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Abstract

Optimal designs for estimating the parameters and also the optimum factor
combinations in multi-response experiments have been considered by some authors.
However, the existing literature on mixture experiments shows studies mainly in the single
response case. In this paper an attempt has been made to investigate optimum designs
for estimating optimum mixing proportions and also the optimum amount of mixture in a
multi-response experiment. The pseudo-Bayesian approach has been used, and the
support points of the optimum design are found to be the union of the support points of a
weighted centroid design and a three-point symmetric design, with support points at the

two extremes and one at the centre.

Keywords: Multiple responses, mixture experiment, mixture-amount model, linear

optimality criterion, optimal design, invariance, weighted centroid design.

1. Introduction

Design of experiments has vast application in different fields, such as
engineering, pharmaceutical, biomedical, environmental and epidemiological research.
In these areas, it is often necessary to measure more than one response for each setting

of control variables. Such experiments are called multi-response experiments. The
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responses may be correlated so that they cannot be studied independently. In other
cases, the cost of experimenting and collecting data using single response experiments
makes one reconsider the problem as a multi-response design of experiments. Roy et
al. [1] first developed techniques for multi-response experiments. Fedorov [2] established
a theoretical foundation and developed a recursive algorithm for generating multi-
response approximate D-optimal designs. Chang [3] studied the properties of D-optimal
designs for multi-response models and proved that the optimal design of a multi-
response model whose response functions have the same forms coincide with that of a
single response model of the same form. Krafft and Schaefer [4] considered a linear
regression model with a one-dimensional control variable and an m-dimensional
response variable. Bischoff [5] found special conditions under which D-optimal designs
are optimal for problems with correlated observations and extended this finding to special
multi- response models. Imhof [6] extended the first-order model of Krafft and Schaefer
[4] to a second-order model. Chang et al. [7] generated D-optimal designs for a simple
m-dimensional response model with a single control variable. Mandal [8] investigated D-
optimal designs for the estimation of the optimum factor combinations in a multi-
response experiment.

In mixture experiments, optimum designs for parameter estimation have been
considered by several authors like Kiefer [9], Atwood [10], Galil and Kiefer [11], Liu and
Neudecker [12], to name a few. For estimation of the optimum composition of a mixture,
optimum designs have been investigated by Pal and Mandal [13-15], Mandal and Pal
[16], among others. All these studies relate to mixture experiments with single response.
However, there are many practical situations where the experimenter is interested in
more than one characteristic of the output. For example, in pharmaceutical or biomedical
research, though the efficacy of a drug or remedy is of primary concern, one cannot
ignore the serious side-effects. In consumer products, like food and beverages, besides
taste, different responses like colour, texture and the undesirable by-products have to be
taken into account. It is therefore a challenging problem to extend the study of mixture
experiments to the case of multiple responses. In this connection, Mandal and Pal [17]
studied the problem of determining A-optimal designs for estimating the optimum
proportions in a multi-response experiment.

It is also possible to have situations where the response depends not only on
the mixing proportions, but also on the amount of the mixture. An example is the effect of
a fertilizer on the yield of a crop, which depends not only on the composition of the

fertilizer but also on the amount of fertilizer applied. To date, there are only a few studies
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on such mixture-amount models in the single response case. See, for example, Hilgers
and Bauer [18], Heiligers and Hilgers [19], Zhang et al. [20], Mandal et al. [21], Pal and
Mandal [22], Mandal and Pal [23]. In this paper, we study the problem of determining
optimal designs for the estimation of optimum proportions and amount for each response
in a multi-response mixture experiment, where each response is defined by the mixture-
amount model that has been proposed by Pal and Mandal [22]. The paper is organized
as follows. Section 2 describes the problem and its perspectives. Section 3 investigates
the optimal designs using a linear optimality criterion, namely the trace criterion. Finally,

a discussion on our findings is given in Section 4.

2. The problem and Its Perspective

Consider a mixture experiment with g components, whose proportions in the

mixture are denoted by X, , X, ,..., X, and the amount of mixture used is A. The

q )
experimental domain is given by

= :{(A,xl,xz,...,xq)|AE[AL,AU], AL>0,x=>0,i=1,2,...,q, in =1}.

(2.1)
The assumption AL > 0 ensures that some amount of the mixture should
necessarily be used in the experiment.

LetY’= (Y W y@ vy (p)) be the random response vector, where Y ©@ denotes
the gth characteristic of the output, g = 1, 2, ..., p. We assume that Y © s

dependent on the proportions X, X,,..., X, and the amount A, and its mean is a

q

. o .
second degree polynomial in X*=(A, X;, X, -, X, )’

2 q q 2 q
EY@ [ x*)=¢l =@ A+alf A + AS X + 2 ai@%" + 2 al9xx;
i=1 i=1 i<j=1
(2.2)
This model has been suggested by Pal and Mandal [22] in the single response

case.

Using the constraint > X =1, we can write (2.2) as
i

gl¥ = /()P =x*BOx* (2.3)
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where

£ (%)= (A A, A ey Ay X1 X ey X XXy Xy Xg e X g Xg )
B = (Boos Boss Bozrewss Bogs Buas Bazseees Bags Brareess Bysq)'
B @ = ((b")),
bi¥ = B, ifi =]
= B ifi<]

Here ﬂigg) s being linear functions of aigg) s.

Here, X* satisfies the constraint
c’x =1, (2.4)
wherec=(0,1,1,...,1) ".
(9)

We assume that for each J = 1,2, ..., p, Syx is concave and has a finite

maximum in the interior of the experimental region (2.1). Then, subject to (2.4), (2.3) is

maximized at

y@ = s@7B@ ¢ 2.5)

where
Let us write y(g)* = (A(g),yl(g),...,]/ég)), where A corresponds to the

optimum amount and (j/l(g),}/ég),...,j/ég)) the optimum mixing proportions for g-th

response.

We are interested in estimating the non-linear functions },(g)*, g= 1,2, ...,

P, as accurately as possible by a proper choice of a design in =. In this paper, we shall

work in the framework of “approximate “or “continuous” designs.

We can write

E(Y)=0f (), (2.6)
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with
0=(BY g@ ... pPy
Let £ = ((ogh)) denote the dispersion matrix of ¥ .

For any arbitrary continuous design & in =, the information matrix of & for
=Y, BO ..., BP)is given by
(A =21 M (9,
where M (&) = [ f(x) f'(X)d&(x).

For a given design f we can estimate ® by O , the least squares estimator

of ®, and hence B@ by B@and 5@ py 5 Then, an estimate of y(g)* is given
by

5O Z5@7BOT g=1.2 .. p, @.7)

@y (2 (@*)" " Then, under suitable

where 1 is a unit vector. Let,p” = (™", p' " ...,y

regularity assumptions on error distribution, the standard O -method gives an adequate

approximation of the dispersion matrix of y = (y(l)*' y(g)*' yeeny 33(9)*' ) as

Disp(7") =E[¢" -»")@" —7")']
= Diag(T”(y"),g =12,..., p)(E®M *(£))Diag (T ("), g =1.2,..., p)’
(2.8)
where
(g) ay(g) 8}'(9) ay(g)* oy (9)* 57(9)* 8;!(9)*

T O(y")= ( ) (2.9)
ég) 5ﬂ(g) aﬂ(g) aﬂ(g) aﬁ(g) ﬂl(g) aﬂé%q
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I (a_1A@ (@) (1)@ @ 1w 9l@w l.@, @ |
0 —(q-DA™/2 ... A¥/2  —(g-1p .. ’q o 2 12 Z(quﬁyq )
@ 9 (@ @ 1 _9-1 @ 1 @, o
0 A9r2 . A92 ” 7q ST 2(yq_lﬂ)q )
1 1 q-1
ADo A9 (9) @ oo, ol ©)
0 / / " 7q S0 +7y0) >lqa "7 g
0 A©)2 _(q-1)A@ /2 4O “(q-1@ L1p@ 0y 1@ 971
{ O S0+, ST =
—gA®@ —qy®r2 . —qy;g)/z 0 w0 0 0
(2.10)

Here A@ denotes the optimum amount and corresponding to the gth response, (= 1,

2, ..., p.

We restrict our study to the class M of positive definite matrices M(&). Since

DiSp(ﬁ*) is singular, the trace criterion would be an appropriate criterion for comparing

different designs:
#y", M(&)) =tr(Disp(77)) (2.11)

However, }'* being a non-linear function of the model parameters, (2.11) will

involve these unknown parameters. A way out would be to adopt the pseudo-Bayesian

approach of Pal and Mandal [13].

We assume that for each , }/(g) “ is random with

EGOY=vV9 i=1,2..,0 £G4 =wO i=j=1,2,..q;v9>0,

WO >0, WO <O (2.12)
and
E( A(g)Z) = a(g), g(A(g)): C(g), g(A(g)},l(g)): b(g), i=1,2,.,0,9=12,.,
p. (2.13)

Since for each g, nothing is known about the relative influence of the different

components (AQ, %@, i=1, 2,..., q) of 9", there is no basis for assuming apriori
moments to be unequal for the components. We therefore assume all first order and
second order moments (pure and mixed) to be invariant with respect to the different
components. In view of (2.4), the a-priori moments satisfy the following relations:
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1/q2 < V(g) < 1/q . q V(g) + q(q_l)w(g) = 1’ qb(g) zc(g) and a(g) > C(g) 2, g= l,
2,..., p.

Thus, we consider the pseudo-Bayesian trace criterion given by
v (9 =E[g(r" M()],

where & is the expectation taken with respect to the prior distribution.

3. Pseudo-Bayesian Trace-Optimal Design

The criterion function can be written as

v (9 =E[g(r" M ()]
=tr[(C®M (&) €
{Diag(T” (y*),g =12,..., p)' Diag(T (¢"),g =12...., p)}]
=tr[(E®M (&) E{Diag(T (") T ("), 9=12..., p)}]

= gaggtr[l\/l O ETOENTOENN

=tr[M H(O)Z oy ETOPENTOEH, (3.1)
g
where
E(TOE)TOE))
I 2 1 2 1 ' ' W

1 (9) (9) (9) ' (9) (9)1 17 (9)
Eqb 1, a, Iq+b1 1,1, a lq + b1, D1
(9) (91 17 (9) (91 17 (9)

0 a, Iq+b2 1,1, a Iq+b3 1,1, D2

0 Dl(g)l Dgg)' Dig) J
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(9) (9) (9) (9)
(@ _ a 2V (@ p _ @ 2 W
al® =q@-)>—+q°—-b@, b@ =-2 g+ ,
¥ =A== +a" ==, b a4t
-1 b(g) b(g)
2l :q(qz ) o -4 b =g .

D{?, D{¥ and Dég)are 0xC(q,2), qxC(q,2) and C(q,2) xC(q,2) matrices,

respectively, given by

4

dl(Q) dl(g) dl(g) dl(g) dz(g) dz(g) dég) dég) dég) dég)
Dl(g) :ﬂ dl(G) dl(g) dl(g) dz(g) dl(g) dl(g) dl(g) dz(g) dz(g) dz(g)
L e C e e e
dég) dég) dz(g) dz(g) dz(g) dz(g) dl(g) dz(g) dz(g) dl(g)
dég) ds(g) ds(g) ds(g) dig) dig) dig) dig) dig) dig)
Dég) zl d3(g) dig) dgg) dig) dg(g) d3(9) da(g) dig) dig) dig) |
2 e
dig) dig) dig) dég) dig) dig) dég) dig) dig) dég)
dS(g) ds(g) de(g) de(g) ds(g) de(g) d7(g) d7(g) d7(g) d7(g)
Dég) :E de(g) ds(g) de(g) de(g) d7(g) d7(g) ds(g) de(g) d7(g) d7(g) |

d7(9) d7(g) de(g) d7(9) d7(g)... de(g) d7(g) de(g) de(g) ds(g)

d¥ =q(q-2), d;¥ =-2q,

d5(9) _

ZQ(Q _1)\/(9) _ ZQW(g), de(g) — _q(v(g) —q _3‘,\/(9)), d7(g) :_4qW(9) ]

It may be noted that i () is a convex function of M(&) in M and (3.1) is

invariant with respect to the mixing proportions. Hence, the optimum design will also be

invariant with respect to X; S. Therefore, for a given value of A, we can confine our

search within the class of weighted centroid designs [24, 25]. Further, for X; S given,
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since the model (2.6) is quadratic in A, the optimum design is likely to admit three

distinct values of A, two at the two extremes and one in between, with positive weights.
We may, therefore, initially confine our search for an optimal design within the sub-class

Dq of designs having support points and weights as given in Table 3.1.

Table 3.1. Support points and corresponding weights of a typical design in Dq.

X1 | X2 | ... | Xg-1 | Xq | weight A weight
1 0 . 0 0 P1

0 1 ... 0 0 p1

0 0 - 0 1 P1 -1 W_1
Ya ol ... 0 0 p2

% 0 . 0 0 P2

0 0 e % 1 P2

1 0 . 0 0 p:’

0 1 ... 0 0 P’

0 0 . 0 1 P/ ao Wo
7 b7 . 0 0 pz’

Y% 0 ... 0 0 p2’

0 0 e 1/2 1/2 pz’

0 11 ...] 010 pr

0 0 ... 0 1 pln 1 W1
v %] ..] 0 o0 P2

% | 0] ...| 0 |0 P2

0 0 s 1 Y pzn
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Here, O< pi, pi’, pi <1,1=1,2, C(q, 1)p1+ C(q, 2)p2 = 1, C(q, 1)p2’ + C(q,
2)p2 =1, C(q, 1) p1+C(q,2) p2=1, ace(-1, 1), w>0,j=-1,01, wa+

Wo+ w1 =1, and C(q,k) Z(EJ . W.1, Wo and W1 denote the weights attached to A=

-1, ao, 1 respectively, while the sixth column gives the weights for different

( X11 X9 yeery Xq ) combinations when A is given.
For any design & € Dq, the moment matrix can be written as

M11 M12 M13
M(f): M12' Mzz Mzs 1
M13' M23' M33

where
M, = W, + W+ ag W, a1, Y a1,
I byly +C,1,1, by, I, +Cpp1, L,
M, = a31c (42 ] 3 =Byl +C51 1",
_C13Mo
M23 = C23M01 M33 :basqu 2)
={p, + pz}w {pl pz }W +ao{p1 pz }w
{pl pZ}W +{p1 pZ }W—l+a {pl p2 }W
Cpy = p2w +p4w +a2p—2W
4 4 4
_1 "
={p, + pz}w +{|o1 —p, W, +a {|o1 pz }w
b, ={p, + 8 pz}w —{p, + pz W, +ap, + 8 pz T,
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14 ’

p p p

Cp, :fwl_?zwfl"'ao?zwo
p p p

313:2{?2W1_?2W—1+a02?2 o}

p p p
Clszgzwl_?zWA*'ao?zwo

_2 " _2 ” ' _2 '
b22 :{pl+ql—6 pz}Wl +{p1 +ql—6 P, }W—l +{p1 +ql—6 P, }Wo
p p p

Mo is a xC(Q, 2) matrix in which the first (-1 elements in the first row are 1 and the
remaining are 0, and the following -1 rows are permutations of the first row.
Since for quadratic regression in [-1, 1], the optimum support points of D-, A-

and E- optimality criteria are at -1, 0 and 1, with equal weights at the extreme points, to
start with, we take @0 = 0, and W1 = W1, p;=p; , | =1, 2. Let, ﬁ)qoc Dy define

the corresponding subclass of designs.

Then, for any design & € @qo, we have

AOA A, . e AX X7 X, X© XXy XpXg o XgiXq
- | 1 | ) ;
2W1 Oq 2W1( pl + qj p2 )1q 2W1 Tzlc(q,z) ,
-2 ,
M@= (e L pt, + P, 0 0
nl,+r11;’ LM,
L Nl
where
q-2 N
n=2w,(p, +F p,) +@-2w,)(p, +F P,)

1 1
r, = 2w1£ P, +(1_2W1)B P, .
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*

My M
Therefore, M (&) :{ 1 1*2 :l , where
2

21 M,
1 '
1 | 1= 2wk 0
* —2w.
M, =— 1™ ,
11 2w, ’
0 k2Iq + k31qlq
M 1 tl, slego
v @-2wk)[0 0 |
1 1
7| _iM ’ ’
M), = e r i 2w, {tzlqlq 5141cq
22 — , _ ’ r |
—lMo l|c(q,z) +£Mo M, 1-2wk, stlegals S le@alewa
r r, r
C(9,2) p,’ 1 14
kl_%plz-k#%’ k, = q-2 Ky =— q-2 P2 q-1 ;
2 pl"’sz (p1+Tp2)(p1+Tp2)
Py 2 P2 '
t=—, S=——p,+—=, r=2w,p, +(1-2w. :
. . Py ar, 1Py +( 1) Py
We thus get

a® &k k) +b (K, + gk;)
2w, (1—2wk,) 2w,

w(&) =2 0,{d°

(9) —
T L a +ab, )+ (g -Ds(e” + 24, )
1

+ _—
a 1-2w, 9k

ae(g) + b3(g) _ (q _1)d3(9)
r

+ 925240, +2(g -2 + =20 g oy

- (@) _
+ q(q-1)d;"° + q(g-1) [2{d5(g) +(q_2)d6(g)}]}
ar, 8r
(3.2)

The optimal values of P, pi and W, are obtained by minimizing y/(&). The

optimality of the design thus obtained within the whole class of competing designs can
be checked using the multi-variate version of the Equivalence Theorem, given in Pal and

Mandal [22] for the single response mixture amount model:
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Equivalence Theorem 3.1: A necessary and sufficient condition for a design f;‘* to be

trace-optimal in a p-variate regression model is that

(3.3)

) MAEY 0, ETOTOTMYE) Fx) < $(E*)

for all X € E. Equality in (3.3) holds at all the support points of é‘*

As the algebraic derivations are rather involved, the condition (3.3) may be

checked by numerical computation. We give below in Table 3.2 the optimum designs for

g-component model, 2 < ( < 4, which have been numerically examined to satisfy
condition (3.3), for various combinations of (0gq,d =12,..., p)and the apriori
moments (@9, v, w®), g =1, 2,..., p). The designs for q > 5 may be similarly

obtained and their optimality or otherwise checked numerically using Theorem 3.1.

Table 3.2. Optimum designs for 0 = 2, 3, 4; p = 2, 3, 4 and some combinations of

(0.2 VO WD) 5
ql p| @@,...a") |lorsopp)| V@, v®) | pr | pr | w1 | wo |Trace
2 (0.2,0.4) 1, 3) (0.30, 0.40) 0.29915 | 0.27692 | 0.31869 | 0.36261 | 122.780
2| 2 (0.2,0.6) (1,10) (0.27, 0.45) 0.29609 | 0.27151 | 0.31246 | 0.37507 | 482.261
3 (0.2,0.6, 0.8) 1,3,7) (0.27, 0.32, 0.40) 0.31207 | 0.28381 | 0.30335 | 0.39329 | 407.639
3 (0.1,0.5,0.7) (1, 6, 10) (0.30, 0.37, 0.45) 0.29988 | 0.27424 | 0.37908 | 0.38043 | 706.915
4](0.1,03,0507) | (148 10) | (0.28 032, 0.4,0.48) |0.29785 | 0.27321 | 0.31226 | 0.37548 | 934.674
41(0.1,05,0.7,0.9) | (1,6,10,14) (0.3, 0.37, 0.45, 0.26) [0.32015 |0.29093 | 0.30062 | 0.39876 [1,075.68
2 (0.2,0.4) 1,3) (0.15, 0.25) 0.12969 | 0.10904 | 0.35186 | 0.29628 | 973.012
2 (0.2, 0.6) (1,10) (0.24,0.32) 0.13363 |0.11377 {0.35000 | 0.30000 |4,301.49
3| 3| (0.2,06,08) @, 3,7 (0.14,0.24,032) |0.13552 | 0.11149 | 0.34406 | 0.31188 |3,902.46
3 (0.1,0.5,0.7) (1, 6, 10) (0.12, 0.20, 0.33) 0.13423 |0.11132 [ 0.34596 | 0.30807 |5,647.98
41(0.1,0.3,0.5,0.7) 1, 4, 8, 10) (0.12, 0.18, 0.22, 0.30) | 0.13339 | 0.10947 | 0.34554 |0.30892 |6,562.84
41(0.1,0.5,0.7,0.9) (1, 6, 10, 14) | (0.15, 0.20, 0.25, 0.32) | 0.13624 | 0.11049 | 0.34218 |0.31564 |10,489.7
2 (0.6,0.2) 1,3) (0.08, 0.0.18) 0.07387 | 0.05906 | 0.37747 | 0.24505 |4,118.26
2 (0.2,0.4) (1,10) (0.10, 0.15) 0.07456 | 0.05640 [ 0.37262 | 0.25476 |10,645.4
41 3 (0.2,0.6, 0.8) 1,3,7) (0..07, 0..14, 0..24) |0.07877 |0.05887 |0.36902 | 0.26196 |16,029.4
3 (0.1,0.5,0.7) (1, 6, 10) (0.08, 0.18, 0.22) 0.07880 | 0.05888 [ 0.36899 | 0.26202 |24,836.1
41(0.1,0.3,0.5,0.7) 1, 4, 8, 10) (0.07, 0.12, 0.18, 0.22) | 0.07724 | 0.05899 | 0.37132 | 0.25735 |29,931.0
41(0.1,0.5,0.7,0.9) (1, 6, 10, 14) |(0.09, 0.15, 0.20, 0.24) | 0.07913 | 0.05914 | 0.36879 |0.26242 |47,361.1
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4. Conclusion

In this paper, we have investigated the problem of finding the optimum design
for estimation of optimum mixing proportions and the optimum mixture amount in a multi-
response mixture experiment, when each response function is quadratic, concave. The

trace-optimal design has been obtained numerically for the number of components g = 2,
3, 4, and is seen to belong to the subclass Dq of designs given by Table 3.1. The

weights assigned to the support points of the design are dependent on the apriori

moments of the optimum proportions and the optimum amounts. It may be conjectured

that for higher values of g, the optimal design will also belong to the subclass Dq.
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