  0.052  

Upper   0.002   0.004  0.002   0.001  0.001  0.007  

Width   1.521   1.533   1.514   1.529   1.521  1.501  

   RSS    

Cover  0.972  0.971   0.973   0.973   0.973   0.972  

Lower   0.023   0.024   0.021  0.022   0.021  0.026  

Upper   0.001   0.001  0.002   0.001  0.001  0.002  

Width   1.512   1.521   1.502   1.513   1.509   1.490  
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Table 5. The estimated coverage probabilities and average widths for Normal

1)=10,=(   and SNR=10 . 

 Method   One  Two  Three  Four   Five   Six 

n=15              

   SRS    

Cover  0.914   0.913   0.922   0.924   0.924   0.920  

Lower   0.081   0.082   0.072   0.073   0.073   0.076  

Upper   0.001  0.001  0.002   0.002   0.002   0.003  

Width   9.160  9.042   9.004   8.883   8.864   8.605  

   RSS    

Cover   0.960  0.954   0.961  0.964   0.964   0.961  

Lower   0.040   0.042   0.034   0.032   0.031  0.038  

Upper   0.000  0.000   0.001  0.001  0.001  0.001  

Width   8.851   8.742   8.702   8.591  8.571  8.321  

n=25              

    SRS      

Cover   0.924  0.923   0.931  0.930   0.930   0.928  

Lower   0.070   0.071  0.061  0.062   0.062   0.067  

Upper   0.002   0.002   0.004   0.004   0.004   0.005  

Width   6.423  6.384  6.352   6.312   6.309   6.205  

   RSS    

Cover   0.963   0.962   0.970   0.970   0.969   0.968  

Lower   0.030   0.031  0.022   0.023   0.023   0.027  

Upper   0.003   0.003   0.004   0.004   0.004   0.005  

Width   6.282   6.249   6.223   6.181  6.173   6.076  

n=50             

   SRS       

Cover   0.933  0.932   0.940   0.939   0.939   0.938  

Lower   0.054   0.051  0.049   0.050   0.050   0.050  

Upper   0.009   0.009   0.011  0.011  0.011  0.012  

Width   4.221   4.211   4.203   4.193   4.190   4.158  

   RSS       

Cover   0.972  0.971  0.974   0.974   0.974   0.973  

Lower   0.024  0.021  0.021  0.021  0.021  0.022  

Upper   0.004   0.004   0.001  0.001  0.001  0.005  

Width   4.181  4.171   4.160   4.150   4.144   4.115  

 
4.2. Simulation Results 

 To compare the performance of the estimators we have generated random 

samples from Normal. The simulated coverage probabilities and average widths for SNR 

values of 1, 2, 3.333 and 10 are presented in Tables 2 to 5 respectively, where lower 
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(upper) indicate the proportion of times the estimated SNR is below (above) the lower 

(upper) confidence limits of the estimated SNR, respectively. From these tables it appears 

that as sample size increases the coverage probabilities increase while the average 

widths decreases. This is true as SNR values increase from 1 to 10. For large sample size, 

the performance of the interval estimators for both RSS and SRS do not differ greatly. 

However, for small sample sizes, the RSS performed better than SRS in the sense of 

higher coverage and shorter width for all methods. 

 

5. Conclusion 

This paper considered several interval estimators for estimating the population 

signal to noise ratio (SNR). We have used both SRS and RSS techniques to construct the 

proposed confidence intervals. Since a theoretical comparison is not possible, a 

simulation study has been conducted to compare the performance of the interval 

estimators. We have generated data from normal distribution to see the performance of 

the estimators. Coverage probability and average width are considered as a criterion of a 

good estimator. When we compare the performance under both sampling techniques, we 

observed that for large sample sizes, there is not too much difference between the two 

techniques. However, for small sample sizes, the RSS performed better than the 

corresponding SRS. We also observed that Methods 1, 3 and 6 performed better than the 

other methods in most situations. We believe that the findings of the paper will be useful 

for all practitioners interested in estimating SNR with better accuracy. 
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