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Abstract

This study introduces the generalized zero-altered Poisson regression model
with the suitable link functions of parameters. There are three different models based on
the effects of parameters in the generalized zero-altered Poisson regression models. The
Bayesian approach is studied which the prior distributions of regression parameters in
both linear predictors are specified as independent normal distributions for the fixed
effects and inverse-gamma distributions for the random effects. The Bayesian estimation
method can be carried out using WinBUGS. Simulation study in the generalized zero-
altered Poisson regression models illustrates that the Bayesian approach is satisfactory
estimation method for fixed effects model (Model 1) at large sample sizes and even larger
sample sizes for the mixed models (Model Il and Model Ill). For application, generalized
zero-altered Poisson regression models are applied to the number of births of a
reproductive woman in the south of Thailand. The results showed that number of births
was significantly affected by age of women, number of household members, age at first
birth, and number of additional children wanted in both linear predictors. In addition, the

religion, place of residence, and education were significantly effects in the Poisson linear
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predictor. The age at first marriage was significantly effect in the dispersion linear

predictor.

Keywords: Bayesian, GLMs, zero-altered Poisson distribution, dispersed probability
models, WinBUGS.

1. Introduction

When we analyze count data, it is useful to investigate the patterns of
dispersion using exploratory data analysis. In recent year there has been considerable
interest in developing models for count data that allow for excess zeroes. Such high
frequencies of zero counts often leads to over dispersion and over dispersed probability
models, such as generalized or zero inflated Poisson distributions are generally used in
practice [1-4]. Ridout et al. [5] presented an overview of zero inflated models.
Winkelmann and Zimmermann [6] provided a thorough review of the statistical models
for count data and also presented many potential applications with underdispersion.

Generalized or zero-inflated Poisson distributions are commonly used to model
the count data. Such distributions can account for the overdispersion due to many zero
counts. However, in many applications of count data show evidence of underdispersion
such as airline failures, number of changes of employer, number of births by women [6].
As the case of underdispersion needs awkward parameter restrictions, the generalized
or zero-inflated Poisson distributions are often inadequate. Recently, a new class of
generalizations of the Poisson distribution that can account for both under and over
dispersion has introduced [7]. However, Ghosh and Kim [8] pointed that such
distributions are somewhat inflexible in practice. Therefore, they proposed the more
flexible and advantage class of zero-altered distributions which can account for both
types of dispersion and include other familiar models.

In modeling count data, other controllable factors (covariates) that might explain
the variation in the counts. Regression models are very useful to model such data.
Ghosh et al. [9] introduced Zero Inflated Poisson (ZIP) regression models which is a
special case in the class of zero inflated models including other familiar models. A
Bayesian estimation method is applied by using sampling-based methods. The proposed
method has better finite sample performance than the classical method by simulation
studies with tighter interval estimates and better coverage probabilities. They used

WinBUGS to illustrate the performance of the proposed method by applying it to a real-life
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data set. Angers and Biswas [10] proposed a zero-inflated generalized Poisson model
and a Bayesian analysis can be considered for some appropriate priors and the
posteriors are obtained using Monte Carlo integration with importance sampling. The
real-life data set is applied to these methods. This paper shows that the Poisson model is
a misfit that badly underestimates the number of zero counts. The ZIP is a misfit that
does not provide good estimates of the nonzero counts. Melkersson and Rooth [11]
proposed a zero-and-two-inflated count data model illustrated a relative excess of zero
and two children. The Poisson and gamma count distributions are used in the model
using the fertility data of Swedish women. Wang and Famoye [12] studied the modeling
for household fertility decisions by using a generalized Poisson regression model. The
model is estimated by the maximum likelihood estimation method and discussed the
suitable model by tests for dispersion and goodness-of-fit measures.

Bayesian approach is widely applied for fitting several models such as zero-
inflated generalized Poisson model [10], zero-inflated regression model [9], and
differential item functioning model [13, 14]. Gelman et al. [15] provided an excellent
introduction to Bayesian data analysis. Usually the joint posterior distribution is complex
and unavailable in closed form, thus simulation-based method broadly known as Markov
Chain Monte Carlo (MCMC) [16] required to obtain the point and interval estimates of the
parameters. MCMC algorithm can be used WIinBUGS software to perform all the
required computations. This research, the zero-altered Poisson regression models
included the effect of covariates will be proposed and developed. Our proposed models
turn out to be analytically intractability, hence a Bayesian approach is developed as an
alternative to classical statistical methods based on the maximum likelihood estimate.

The article is organized as follows: In Section 2, we describe the generalized
zero-altered Poisson regression models. In Section 3, we present the procedure of
simulation study for the generalized zero-altered Poisson regression model analyzed by
the Bayesian method using WinBUGS. In Section 4, the results of the simulation study for
the generalized zero-altered Poisson regression model are demonstrated. In Section 5,
the application of the generalized zero-altered Poisson regression model are presented.
Conclusions are given in Section 6.

2. The Zero-Altered Poisson Regression Models
For a random sample of observations Y,,Y,, ..., Y, , where n is the sample

size, the zero-altered Poisson regression model is applied with probability mass function

[8].



114 Thailand Statistician, 2013; 11(2): 111-131

5, +(1-[a[)e T¥%=0
f(v|6,4)= B e’
(y'| ' ) 1—§i++5i—{ : ‘21} ﬂflye ify,=12,...
l1-e y,l

where &, e(—l, l), A>0,0, = max{cSi,O} and 0, = max{—&i,o} . The mean

and variance are

e

i = E[Y] = 1—@++@_{1e }A.w(MM.

and
1- (5, 4)
(5, 4)

In the zero-altered Poisson (ZAP) regression models, parameter vectors are denoted as

o= Var[Y,]= (8, 4)4 +

/Jiz , respectively.

8= (8,8, ...

n

)' and 7\.:(21_,/12, ...,/’tn)’. From the random vector Y =

1
(Yl,YZ, ...,Yn) of size Nx1, be a discrete random vector with the zero-altered

Poisson distribution: ZAP( 0, , ;) for each random variable Y;;i=1, 2, ..., N. For the
independently distributed responses Y;’s from ZAP(0, , A, ), the appropriately used link
functions are considered as follows:

log (4 )= xi{p or log(4 )= X/p+uie,

where Xi' is the ith row of the X(nX D) covariate matrix with P—1 covariates when the

intercept term included in the model. The dispersion parameter 5, S (—1, l) SO we can
specify Fisher's z' transformation function to be the linear predictor for 5| , that is,

1 1+ é‘l ' 1 1+ 5, ' '

—log| ——= | =2z]y or =log| —" | = Z]y + V71,

2 "\1-9, 2 \1-9,

where Zi' is the ith row of the Z( covariate matrix with  —1 covariates when the

nxq)

’
intercept term included in the model. The vectors [} = (,30,,51, ...,ﬁp_l) and Y=
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!
(;/0,7/1, ...,7/q71) are the corresponding Px1 and Qx1 vectors of unknown
parameters (regression coefficients) associated with X(nX b) and Z(nxq), respectively. In
general, the covariates X(nxp) and Z(nxq) may or may not be the same matrices. If the

covariate matrices are the same, we need 2p regression parameters in the zero-

altered regression model.

Then the parameters are modeled by the link functions

1 1+,
Model I: log( A )= X d =log| — | = zly,
odel 1: log (4 )= xip ond Slog| T | =2
1 1+,
Model II: log( 4 )= X/p + Ula, d =log| — | =zly,
oae g( |) |B i an 2 g 1_61 |'Y
1 1+,
Model IlI: log (4 )= X d =log| —= | =z}y + Vit
odel 1 log (4 )= X and Slog| T =2y viT
for covariate vectors X;, Zi', ui', and Vi'where i=1,2, .., N. B, v are respectively

pxl and q><1 vectors of unknown parameters (the fixed effects). @;, T; are
respectively 'x1l and Sx1 vectors of unknown parameters (the random effects).

&y, - .-, &, are independent and distributed as ; ~ Normal(; ,02 )forj=1,2, ..,
]

r,and 7;;,...,7; are independent and distributed as 7; ~ Normal(7, ,O'fk ) fork=1,
2, ..., S. The parameters are estimated by Bayesian method using WinBUGS. So we get

the estimates of 5| and ﬁfl separated to 3 models as following:

TR

o - oofona) o S
N . < ep{2(ziF+viE))-1

oce 1 4, = exp () "0 o a(ai e ) 1
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2.2 Bayesian Analysis
The likelihood function of Y, Y,, ..., Y, which are observations from the ZAP

distribution in terms of the inverted link functions of dispersion and Poisson parameters

L(0.4) - S L el
O exp{2(zjy)} -1 -
71,_:“ 4 exp{2(zjy)}+1’ P(xB)

n-n,

exp{2(zjy)} -1 exp{2
exp{2(zjy)}+1 ) exp{2
>y

iz e—(n—no)exp(xi’[i)

HYi!

exp{2(zjy)} -1 B exp{2(z{y)}—1| o
exp{2(zjy)}+1 ) exp{2(z{y)}+1‘

where N, be the frequency of the zero count.

} -1 e—exp(x;ﬁ)
z )}+1 ) 1_ g~oP(p)

X

Ny

The Bayesian generalized linear models could be fitted by incorporating the
prior information directly on the regression parameters through multivariate normal, i.e.,

7Z(|3)~ Normal( B, GS). Choice of vague prior would be with B, =0 and 0'5 =cI,
where C is a very large number. From the structure of link functions and the previous
study, the prior distributions for regression coefficients (fixed effects) are the normal
distributions with mean 0 and variance 100 for regression coefficients ([3) in the linear
predictor of Poisson parameter. For regression coefficients (7Y ) in the linear predictor of

dispersion parameter, the prior distributions are the normal distributions with mean 0 and
variance 10. For the random effects, the prior distributions for the variance of the random

terms in Model 1l and Model Il are the inverse-gamma distributions.
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3. Simulation Study

Let a model with intercept and covariates X;;=Z;;, X, =Z;,, U;; and V;; were
considered for linear predictors. The true values of parameters ﬂo, ﬂl, ,32, Voo Vi

and y, will be set for the expected values of /ll* =1.0, 3.0, 5.0 and 5: =-0.5, 0.0, 0.5

(represent for the under- equi- and over-dispersion). The steps of simulation study for the

generalized zero-altered Poisson regression model would be:
Step 1: Specify the true values of regression parameters ,, B,, S, V. 7,.and 7,

for setting the Poisson parameter values and the dispersion parameter values,
respectively.

The values of these parameters are as following:

[, =0.0,log 3.0, log 5.0, B= B,=10,
-1 1 -y =
Yo = —=log 3.0, 0.0, =log 3.0, V1= V,=10,
2 2
a;; ~ Normal( &, 0'51 ), T~ NormaI(Z'l,O'TZ1 ),

for o, =7;=0and 0'02!1 = Gfl = 1. Assume the sample sizes N =50, 100 and 300.
Step 2: Generate the values of the covariates X;,~ Bernoulli(0.5), X;, ~ Normal(0, 1),

U;;~ Normal(0, 1), and V,; ~ Normal(0, 1) fori=1, 2, ..., N using R [17].

Step 3: Calculate the values of the Poisson and dispersion parameters from each model

Model I: , eXp(ﬂo +,31(Xi1_0'5)+182Xi2)’

N
1

s exp{Z(yO +;/1(xil—0.5)+;/2xi2)}—1
' eXp{Z(yo+)/1(Xi1—0.5)+}/zxi2)}+l’
Model Il A = exp(f,+ B, (%, —0.5)+ ByX, + iyl ).
s exp{Z(;/O +71(Xi1—0-5)+72Xiz)}—1
e {2(r 7 (X —05)+ X, )} 1
Model il A = exp( 3, + B, (%, —0.5)+ B,X, ).
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. exP{Z(Vo+71(Xi1_0-5)+7zxi2+Ti1Vi1)}_1
I 9Xp{2(7o+71(Xi1_0-5)+7zxi2+Ti1Vi1)}+1.

by using the generated values of covariates and specified coefficients in Step 1 and Step
2.

and

Step 4. Generate Y, from the zero-altered Poisson distribution with the dispersion

parameter values 5: and the Poisson parameter values /ll* or ZAP( 5-*,2,'*) in Step 3

fori=1,2,..., N.
Step 5: Assume the prior independence distributions are the normal distribution for all
regression parameters and the inverse-gamma distribution for the variance of random

effects such that

[, ~ Normal(0, 100), S, ~ Normal(0, 100), S, ~ Normal(0, 100),

7o~ Normal(0, 10), 71~ Normal(0, 10), V5~ Normal(0, 10),

i2~ Gamma(0.1, 0.1), izN Gamma(0.1, 0.1).
o 7

Step 6: Estimate the parameters by programming WinBUGS and setting a burn-in period
of 10,000 iterations of 20,000 samples and 3 chains. The WinBUGS code can be
requested from the corresponding author.

Step 7: Replicate the procedure from Step 2 to Step 6 that is the Monte Carlo (MC)
simulated data 1,000 sets.

Step 8: Compute the performance of estimates considering the bias, standard error
(S.E.), 2.5 percentile, the posterior median, 97.5 percentile. lllustrate the performance of
estimates by the boxplots.

Posterior inferences can be evaluated using the concept of calibration of the
posterior mean (or median), the Bayesian analogue to the classical notion of “bias.” For

parameter 6, we label the posterior median as € and define the miscalibration of the

posterior median as E(@) - @, for any value of &. If the prior distribution is true—that
is, if the data are constructed by first drawing & from p(@), then drawing y from

p(yl 9)—then the posterior median is automatically calibrated; that is its miscalibration is
0 for all values

of 4.
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4. Results

This research presents the results of simulation study for three different ZAP
regression models. Model | named “the fixed effects model” treats both linear predictors
of Poisson and dispersion parameters as fixed effects. Model || and Model Il named “the
mixed effects model” comprises of either fixed or random linear predictor of Poisson and
dispersion parts. In Model Il, the linear predictor of Poisson parameters was randomized
while the linear predictor of dispersion parameter was fixed, and vice versa for the Model
1. For the fixed effects model (Model I), the performance of parameter estimates in the
Poisson linear predictor at N = 300 is shown in Figure 1. The performance of parameter
estimates in the dispersion linear predictor at N = 300 is shown in Figure 2. At N = 300,
Figures 3-4 present the performance of variance component estimates for the random
term in the Poisson linear predictor (Model Il) and the dispersion linear predictor (Model
1), respectively. In addition, the performance of variance component estimates for the
random term in the dispersion linear predictor (Model IllI) at N = 500 is presented in
Figure 4.

The results of simulation study can be summarized that the generalized zero-
altered Poisson regression model in which both linear predictors were fixed (Model 1), the
Bayesian approach is an efficient estimation method. However, estimation of regression

parameters in the Poisson linear predictor requires large sample sizes (N > 100) at the

small Poisson parameter value (A = 1.0) and even larger sample sizes for estimation of
regression parameters in the dispersion linear predictor at the underdispersion data set
for all Poisson parameter values.

Similarly, for Model 1l (where the Poisson linear predictor was randomized
while the dispersion linear predictor was fixed in the generalized zero-altered Poisson
regression model), the Bayesian estimation approach is satisfactory for regression

parameters and variance component in the Poisson linear predictor at very large sample
sizes (N > 300) for all combinations of parameters (A, &) in the ZAP model. The

regression parameter estimation in the dispersion linear predictor requires large sample

sizes for the underdispersion data set.
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Table 1. Performances of regression coefficient estimates in the Poisson linear predictor
for Model .

Perfor-
mances

underdispersion

equi-dispersion

A =10

A =50

A =10 A =50

By

Bl B\2 :Bo

2

Ji3

oy

Py

Bl ﬁZ B\O

b

Ji3

50

Bias

-0.1637

0.0696 |0.0332

-0.0155

0.0072 |0.0048

-0.2480

0.0641 {0.0886 |-0.0283|0.0018

0.0120

S.E.

0.2589

0.4702 |0.2867

0.0826

0.1562 |0.1039

0.3398

0.6480 [0.3908 |0.1033 {0.2023

0.1402

2.50%

-0.7350

0.2086 |0.5057

1.4257

0.7024 |0.8100

-1.0155

-0.1571(0.4098 |1.3686 {0.6144

0.7478

Median

-0.1637

1.0696 1.0332

1.5939

1.0072 {1.0048

-0.2480

1.0641 |1.0886 |1.5811 |1.0018

1.0120

97.50%

0.2814

2.0574 |1.6312

1.7494

1.3162 {1.2171

0.3155

2.3907 [1.9423 |1.7736 |1.4092

1.2965

bias

-0.0683

0.0414 |0.0192

-0.0133

0.0097 |0.0050

-0.1063

0.0789 [0.0277 |-0.0157 [ 0.0046

0.0026

S.E.

0.1645

0.2834 |0.1805

0.0590

0.1070 |0.0663

0.2020

0.3952 [0.2741 |0.0675 [0.1437

0.0854

100

2.50%

-0.4170

0.5036 |0.6789

1.4769

0.8009 |0.8789

-0.5398

0.3466 [0.5122 |1.4567 [0.7244

0.8387

Median

-0.0683

1.0414 [1.0192

1.5961

1.0097 {1.0050

-0.1063

1.0789 |1.0277 |1.5937 |1.0046

1.0026

97.50%

0.2298

1.6171 [1.3877

1.7084

1.2214 {1.1388

0.2530

1.8998 |1.5873 |1.7215 |1.2888

1.1725

bias

-0.0212

0.0125 |0.0091

-0.0030

-0.0004 {0.0015

-0.0344

0.0072 {0.0114 |-0.0060 [ 0.0006

0.0031

S.E.

0.0908

0.1563 |0.0966

0.0319

0.0600 |0.0401

0.1080

0.2116 {0.1257 | 0.0355 [0.0738

0.0513

300

2.50%

-0.2082

0.7116 |0.8246

1.5429

0.8819 |0.9246

-0.2560

0.5967 [0.7718 | 1.5324 {0.8551

0.9050

Median

-0.0212

1.0125 [1.0091

1.6064

0.9996 |1.0015

-0.0344

1.0072 |1.0114 | 1.6034 |1.0006

1.0031

97.50%

0.1489

1.3254 [1.2039

1.6680

1.1178 {1.0816

0.1672

1.4275 |1.2643 |1.6714 | 1.1452

1.1055

Table 1. (continued) Performances of regression coefficient estimates in the Poisson
linear predictor for Model 1.

overdispersion
N | Perfor- A =10 A =50
mances ~ ~ ~ ~ n »
,Bo ﬂl ﬂz ﬂo 131 ﬂz
Bias |[-0.4534 |-0.0863 | 0.0153 |-0.0405 |0.0099 [0.0263
S.E. [06272 |1.1959 |0.6373 |0.1413 |0.2725 [0.2045
50| 2.50% |[-1.9821 |-1.4640 |-0.0929 |1.2744 |0.4766 |0.6414
Median [-0.4534 |0.9137 |1.0153 |1.5689 |1.0099 [(1.0263
97.50% | 0.4555 |3.2299 |2.4089 |1.8282 |1.5480 |1.4405
bias |-0.2254 | 0.0038 |0.0627 [-0.0226 |0.0022 |0.0038
S.E. [0.3338 [0.6540 |0.3842 |0.0930 |0.1877 [0.1295
100 2.50% |-0.9846 |-0.2931 |0.3600 |1.3954 |0.6301 |0.7578
Median [-0.2254 |1.0038 |1.0627 |1.5868 |1.0022 |(1.0038
97.50% | 0.3218 |2.2803 | 1.8680 |1.7604 |1.3674 |(1.2640
bias |[-0.0716 |-0.0180 |0.0052 [-0.0057 |0.0006 [0.0009
S.E. [0.1498 |0.3061 |0.1983 |0.0484 |0.0997 [0.0662
300/ 2.50% |-0.3848 |0.3806 |0.6212 |1.5057 |0.8056 [0.8733
Median [-0.0716 |0.9820 |1.0052 |1.6037 |1.0006 (1.0009
97.50% | 0.2030 |1.5828 |1.3989 |1.6958 |1.1970 |(1.1320
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5
A=10 A=30 A=50
0=-05 ~ R B
0 =00 + . N
0 =05 T ' - .
= m= ==
T

Figure 1. Performance of regression coefficient estimates ( 4, , ;. 3, in the Poisson

linear predictor for Model | at N = 300.

B
A=10 A=30 A=50
0 =-05| " + 5 N N
1
o =00 — il -+
J =05 e -+ : el

Figure 1. (continued) Performance of regression coefficient estimates (53, , £, 3,) in

the Poisson linear predictor for Model | at N = 300.
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B,
A=10 A=30 A=50
™

Figure 1. (continued) Performance of regression coefficient estimates ( 3, , £, 3,) in

the Poisson linear predictor for Model | at N = 300.

Table 2. Performances of regression coefficient estimates in the dispersion linear
predictor for Model I.

A =10
N | perfor- S =05 o = d =05
mances - - " " - " " - "
}/O 7/1 72 }/O 1 7/2 }/0 }/l }/2
bias_|-0.2229] 0.2130 | 0.2089 |-0.1115 | 0.0958 | 0.1505 | -0.0846 | -0.0072 | 0.0545
SE. | 0.3001 | 0.4940 | 0.3207 | 0.2087 | 0.4163 | 0.2775 | 0.2491 | 0.4693 | 0.3185
50 | 2.50% |-1.4480 | 0.3533 | 0.6752 | -0.5380 | 0.3188 | 0.6857 | 0.0051 | 0.1038 | 0.4946
Median | -0.7722 | 1.2130 | 1.2089 | -0.1115 | 1.0058 | 1.1505 | 0.4647 | 0.9928 | 1.0545
97.50% | -0.2729 | 2.2906 | 1.0283 | 0.2819 | 1.9521 | 1.7698 | 0.9810 | 1.9412 | 1.7415
bias_|-0.1105] 0.1123 | 0.1023 | -0.0465 | 0.0657 | 0.0574 | -0.0424 | 0.0282 | 0.0344
SE. | 0.1847 | 0.2898 | 0.1965 | 0.1363 | 0.2735 | 0.2004 | 0.1696 | 0.3232 | 0.1936
100 | 2.50% |-1.0579 | 0.5839 | 0.7656 | -0.3221 | 0.5482 | 0.6962 | 0.1799 | 0.4094 | 0.6769
Median | -0.6598 | 1.1123 | 1.1023 | -0.0465 | 1.0657 | 1.0574 | 0.5069 | 1.0282 | 1.0344
97.50% | -0.3343 | 1.7206 | 15330 | 0.2130 | 16181 | 1.4807 | 0.8456 | 1.6741 | 1.4374
bias_|-0.0341] 0.0300 | 0.0333 |-0.0132 | 0.0210 | 0.0252 | -0.0126 | 0.0096 | 0.0067
SE. | 0.0968 | 0.1575 | 0.1044 | 0.0757 | 0.1558 | 0.0955 | 0.0915 | 0.1723 | 0.1097
300 [ 2.50% | -0.7815 | 0.7278 | 0.8445 | -0.1636 | 0.7216 | 0.8493 | 0.3598 | 0.6741 | 0.7967
Median | -0.5834 | 1.0300 | 1.0333 | -0.0132 | 1.0210 | 1.0252 | 0.5367 | 1.0096 | 1.0067
97.50% | -0.4020 | 1.3457 | 1.2523 | 0.1333 | 1.3315 | 1.2232 | 0.7189 | 1.3474 | 1.2276
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Table 2. (continued) Performances of regression coefficient estimates in the dispersion
linear predictor for Model I.

A =50
n | Perfor- O =-05 S =00 J =05
mances ~ ~ ~ ~ ~ ~ ~ ~ ~
Yo 7 72 Yo N V2 Yo 71 e
bias |-0.8694 | 0.8905 | 0.7559 |-0.1251 | 0.3659 | 0.3118 |-0.0041 | 0.4058 | 0.3986
S.E. |0.6769 | 0.8205 | 0.6371 | 0.2443 | 0.5288 | 0.3938 | 0.1869 | 0.4746 | 0.4231
50 | 2.50% |-3.0381| 0.6442 | 0.8279 |-0.6726 | 0.5244 | 0.7263 | 0.1973 | 0.6521 | 0.7576
Median |-1.4187 | 1.8905 | 1.7559 |-0.1251 | 1.3659 | 1.3118 | 0.5452 | 1.4058 | 1.3986
97.50% | -0.4204 | 3.8316 | 3.2969 | 0.2851 | 2.5952 | 2.2574 | 0.9343 | 2.5062 | 2.4015
bias |-0.3076 | 0.2965 | 0.3138 |-0.1205 | 0.2367 | 0.2431 | 0.0075 | 0.1282 | 0.1492
S.E. |0.3274 | 0.3791 | 0.3448 | 0.1657 | 0.3559 | 0.2763 | 0.1136 | 0.2812 | 0.2319
100 | 2.50% |-1.6245| 0.6719 | 0.7789 |-0.4804 | 0.6355 | 0.8060 | 0.3513 | 0.6425 | 0.7650
Median | -0.8569 | 1.2965 | 1.3138 |-0.1205 | 1.2367 | 1.2431 | 0.5568 | 1.1282 | 1.1492
97.50% | -0.3432 | 2.1610 | 2.1284 | 0.1684 | 2.0301 | 1.8813 | 0.7964 | 1.7412 | 1.6701
bias |-0.1005 ]| 0.1259 | 0.1104 |-0.0222 | 0.0506 | 0.0582 | 0.0092 | 0.0277 | 0.0321
S.E. |0.1462 | 0.2114 | 0.1701 | 0.0632 | 0.1484 | 0.1304 | 0.0582 | 0.1398 | 0.1161
300 | 2.50% |-0.9679 | 0.7517 | 0.8186 |-0.1479 | 0.7772 | 0.8243 | 0.4501 | 0.7693 | 0.8223
Median |-0.6498 | 1.1259 | 1.1104 |-0.0222 | 1.0506 | 1.0582 | 0.5585 | 1.0277 | 1.0321
97.50% | -0.3945 | 1.5821 | 1.4853 | 0.0992 | 1.3589 | 1.3332 | 0.6783 | 1.3165 | 1.2759
Yo
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Figure 2. Performance of regression coefficient estimates (770 , }91 , 772) in the dispersion

linear predictor for model | at N = 300.
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Figure 2. (continued) Performance of regression coefficient estimates ( 7, , 7, , 7, ) in the

dispersion linear predictor for model | at N = 300.
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Figure 2. (continued) Performance of regression coefficient estimates (}90 , };1 , }72) in the

dispersion linear predictor for model | at N = 300.
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Figure 3. Performance of variance component estimates (O-al) in the Poisson linear

predictor for model Il at N = 300.
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Figure 4. Performance of variance component estimates ((3{21 ) in the

dispersion linear predictor for model Il at N =300 and N = 500.
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Finally, the Bayesian approach can be used to estimate parameters in the
generalized zero-altered Poisson regression model in which the Poisson linear predictor
was fixed while the dispersion linear predictor was randomized, known as “Model III”.

The estimates of regression parameters in the Poisson linear predictor become more
efficient as sample size increases (N > 100) for A = 1.0. The satisfactory estimates of

regression parameters in the dispersion linear predictor and variance component require

very large sample sizes (N > 300) for both accuracy and efficiency.

5. Modeling the 2009 Thai fertility data
In this section, the generalized zero-altered Poisson regression model was

applies to study the correlation between the number of births (Y ) and nine covariates

from the 2009 fertility data set [18] which based on previous literature [19, 20]. The nine

covariates, five continuous covariates ( X,, X,, X,, Xg, Xg) and four category

covariates (X,, X, X,, X.), were used in the full model. The descriptions of

explanatory variables or covariates are presented in Table 3.

The data was divided into two parts: 80% (N = 4,118) was used for investigating
the estimated model, the best estimated model was applied to the other 20% of data
(N =1,030). The values of bias are obtained from the difference between the predicted

and observed numbers of births (Yi —Yi ). The practicability of model will be illustrated

by the plot and histogram of biases.

The description of variables in the first part of data (80%) showed in Table 3. It
can be observed that the slightly overdispersion is detected in this sample which the
sample mean and variance are 2.2972 and 2.6263, respectively. The average women
age was approximately 40 and approximately one-third (29.82%) of women was muslim.
Approximately 50% of women were under compulsory education and lived in the
municipal areas. The 76.52% of women are working women. The mean number of
household members was 4.1297 while the minimum and maximum numbers of
household members were 1 and 25, respectively. The average age at first marriage and
first birth were 21.8817 and 24.2652 years, respectively. The mean number of additional

children wanted was very small (0.3023).
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Table 3. Description and statistics of variables (N = 4,118).

Variables Mean S.D. Max. Min.
number of births (Y ) 22972  1.6206 0 13
age of women ( Xl) 39.237 10.6661 15 59
religion ( X2) 1: Muslim, 0: others 0.2982 0.4575 0 1
place of residence ( X3) 1: municipal areas, 0.4949 0.5000 0 1
0:others
education ( X4) 1: under compulsory education, 0.4738 0.4994 0 1
0: others
occupation ( X5) 1: woman is working, O: others 0.7652 0.4239 0 1
number of household members ( Xe) 4.1297 1.9120 1 25
age at first marriage ( X7 ) 21.8817 4.7441 12 51
age at first birth ( Xg) 24.2652 5.2331 13 44
number of additional children wanted ( Xg) 0.3023 0.6665 0 6

In this study, the nine covariates were used in both linear predictors. All
parameters in the generalized zero-altered Poisson regression model were estimated by
the Bayesian approach using WinBUGS based on three parallel Markov chains with an
initial burn-in of 10,000 iterations followed by 10,000 samples per chain, giving us a total
30,000 approximate samples from the posterior distributions of parameters. The prior

distributions for regression coefficients were the normal distributions with mean 0 and
variance 100 for regression coefficients (ﬂo to ,39) in the linear predictor of Poisson
parameter and the normal distributions with mean 0 and variance 10 for regression
coefficients (Y,t0)y) in the linear predictor of dispersion parameter. The posterior
summary of the full and reduced models are presented in Table 4. The posterior credible
intervals for f;, [, in the Poisson linear predictor and ¥,, ¥;, 7, Vs in the

dispersion linear predictor include zero. That is, occupation and age at first marriage are
not significant in Poisson linear predictor. While religion place of residence, education,
and occupation are also not significant in the dispersion linear predictor. Therefore, these
covariates are excluded from the full model and the predictive models are represented as
the reduced model.
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Table 4. Posterior summary of parameters in the full and reduced models.

111-131

Para- Full model Reduced model

meters | Mean | S.E. | 2.50% [Median|97.50%| Mean | S.E. |2.50% |Median [97.50%
ﬁo 0.6073 | 0.0365 | 0.5360 | 0.6075 | 0.6785 |0.6239 0.0252 |0.5743 |0.6242 |0.6733
ﬂl 0.0340 | 0.0014 | 0.0312 | 0.034 |0.0368 |0.0340 {0.0014 |0.0312 | 0.034 |0.0368
ﬁz 0.2957 | 0.027 |0.2434 | 0.2955 | 0.3485 |0.2941 {0.0262 | 0.244 |0.2943 |0.3464
ﬂ3 -0.0885 0.0257 |-0.1395|-0.0881|-0.0385|-0.0929 | 0.0252 | -0.142 |-0.0927 |-0.0437
ﬁ4 -0.1296 | 0.0325 |-0.1933|-0.1295|-0.0667 |-0.1287 {0.0311 |-0.1896 | -0.129 |-0.0676
ﬂs 0.0184 | 0.0287 |-0.0390| 0.0189 | 0.0737 - - - - -
ﬂe 0.0886 | 0.0056 | 0.0775 | 0.0886 | 0.0994 |0.0882 {0.0055 |0.0774 |0.0882 |0.0988
ﬂ7 -0.0012| 0.0066 |-0.0137|-0.0013| 0.012 - - - - -
ﬂs -0.0471| 0.0065 |-0.0602 [-0.0469 [-0.0348 |-0.0479 | 0.003 |-0.0538|-0.0479 | -0.042
ﬂg -0.3182| 0.0361 |-0.3896 |-0.3177|-0.2499 |-0.3207 | 0.0364 |-0.3914 |-0.3209 |-0.2497
Yo -2.5091|0.1968 |-2.8880 (-2.5090 [-2.1220|-2.4245 | 0.1427 |-2.7230| -2.42 |-2.161
7 -0.0369| 0.0069 |-0.0508 -0.0366 |-0.0236 |-0.0357 | 0.0062 |-0.0485 |-0.0355 [-0.0238
Vs 0.0555 | 0.1158 [-0.1703| 0.0553 | 0.2825 - - - - -
V3 0.0635 | 0.1035 (-0.1404 | 0.0626 | 0.2643 - - - - -
Va4 -0.0268| 0.1162 |-0.2489|-0.0255| 0.2010 - - - - -
Vs 0.0425 | 0.1149 |-0.1888| 0.0427 | 0.2597 - - - - -
Ve -0.223 [ 0.0352 |-0.2939|-0.2221|-0.1562 |-0.2252 | 0.0358 [-0.2957 |-0.2247 |-0.1557
V7 -0.0758| 0.0106 |-0.0967 | -0.076 |-0.0549|-0.0752|0.0092 |-0.0940 | -0.075 [-0.0576
Vs 0.2808 | 0.0163 | 0.2501 | 0.2805 | 0.3135 |0.2786 |0.0153 |0.2490 |0.2784 |0.3093
Yo 0.1510 | 0.0621 | 0.0313 | 0.1504 | 0.2718 |0.1528 | 0.059 |0.0413 |0.1528 |0.2706

Summary statistics for Bayesian estimation and predicted sample distributions

are shown in Table 5. The reduced model estimates approximately 32% of the sample

observations correctly (bias = 0), and about 70% correctly if we allow for an error of =

one child (bias = -1, 0, 1) which are larger than the full model. The DIC of the reduced

model is smaller than the full model. Thus the reduced model yields the better fit than the

full model for this data set. The predicted sample distributions that mostly close to

resemble observed distribution is the reduced model according to the DIC. Figure 5

represents more clearly efficiency of the reduced model in the other 20% of the 2009

fertility data. The plot and histogram indicate that most biases of sample are

approximately zero.
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Table 5. Observed and estimated sample distributions (N = 1,030).
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) Observed Estimated values
Number of births .
proportion | Full model Reduced model

0 0.0835 0.0699 0.0786

1 0.235 0.299 0.2845

2 0.3398 0.2515 0.2495

3 0.1874 0.166 0.1806

4 0.0689 0.1049 0.0961

5 0.0369 0.0417 0.0534

6 0.0194 0.0252 0.0252

7 0.0165 0.0204 0.0184

>7 0.0126 0.0214 0.0136

Correctly predicted proportion 0.3146 0.3204

Predicted * 1 proportion 0.6932 0.7019

DIC 11,230.1 11,219.2
Histogram of blas
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B R
1] e wmeoo e aeme g -
o] o o o T e g
© m m m m me [ S S S

Index

bias

Figure 5. The performance of bias from the reduced model.

6. Conclusions

This study introduces the generalized zero-altered Poisson regression model

with the suitable link functions of parameters and the Bayesian approach can be carried

out for parameter estimation method using WinBUGS. Simulation studies in the zero-

altered Poisson regression models illustrate that the Bayes estimator has a good

performance with small bias and standard error. It can be concluded that the Bayesian

approach is satisfactory estimation method for fixed effects model (Model 1) at large
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sample sizes and even larger sample sizes for the mixed models (Model 1l and Model
). The results from Bayesian analysis of the generalized zero-altered Poisson
regression model showed that number of births was significantly affected by age of
women, number of household members, age at first birth, and number of additional
children wanted in both linear predictors. In addition, the religion, place of residence, and
education were significantly effects in the Poisson linear predictor. The age at first
marriage was significantly effect in the dispersion linear predictor.

In the future research, other methods for parameter estimation could be used in
the generalized zero-altered Poisson regression models and compared to the Bayesian
estimation method. Moreover, random terms could be included in both linear predictors
in the generalized zero-altered Poisson regression model and studied in the same
simulation cases as Model I-lll. The efficiency of the generalized zero-altered Poisson
regression model should be compared to the other count models, i.e. the generalized
Poisson regression model, the zero-inflated Poisson regression model for under-, equi-
and over-dispersion data sets. Moreover, the generalized zero-altered Poisson
regression model could be applied to real data sets in several fields, i.e. epidemiology,
ecology, and economics and compared to the other count models in case of real data
sets.
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