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Abstract  

Optimal designs for estimating the parameters and also the optimum factor 

combinations in multi-response experiments have been considered by some authors. 

However, the existing literature on mixture experiments shows studies mainly in the single 

response case.  In this paper an attempt has been made to investigate optimum designs 

for estimating optimum mixing proportions and also the optimum amount of mixture in a 

multi-response experiment. The pseudo-Bayesian approach has been used, and the 

support points of the optimum design are found to be the union of the support points of a 

weighted centroid design and a three-point symmetric design, with support points at the 

two extremes and one at the centre. 

______________________________ 

Keywords: Multiple responses, mixture experiment, mixture-amount model, linear 

optimality criterion, optimal design, invariance, weighted centroid design. 

 

1.  Introduction  

Design of experiments has vast application in different fields, such as 

engineering, pharmaceutical, biomedical, environmental and epidemiological research.  

In these areas, it is often necessary to measure more than one response for each setting 

of control variables. Such experiments are called multi-response experiments. The 
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responses may be correlated so that they cannot be studied independently. In other 

cases, the cost of experimenting and collecting data using single response experiments 

makes one reconsider the problem as a multi-response design  of  experiments. Roy et 

al. [1] first developed techniques for multi-response experiments. Fedorov [2] established 

a theoretical foundation and developed a recursive algorithm for generating multi-

response approximate D-optimal designs. Chang [3] studied the properties of D-optimal 

designs for multi-response models and proved that the optimal design of a multi-

response model whose response functions have the same forms coincide with that of a 

single response model of the same form.  Krafft and Schaefer [4] considered a linear 

regression model with a  one-dimensional  control  variable and  an   m-dimensional 

response variable. Bischoff [5] found special conditions under which D-optimal designs 

are optimal for problems with correlated observations and extended this finding to special 

multi- response models. Imhof [6] extended the first-order model  of  Krafft and Schaefer 

[4] to a second-order model. Chang et al. [7] generated D-optimal designs for a simple 

m-dimensional response model with a single control variable. Mandal [8] investigated D-

optimal designs for the estimation of the optimum factor combinations in a multi-

response experiment. 

In mixture experiments, optimum designs for parameter estimation have been 

considered by several authors like Kiefer [9], Atwood [10], Galil and Kiefer [11], Liu and 

Neudecker [12], to name a few. For estimation of the optimum composition of a mixture, 

optimum designs have been investigated by Pal and Mandal [13-15], Mandal and Pal 

[16], among others. All these studies relate to mixture experiments with single response. 

However, there are many practical situations where the experimenter is interested in 

more than one characteristic of the output. For example, in pharmaceutical or biomedical 

research, though the efficacy of a drug or remedy is of primary concern, one cannot 

ignore the serious side-effects. In consumer products, like food and beverages, besides 

taste, different responses like colour, texture and the undesirable by-products have to be 

taken into account. It is therefore a challenging problem to extend the study of mixture 

experiments to the case of multiple responses. In this connection, Mandal and Pal [17] 

studied the problem of determining A-optimal designs for estimating the optimum 

proportions in a multi-response experiment. 

It is also possible to have situations where the response depends not only on 

the mixing proportions, but also on the amount of the mixture. An example is the effect of 

a fertilizer on the yield of a crop, which depends not only on the composition of the 

fertilizer but also on the amount of fertilizer applied.  To date, there are only a few studies 
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on such mixture-amount models in the single response case. See, for example, Hilgers 

and Bauer [18],  Heiligers and Hilgers [19], Zhang et al. [20],  Mandal et al. [21], Pal and 

Mandal [22], Mandal and Pal [23]. In this paper, we study the problem of determining 

optimal designs for the estimation of optimum proportions and amount for each response 

in a multi-response mixture experiment, where each response is defined by the mixture-

amount model that has been proposed by Pal and Mandal [22]. The paper is organized 

as follows. Section 2 describes the problem and its perspectives. Section 3 investigates 

the optimal designs using a linear optimality criterion, namely the trace criterion. Finally, 

a discussion on our findings is given in Section 4. 

 

2.  The problem and Its Perspective  

 Consider a mixture experiment with q components, whose proportions in the 

mixture are denoted by qxxx ,...,, 21 , and the amount of mixture used is A. The 

experimental domain is given by  

 ={( qxxxA ,...,,, 21 )| ],[ UL AAA , AL > 0, xi 0, i= 1, 2, …, q, 1 i

i

x }.   

         (2.1) 

The assumption AL > 0 ensures that some amount of the mixture should 

necessarily be used in the experiment. 

Let Y = (Y (1), Y (2), …, Y (p)) be the random response vector, where  Y (g) denotes 

the gth characteristic of the output, g = 1, 2, …, p.  We assume that Y (g) is 

dependent on the proportions qxxx ,...,, 21  and the amount A, and its mean is a 

second degree polynomial in x*=(A, qxxx ,...,, 21 ): 
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This model has been suggested by Pal and Mandal [22] in the single response 

case. 

Using the constraint ,1
i

ix  we can write (2.2) as  

      )(

*

g
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)()( gf βx = *x*x

)(gB     (2.3)      
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where          
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Here
)(g

ij s being linear functions of  
)(g

ij s.  

Here, x* satisfies the constraint 

    c x* =1,      (2.4)     

where c = (0,1, 1, …, 1)   . 

We assume that for each g = 1, 2, …, p, )(
*
g

x
  is concave and has a finite 

maximum in the interior of the experimental region (2.1). Then, subject to (2.4), (2.3) is 

maximized at 

    (g)* = 
1)(1)(  gg B c,        (2.5) 

where     

   )(g c 
1)( gB c.      

Let us write ),...,,( )()(

1

)()*( g

q

ggg A γ , where 
)(gA corresponds to the 

optimum amount and ),...,,( )()(
2

)(
1

g
q

gg   the optimum mixing proportions for g-th 

response. 

We are interested in estimating the non-linear functions  (g)*, g = 1, 2, …, 

p, as accurately as possible by a proper choice of a design in . In this paper, we shall 

work in the framework of “approximate “or “continuous” designs.  

We can write 

   E (Y) =  f (x),    (2.6)       
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with 

    = ( (1),  (2), …,  (p)). 

Let  = ((gh)) denote the dispersion matrix of  . 

For any arbitrary continuous design ξ in  , the information matrix of   for  

= ((1),   (2), …,  (p) ) is given by  

   I (,) = -1  M (), 

where 


)()(')()( xxx dffξM . 

For a given design ,  we can estimate  by ̂ , the least squares estimator 

of , and hence B(g) by (g)B̂ and  (g)  by 
)(ˆ g . Then, an estimate of 

)*(g
γ is given 

by 

1)(1)()( ˆˆˆ
  ggg Bδγ 1, g = 1, 2, …, p,        (2.7)      

where 1 is a unit vector. Let, ),...,,( )()2()1(   ''' g
γγγγ . Then, under suitable 
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          (2.10) 

Here A(g) denotes the optimum amount and corresponding to the gth response, g= 1, 

2, ..., p. 

We restrict our study to the class M of positive definite matrices M(). Since 

)ˆ( 
γDisp is singular, the trace criterion would be an appropriate criterion for comparing 

different designs:  

   ))ˆ(())(,(   γγ DisptrM  .    (2.11) 

However,   * being a non-linear function of the model parameters, (2.11) will 

involve these unknown parameters. A way out would be to adopt the pseudo-Bayesian 

approach of Pal and Mandal [13].   

We assume that for each g,  (g) * is random with 

E (i
(g)2) = v(g), i = 1, 2, ..., q;   E (i

(g) j
(g)) = w(g), i  j = 1, 2, …,q; v(g) > 0,  

                      w(g) > 0,  w(g)  v(g),        (2.12) 

and 

E ( A(g)2)  = a(g),  E (A(g))= c(g),  E (A(g)i
(g))= b(g), i = 1, 2, .., q, g = 1, 2,..., 

p.           (2.13)  

 Since for each g, nothing is known about the relative influence of the different 

components (A(g), i
(g), i=1, 2,…, q) of (g)*, there is no basis for assuming apriori 

moments to be unequal for the components. We therefore assume all first order and 

second order moments (pure and mixed) to be invariant with respect to the different 

components. In view of (2.4), the a-priori moments satisfy the following relations: 
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1/q2 < v(g) < 1/q , q v(g) + q(q-1)w(g)  = 1, qb(g) =c(g)  and  a(g) > c(g) 2, g = 1, 

2,..., p. 

Thus, we consider the pseudo-Bayesian trace criterion given by  

 () = E [ ))(,(  M
γ ], 

where E is the expectation taken with respect to the prior distribution. 

 
3.  Pseudo-Bayesian Trace-Optimal Design  

The criterion function can be written as 
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It may be noted that  () is a convex function of M() in M and (3.1) is 

invariant with respect to the mixing proportions. Hence, the optimum design will also be 

invariant with respect to ix s. Therefore, for a given value of A, we can confine our 

search within the class of weighted centroid designs [24, 25]. Further, for ix s given, 
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since the model (2.6) is quadratic in A, the optimum design is likely to admit three 

distinct values of A, two at the two extremes and one in between, with positive weights. 

We may, therefore, initially confine our search for an optimal design within the sub-class 

Dq of designs having support points and weights as given in Table 3.1. 

 

Table 3.1. Support points and corresponding weights of a typical design in Dq.  
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Here,  0 pi, pi, pi
'' 1, i = 1,2, C(q, 1)p1 + C(q, 2)p2 = 1, C(q, 1)p1 + C(q, 

2)p2 = 1,  C(q, 1) p1
''+ C(q, 2) p2

''= 1,  a0(-1, 1), wj 0, j = -1, 0,1, w-1+ 

w0+ w1 = 1, and  C(q,k) = 








k

q
. w-1, w0 and w1 denote the weights attached to A= 

-1, a0, 1 respectively, while the sixth column gives the weights for different                     

( ),...,, 21 qxxx combinations when A is given. 

For any design   Dq, the moment matrix can be written as  
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M0 is a qC(q, 2) matrix in which the first q-1 elements in the first row are 1 and the 

remaining are 0, and the following q-1 rows are permutations of the first row.  
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Therefore, 
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         (3.2)      

 The optimal values of 1

'

11  and , wpp  are obtained by minimizing ).(  The 

optimality of the design thus obtained within the whole class of competing designs can 

be checked using the multi-variate version of the Equivalence Theorem, given in Pal and 

Mandal [22] for the single response mixture amount model:  
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Equivalence Theorem 3.1: A necessary and sufficient condition for a design * to be 

trace-optimal in a p-variate regression model is that 

f(x)M-1(*)[


p

g

gg

1

 E(T(g)T(g))]M-1(*) f(x)  *)(      (3.3)       

for all x  . Equality in (3.3) holds at all the support points of *. 

 As the algebraic derivations are rather involved, the condition (3.3) may be 

checked by numerical computation. We give below in Table 3.2 the optimum designs for 

q-component model, 2  q  4, which have been numerically examined to satisfy 

condition (3.3), for various combinations of ),...,2,1,( pggg  and the apriori 

moments ((a(g), v(g), w(g)), g = 1, 2,…, p). The designs for q  5 may be similarly 

obtained and their optimality or otherwise checked numerically using Theorem 3.1.                 

 

Table 3.2. Optimum designs for q = 2, 3, 4; p = 2, 3, 4 and some combinations of 
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gg wva s. 
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(0.1, 0.5, 0.7) 

(0.1, 0.3, 0.5, 0.7) 

(0.1, 0.5, 0.7, 0.9) 

(1, 3) 

(1,10) 

(1, 3, 7) 

(1, 6, 10) 

(1, 4, 8, 10) 

(1, 6, 10, 14) 

(0.30, 0.40) 

(0.27, 0.45) 

(0.27, 0.32, 0.40) 

(0.30, 0.37, 0.45) 

(0.28, 0.32, 0.4, 0.48) 

(0.3, 0.37, 0.45, 0.26) 
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(0.2, 0.4) 

(0.2, 0.6) 

(0.2, 0.6, 0.8) 

(0.1, 0.5, 0.7) 

(0.1, 0.3, 0.5, 0.7) 

(0.1, 0.5, 0.7, 0.9) 

(1, 3) 

(1,10) 

(1, 3, 7) 

(1, 6, 10) 

(1, 4, 8, 10) 

(1, 6, 10, 14) 

(0.15, 0.25) 

(0.24, 0.32) 

(0.14, 0.24, 0.32) 

(0.12, 0.20, 0.33) 

(0.12, 0.18, 0.22, 0.30) 

(0.15, 0.20, 0.25, 0.32) 

0.12969 

0.13363 

0.13552 

0.13423 

0.13339 

0.13624 
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0.11377 
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(1, 3) 

(1,10) 

(1, 3, 7) 

(1, 6, 10) 

(1, 4, 8, 10) 

(1, 6, 10, 14) 

(0.08, 0.0.18) 

(0.10, 0.15) 

(0..07, 0..14, 0..24) 

(0.08, 0.18, 0.22) 

(0.07, 0.12, 0.18, 0.22) 

(0.09, 0.15, 0.20, 0.24) 

0.07387 

0.07456 

0.07877 

0.07880 

0.07724 

0.07913 

0.05906 

0.05640 

0.05887 
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0.37747 
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0.36902 

0.36899 

0.37132 

0.36879 

0.24505 

0.25476 

0.26196 

0.26202 

0.25735 

0.26242 

4,118.26 

10,645.4 

16,029.4 

24,836.1 

29,931.0 

47,361.1 
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4.  Conclusion  

In this paper, we have investigated the problem of finding the optimum design 

for estimation of optimum mixing proportions and the optimum mixture amount in a multi-

response mixture experiment, when each response function is quadratic, concave. The 

trace-optimal design has been obtained numerically for the number of components q = 2, 

3, 4, and is seen to belong to the subclass Dq of designs given by Table 3.1. The 

weights assigned to the support points of the design are dependent on the apriori 

moments of the optimum proportions and the optimum amounts. It may be conjectured 

that for higher values of q, the optimal design will also belong to the subclass Dq.  
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