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Abstarct

In this paper, several confidence intervals for estimating the population
Signal-to-Noise Ratio (SNR) are compared using simple random sampling (SRS) and
ranked set sampling (RSS). A simulation study is conducted to compare the performance
of the interval estimators using random data generated from normal distribution with

specified population parameters so that the same values of SNR are obtained, with
sample sizes N =15,25,50 . The criteria for performance comparison is based on

coverage probability and interval width. From simulation study it is observed that the
confidence intervals based on the RSS have the higher coverage probabilities and smaller
or equal widths compared to the confidence intervals based on SRS.
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1. Introduction

In analog and digital communications, the Signal-to-Noise ratio (SNR) is a
measure of signal strength relative to background noise, while in quality control, the SNR
represents the magnitude of the mean of a process compared to its variation. The SNR
measures how much signal has been corrupted by noise, see McGibney and Smith [1] for
a discussion. An alternative definition of the SNR is as the reciprocal of the coefficient of
variation, i.e., the ratio of mean to standard deviation of a signal or measurement. Such an
alternative definition is only useful for variables that are always non-negative (such as
photon counts and luminance). SNR is commonly used in image processing, where the
SNR of an image is usually calculated as the ratio of the mean pixel value to the standard
deviation of the pixel values over a given neighborhood. For a population with mean ¢

and standard deviation O , the SNR is defined as the ratio of the population mean to the

population standard deviation, i.e. SNR = ;1/0', but in real life situations, the population

parameters [/ and O are estimated by X and S, respectively. Hence a sample

estimate of the population SNR is given by SNR = f/s. The coefficient of variation (7 ) of a

distribution is considered as one of the useful descriptive measures of variability and is
defined as 7 = of i1 Itis a unit free measure that quantifies the standard deviation as a

proportion of the mean and used for comparing data from different distributions or those
measured using different scales. Thus the sample estimate of the population SNR is the
reciprocal of sample estimate of 7 .

It is of great interest to find confidence interval estimate for SNR. Confidence
interval estimation allows the researcher to have an idea about the precision of the point
estimate rather than only a p value for rejection or no rejection of a specified null
hypothesis. Confidence intervals for the SNR are very limited in the literature. The only
result is by Sharma and Krishna [2] who developed the asymptotic distribution of the SNR
without making any assumption about the distribution. For this reason, confidence
intervals available for estimating 7 will be used to estimate SNR by simply noting the
inverse relationship between 7 and SNR. In this regard, George and Kibria [3] performed
a simulation study that compares several confidence intervals estimate for estimating
SNR. In this paper, rather than using the usual simple random sampling (SRS) technique,
the more powerful ranked set sampling (RSS) technique will be used to generate the
samples. This makes the current paper very unigue in using RSS to estimate SNR rather
than SRS.
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Recently, RSS gained a solid ground for estimating more efficient population
parameter. RSS has been shown to provide more precise and efficient estimates of the
mean and variance when measurements on the variable of interest are difficult to obtain or
too expensive to get, but ranking the elements in the sample is relatively easy. Moreover,
RSS can provide an estimator for the variance which is unbiased and more efficient even
for underlying non-normal distribution and where judgment rankings are not perfect.
Mclintyre [4] was the first to suggest using RSS to estimate the population mean instead of
SRS and the idea was later developed by Takahasi and Wakimoto [5] using mathematical
theory to support their claim. Takahashi and Wakimoto [5] proved that the sample mean
obtained using RSS is unbiased and has smaller variance compared to that obtained
using SRS using the same sample size, see Samawi and Muttlak [6], and Samawi [7] for
discussion. Stokes [8] proposed an estimator for the variance of a ranked set sample data
and showed that the estimator is asymptotically unbiased and asymptotically more
efficient than the sample variance of a simple random sample of the same number of
observations. MacEachern et al. [9] proposed an alternative estimator for the variance
which is unbiased and more efficient than Stokes’s estimator even when the underlying

distribution is not normal and the ranking of the elements is not perfect. MacEachern et al.

[9] estimator of o? performs well for small to moderate sample sizes and is
asymptotically equivalent to Stokes [8] estimator.

Many papers compared performance of different confidence intervals for 7
under different settings. McKay [10] derived a confidence interval for 7 that was modified
later by Vangel [11] and shown to be nearly exact under the normality assumption. Also,
Verrill [12] discussed confidence intervals for 7 when the population is normal or
log-normal distributed. Panichkitkosolkul [13] compared the performance of three
confidence intervals for estimating 7 for normal data. Also, Panichkitkosolkul [14]
proposed an asymptotic confidence interval for 7 of a Poisson distribution and compared
its performance with those of McKay [10] and Vangel [11], while Albrecher et. al. [15]
presented Asymptotic of the Sample Coefficient of Variation. Terpstra and Nelson [16]
used unbalanced RSS to compare maximum likelihood estimator (MLE) and weighted
average (WA) estimate for the population proportion. Later Terpstra and Wang [17]
compared several confidence intervals for estimating the population proportion using
RSS, which is by far the only work found about implementation and discussing
corresponding properties of RSS in interval estimation for the population proportion. On
the other hand, Samawi and Muttlak [6] compared RSS to SRS in estimating ratio and
proved that the efficiency of the estimator has increased when using RSS relative to SRS.
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In this paper, a performance comparison of several confidence intervals for
estimating SNR using the concept of RSS compared with the usual SRS technique is
performed. Data were simulated from Normal distributions with p =10 and 6=10, 5, 3, 1
so that their respective  SNR are 1, 2, 3.33 and 10. The paper is organized as follows:
Section 2 presents balanced RSS sampling, while Section 3 presents statistical
methodology and confidence intervals for SNR. Simulation technique and results are

presented in Section 4. Finally some concluding remarks are presented in Section 5.

2. Unbiased estimates of 4/ and O using RSS

Suppose that we are interested in obtaining a RSS of size K from a population.

First, a SRS of size k observations are selected and rank ordered on an attribute of

interest. The observation that is determined to be the smallest is the first element of the

RSS and is denoted X[1] and the remaining K —1 units are discarded. A second SRS

of size K is selected from the population and ranked the same way and the second
smallest observation is selected and denoted X[z] . In a similar fashion,
Xz Kpaprs Xpp are selected, hence Xy, Xppppeey Xy represent our first
balanced RSS of size K. To obtain a balanced RSS of size N = km, the process is

repeated M independent cycles yielding the balanced RSS of size N shown in Table 1.

Table 1. Balanced RSS with M cycles and set size K .

Cyclel | Xyp Xup X Xk
Cycle 2 X[2]1 X[z]z X[2]3 X[Z]k
Cycle 3 X[3]1 X[3]2 X[3]3 X[3]k
Cyclem X[m]l X[m]2 X[m]3 x[m]k

The complete balanced RSS with set size K and m cycles is given by
{X[r]i r=12,...mi=12..Kk}. The term X is called the I th judgment

order statistic from the 1 th cycle. It is the observation that is judged to be the I th order

statistic from one of the K setsinthe ith cycle, see MacEachern et al. [9] for discussion.
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Assume that the underlying distribution has finite mean (£ and variance o?. Stokes [8]

proposed an estimator of o based on RSS given by

n m

6% = : ZZ(x[r]i —f)?, where ji= izzx[r]i (€Y

nm-1=4= nm ==

Stokes [8] showed that this estimator is a biased estimator of o’ , but it is asymptotically
unbiased as either N or M approach oo. Moreover, Stokes [8] indicated that the RSS
estimator ,[t has more precision over the sample mean, say V obtained using SRS
because of independence of the order statistics composing the ranked set sample. In fact,
the author showed that N2 var(?) > n® var(1).

The balanced RSS is used in this paper. The estimator of the variance of a RSS
proposed by MacEachern et al. [9] given below will be implemented in the simulations.

&2 = ik{(k —1)MST + (nk —k +1)MSE} @
n

Where MSE and MST are the mean-square error and mean-square treatment from an
analysis of variance performed on the ranked set sample data with the judgment class
used as a factor. This estimator has been shown to perform very well for small as well as
large ranked set samples, which is an improvement on Stokes [8] estimator. The
comparison will be based on the factors: coverage probability and width which seems to
be the major factors for comparison, see Mahmoudvand and Hassani [18], Terpstra and
Wang [17], Panichkitkosolkul [13], Panichkitkosolkul [14], and Kang and Schmeiser [19]

for discussion.

3. Statistical Methodology
Let X;, X,, ... X, be an independently and identically distributed (iid)

random sample of size N from a population with finite mean, (£, and finite variance,

o?. Let X be the sample mean and S be the sample standard deviation. Then
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SNR = = would be the estimated value of the population SNR = (ﬁ) and T =

o

L"|><|
><||"1

o
would be the estimated value of the population coefficient of variation, 7 = (—). The

main objective is to estimate (1—a)100% confidence intervals for the population

SNR= (2')71 while using the merits of RSS over SRS. George and Kibria [3] have

reviewed and proposed several confidence intervals for the SNR parameter. Based on
their simulation study they have recommended some promising intervals. In this section
we will consider those recommended intervals by George and Kibria and compare the
performance of those intervals based on RSS and SRS. The following confidence intervals

will be implemented in the simulations.

1. Method 1. Miller [20] Confidence Interval for normal distribution(Mill): Miller

S o
[14] showed that — approximates an asymptotic normal distribution with mean, —
X

u

and variance,

1)( ) |:05 (— )2} Then the (1—a)100% approximate

confidence interval for the population inverted SNR is

+Z, \/( 1)( ) {0.5+(§)Z} . Therefore the (1—«)100% approximate
X

x| | »

confidence interval for the population SNR can be expressed as

S S\2
_Z. \/ & ){o.5+(§)2}
(n-1) X X

2. Method 2. McKay [10] Confidence Interval using Chi-square distribution:

-1 7]

al

x| w»

The (1—)100% approximate confidence interval for the population inverted SNR is
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Horva 1 (i)z 4 Xosia? ,E Kootz 1 (%)2 4 X2

n X n-1 X n X n-1

x| »

Therefore the (1—a)100% approximate confidence interval for the population SNR

can be expressed as

2
S Ania2 ( ) 4 Kntai2 Z n-1,a/2
X n n-1
2 _
S Anaraz ( ) 4 Andrar Z n-1,1-af2
| X n n—1

3. Method 3: Median Modified Miller Estimator Kibria [21] and Shi and Kibria [22]
claimed that for a skewed distribution, the median describes the center of the distribution
better than the mean. Thus, for skewed data it makes more sense to measure sample
variability in terms of the median rather than the mean. Then following Shi and Kibria [22],

the (1—a)100% CI for the SNR are obtained for four of the existing estimators and

provided below. These median modifications are made in attempt to improve the
performance of the original intervals. The modified intervals represent both parametric and

non-parametric methods.

s, S\2

S S\2
, __ZaIZ\/(n 1)( )[0-5+(§)}

~ 1
where § = \/ 1Z(XI median(x))® is called modified standard deviation.
n —_

-1 ]

-1

x|
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4. Method 4: Median Modification of McKay

-1

g X Ania2 ( ) Zn Ania2
X n n-1
_ 1
~ 2
S ||| Anvrar ( )2 4 Andiaz X 1.1-al2
I X n n-1

5. Method 5: Median Modification of Modified McKay

~ 2

S Kooz T 2 Zn An-tal2

e ( )

X n-1

~ 2

S Xoatar b 2 Zn Ana1a2
[ - ( )

X n-1

6. Method 6: Median Modified Curto and Pinto[23]

-1

S 1(,s S S 1(,s S
?+Za/2\/_((?)4+0-5(t)2j ) T_Zalz\/_((?)4+0-5(t)2j
X n X X X n X X

where Z(a/2) is the 100(a/2)th percentile of the standard normal distribution . Both of X

-1

and S will be replaced by [1 and O in equation (1) to obtain the corresponding

confidence intervals for RSS, while regular formulas for X and S will be used for SRS.

4. Simulation Study
The objective of the paper is to compare the performance of several interval

estimators of SNR using SRS compared to RSS. Since, a theoretical comparison is not

possible, a simulation study has been conducted in this section using R statistical
software. Data were randomly generated from normal. The nominal confidence level is set
to 95%.

4.1. Simulation Technique

In these simulations, random samples of sizes N =15,25,50 are generated

with specific parameters from Normal distribution. To better assess and compare the
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performance of the confidence intervals, comparisons will be made under the same

setting. For each combination of N and SNR, 5000 replications were generated.

Normal Distribution

Let X, X,,..., X, be iid random sample from a Normal distribution with finite

mean A and variance &. For a random variable X such that X ~ N(z,5°), the

population SNR = g/ o . Thus, for o =10,5,3,1 and =10 the corresponding

population values of SNR are 1, 2, 3.33, and 10 and the corresponding simulated
coverage probabilities and widths are presented in Tables 2 to 5 respectively.

Table 2. The estimated coverage probabilities and average widths for Normal

(1 =10, 0 =10) and SNR=1.

Method One Two Three Four Five Six
n=15 SRS
Cover 0.843 0.884 0.844 0.894 0.902 0.853
Lower 0.101 0.112 0.092 0.102 0.094 0.098
Upper 0.052 0.000 0.060 0.000 0.000 0.049
Width 2.203 5.073 2.514 4,992 4,174 1.971
RSS
Cover 0.952 0.959 0.951 0.964 0.969 0.958
Lower 0.031 0.041 0.030 0.032 0.031 0.033
Upper 0.012 0.000 0.011 0.000 0.000 0.010
Width 1.882 6.061 2.432 5.962 4.892 1.183
n=25
SRS
Cover 0.912 0.912 0.920 0.921 0.921 0.919
Lower 0.080 0.084 0.072 0.079 0.071 0.077
Upper 0.004 0.000 0.004 0.000 0.000 0.003
Width 1.374 3.060 1.441 3.023 2.640 1.333
RSS
Cover 0.973 0.974 0.980 0.972 0.980 0.977
Lower 0.023 0.022 0.020 0.024 0.020 0.023
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 1.324 3.731 1.323 3.693 2.851 1.282
n=50
SRS
Cover 0.934 0.934 0.934 0.933 0.942 0.936
Lower 0.062 0.062 0.062 0.063 0.054 0.064
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 0.789 1.403 0.784 1.399 1.223 0.778
RSS
Cover 0.981 0.981 0.983 0.982 0.981 0.982
Lower 0.019 0.019 0.013 0.014 0.011 0.018
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 0.782 1.312 0.782 1.309 1.154 0.772
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Table 3. The estimated coverage probabilities and average widths for Normal
(14 =10,0 =5) and SNR=2.

Method One Two Three Four Five Six
n=15
SRS
Cover 0.909 0.904 0.919 0.911 0.913 0.915
Lower 0.091 0.092 0.081 0.081 0.083 0.085
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 2.384 2.939 2.364 2.883 2.573 2.244
RSS
Cover 0.969 0.964 0.971 0.970 0.972 0.971
Lower 0.031 0.032 0.021 0.030 0.024 0.029
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 2.324 2.824 2.301 2.779 2.490 2.188
n=25
SRS
Cover 0.931 0.923 0.933 0.933 0.932 0.934
Lower 0.069 0.073 0.063 0.063 0.064 0.066
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 1.610 1.754 1.600 1.731 1.669 1.560
RSS
Cover 0.972 0.964 0.971 0.973 0.974 0.974
Lower 0.024 0.032 0.021 0.023 0.022 0.026
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 1.593 1.731 1.583 1.713 1.649 1.543
n=50
SRS
Cover 0.933 0.933 0.940 0.939 0.941 0.937
Lower 0.061 0.063 0.053 0.061 0.054 0.059
Upper 0.003 0.000 0.003 0.000 0.001 0.004
Width 1.043 1.092 1.040 1.083 1.070 1.028
RSS
Cover 0.974 0.972 0.972 0.971 0.972 0.975
Lower 0.021 0.024 0.024 0.021 0.024 0.025
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 1.033 1.082 1.034 1.080 1.064 1.022
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Table 4. The estimated coverage probabilities and average widths for Normal

(12=10,0 = 3) and SNR=3.33 .

65

Method One Two Three Four Five Six
n=15
SRS
Cover 0.913 0.914 0.923 0.923 0.923 0.922
Lower 0.083 0.082 0.073 0.073 0.073 0.078
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 3.350 3.423 3.304 3.363 3.284 3.151
RSS
Cover 0.959 0.952 0.964 0.961 0.962 0.960
Lower 0.041 0.044 0.032 0.039 0.034 0.039
Upper 0.000 0.000 0.000 0.000 0.000 0.000
Width 3.261 3.342 3.222 3.282 3.209 3.073
n=25
SRS
Cover 0.931 0.930 0.932 0.932 0.932 0.933
Lower 0.062 0.064 0.060 0.063 0.061 0.063
Upper 0.003 0.001 0.004 0.002 0.002 0.005
Width 2.070 2.094 2.053 2.073 2.054 2.016
RSS
Cover 0.961 0.964 0.964 0.963 0.963 0.966
Lower 0.034 0.031 0.031 0.033 0.032 0.033
Upper 0.000 0.000 0.001 0.001 0.001 0.001
Width 2.044 2.064 2.031 2.052 2.033 1.991
n=50
SRS
Cover 0.939 0.940 0.944 0.942 0.944 0.941
Lower 0.051 0.053 0.050 0.052 0.051 0.052
Upper 0.002 0.004 0.002 0.001 0.001 0.007
Width 1.521 1.533 1.514 1.529 1.521 1.501
RSS
Cover 0.972 0.971 0.973 0.973 0.973 0.972
Lower 0.023 0.024 0.021 0.022 0.021 0.026
Upper 0.001 0.001 0.002 0.001 0.001 0.002
Width 1.512 1.521 1.502 1.513 1.509 1.490
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Table 5. The estimated coverage probabilities and average widths for Normal
(1£=10,0 =1) and SNR=10.

Method One Two Three Four Five Six
n=15
SRS
Cover 0.914 0.913 0.922 0.924 0.924 0.920
Lower 0.081 0.082 0.072 0.073 0.073 0.076
Upper 0.001 0.001 0.002 0.002 0.002 0.003
Width 9.160 9.042 9.004 8.883 8.864 8.605
RSS
Cover 0.960 0.954 0.961 0.964 0.964 0.961
Lower 0.040 0.042 0.034 0.032 0.031 0.038
Upper 0.000 0.000 0.001 0.001 0.001 0.001
Width 8.851 8.742 8.702 8.591 8.571 8.321
n=25
SRS
Cover 0.924 0.923 0.931 0.930 0.930 0.928
Lower 0.070 0.071 0.061 0.062 0.062 0.067
Upper 0.002 0.002 0.004 0.004 0.004 0.005
Width 6.423 6.384 6.352 6.312 6.309 6.205
RSS
Cover 0.963 0.962 0.970 0.970 0.969 0.968
Lower 0.030 0.031 0.022 0.023 0.023 0.027
Upper 0.003 0.003 0.004 0.004 0.004 0.005
Width 6.282 6.249 6.223 6.181 6.173 6.076
n=50
SRS
Cover 0.933 0.932 0.940 0.939 0.939 0.938
Lower 0.054 0.051 0.049 0.050 0.050 0.050
Upper 0.009 0.009 0.011 0.011 0.011 0.012
Width 4221 4,211 4.203 4,193 4.190 4.158
RSS
Cover 0.972 0.971 0.974 0.974 0.974 0.973
Lower 0.024 0.021 0.021 0.021 0.021 0.022
Upper 0.004 0.004 0.001 0.001 0.001 0.005
Width 4.181 4,171 4.160 4.150 4.144 4,115

4.2. Simulation Results
To compare the performance of the estimators we have generated random
samples from Normal. The simulated coverage probabilities and average widths for SNR

values of 1, 2, 3.333 and 10 are presented in Tables 2 to 5 respectively, where lower
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(upper) indicate the proportion of times the estimated SNR is below (above) the lower
(upper) confidence limits of the estimated SNR, respectively. From these tables it appears
that as sample size increases the coverage probabilities increase while the average
widths decreases. This is true as SNR values increase from 1 to 10. For large sample size,
the performance of the interval estimators for both RSS and SRS do not differ greatly.
However, for small sample sizes, the RSS performed better than SRS in the sense of

higher coverage and shorter width for all methods.

5. Conclusion

This paper considered several interval estimators for estimating the population
signal to noise ratio (SNR). We have used both SRS and RSS techniques to construct the
proposed confidence intervals. Since a theoretical comparison is not possible, a
simulation study has been conducted to compare the performance of the interval
estimators. We have generated data from normal distribution to see the performance of
the estimators. Coverage probability and average width are considered as a criterion of a
good estimator. When we compare the performance under both sampling techniques, we
observed that for large sample sizes, there is not too much difference between the two
techniques. However, for small sample sizes, the RSS performed better than the
corresponding SRS. We also observed that Methods 1, 3 and 6 performed better than the
other methods in most situations. We believe that the findings of the paper will be useful

for all practitioners interested in estimating SNR with better accuracy.
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