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Abstract  

In this study, a Bayesian estimation of the population mean of a rare sensitive 

attribute has been considered and a Bayes estimator is proposed when the information 

from the respondent is collected through the randomized response technique (RRT) 

using Greenberg et al. (1969) and Land et al. (2012) models. The Gamma distribution 

has been used as prior information to check the behaviour of the Bayes estimator for the 

different values of population mean of rare sensitive and rare unrelated attribute. It is 

noted that Bayes estimator is efficient as compared to the Maximum Likelihood Estimator 

(MLE).  

______________________________ 

Keywords: Bayesian estimation, maximum likelihood estimator, mean squares error, 

rare sensitive attribute, simple random sampling. 
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1.  Introduction  

Collecting the information about the sensitive issue has always been a serious 

problem during the survey of human population. When we study the sensitive attribute 

and ask directly from the respondent about sensitive issue, it creates the ambiguity and 

evasiveness. Warner [1] was the first researcher who proposed a method of collecting 

the information about sensitive issue. Later on, many improvements have been made by 

several researchers. Some of them are Greenberg et al. [2], Chaudhuri and Mukerjee [3], 

Mangat and Singh [4], Mahmood et al. [5], Bhargava and Singh [6], Christofides [7], Kim 

and Warde [8], Diana and Perri [9], Land et al. [10]. 

Many researchers gave the idea of using the Bayesian estimation procedure for 

randomized response models. According to them, in case when the prior information is 

given, Bayesian estimation procedure can be used to estimate the unknown population 

parameter. Winkler and Franklin [11], Pitz [12], O’Hagan [13], Migon and Tachibana [14], 

Unnikrishnan and Kunte [15], Bar-Lev et al. [16], Barabesi and Marcheselli [17] and Kim 

and Tebbs [18] were some of the researchers who used the Bayesian technique for the 

analysis of randomized response data. 

In this paper, we intend to propose an improved and efficient method for the 

estimation of rare sensitive attribute. We propose Bayes estimator for the population 

mean of rare sensitive attribute using the Greenberg et al. [2] and Land et al.’s [10] 

model. In Section 2, Greenberg et al. [2] and Land et al.’s [10] models are discussed. 

Proposed Bayesian estimation procedure is presented in Section 3. The comparative 

study is done in Section 4. 

 

2.  Review of Land et al. and Greenberg et al. models  

Land et al. [10] proposed a method to estimate the mean number of persons 

possessing the rare sensitive attribute. For this purpose they used the Greenberg et al. 

[2] model to collect the information from the respondent. Greenberg et al.’s [2] gave an 

unrelated question technique, in which each individual selected in the samples are asked 

to reply “yes” or “no” to one of the following two statements: 

(i) Do you belong to Group A? 

(ii) Do you belong to Group Y?  

with respective probabilities P  and 1 P .  

Second question asked in the sampling does not have any effect on the first 

question. Greenberg et al. [2] considered “ A ” and “ Y ” the proportion of persons 

possessing sensitive and unrelated characteristic and discussed both the cases when 
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“ Y ” is known and unknown. Greenberg et al. [2] defined the probability of yes 

responses as: 

0( ) (1 )A YProb yes P P          (2.1) 

Land et al. [10] gave a solution of unique problem where the estimation is done for mean 

number of persons having the rare sensitive characteristic. Greenberg’s [2] unrelated 

model is used for the estimation procedure. Here the huge sample sizes are needed for 

the estimation procedure. They considered the rare sensitive case as the proportion of 

AIDS patients who continue having affairs with strangers and rare unrelated as the 

number of persons who have witnessed a murder. As the large sample sizes are 

required n  and ( , ) 0A Y    then A An    and Y Yn  , showing the 

number of persons possessing rare sensitive and rare unrelated attribute. In this method 

each respondent selected in the sample is directed to rotate a spinner consisting of two 

statements: 

(i) Do you belong to rare sensitive attribute A ? 

(ii) Do you belong to rare unrelated attributeY ?  

with respective probabilities 1P  and 11 P .  

They have defined an unbiased estimator of A , when the rare unrelated 

attribute is known, as:  

 1
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where iy  is the response from the i
th

 respondent. The variance of the estimator ˆ
A  is: 
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
  .     (2.3) 

When the rare unrelated attribute is unknown, each respondent selected in the sample is 

directed to rotate two spinners one after the other. Each spinner contains the same 

statements as in the case of known unrelated attribute, with probabilities 1P  and 1T  for 

the sensitive statement on the first and second spinner respectively. The unbiased 

estimator of  A   is defined as: 
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 with 1 1P T  and having variance, where 1iy  and 
2iy  are responses from the first and 

second spinner.  

 2 2

1 1 1 1 1 1 1 1( ) (1 ) (1 ) 2 (1 )(1 )A AVar C P T T P PT P T       


  

       2 2
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           (2.5) 

where C is defined as 
2

1 1

1

( )
C

n P T



. 

 

3.  Bayesian estimation of  using Land et al. [10] RRM 

In the Bayesian estimation of the mean of rare sensitive attribute, we assume 

that the prior information about the parameter   follows the Gamma distribution with 

parameter   and  , which can be written as  

1( )
( )

f e


 
 



 


, 0  , , 0   .   (3.1) 

Now considering the Greenberg et al. [2] model, let X  be the number of yes responses 

from the respondent using simple random sampling (SRS). According to them, 1ix   

for the yes response with probability   and  0ix   for no response with 

probability1  , then by using the Land et al. [10] model, the conditional distribution of 

X  given   is as follows: 

.
( | )
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e
f x

x
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






   0  , 0,1,2,...x  .   (3.2) 

and “ ” can be expressed by using the linear relation  

Aw    ,       (3.3) 

 where 1w P  and 1(1 ) YP   .  

The joint distribution of X  and   is given by the expression: 
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The marginal distribution of X , by integrating the ( , )f X  with respect to   [19], is:  
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
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.     (3.5) 

This is the probability mass function of the compound distribution to analyze the data. 

Posterior distribution of | x with its hyperparameter is given by: 

 | ~ ( , )ix Gamma x n    .    (3.6) 

Bayes estimator under the squared error loss function (SELF) can be written as: 

ˆ
Bayes

ix

n

 


 

 
 




.      (3.7) 

The squared error loss function (SELF) is used as: 

   
2

,L d d         (3.8) 

The estimator ̂  can also be defined as  ˆ |Bayes E x  . Bayes posterior risk (BPR) 

is obtained as: 

*

, |
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( )x x
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
.    (3.9) 

The total risk function is used as 

*( ) ( ) nc   ,      (3.10) 

to find the optimal sample size which increases the benefit and minimizes the cost (say 

c) of survey. The optimal sample size [See Appendix] is given by: 

1

2

n
c






 
  
 

.      (3.11) 

We are interested in the Bayesian estimation of A . From relation (3.3) 

A
w

 



 .       (3.12) 

As the distribution of   is defined in (3.1), then prior for A : 
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Gamma prior is the conjugate prior for Poisson distribution, so the posterior distribution 

of |A x  can be presented as: 

  
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f X
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This gives us the resulted posterior distribution as: 

| ~ ( , )A ix Gamma x n    .    (3.15) 

Now the Bayes estimator for the mean number of persons possessing rare sensitive 

attribute is given by: 

  
ˆ

ˆ |
Bayes

Bayes

A AE x
w

 
 


  .     (3.16) 

The variance of the estimator is presented as: 

    2ˆ ˆ
Bayes BayesAVar w Var  .     (3.17) 

When the proportion of rare unrelated attribute is known, the variance of the estimator is 

given by 

   
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22 2

1 1ˆ ˆ .
Bayes

i

A Bayes

x
Var Var

w w n


 




 




   (3.18)  

In the case, when the proportion of rare unrelated attribute is unknown, the variance 

expression given in Equation (3.17) can be used to in the same way as for the first case. 

 

4. Discussion and conclusion  

In this article we have studied Land et al.’s [10] model from a Bayesian view 

point. With a prior distribution for A , the posterior distribution is a compound of Gamma 

distribution. The mixture form reflects the uncertainty about how many respondents 

belong to Group A and Group Y. 

The comparison is made using the different values of parameters. A simulation 

study is done by choosing the different pairs of parameters A  and Y  as (1, 10),      

(1, 20), (2, 10) and (5, 10), and we changed the value of 
1P  from 0.6 to 0.9 with a small 
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difference of 0.001. In the Table-1, MSEs are presented for the specific values of 1P  and 

using the pairs of parameters for the fixed sample size. Complete simulated results are 

displayed graphically by using the scatter plot. It is observed that Bayes estimator gives 

the high relative efficiency for small values of the shape hyperparameter .  From the 

Figures (1-4) (See Appendix), it can be easily seen that the Bayes estimator performs 

better than MLE. It is suggested to use the Bayesian estimates whenever to collect the 

information about the rare sensitive attribute. 

 

 

Figure 1. Graph of MSEs of ˆ
MLA  and ˆ

BayesA for 1,000n  , 1A   , 

10Y   . 
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Figure 2. Graph of MSEs of ˆ
MLA  and ˆ

BayesA
 
for 1,000n  , 1A   , 

20Y   . 

 

 

Figure 3. Graph of MSEs of ˆ
MLA  and ˆ

BayesA
 
for 1,000n  , 2A   , 

10Y   . 
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Figure 4. Graph of MSEs of ˆ
MLA  and ˆ

BayesA
 
for 1,000n  , 5A   , 

10Y   . 

 

In this paper, it is first time suggested to use the risk function for the privacy of 

the respondent which helps interviewer to get more reliable response. The risk function 

is also used to optimize the sample size and cost of the survey. To apply in practical 

situation the method developed in this article, one must assess the Gamma (prior) 

distribution for . The Assessment method of prior distributions is presented in Winkler 

[20] that can be used to assess the prior distribution of . 
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Table 1. Comparison of MLE and Bayes estimators by using different values of 

parameters. 

n  A   Y   1P  MLEMSE  BayesMSE  

1,000 1 10 0.6 0.012778 0.00451 

   0.7 0.007551 0.003628 

   0.8 0.004375 0.002746 

   0.9 0.002346 0.001864 

1,000 1 20 0.6 0.023889 0.008267 

   0.7 0.013673 0.006441 

   0.8 0.0075 0.004615 

   0.9 0.00358 0.002788 

1,000 2 10 0.6 0.014444 0.0051 

   0.7 0.00898 0.004315 

   0.8 0.005625 0.003531 

   0.9 0.003457 0.002747 

1,000 5 10 0.6 0.019444 0.006867 

   0.7 0.013265 0.006377 

   0.8 0.009375 0.005803 

   0.9 0.00679 0.005089 
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Appendix  

Marginal distributions of the observed variable X  
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This is called the probability mass function of the compound distribution.  

Posterior Distribution 

Posterior distribution is defined as the mixture of prior information and likelihood 

information. Mathematically, it is defined as: 

(Posterior Distribution) ∝ ( Prior) . (Likelihood). 
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Bayes Estimator and Total Risk Function  

Squared Error Loss Function (SELF) is used as    
2

,L d d   . This can also be 

written as: 

   2 2, 2L d d d     , 

Differentiating the loss function with respect to d and equating to zero, we get: 

     * * ˆ, 2 2 0L d d
d

 


  


,         
* ˆd  . 

where 
*d is called the Bayes estimator which is equal to the mean of the posterior 

Gamma distribution.  

Total Risk Function is defined as the fucntion of risk, sample size and cost for sampling. 

*

, |

( ) ( , ) ( )
x x

L d nc ncE
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Bayes Posterior Risk under Squared Error Loss function. 
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Estimation of Optimal Sample Size 

 
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, |

( ) ( ) ( , )
x x

nc L d nc nc
n

E



  

 
     


, 

Differentiating this equation with respect to n and equating to zero as: 
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We get the optimal sample size as  
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