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Abstract 

A novel method is used to convert the density estimation to the well-known 

problem of weighted least squares subject to restrictions on parameters.  In turn, the 

problem is solved using the efficient quadratic programming method. Numerous 

simulation studies are performed to fast the validity of the proposed method and it is 

shown that mean integrated squared errors (MISE) of density estimator is smaller than 

standard estimator. There are various values of MISE at different degree of Bernstein 

polynomials, m. From our method, the MISE at m optimal will have the lowest value 

compared with other m. This result proved that m optimal is suitable to achieve the best 

density estimation. At the m optimal, comparing with Kernel method, the Bernstein 

polynomials can provide better (less) MISE for all simulated types of probability function. 

______________________________ 

Keywords: Bernstein polynomials, density estimation, nonparametric method, 

constraints least squares method. 
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1. Introduction 

Nonparametric density estimation is undoubtedly a useful tool of data analysis 

for estimating the probability density function of the underlying population in the 

independent and identically distributed (i.i.d.) setting. This fact is certainly reflected by 

the abundant literature on the subject since the 1960’s. One such method, which is now 

very popular, is the so-called kernel method originally proposed by Parzen [1]. Kernel 

estimators are typically obtained as the weighted average of kernel functions centered at 

observed values, where the average is taken with respect to the empirical cumulative 

distribution function (ecdf)     and can be expressed as  
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where            are i.i.d random variables from same density  ( ), K is the kernel 

distribution function and h is the window width also called the smoothing parameter or 

bandwidth by some authors. In above, the ecdf is given by   ( )  
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   (    ) which 

is a right continuous function of X with jumps at the observed values,           . 

For many reasons the problem of estimation of a probability density function is 

a fundamental aspect of any statistical inferential procedure. Rosenblatt [2] discussed 

remarks on some nonparametric estimates of the density of a univariate probability 

distribution. An estimate of the density function with any desired regularity properties can 

be obtained by choosing a weight function with the same regularity properties. Parzen [1] 

had demonstrated and discussed how one may construct a family of estimates of 

function and of the mode that are consistent and asymptotically Normal. Moreover, he 

determined conditions under which the estimated probability density function tends 

uniformly to the true probability density function as the sample sizes increase. Using this 

fact, he was able to obtain consistent estimate of the modes. Silverman [3] presented a 

general review of Kernel Density Estimator (KDE) and particularly so for nonparametric 

probability density function estimation by the kernel method which is described in his 

seminal book by Silverman [3]. All aspects of KDE depend critically on the choice of the 

bandwidth, h. Some of the commonly used methods are Silverman’s rule of the thumb, 

least squares cross validation [4] and the plug-in, h selector proposed by Sheater and 

Jones [5]. It is usually agreed that a proper choice of the parameter, h, known as the 

smoothing parameter or bandwidth, is much more important than the choice of the kernel 

function itself. However, KDEs are known to suffer from boundary biases when the 

support of the density is compact. 
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Alternatively, linear combinations of Bernstein polynomials can be used for 

nonparametric density estimation. Bernstein polynomials have a long history in the 

mathematics literature. Studies on such polynomials began with Bernstein [6] who 

presented a probabilistic proof of the Weierstrass Approximation Theorem and 

introduced what we call today Bernstein polynomials. The Bernstein polynomials to 

approximate a continuous function  ( ) defined on a closed interval [a,b] is given by 
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For smooth estimate of a density function with a finite known support, Vitale [7] 

first proposed a method based on the Bernstein polynomials. The idea is based on the 

Weierstrass Approximation Theorem, which assures that any continuous functions on a 

closed interval can be uniformly approximated by Bernstein polynomials as the order of 

the polynomial increases to infinity. In other words, 

 

‖  (   )   ( )‖          |  (   )   ( )|                    (3)

  

This approach to nonparametric density estimation that naturally leads to 

estimators with acceptable behavior near the boundaries relies on various interesting 

properties of the Bernstein polynomials approximations. Interest in Bernstein polynomials 

stems from the fact that they are the simplest example of a polynomial approximation 

which has a probabilistic interpretation. More general probabilistic approximations can be 

found in Altomare and Campiti [8]. Many methods have used Bernstein polynomials as 

prior for estimating probability density function on a closed interval (e.g. Petrone [9], 

Ghosal [10]). Babu et al. [11] suggested the application of Bernstein polynomials for 

approximating a bounded and continuous density function. Moreover, Kakizawa [12] 

showed that the Bernstein polynomials, which can also be expressed as a mixture of 

Beta densities, provides a successful tool in the Bayesian context and can be used as a 

nonparametric prior for continuous densities. The comparison with the ordinary kernel 

method based on a Monte Carlo simulation has been illustrated and examined for finite 

sample performances. So, there were many approaches in Bernstein polynomial to get 

better density estimation comparing to Kernel method but the algorithms are more 

complicated than basic Kernel estimation. In this paper, a novel method of estimation of 

the true density by using Bernstein polynomials is proposed and converted the density 

estimation to the well-known problem of weighted least squares subject to restrictions on 

parameters. This new method is one of the efficient algorithms to apply in the Bernstein 

polynomials for density estimation.   
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2. Density estimation using Bernstein Polynomial 

 There are many ways to construct an estimator and to make inferences about 

the population. Especially, we often use data to make inferences about a parameter by 

applying the statistical functional of the ecdf. The ecdf is very useful for developing and 

studying a large number of estimators. The initial goal of this section is to obtain a 

smooth estimate of the cumulative distribution function (cdf);  ( )   [   ] where X is 

a random variable and  ( ) is known to be continuous. To begin with the simplified case, 

we consider random variables that are known to take values in the interval [0,1]. In other 

words, we initially assume that  ( )    and   ( )   , later we are going to relax this 

assumption.  

Let            be an i.i.d sequence of random variables generated from a 

cdf   where  ( ) is continuous. We want to obtain an estimator   ̃( ) that is continuous. 

The ecdf is the function of   defined by   ( )  
 

 
∑  (    ) 

   . Statistical properties of 

the empirical distribution function are following: 

 

i)    ( )    (   ( )) i.e,   ( ) has the binomial distribution 

ii) √ (  ( )   ( ))
d (   ( )(   ( ))) as n  

iii)     |(  ( )   ( )|
. .a s  as    s  

 

These properties demonstrate that the ecdf is a very good estimator of the true 

cdf. Despite these entire nice finite samples as well as asymptotic properties,    ( ) itself 

is not a continuous function even when  ( ) is continuous.  Moreover, when it is known 

that  ( ) is the cdf of an unimodal density or other known properties,   ( ) will not 

generally satisfy these desired known properties of  ( ).  

 

2.1  Density estimation using Bernstein Polynomial with support [0, 1] 

Our proposed model needs to be constructed from cdf so the Bernstein 

polynomials are proved for the cdf properties. When such function is cdf, derivative of 

Bernstein polynomials can be obtained. After that, the result from differentiation using 

Bernstein Polynomials will be proved for probability density function (pdf) properties. 

Suppose   [   ]    is a continuous function. Consider the Bernstein 

polynomial (of order m-1) to approximate  ( ):  
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It is well known that, as     .  
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More interestingly, any qualitative known shape of   is preserved by that of   . 

The goal is to obtain a smooth estimate of  ( ). The step of density estimation by using 

Bernstein polynomials are in the following. 

The Bernstein Polynomial    (    ) can be shown to be the cdf on of all    if it 

satisfies the following properties: i)   (    )  is monotone non-decreasing ii) 

   
    

  (   )    and    
   

  (   )    and iii)   (   ) is right continuous.  

Let   [   ]    be a continuous function. The Bernstein polynomial of the 

degree   of  ( ) on the interval [   ] is defined by Lorentz [13]. In cdf derivation, it is 

easier to start with the Bernstein polynomials of degree m than m-1. 
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If            then    (   )    ;              and         implied that  

    ,          implied that      ,             implied that           , 

          implied that       . Hence, we can conclude that   (   ) is the cdf 

of all   .  
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Consider mixture of Beta densities:  
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Clearly, the Bernstein Polynomial   (   ) can be shown to be a density on [   ] if 
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Thus, we can conclude that    (   ) is a probability density on [   ] if          and 

∑   
         

 

2.2  Density estimation using Bernstein Polynomial with support [a,b] 

            In general, the estimators may not be observed to lie in the domain [   ]. To 

satisfy domain restriction, we use the linear transformation defined as follows for all our 

empirical applications. A polynomial in Bernstein form can be defined over arbitrary 

domain intervals by introducing the change of variables  

 

  
    

     
              ( )         ( )            ( )    (8) 

 

where  ( )            ,  ( )             denote the minimum and maximum order 

statistics, and   ( ) represents the sample standard deviation of                . This 

variable transformation from x to u when 

    
    ( )  

 ( )  ( )   
   map s  [   ] to   [   ] where   could approach    and   

could approach  . 
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Then, we have  

  (   )  ∑   
     (

   
   

)
(

    
     

)
   

(
    

     
)
    

     

        
 (9) 

  

 Similar to the previous approach, we use the Constraints Least Squares (CLS) 

method to estimate   . Consider the cdf based on   (   ),  
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distribution. We obtain    by minimizing a scaled squared distance between    and    
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We solve the following constrained weighted least squares problem: 
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Next, in general case we change to simply notation for minimize:  
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           ∑   
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So, the estimator    can be shown to be the solution of the following 

optimization problem:          ∑   
   

(        ) 

  
   subject to         As   (   ) is linear 

in  , the above optimization problem can easily be solved by using a quadratic 

programming algorithm. The estimator    can be calculated with the least squares 

method shown in the next section. A quadratic programming algorithm (e.g., quadprog in 

R) is proposed as a tool to solve this optimization problem. 
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3.  The least squares method for optimization of the estimators 

In the previous section, we use the Constraints Least Squares (CLS) method to 

estimate   . We obtain    by minimizing a scaled squared distance between    and    

as follows:  

  

Step1 : Computation the estimator    when the target function is cdf. Consider the 

Bernstein polynomials   (       )  ∑   
     (

 
 

)   (   )    ;      which 

resembles the general linear model. We use the least squares method to estimate   . 

The estimator     can be shown to be the solution of the following optimization problem:  
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Thus, we define the optimization problem on the coefficients as follows:  
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 The above optimization problem can be effectively solved by the general 

quadratic programming [14]. Quadratic programming has been used to impose the 

necessary density estimation by using Bernstein polynomials method. In this study, we 

use the available R package quadproc developed by Turlach and Weingessel [15] to 

solve quadratic programming problem. 

 

Step 2: Computation of the estimator    when the target function is pdf. From the result 

in step1, we have two conditions;          and ∑   
       . Therefore, we use CLS 

method to estimate   . Starting with the cdf,  ( ) by considering  

 

  (    )  ∑   
     ∫  

 

 

    (   )   

 (       )
   ∑   

       (         ) (14) 
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So, The estimator    can be shown to be the solution of the following optimization 

problem: 

 

        ∑   
   

(          ) 

  
                    (17) 

 

As   (   ) is linear in  , the above optimization problem can easily be solved by using 

a quadratic programming algorithm (e.g., quadprog in R). 

 

Step 3:  Estimation of   (   ), in this section we develop a novel method to estimating 

the weights that satisfy the desired constraint and then propose a method to select m. 

We use the following class of estimators:  

 

  (   )  ∑   
       ((   ) (   )        ) (   )  (18) 

 

where    are unknown weights satisfying      and ∑   
       ,   (         ) 

denotes the density of     (       ) distribution. Thus, we would like to estimate 

   in   (   ) satisfying the following constraint: (i)     , (ii) ∑   
       . Finally, the 

smoothness of   (   ) would be controlled by suitably selecting  . Consider the smooth 

cdf based on 

 

  (   )  ∑   
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where   (         )  ∫  
 

 
  (         )   is the cdf of     (       ) 

distribution. 

Notice that   ( ) can be computed numerically (p Beta in R). We obtain    by 

minimizing a scaled squared distance between    and    using the fact that √ (  ( )  

 ( ))  
 

 (   ( )(   ( ))). We solve the following constrained weighted least 

squares problem:  
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where    ∫  
 

 
 (  (   ) )  (         )  . As   (   ) is linear in   the above 

optimization problem can easily be solved by using a quadratic programming algorithm. 

One may replace the denominator (  (  ))(    (  )) by (  (  )    )(       (  )) 

where    = 3/8n has been suggested by Anscombe and Aumann [16]. Optimal 

asymptotic rates for choosing m = m(n) has been derived by Vitale [7] and Tenbusch 

[17]. However, in practice such asymptotic rates are not very useful as the rates depend 

on the unknown density  . In simulation studies optimal m is obtain by minimizing the 

Mean Integrated Squared error (MISE). 

 

4.  Simulation studies 

In this section, we present several scenarios using simulated data to validate 

the performance of our method to explore how well the estimated Bernstein polynomials 

density approximates the underlying true density. First, suppose we have   observations 

from the known density. Then we can estimate the estimator    by constrainted least 

squares method described in section 3 and construct the estimated density. We consider 

simulated samples from three kinds of distribution families with sample sizes  =50, 100, 

150 and 200. The software used for computation is R. The results compare the 

smoothing estimation, i.e. traditional kernel estimation and Bernstein Polynomials 

estimation to the true density. For Monte Carlo simulation, we obtain simulated data from 

three kinds of distribution families to cover all data in real line. For density with support, 

within   [    ],  we use the standard Normal distribution to illustrate our method for 

this support. For density with finite support within [a,b], we use the Beta density to 

illustrate method. For density with semi-finite support within  (    ] or [   ), we use the 

Gamma density to illustrate method. Also, the algorithm for finding m optimal has several 

steps as shown in the following; First, generation of data set, in order to represent all 

standard density function, the Normal, Gamma and Beta distribution functions have been 

used as the input data set in the simulation. Second, solving the following constrained 

weighted least squares problem, first considering    for moment of constraints as the 

algorithm to calculate   . Third, finding the estimate density,   (   ), after we get the 

  ,  it is used in Bernstein polynomial to estimate the density function,   (   ), Then, 

the actual density function generated from the simulation is compared to the estimated 

density from our method. The bias, standard deviation and MISE are the parameters in 

the simulation that we can get the average from a thousand of Monte Carlo simulation. 

Fourth, finding optimal density function, the     from the algorithm has been determined 

by the number of parameters in the   (          ) function,  . In our simulation, we 
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used   that was varied from five to fifteen and we can select the optimal   from the 

lowest MISE situations. Then, we use the case that has the optimal   to estimate 

density function of sample. Finally, comparing with various constrains, because the     

has constrains in function, we have tried our algorithm in various constrains and           

re-simulate the results. We use simulated data sets to explore how well the estimated 

Bernstein polynomials approximates the underlying true density with the criteria to select 

m as follows: 

1.  In cdf, the Root Mean Integrated Squared Error is defined as   

        √∫  [   ( ̂( ))       ( ( ))]    

2.  In pdf, the Mean Integrated Squared Error is defined as  

     [ ̂]  ∫  [   ( ̂( ))       ( ( ))]   

where  ̂( ) and  ( ) are estimated density and true density, respectively. 

 

5.  Results of the study 

 The objective of this research is to develop novel density estimation by using 

Bernstein polynomials. For numerical illustration, we start to simulate of the Bernstein 

polynomials estimator for distribution function from three different distributions, then to 

explore the performance of the proposed Bernstein polynomials method by using 

simulated data and to compare the performance of the proposed method to the kernel 

method. The results have two sections: Bernstein polynomials estimator for distribution 

function and Bernstein polynomials estimator for density function.  

 

5.1  Results for Bernstein polynomials estimator for distribution function 

In Figures 1-3, we display the plot of true and Bernstein polynomials estimator 

of distribution function, the behaviour of the bias-corrected estimate, Root Mean 

Integrated Squared Error (RMISE) for three distributions, Normal(2,1), Beta(3.5,4.5) and 

Gamma(3,1). These figures give the results on 1,000 simulated samples for the sample 

sizes    50, 100, 150 and 200. The graphes between True and estimated distribution 

function for each sample size show that the Bernstein polynomials estimator for the 

distribution function presents impressively smooth curve in the approximation of true 

distribution. Also, as presented from Figure 1 to Figure 3 when number of sample size 

increases, RMISE of the estimation function reduces. It means that the estimator is 

closer to the actual distribution function. In details it can be shown that the results of this 

simulation study as follows:  
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(a) n=50 (b) n=100 

  

(c) n=150 (d) n=200 

 

Figure 1: Bernstein polynomials estimator for distribution function from Normal 

distribution. The true cdf (Ftrue in solidcurve), Kernel density estimator (Fn in dash 

curved) and the Bernstein polynomials estimator (Fhat in dotted curve). The bias, 

standard deviation and RMISE for the cdf estimation method are based on 1,000 Monte 

Carlo repetitions. 

 

http://compinfopro.com/dotted-curved-line-photoshop/
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(a) n=50 (b) n=100 

  

(c) n=150 (d) n=200 

 

Figure 2: Bernstein polynomials estimator for distribution function from Beta distribution. 

The true cdf (Ftrue in solid curve), Kernel density estimator (Fn in dash curved) and the 

Bernstein polynomials estimator (Fhat in dotted curve). The bias, standard deviation and 

RMISE for the cdf estimation method are based on 1,000 Monte Carlo repetitions. 

 

 

http://compinfopro.com/dotted-curved-line-photoshop/
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(a) n=50 (b) n=100 

  

(c) n=150 (d) n=200 

 

Figure 3: Bernstein polynomials estimator for distribution function from Gamma 

distribution. The true cdf (Ftrue in solid curve), Kernel density estimator (Fn in dash 

curved) and the Bernstein polynomials estimator (Fhat in dotted curve). The bias, 

standard deviation and RMISE for the cdf estimation method are based on 1,000 Monte 

Carlo repetitions. 

 

 

 

 

 

http://compinfopro.com/dotted-curved-line-photoshop/
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5.2  Results for Bernstein polynomials estimator for density function  

In Figures 4-6, we display the plot of true and Bernstein polynomials estimator 

of density function, the behaviour of the bias-corrected estimate, MISE for three 

distributions, Normal(0,1), Beta(3.5,4.5) and Gamma(3,1). These figures give the results 

on 1,000 simulated samples for the sample sizes    50, 100, 150 and 200. The graphs 

show that the Bernstein polynomials estimator for the distribution function presents 

impressively smooth curve in the approximation of true distribution.  

  

(a) n=50,m=6 (b) n=100,m=7 

  

(c) n=150,m=9 (d) n=200,m=8 

Figure 4: True and estimated density for different sample from Normal density. The true 

pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve). 

The bias, standard deviation and optimal m for the density estimation method are based 

on 1,000 Monte Carlo repetitions. 

http://compinfopro.com/dotted-curved-line-photoshop/
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(a) n=50,m=5 (b) n=100,m=5 

  

(c) n=150,m=5 (d) n=200,m=5 

 

Figure 5: True and estimated density for different sample from Beta density. The true 

pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve). 

The bias, standard deviation and optimal m for the density estimation method are based 

on 1,000 Monte Carlo repetitions. 

 

 

http://compinfopro.com/dotted-curved-line-photoshop/
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(a) n=50,m=6 (b) n=100,m=7 

  

(c) n=150,m=8 (d) n=200,m=8 

 

Figure 6: True and estimated density for different sample from Gamma density. The true 

pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve). 

The bias, standard deviation and optimal m for the density estimation method are based 

on 1,000 Monte Carlo repetitions. 

 

 

 

 

 

 

http://compinfopro.com/dotted-curved-line-photoshop/
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 The more detail information is presented in Table 1. The estimation used   that 

was varied from five to fifteen and we can select the optimal   from the lowest MISE 

situations. Then we use the optimal   to estimate density function of sample. At the m 

optimal, comparing with Kernel method, the Bernstein polynomials can provide better 

(less) MISE for all simulated types of probability function. Also, when number of sample 

size increases, MISE of the estimation function reduces. It means that the estimator is 

closer to the actual distribution function. Therefore, from the above results it proves that, 

the proposed method to choose m optimal explained in Section 4 is suitable to achieve 

the good approximation of probability density function. 

 

Table 1: MISE of Bernstein polynomials method for different sample from Normal, Beta 

and Gamma densities. (1,000 replications). 
 

Normal 

density 

n 

MISE Optimal 

m 

MISE (optimal) 

Min Median Mean Max BP Kernel 

50 0.0647 0.0900 0.0903 0.1195 6 0.0650 0.0665 

100 0.0355 0.0456 0.0477 0.0627 7 0.0350 0.0369 

150 0.0239 0.0335 0.0361 0.0707 9 0.0244 0.0258 

200 0.0190 0.0262 0.0315 0.0815 8 0.0199 0.0207 

Beta 

density 

50 3.3500 4.7690 4.7820 6.5380 5 3.2078 3.2397 

100 1.5830 2.6720 2.6370 3.3380 5 1.4845 1.8619 

150 1.0330 2.0250 1.9900 3.5330 5 0.9912 1.3661 

200 0.8163 1.5440 1.6730 3.6910 5 0.7864 1.0851 

Gamma 

density 

50 0.3351 0.4781 0.4692 0.6059 6 0.0428 0.0509 

100 0.1980 0.2468 0.2515 0.3134 7 0.0235 0.0298 

150 0.1431 0.1696 0.1885 0.3590 8 0.0172 0.0213 

200 0.1191 0.1399 0.1639 0.4020 8 0.0145 0.0172 

 

6.  Conclusions and Discussion 

 The weighted parameter can be determined by the constraint least squares 

method for each number of order of the Bernstein polynomials, m. Because the MISE 

varies whenever the m is changed, the optimal m is chosen from the case that has the 

lowest MISE. At the optimal m, the optimal weight parameter is obtained and the optimal 

density is finally estimated. The method is validated by many simulated data science. 

The input data are considered in three different distributions i.e. Normal, Beta and 

Gamma and the simulation was run 1,000 times for each data set. Three scenarios with 

constraints and without constraint are simulated while the number of samples is varied. 
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There are various value of MISE at different degree of Bernstein polynomials m. From 

our method, the MISE at m optimal will have the lowest value compared with other m. 

This result proved that m optimal is suitable to achieve the best density estimation. At the 

m optimal, comparing with Kernel method, the Bernstein polynomials can provide better 

(less) MISE for all simulated types of probability function. So, by converting the Bernstein 

polynomial to the weighted least squares method, this new approach can provide better 

density estimation.  
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