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Abstract 

This study introduces the generalized zero-altered Poisson regression model 

with the suitable link functions of parameters. There are three different models based on 

the effects of parameters in the generalized zero-altered Poisson regression models. The 

Bayesian approach is studied which the prior distributions of regression parameters in 

both linear predictors are specified as independent normal distributions for the fixed 

effects and inverse-gamma distributions for the random effects. The Bayesian estimation 

method can be carried out using WinBUGS. Simulation study in the generalized zero-

altered Poisson regression models illustrates that  the Bayesian approach is satisfactory 

estimation method for fixed effects model (Model I) at large sample sizes and even larger 

sample sizes for the mixed models (Model II and Model III). For application, generalized 

zero-altered Poisson regression models  are applied to the number of births of a 

reproductive woman in the south of Thailand. The results showed that number of births 

was significantly affected by age of women, number of household members, age at first 

birth, and number of additional children wanted in both linear predictors. In addition, the 

religion, place of residence, and education were significantly effects in the Poisson linear 



112 Thailand Statistician, 2013; 11(2): 111-131 

predictor. The age at first marriage was significantly effect in the dispersion linear 

predictor. 

______________________________ 

Keywords: Bayesian, GLMs, zero-altered Poisson distribution, dispersed probability 

models, WinBUGS.  

 

1.  Introduction 

When we analyze count data, it is useful to investigate the patterns of 

dispersion using exploratory data analysis. In recent year there has been considerable 

interest in developing models for count data that allow for excess zeroes. Such high 

frequencies of zero counts often leads to over dispersion and over dispersed probability 

models, such as generalized or zero inflated Poisson distributions are generally used in 

practice [1-4]. Ridout et al. [5]  presented an overview of zero inflated models. 

Winkelmann and Zimmermann [6]  provided a thorough review of the statistical models 

for count data and also presented many potential applications with underdispersion.    

Generalized or zero-inflated Poisson distributions are commonly used to model 

the count data. Such distributions can account for the overdispersion due to many zero 

counts. However, in many applications of count data show evidence of underdispersion 

such as airline failures, number of changes of employer, number of births by women [6]. 

As the case of underdispersion needs awkward parameter restrictions, the generalized 

or zero-inflated Poisson distributions are often inadequate. Recently, a new class of 

generalizations of the Poisson distribution that can account for both under and over 

dispersion has introduced [7]. However, Ghosh and Kim [8] pointed that such 

distributions are somewhat inflexible in practice. Therefore, they proposed the more 

flexible and advantage class of zero-altered distributions which can account for both 

types of dispersion and include other familiar models.  

In modeling count data, other controllable factors (covariates) that might explain 

the variation in the counts. Regression models are very useful to model such data. 

Ghosh et al. [9] introduced Zero Inflated Poisson (ZIP) regression models which is a 

special case in the class of zero inflated models including other familiar models. A  

Bayesian estimation method is applied by using sampling-based methods. The proposed 

method has better finite sample performance than the classical method by simulation 

studies with tighter interval estimates and better coverage probabilities. They used 

WinBUGS to illustrate the performance of the proposed method by applying it to a real-life 
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data set. Angers and Biswas [10] proposed a zero-inflated generalized Poisson model 

and a Bayesian analysis can be considered for some appropriate priors and the 

posteriors are obtained using Monte Carlo integration with importance sampling. The 

real-life data set is applied to these methods. This paper shows that the Poisson model is 

a misfit that badly underestimates the number of zero counts. The ZIP is a misfit that 

does not provide good estimates of the nonzero counts. Melkersson and Rooth [11] 

proposed a zero-and-two-inflated count data model illustrated a relative excess of zero 

and two children. The Poisson and gamma count distributions are used in the model 

using the fertility data of Swedish women. Wang and Famoye [12] studied the modeling 

for household fertility decisions by using a generalized Poisson regression model. The 

model is estimated by the maximum likelihood estimation method and discussed the 

suitable model by tests for dispersion and goodness-of-fit measures. 

Bayesian approach is widely applied for fitting several models such as zero-

inflated generalized Poisson model [10], zero-inflated regression model [9], and 

differential item functioning model [13, 14]. Gelman et al. [15] provided an excellent 

introduction to Bayesian data analysis. Usually the joint posterior distribution is complex 

and unavailable in closed form, thus simulation-based method broadly known as Markov 

Chain Monte Carlo (MCMC) [16] required to obtain the point and interval estimates of the 

parameters. MCMC algorithm can be used WinBUGS software to perform all the 

required computations. This research, the zero-altered Poisson regression models 

included the effect of covariates will be proposed and developed. Our proposed models 

turn out to be analytically intractability, hence a Bayesian approach is developed as an 

alternative to classical statistical methods based on the maximum likelihood estimate.  

 The article is organized as follows: In Section 2, we describe the generalized 

zero-altered Poisson regression models. In Section 3, we present the procedure of 

simulation study for the generalized zero-altered Poisson regression model analyzed by 

the Bayesian method using WinBUGS. In Section 4, the results of the simulation study for 

the generalized zero-altered Poisson regression model are demonstrated. In Section 5, 

the application of the generalized zero-altered Poisson regression model are presented. 

Conclusions are given in Section 6. 

 

2.  The Zero-Altered Poisson Regression Models 

For a random sample of observations 1 2, , , ny y y , where n is the sample 

size, the zero-altered Poisson regression model is applied with probability mass function 

[8]. 
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In the zero-altered Poisson (ZAP) regression models, parameter vectors are denoted as 

δ =  1 2, , , n   
 and λ =  1 2, , , n   

. From the random vector Y = 

 1 2, , , nY Y Y 
of size 1n , be a discrete random vector with the zero-altered 

Poisson distribution: ZAP( i , i ) for each random variable iY ; i = 1, 2, …, n . For the 

independently distributed responses iY ’s from ZAP( i , i ), the appropriately used link 

functions are considered as follows: 

 log i = i
x β   or   log i = i

x β + i i
u α  

where i
x  is the ith row of the  n p

X covariate matrix with 1p    covariates when the 

intercept term included in the model. The dispersion parameter  1, 1i    so we can 

specify Fisher's z' transformation function to be the linear predictor for  i , that is, 
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where i
z  is the ith row of the  n q

Z  covariate matrix with 1q   covariates when the 

intercept term included in the model. The vectors β =  0 1 1, , , p   


and γ = 
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 0 1 1, , , q   


  are the corresponding 1p  and 1q  vectors of unknown 

parameters (regression coefficients) associated with  n p
X and  n q

Z , respectively. In 

general, the covariates  n p
X and  n q

Z  may or may not be the same matrices. If the 

covariate matrices are the same, we need 2 p  regression parameters in the zero-

altered regression model. 

Then the parameters are modeled by the link functions 

     Model I:  log i = i
x β    and 
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     Model III:  log i = i
x β   and 
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for covariate vectors i
x , i

z , i
u , and i

v where i = 1, 2, …, n . β , γ  are respectively 

1p  and 1q  vectors of unknown parameters (the fixed effects). iα , iτ  are 

respectively 1r  and 1s  vectors of unknown parameters (the random effects). 
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2
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2, …, s . The parameters are estimated by Bayesian method using WinBUGS. So we get 

the estimates of i  and i  separated to 3 models as following: 
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2.2 Bayesian Analysis 

The likelihood function of 1 2, , , ny y y  which are observations from the ZAP 

distribution in terms of  the inverted link functions of dispersion and Poisson parameters 

is given by 
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where 0n  be the frequency of the zero count.  

The Bayesian generalized linear models could be fitted by incorporating the 

prior information directly on the regression parameters through multivariate normal, i.e., 

  β  Normal(
0β , 

2

0
σ ). Choice of vague prior would be with 

0
β 0  and c2

0
σ I , 

where c  is a very large number. From the structure of link functions and the previous 

study, the prior distributions for regression coefficients (fixed effects) are the normal 

distributions with mean 0 and variance 100 for regression coefficients (β ) in the linear 

predictor of Poisson parameter. For regression coefficients ( γ ) in the linear predictor of 

dispersion parameter, the prior distributions are the normal distributions with mean 0 and 

variance 10. For the random effects, the prior distributions for the variance of the random 

terms in Model II and Model III are the inverse-gamma distributions. 
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3.  Simulation Study 

Let a model with intercept and covariates 1ix = 1iz , 2ix = 2iz , 1iu  and 1iv  were 

considered for linear predictors. The true values of parameters 0 , 1 , 2 ,  0 , 1 , 

and  2 will be set for the expected values of i

*
 = 1.0, 3.0, 5.0 and  i

*
 = –0.5, 0.0, 0.5 

(represent for the under- equi- and over-dispersion). The steps of simulation study for the 

generalized zero-altered Poisson regression model would be: 

Step 1: Specify the true values of regression parameters 0 , 1 , 2 , 0 , 1 , and 2  

for setting the Poisson parameter values and the dispersion parameter values, 

respectively.  

The values of these parameters are as following:  

0 = 0.0, log 3.0, log 5.0,   1 = 2 = 1.0, 

 0  = 
1

2
log 3.0, 0.0, 

1

2
log 3.0,   1 = 2 = 1.0, 

1i ~ Normal( 1 ,
1

2

 ),   1i ~ Normal( 1 ,
1

2

 ),  

for 1 = 1 = 0 and 
1

2

 =
1

2

 = 1. Assume the sample sizes n  = 50, 100 and 300. 

Step 2: Generate the values of the covariates 1ix  Bernoulli(0.5), 2ix  Normal(0, 1), 

1iu  Normal(0, 1), and 1iv  Normal(0, 1) for i = 1, 2, …, n  using R [17]. 

Step 3: Calculate the values of the Poisson and dispersion parameters from each model  

     Model I:  
*

i  =   0 1 1 2 2exp 0.5i ix x     ,  

and  
*
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*

i  =   0 1 1 2 2 1 1exp 0.5i i i ix x u       ,  

and  
*

i  = 
   
   

0 1 1 2 2

0 1 1 2 2

exp 2 0.5 1

exp 2 0.5 1

  

  

   

   

i i

i i

x x

x x
, 

     Model III:  
*

i  =   0 1 1 2 2exp 0.5i ix x     ,  
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and   
*

i = 
   
   

0 1 1 2 2 1 1

0 1 1 2 2 1 1

exp 2 0.5 1

exp 2 0.5 1

i i i i

i i i i

x x v

x x v
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    
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by using the generated values of covariates and specified coefficients in Step 1 and Step 

2.  

Step 4: Generate iy  from the zero-altered Poisson distribution with the dispersion 

parameter values 
*

i and the Poisson parameter values 
*

i  or ZAP(
*

i ,
*

i ) in Step 3 

for i = 1, 2, …, n . 

Step 5: Assume the prior independence distributions are the normal distribution for all 

regression parameters and the inverse-gamma distribution for the variance of random 

effects such that 

         0  Normal(0, 100),  1  Normal(0, 100),  2  Normal(0, 100),  

         0  Normal(0, 10),  1  Normal(0, 10),  2  Normal(0, 10), 

 

1

2

1


 Gamma(0.1, 0.1),  

1

2

1


 Gamma(0.1, 0.1). 

Step 6: Estimate the parameters by programming WinBUGS and setting a burn-in period 

of 10,000 iterations of 20,000 samples and 3 chains. The WinBUGS code can be 

requested from the corresponding author. 

Step 7: Replicate the procedure from Step 2 to Step 6 that is the Monte Carlo (MC) 

simulated data 1,000 sets. 

Step 8: Compute the performance of estimates considering the bias, standard error 

(S.E.), 2.5 percentile, the posterior median, 97.5 percentile. Illustrate the performance of 

estimates by the boxplots. 

Posterior inferences can be evaluated using the concept of calibration of the 
posterior mean (or median), the Bayesian analogue to the classical notion of “bias.” For 

parameter , we label the posterior median as ̂  and define the miscalibration of the 

posterior median as E(̂ ) −  , for any value of  . If the prior distribution is true—that 

is, if the data are constructed by first drawing   from p( ), then drawing y from 

p(y| )—then the posterior median is automatically calibrated; that is its miscalibration is 

0 for all values 

of  . 

 



Thipwan  Kunthong 119 

4.  Results 

This research presents the results of simulation study for three different ZAP 

regression models. Model I named “the fixed effects model” treats both linear predictors 

of Poisson and dispersion parameters as fixed effects. Model II and Model III named “the 

mixed effects model” comprises of either fixed or random linear predictor of Poisson and 

dispersion parts. In Model II, the linear predictor of Poisson parameters was randomized 

while the linear predictor of dispersion parameter was fixed, and vice versa for the Model 

III. For the fixed effects model (Model I), the performance of parameter estimates in the 

Poisson linear predictor at n  = 300 is shown in Figure 1. The performance of parameter 

estimates in the dispersion linear predictor at n  = 300 is shown in Figure 2. At n  = 300, 

Figures 3-4 present the performance of variance component estimates for the random 

term in the Poisson linear predictor (Model II) and the dispersion linear predictor (Model 

III), respectively. In addition, the performance of variance component estimates for the 

random term in the dispersion linear predictor (Model III) at n  = 500 is presented in 

Figure 4. 

The results of simulation study can be summarized that the generalized zero-

altered Poisson regression model in which both linear predictors were fixed (Model I), the 

Bayesian approach is an efficient estimation method. However, estimation of regression 

parameters in the Poisson linear predictor requires large sample sizes ( n   100) at the 

small Poisson parameter value ( = 1.0) and even larger sample sizes for estimation of 

regression parameters in the dispersion linear predictor at the underdispersion data set 

for all Poisson parameter values.  

  Similarly, for Model II (where the Poisson linear predictor was randomized 

while the dispersion linear predictor was fixed in the generalized zero-altered Poisson 

regression model), the Bayesian estimation approach is satisfactory for regression 

parameters and variance component in the Poisson linear predictor at very large sample 

sizes ( n   300) for all combinations of parameters ( ,  ) in the ZAP model. The 

regression parameter estimation in the dispersion linear predictor requires large sample 

sizes for the underdispersion data set.  
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Table 1. Performances of regression coefficient estimates in the Poisson linear predictor 

for Model I.  

n  Perfor-

mances 

underdispersion equi-dispersion 

   =  1.0   = 5.0    =  1.0   = 5.0 

0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  

50 Bias -0.1637 0.0696 0.0332 -0.0155 0.0072 0.0048 -0.2480 0.0641 0.0886 -0.0283 0.0018 0.0120 

 

S.E. 0.2589 0.4702 0.2867 0.0826 0.1562 0.1039 0.3398 0.6480 0.3908 0.1033 0.2023 0.1402 

2.50% -0.7350 0.2086 0.5057 1.4257 0.7024 0.8100 -1.0155 -0.1571 0.4098 1.3686 0.6144 0.7478 

Median -0.1637 1.0696 1.0332 1.5939 1.0072 1.0048 -0.2480 1.0641 1.0886 1.5811 1.0018 1.0120 

97.50% 0.2814 2.0574 1.6312 1.7494 1.3162 1.2171 0.3155 2.3907 1.9423 1.7736 1.4092 1.2965 

100 

bias -0.0683 0.0414 0.0192 -0.0133 0.0097 0.0050 -0.1063 0.0789 0.0277 -0.0157 0.0046 0.0026 

S.E. 0.1645 0.2834 0.1805 0.0590 0.1070 0.0663 0.2020 0.3952 0.2741 0.0675 0.1437 0.0854 

2.50% -0.4170 0.5036 0.6789 1.4769 0.8009 0.8789 -0.5398 0.3466 0.5122 1.4567 0.7244 0.8387 

Median -0.0683 1.0414 1.0192 1.5961 1.0097 1.0050 -0.1063 1.0789 1.0277 1.5937 1.0046 1.0026 

97.50% 0.2298 1.6171 1.3877 1.7084 1.2214 1.1388 0.2530 1.8998 1.5873 1.7215 1.2888 1.1725 

300 

bias -0.0212 0.0125 0.0091 -0.0030 -0.0004 0.0015 -0.0344 0.0072 0.0114 -0.0060 0.0006 0.0031 

S.E. 0.0908 0.1563 0.0966 0.0319 0.0600 0.0401 0.1080 0.2116 0.1257 0.0355 0.0738 0.0513 

2.50% -0.2082 0.7116 0.8246 1.5429 0.8819 0.9246 -0.2560 0.5967 0.7718 1.5324 0.8551 0.9050 

Median -0.0212 1.0125 1.0091 1.6064 0.9996 1.0015 -0.0344 1.0072 1.0114 1.6034 1.0006 1.0031 

97.50% 0.1489 1.3254 1.2039 1.6680 1.1178 1.0816 0.1672 1.4275 1.2643 1.6714 1.1452 1.1055 

 

Table 1. (continued) Performances of regression coefficient estimates in the Poisson 

linear predictor for Model I.  

n  Perfor-

mances 

overdispersion 

   =  1.0   = 5.0 

0̂  1̂  2̂  0̂  1̂  2̂  

50 

Bias -0.4534 -0.0863 0.0153 -0.0405 0.0099 0.0263 

S.E. 0.6272 1.1959 0.6373 0.1413 0.2725 0.2045 

2.50% -1.9821 -1.4640 -0.0929 1.2744 0.4766 0.6414 

Median -0.4534 0.9137 1.0153 1.5689 1.0099 1.0263 

97.50% 0.4555 3.2299 2.4089 1.8282 1.5480 1.4405 

100 

bias -0.2254 0.0038 0.0627 -0.0226 0.0022 0.0038 

S.E. 0.3338 0.6540 0.3842 0.0930 0.1877 0.1295 

2.50% -0.9846 -0.2931 0.3600 1.3954 0.6301 0.7578 

Median -0.2254 1.0038 1.0627 1.5868 1.0022 1.0038 

97.50% 0.3218 2.2803 1.8680 1.7604 1.3674 1.2640 

300 

bias -0.0716 -0.0180 0.0052 -0.0057 0.0006 0.0009 

S.E. 0.1498 0.3061 0.1983 0.0484 0.0997 0.0662 

2.50% -0.3848 0.3806 0.6212 1.5057 0.8056 0.8733 

Median -0.0716 0.9820 1.0052 1.6037 1.0006 1.0009 

97.50% 0.2030 1.5828 1.3989 1.6958 1.1970 1.1320 
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Figure 1. Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in the Poisson 

linear predictor for Model I at n = 300. 
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Figure 1. (continued) Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in 

the Poisson linear predictor for Model I at n = 300. 
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Figure 1. (continued) Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in 

the Poisson linear predictor for Model I at n = 300. 

 

Table 2. Performances of regression coefficient estimates in the dispersion linear 

predictor for Model I. 

n  Perfor-

mances 

  = 1.0 

  = -0.5   = 0.0   = 0.5 

0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  

50 

bias -0.2229 0.2130 0.2089 -0.1115 0.0958 0.1505 -0.0846 -0.0072 0.0545 

S.E. 0.3001 0.4940 0.3207 0.2087 0.4163 0.2775 0.2491 0.4693 0.3185 

2.50% -1.4480 0.3533 0.6752 -0.5380 0.3188 0.6857 0.0051 0.1038 0.4946 

Median -0.7722 1.2130 1.2089 -0.1115 1.0958 1.1505 0.4647 0.9928 1.0545 

97.50% -0.2729 2.2906 1.9283 0.2819 1.9521 1.7698 0.9810 1.9412 1.7415 

100 

bias -0.1105 0.1123 0.1023 -0.0465 0.0657 0.0574 -0.0424 0.0282 0.0344 

S.E. 0.1847 0.2898 0.1965 0.1363 0.2735 0.2004 0.1696 0.3232 0.1936 

2.50% -1.0579 0.5839 0.7656 -0.3221 0.5482 0.6962 0.1799 0.4094 0.6769 

Median -0.6598 1.1123 1.1023 -0.0465 1.0657 1.0574 0.5069 1.0282 1.0344 

97.50% -0.3343 1.7206 1.5330 0.2130 1.6181 1.4807 0.8456 1.6741 1.4374 

300 

bias -0.0341 0.0300 0.0333 -0.0132 0.0210 0.0252 -0.0126 0.0096 0.0067 

S.E. 0.0968 0.1575 0.1044 0.0757 0.1558 0.0955 0.0915 0.1723 0.1097 

2.50% -0.7815 0.7278 0.8445 -0.1636 0.7216 0.8493 0.3598 0.6741 0.7967 

Median -0.5834 1.0300 1.0333 -0.0132 1.0210 1.0252 0.5367 1.0096 1.0067 

97.50% -0.4020 1.3457 1.2523 0.1333 1.3315 1.2232 0.7189 1.3474 1.2276 
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Table 2. (continued) Performances of regression coefficient estimates in the dispersion 

linear predictor for Model I. 

n  Perfor-

mances 

  = 5.0 

  = -0.5   = 0.0   = 0.5 

0̂  1̂  2̂  0̂  1̂  2̂  0̂  1̂  2̂  

50 

bias -0.8694 0.8905 0.7559 -0.1251 0.3659 0.3118 -0.0041 0.4058 0.3986 

S.E. 0.6769 0.8205 0.6371 0.2443 0.5288 0.3938 0.1869 0.4746 0.4231 

2.50% -3.0381 0.6442 0.8279 -0.6726 0.5244 0.7263 0.1973 0.6521 0.7576 

Median -1.4187 1.8905 1.7559 -0.1251 1.3659 1.3118 0.5452 1.4058 1.3986 

97.50% -0.4204 3.8316 3.2969 0.2851 2.5952 2.2574 0.9343 2.5062 2.4015 

100 

bias -0.3076 0.2965 0.3138 -0.1205 0.2367 0.2431 0.0075 0.1282 0.1492 

S.E. 0.3274 0.3791 0.3448 0.1657 0.3559 0.2763 0.1136 0.2812 0.2319 

2.50% -1.6245 0.6719 0.7789 -0.4804 0.6355 0.8060 0.3513 0.6425 0.7650 

Median -0.8569 1.2965 1.3138 -0.1205 1.2367 1.2431 0.5568 1.1282 1.1492 

97.50% -0.3432 2.1610 2.1284 0.1684 2.0301 1.8813 0.7964 1.7412 1.6701 

300 

bias -0.1005 0.1259 0.1104 -0.0222 0.0506 0.0582 0.0092 0.0277 0.0321 

S.E. 0.1462 0.2114 0.1701 0.0632 0.1484 0.1304 0.0582 0.1398 0.1161 

2.50% -0.9679 0.7517 0.8186 -0.1479 0.7772 0.8243 0.4501 0.7693 0.8223 

Median -0.6498 1.1259 1.1104 -0.0222 1.0506 1.0582 0.5585 1.0277 1.0321 

97.50% -0.3945 1.5821 1.4853 0.0992 1.3589 1.3332 0.6783 1.3165 1.2759 
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Figure 2. Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in the dispersion 

linear predictor for model I at n = 300. 
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Figure 2. (continued) Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in the 

dispersion linear predictor for model I at n = 300. 
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Figure 2. (continued) Performance of regression coefficient estimates ( 0̂ , 1̂ , 2̂ ) in the 

dispersion linear predictor for model I at n = 300. 
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Figure 3. Performance of variance component estimates (

1

2ˆ
 ) in the Poisson linear 

predictor for model II at n = 300. 
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Figure 4. Performance of variance component estimates (

1

2ˆ
 ) in the 

dispersion linear predictor for model III at n = 300 and n = 500. 
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Finally, the Bayesian approach can be used to estimate parameters in the 

generalized zero-altered Poisson regression model in which the Poisson linear predictor 

was fixed while the dispersion linear predictor was randomized, known as “Model III”. 

The estimates of regression parameters in the Poisson linear predictor become more 

efficient as sample size increases  ( n   100) for  = 1.0. The satisfactory estimates of 

regression parameters in the dispersion linear predictor and variance component require 

very large sample sizes ( n  > 300) for both accuracy and efficiency.  

 

5. Modeling the 2009 Thai fertility data 

 In this section, the generalized zero-altered Poisson regression model was 

applies to study the correlation between the number of births (Y ) and nine covariates 

from the 2009 fertility data set [18] which based on previous literature [19, 20]. The nine 

covariates, five continuous covariates ( 1X , 6X , 7X , 8X , 9X ) and four category 

covariates ( 2X , 3X , 4X , 5X ), were used in the full model. The descriptions of 

explanatory variables or covariates are presented in Table 3. 

The data was divided into two parts: 80% ( n = 4,118) was used for investigating 

the estimated model, the best estimated model was applied to the other 20% of data 

( n = 1,030). The values of bias are obtained from the difference between the predicted 

and observed numbers of births ( ˆi iY Y ). The practicability of model will be illustrated 

by the plot and histogram of biases. 

The description of variables in the first part of data (80%) showed in Table 3. It 

can be observed that the slightly overdispersion is detected in this sample which the 

sample mean and variance are 2.2972 and 2.6263, respectively. The average women 

age was approximately 40 and approximately one-third (29.82%) of women was muslim. 

Approximately 50% of women were under compulsory education and lived in the 

municipal areas. The 76.52% of women are working women. The mean number of 

household members was 4.1297 while the minimum  and maximum numbers of 

household members were 1 and 25, respectively. The average age at first marriage and 

first birth were 21.8817 and 24.2652 years, respectively. The mean number of additional 

children wanted was very small (0.3023). 
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Table 3. Description and statistics of variables ( n = 4,118). 

Variables Mean S.D. Max. Min. 

number of births (Y ) 2.2972 1.6206 0 13 

age of women ( 1X ) 39.237 10.6661 15 59 

religion ( 2X )  1: Muslim, 0: others 0.2982 0.4575 0 1 

place of residence ( 3X ) 1: municipal areas,  

0:others 
0.4949 0.5000 0 1 

education ( 4X ) 1: under compulsory education, 

0: others 
0.4738 0.4994 0 1 

occupation ( 5X ) 1: woman is working, 0: others 0.7652 0.4239 0 1 

number of household members ( 6X ) 4.1297 1.9120 1 25 

age at first marriage ( 7X ) 21.8817 4.7441 12 51 

age at first birth ( 8X ) 24.2652 5.2331 13 44 

number of additional children wanted ( 9X ) 0.3023 0.6665 0 6 

 

In this study, the nine covariates were used in both linear predictors. All 

parameters in the generalized zero-altered Poisson regression model were estimated by 

the Bayesian approach using WinBUGS based on three parallel Markov chains with an 

initial burn-in of 10,000 iterations followed by 10,000 samples per chain, giving us a total 

30,000 approximate samples from the posterior distributions of parameters. The prior 

distributions for regression coefficients were the normal distributions with mean 0 and 

variance 100 for regression coefficients ( 0 to 9 ) in the linear predictor of Poisson 

parameter and the normal distributions with mean 0 and variance 10 for regression 

coefficients ( 0 to 9 ) in the linear predictor of dispersion parameter. The posterior 

summary of the full and reduced models are presented in Table 4. The posterior credible 

intervals for 5 , 7  in the Poisson linear predictor and 2 , 3 , 4 , 5  in the 

dispersion linear predictor include zero. That is, occupation and age at first marriage are 

not significant in Poisson linear predictor. While religion place of residence, education, 

and occupation are also not significant in the dispersion linear predictor. Therefore, these 

covariates are excluded from the full model and the predictive models are represented as 

the reduced model. 
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Table 4. Posterior summary of parameters in the full and reduced models. 

Para- 
meters 

Full model Reduced model 

Mean S.E. 2.50% Median 97.50% Mean S.E. 2.50% Median 97.50% 

0  0.6073 0.0365 0.5360 0.6075 0.6785 0.6239 0.0252 0.5743 0.6242 0.6733 

1  0.0340 0.0014 0.0312 0.034 0.0368 0.0340 0.0014 0.0312 0.034 0.0368 

2  0.2957 0.027 0.2434 0.2955 0.3485 0.2941 0.0262 0.244 0.2943 0.3464 

3  -0.0885 0.0257 -0.1395 -0.0881 -0.0385 -0.0929 0.0252 -0.142 -0.0927 -0.0437 

4  -0.1296 0.0325 -0.1933 -0.1295 -0.0667 -0.1287 0.0311 -0.1896 -0.129 -0.0676 

5  0.0184 0.0287 -0.0390 0.0189 0.0737 - - - - - 

6  0.0886 0.0056 0.0775 0.0886 0.0994 0.0882 0.0055 0.0774 0.0882 0.0988 

7  -0.0012 0.0066 -0.0137 -0.0013 0.012 - - - - - 

8  -0.0471 0.0065 -0.0602 -0.0469 -0.0348 -0.0479 0.003 -0.0538 -0.0479 -0.042 

9  -0.3182 0.0361 -0.3896 -0.3177 -0.2499 -0.3207 0.0364 -0.3914 -0.3209 -0.2497 

0  -2.5091 0.1968 -2.8880 -2.5090 -2.1220 -2.4245 0.1427 -2.7230 -2.42 -2.161 

1  -0.0369 0.0069 -0.0508 -0.0366 -0.0236 -0.0357 0.0062 -0.0485 -0.0355 -0.0238 

2  0.0555 0.1158 -0.1703 0.0553 0.2825 - - - - - 

3  0.0635 0.1035 -0.1404 0.0626 0.2643 - - - - - 

4  -0.0268 0.1162 -0.2489 -0.0255 0.2010 - - - - - 

5  0.0425 0.1149 -0.1888 0.0427 0.2597 - - - - - 

6  -0.223 0.0352 -0.2939 -0.2221 -0.1562 -0.2252 0.0358 -0.2957 -0.2247 -0.1557 

7  -0.0758 0.0106 -0.0967 -0.076 -0.0549 -0.0752 0.0092 -0.0940 -0.075 -0.0576 

8  0.2808 0.0163 0.2501 0.2805 0.3135 0.2786 0.0153 0.2490 0.2784 0.3093 

9  0.1510 0.0621 0.0313 0.1504 0.2718 0.1528 0.059 0.0413 0.1528 0.2706 

 

Summary statistics for Bayesian estimation and predicted sample distributions 

are shown in Table 5. The reduced model estimates approximately 32% of the sample 

observations correctly (bias = 0), and about 70% correctly if we allow for an error of   

one child (bias = -1, 0, 1) which are larger than the full model. The DIC of the reduced 

model is smaller than the full model. Thus the reduced model yields the better fit than the 

full model for this data set. The predicted sample distributions that mostly close to 

resemble observed distribution is the reduced model according to the DIC. Figure 5 

represents more clearly efficiency of the reduced model in the other 20% of the 2009 

fertility data. The plot and histogram indicate that most biases of sample are 

approximately zero. 
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Table 5. Observed and estimated sample distributions ( n = 1,030). 

Number of births 
Observed 

proportion 

Estimated values 

Full model Reduced model 

0 0.0835 0.0699 0.0786 

1 0.235 0.299 0.2845 

2 0.3398 0.2515 0.2495 

3 0.1874 0.166 0.1806 

4 0.0689 0.1049 0.0961 

5 0.0369 0.0417 0.0534 

6 0.0194 0.0252 0.0252 

7 0.0165 0.0204 0.0184 

>7 0.0126 0.0214 0.0136 

Correctly predicted proportion 
 

0.3146 0.3204 

Predicted  1 proportion 
 

0.6932 0.7019 

DIC 
 

11,230.1 11,219.2 

 

  
Figure 5. The performance of bias from the reduced model. 

 

6.  Conclusions  

This study introduces the generalized zero-altered Poisson regression model 

with the suitable link functions of parameters and the Bayesian approach can be carried 

out for parameter estimation method using WinBUGS. Simulation studies in the zero-

altered Poisson regression models illustrate that the Bayes estimator has a good 

performance with small bias and standard error. It can be concluded that the Bayesian 

approach is satisfactory estimation method for fixed effects model (Model I) at large 
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sample sizes and even larger sample sizes for the mixed models (Model II and Model 

III). The results from Bayesian analysis of the generalized zero-altered Poisson 

regression model showed that number of births was significantly affected by age of 

women, number of household members, age at first birth, and number of additional 

children wanted in both linear predictors. In addition, the religion, place of residence, and 

education were significantly effects in the Poisson linear predictor. The age at first 

marriage was significantly effect in the dispersion linear predictor. 

In the future research, other methods for parameter estimation could be used in 

the generalized zero-altered Poisson regression models and compared to the Bayesian 

estimation method. Moreover, random terms could be included in both linear predictors 

in the generalized zero-altered Poisson regression model and studied in the same 

simulation cases as Model I-III. The efficiency of the generalized zero-altered Poisson 

regression model should be compared to the other count models, i.e. the generalized 

Poisson regression model, the zero-inflated Poisson regression model for under-, equi- 

and over-dispersion data sets. Moreover, the generalized zero-altered Poisson 

regression model could be applied to real data sets in several fields, i.e. epidemiology, 

ecology, and economics and compared to the other count models in case of real data 

sets. 
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