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Abstract

In this study, a Bayesian estimation of the population mean of a rare sensitive
attribute has been considered and a Bayes estimator is proposed when the information
from the respondent is collected through the randomized response technique (RRT)
using Greenberg et al. (1969) and Land et al. (2012) models. The Gamma distribution
has been used as prior information to check the behaviour of the Bayes estimator for the
different values of population mean of rare sensitive and rare unrelated attribute. It is
noted that Bayes estimator is efficient as compared to the Maximum Likelihood Estimator
(MLE).
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1. Introduction

Collecting the information about the sensitive issue has always been a serious
problem during the survey of human population. When we study the sensitive attribute
and ask directly from the respondent about sensitive issue, it creates the ambiguity and
evasiveness. Warner [1] was the first researcher who proposed a method of collecting
the information about sensitive issue. Later on, many improvements have been made by
several researchers. Some of them are Greenberg et al. [2], Chaudhuri and Mukerjee [3],
Mangat and Singh [4], Mahmood et al. [5], Bhargava and Singh [6], Christofides [7], Kim
and Warde [8], Diana and Perri [9], Land et al. [10].

Many researchers gave the idea of using the Bayesian estimation procedure for
randomized response models. According to them, in case when the prior information is
given, Bayesian estimation procedure can be used to estimate the unknown population
parameter. Winkler and Franklin [11], Pitz [12], O’'Hagan [13], Migon and Tachibana [14],
Unnikrishnan and Kunte [15], Bar-Lev et al. [16], Barabesi and Marcheselli [17] and Kim
and Tebbs [18] were some of the researchers who used the Bayesian technique for the
analysis of randomized response data.

In this paper, we intend to propose an improved and efficient method for the
estimation of rare sensitive attribute. We propose Bayes estimator for the population
mean of rare sensitive attribute using the Greenberg et al. [2] and Land et al.’s [10]
model. In Section 2, Greenberg et al. [2] and Land et al.’s [10] models are discussed.
Proposed Bayesian estimation procedure is presented in Section 3. The comparative

study is done in Section 4.

2. Review of Land et al. and Greenberg et al. models
Land et al. [10] proposed a method to estimate the mean number of persons

possessing the rare sensitive attribute. For this purpose they used the Greenberg et al.
[2] model to collect the information from the respondent. Greenberg et al.’s [2] gave an
unrelated question technique, in which each individual selected in the samples are asked
to reply “yes” or “no” to one of the following two statements:

(i) Do you belong to Group A?

(i) Do you belong to Group Y?
with respective probabilites P and 1—P.

Second question asked in the sampling does not have any effect on the first
question. Greenberg et al. [2] considered “7r,” and “77, " the proportion of persons

possessing sensitive and unrelated characteristic and discussed both the cases when
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“my,” is known and unknown. Greenberg et al. [2] defined the probability of yes
responses as:
Prob(yes) =6, =Pz, +(1-P)x, (2.1)

Land et al. [10] gave a solution of unique problem where the estimation is done for mean
number of persons having the rare sensitive characteristic. Greenberg’s [2] unrelated
model is used for the estimation procedure. Here the huge sample sizes are needed for
the estimation procedure. They considered the rare sensitive case as the proportion of
AIDS patients who continue having affairs with strangers and rare unrelated as the

number of persons who have witnessed a murder. As the large sample sizes are
required N —> and (7,,7,) =0 then Nz, =4, and Nz, =A4,, showing the

number of persons possessing rare sensitive and rare unrelated attribute. In this method
each respondent selected in the sample is directed to rotate a spinner consisting of two

statements:
(i) Do you belong to rare sensitive attribute A ?
(i) Do you belong to rare unrelated attribute Y ?

with respective probabilites P, and1—FP,.

They have defined an unbiased estimator of ZA, when the rare unrelated
attribute is known, as:

111
An= _{EZ y, —(1- Pl)/ly} 2.2)

i=1

where V. is the response from the i respondent. The variance of the estimator 4, is:

1-P)A
Var(Aa) = £+¥
nk nR

When the rare unrelated attribute is unknown, each respondent selected in the sample is

(2.3)

directed to rotate two spinners one after the other. Each spinner contains the same
statements as in the case of known unrelated attribute, with probabilities F’1 and Tl for
the sensitive statement on the first and second spinner respectively. The unbiased

estimator of /IA is defined as:



20 Thailand Statistician, 2013; 11(1): 17-29

A= n(P - T){( T)Zyll a- P)Zy2|j| (2.4)

with P, # T, and having variance, where y,; and Y, are responses from the first and

second spinner.

Var(4a) =C[ {RA-T,)’ +T,(1- B)’ - 2RT,(1- R)(1-T))} 2

+{L-R)A-T)2-R-T)-2(-RY*A-T)*} A
(2.5)

Lt
n(R-T)’

where C is defined as C =

3. Bayesian estimation of A using Land et al. [10] RRM

In the Bayesian estimation of the mean of rare sensitive attribute, we assume
that the prior information about the parameter A follows the Gamma distribution with

parameter & and ,B , which can be written as

f(1)= ’f )A‘“  1>0, a,5>0. (3.1)

Now considering the Greenberg et al. [2] model, let X be the number of yes responses
from the respondent using simple random sampling (SRS). According to them, X; =1
for the yes response with probability & and X = 0 for no response with

probabilityl— @, then by using the Land et al. [10] model, the conditional distribution of

X given A is as follows:

et A"

fy (X[ A)= A>0,x=012,... (3.2)

and “ A " can be expressed by using the linear relation
A=W, +v, (3.3)
where W=P and v=(1-R)4, .

The joint distribution of X and A is given by the expression:
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-4 17X
fm@—ﬂ getgm &4 (3.4)
I'a) X!
The marginal distribution of X , by integrating the f (X, 4) with respectto A [19], is:
F(X)= LT (a+X) | -
xxT(a)(B+1)“

This is the probability mass function of the compound distribution to analyze the data.

Posterior distribution of A | X with its hyperparameter is given by:
A|x~Gamma(a +Y_x,B+N). 3.6)

Bayes estimator under the squared error loss function (SELF) can be written as:

7 a+y X o

== (3.7)
Bayes ﬁ—i_ n ﬁ’
The squared error loss function (SELF) is used as:
L(4,d)=(A-d)’ (3.8)

The estimator A4 can also be defined as Ay E(/1| X). Bayes posterior risk (BPR)

ayes

is obtained as:

L(A,d)=p () =——— (3.9)
E G
The total risk function is used as

p)=p (?)+nc, (3.10)

to find the optimal sample size which increases the benefit and minimizes the cost (say

c) of survey. The optimal sample size [See Appendix] is given by:

(a3
{3+

We are interested in the Bayesian estimation of ZA . From relation (3.3)

A-v

Ay = w

(3.12)

As the distribution of A is defined in (3.1), then prior forlA:



22 Thailand Statistician, 2013; 11(1): 17-29

9(4a)= ;V(ﬁa) (WA, +0) e 250,a>0,8>0. (313

Gamma prior is the conjugate prior for Poisson distribution, so the posterior distribution

of ﬂvA | X can be presented as:

f (2 X)

f,x (Aal X)= 3.14
AplX ( A | ) f (X) ( )

This gives us the resulted posterior distribution as:
Ay | X~ Gamma(ar+ Y X, B+n). (3.15)

Now the Bayes estimator for the mean number of persons possessing rare sensitive
attribute is given by:

A~

Agaves — U
_ __ ’“Bayes
hoae = E(AalX) == (3.16)
The variance of the estimator is presented as:

Var(ﬂ ) = Wz\/ar(/iAB ) (3.17)

Bayes ayes
When the proportion of rare unrelated attribute is known, the variance of the estimator is
given by
A 1 A 1 a+) X
Var (;tAB ) =—Var (;tBayes) = —Z—ZZ' (3.18)
ayes W W (ﬂ + n)

In the case, when the proportion of rare unrelated attribute is unknown, the variance

expression given in Equation (3.17) can be used to in the same way as for the first case.

4. Discussion and conclusion

In this article we have studied Land et al.’s [10] model from a Bayesian view
point. With a prior distribution for ZA , the posterior distribution is a compound of Gamma

distribution. The mixture form reflects the uncertainty about how many respondents
belong to Group A and Group Y.
The comparison is made using the different values of parameters. A simulation

study is done by choosing the different pairs of parameters /1A and ﬂY as (1, 10),

(1, 20), (2, 10) and (5, 10), and we changed the value of P1 from 0.6 to 0.9 with a small
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difference of 0.001. In the Table-1, MSEs are presented for the specific values of P1 and

using the pairs of parameters for the fixed sample size. Complete simulated results are
displayed graphically by using the scatter plot. It is observed that Bayes estimator gives

the high relative efficiency for small values of the shape hyperparametera'. From the

Figures (1-4) (See Appendix), it can be easily seen that the Bayes estimator performs
better than MLE. It is suggested to use the Bayesian estimates whenever to collect the
information about the rare sensitive attribute.
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Figure 1. Graph of MSEs of A, and A, forn =1000,a=4, =1,
AL Agayes A

B =7, =10.
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Figure 2. Graph of MSEs of /1AML and ZAAB for N=1,000,a =4, =1,
ayes

=2, =20.
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Figure 3. Graph of MSEs of A, and A, forn=1000, =1, =2,
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p =7, =10.
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Figure 4. Graph of MSEs of A and A for n=1,000, =4, =5,
AL ABayes A

B=24,=10.

In this paper, it is first time suggested to use the risk function for the privacy of
the respondent which helps interviewer to get more reliable response. The risk function
is also used to optimize the sample size and cost of the survey. To apply in practical
situation the method developed in this article, one must assess the Gamma (prior)

distribution for A . The Assessment method of prior distributions is presented in Winkler

[20] that can be used to assess the prior distribution of A .
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Table 1. Comparison of MLE and Bayes estimators by using different values of

parameters.

n Ay=a A=p R MSE, e MSEg,
1,000 1 10 0.6 0.012778 0.00451
0.7 0.007551 0.003628
0.8 0.004375 0.002746
0.9 0.002346 0.001864
1,000 1 20 0.6 0.023889 0.008267
0.7 0.013673 0.006441
0.8 0.0075 0.004615
0.9 0.00358 0.002788

1,000 2 10 0.6 0.014444 0.0051
0.7 0.00898 0.004315
0.8 0.005625 0.003531
0.9 0.003457 0.002747
1,000 5 10 0.6 0.019444 0.006867
0.7 0.013265 0.006377
0.8 0.009375 0.005803

0.9 0.00679 0.005089
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Appendix

Marginal distributions of the observed variable X

’

£(X) :Tﬂ—az“-le-ﬂi e,
o (@) ©ox!

f (X) — ﬁ—jlaJrX_le_l(ﬂﬂ)di,
X!T'(a) 5

F(X) = LT (a +x)
xxT(a)(B+D)*™

This is called the probability mass function of the compound distribution.
Posterior Distribution

Posterior distribution is defined as the mixture of prior information and likelihood
information. Mathematically, it is defined as:

(Posterior Distribution) « ( Prior) . (Likelihood).
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Bayes Estimator and Total Risk Function

Squared Error Loss Function (SELF) is used as L(/i, d ) = (/1 —d )2. This can also be
written as:

L(2,d)=(A%+d*-24d),
Differentiating the loss function with respect to d and equating to zero, we get:

i|_/1,o|* =(2d"-21)=0, = d'=4.
~iL(ad)f=(2d"-24)

where dis called the Bayes estimator which is equal to the mean of the posterior
Gamma distribution.

Total Risk Function is defined as the fucntion of risk, sample size and cost for sampling.

p(e)= EL(A,d)+nc=p () +nC

X, A|X

Bayes Posterior Risk under Squared Error Loss function.

L(A,d) = p(c) = —2—
EHAD=r )=

Estimation of Optimal Sample Size

p)=p ()+nc= EL(A,d)+nc=

o
X, B(B+n)

Differentiating this equation with respect to n and equating to zero as:

+Nnc,

0 0 0 a
%(p(o)) _%{Xglxl_(i,d) + nC} —a—n m"‘ nc,=0,

We get the optimal sample size as



