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Abstract

A novel method is used to convert the density estimation to the well-known
problem of weighted least squares subject to restrictions on parameters. In turn, the
problem is solved using the efficient quadratic programming method. Numerous
simulation studies are performed to fast the validity of the proposed method and it is
shown that mean integrated squared errors (MISE) of density estimator is smaller than
standard estimator. There are various values of MISE at different degree of Bernstein
polynomials, m. From our method, the MISE at m optimal will have the lowest value
compared with other m. This result proved that m optimal is suitable to achieve the best
density estimation. At the m optimal, comparing with Kernel method, the Bernstein
polynomials can provide better (less) MISE for all simulated types of probability function.
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1. Introduction

Nonparametric density estimation is undoubtedly a useful tool of data analysis
for estimating the probability density function of the underlying population in the
independent and identically distributed (i.i.d.) setting. This fact is certainly reflected by
the abundant literature on the subject since the 1960’s. One such method, which is now
very popular, is the so-called kernel method originally proposed by Parzen [1]. Kernel
estimators are typically obtained as the weighted average of kernel functions centered at
observed values, where the average is taken with respect to the empirical cumulative

distribution function (ecdf) F, and can be expressed as

o0 = 17,4 (52) 4R 0) = 23, K (52) ?

where X4, X5, ..., X, are i.i.d random variables from same density f(-), K is the kernel

distribution function and h is the window width also called the smoothing parameter or
bandwidth by some authors. In above, the ecdf is given by E,(x) = % .1 (X; < x)which

is a right continuous function of X with jumps at the observed values, X, X,, ..., X,.

For many reasons the problem of estimation of a probability density function is
a fundamental aspect of any statistical inferential procedure. Rosenblatt [2] discussed
remarks on some nonparametric estimates of the density of a univariate probability
distribution. An estimate of the density function with any desired regularity properties can
be obtained by choosing a weight function with the same regularity properties. Parzen [1]
had demonstrated and discussed how one may construct a family of estimates of
function and of the mode that are consistent and asymptotically Normal. Moreover, he
determined conditions under which the estimated probability density function tends
uniformly to the true probability density function as the sample sizes increase. Using this
fact, he was able to obtain consistent estimate of the modes. Silverman [3] presented a
general review of Kernel Density Estimator (KDE) and particularly so for nonparametric
probability density function estimation by the kernel method which is described in his
seminal book by Silverman [3]. All aspects of KDE depend critically on the choice of the
bandwidth, h. Some of the commonly used methods are Silverman’s rule of the thumb,
least squares cross validation [4] and the plug-in, h selector proposed by Sheater and
Jones [5]. It is usually agreed that a proper choice of the parameter, h, known as the
smoothing parameter or bandwidth, is much more important than the choice of the kernel
function itself. However, KDEs are known to suffer from boundary biases when the

support of the density is compact.
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Alternatively, linear combinations of Bernstein polynomials can be used for
nonparametric density estimation. Bernstein polynomials have a long history in the
mathematics literature. Studies on such polynomials began with Bernstein [6] who
presented a probabilistic proof of the Weierstrass Approximation Theorem and
introduced what we call today Bernstein polynomials. The Bernstein polynomials to

approximate a continuous function f(x) defined on a closed interval [a,b] is given by

B (x, f) = L":lf(a + AL - a)) (aary) E) 7 () ifasx<h @

b-a b-a

For smooth estimate of a density function with a finite known support, Vitale [7]
first proposed a method based on the Bernstein polynomials. The idea is based on the
Weierstrass Approximation Theorem, which assures that any continuous functions on a
closed interval can be uniformly approximated by Bernstein polynomials as the order of
the polynomial increases to infinity. In other words,

1B G f) = fFOlleo = supgex<p|Bn(x, f) — f(x)| >0 as m — . 3)

This approach to nonparametric density estimation that naturally leads to
estimators with acceptable behavior near the boundaries relies on various interesting
properties of the Bernstein polynomials approximations. Interest in Bernstein polynomials
stems from the fact that they are the simplest example of a polynomial approximation
which has a probabilistic interpretation. More general probabilistic approximations can be
found in Altomare and Campiti [8]. Many methods have used Bernstein polynomials as
prior for estimating probability density function on a closed interval (e.g. Petrone [9],
Ghosal [10]). Babu et al. [11] suggested the application of Bernstein polynomials for
approximating a bounded and continuous density function. Moreover, Kakizawa [12]
showed that the Bernstein polynomials, which can also be expressed as a mixture of
Beta densities, provides a successful tool in the Bayesian context and can be used as a
nonparametric prior for continuous densities. The comparison with the ordinary kernel
method based on a Monte Carlo simulation has been illustrated and examined for finite
sample performances. So, there were many approaches in Bernstein polynomial to get
better density estimation comparing to Kernel method but the algorithms are more
complicated than basic Kernel estimation. In this paper, a novel method of estimation of
the true density by using Bernstein polynomials is proposed and converted the density
estimation to the well-known problem of weighted least squares subject to restrictions on
parameters. This new method is one of the efficient algorithms to apply in the Bernstein

polynomials for density estimation.
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2. Density estimation using Bernstein Polynomial

There are many ways to construct an estimator and to make inferences about
the population. Especially, we often use data to make inferences about a parameter by
applying the statistical functional of the ecdf. The ecdf is very useful for developing and
studying a large number of estimators. The initial goal of this section is to obtain a
smooth estimate of the cumulative distribution function (cdf); F(x) = P[X < x] where X is
a random variable and F(-) is known to be continuous. To begin with the simplified case,
we consider random variables that are known to take values in the interval [0,1]. In other
words, we initially assume that F(0) = 0and F(1) =1, later we are going to relax this
assumption.

Let X1, X,,...,X, be an ii.d sequence of random variables generated from a

cdf F where F() is continuous. We want to obtain an estimator £,(x) that is continuous.
The ecdf is the function of x defined by E,(x) =% ™ 1(X; < x). Statistical properties of

the empirical distribution function are following:

) nF,(x)~Bin(n,F(x))i.e, nF(x) has the binomial distribution
i) VR(E,(x) — F(x)) —2—> N(0, F(x)(1 — F(x))) as N =
i) supx |(F,(x) — F(x)] —2—0 as n —» s

These properties demonstrate that the ecdf is a very good estimator of the true
cdf. Despite these entire nice finite samples as well as asymptotic properties, F,(x) itself
is not a continuous function even when F(x) is continuous. Moreover, when it is known
that F(x) is the cdf of an unimodal density or other known properties, E,(x) will not

generally satisfy these desired known properties of F(x).

2.1 Density estimation using Bernstein Polynomial with support [0, 1]

Our proposed model needs to be constructed from cdf so the Bernstein
polynomials are proved for the cdf properties. When such function is cdf, derivative of
Bernstein polynomials can be obtained. After that, the result from differentiation using
Bernstein Polynomials will be proved for probability density function (pdf) properties.

Suppose f:[0,1] = R is a continuous function. Consider the Bernstein

polynomial (of order m-1) to approximate f(-):

N L [ e @
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It is well known that, as m — oo,
I BnC ) = F() o= max |Bp(x, f) = f)] = 0 ®)

More interestingly, any qualitative known shape of f is preserved by that of B,,.
The goal is to obtain a smooth estimate of f(-). The step of density estimation by using
Bernstein polynomials are in the following.

The Bernstein Polynomial F,(x,w ) can be shown to be the cdf on of all wy, if it
satisfies the following properties: i) F,(x,w) is monotone non-decreasing ii)
xgglem(x, w) =0 and ;li_f?oFm(x' w) = 1 and iii) F, (x,w) is right continuous.

Let f:[0,1] » R be a continuous function. The Bernstein polynomial of the
degree m of f(-) on the interval [0,1] is defined by Lorentz [13]. In cdf derivation, it is

easier to start with the Bernstein polynomials of degree m than m-1.

Since  Ep(x,w) = 5™, wy (Zl) xk(L—x)mk;0<x < 1.

Let U; = E,(x;) and by(x, w) = (;(”)xka —x)™k:k=012,...,m ,then

m
En(x,w) = Z wibe(x, w) =wo(1—x)™+w; (rln) A=)+ +wyx™,
k=0
we get, lim F,(x,w) =0 implied that E,(x,w) >0 asn—- —co andif x=0 then
X——00

En(x,w)=wy =0

;in(}oFm(x'W) =1 implied that F,(x,w)>1 as n— —oo and if x =1 then

En(x,w) =wp, = 1.

fw,=F (%) by derivative of Bernstein polynomials, we get

Fin(x,w) = zkmzo F (E) (;{n) [kx*=1 — (1 — x)™kxk (1 — x)m—k-1]

m

=mIRs Wier — wy) (;{n B 1) (1 —-x)" k1 >0 (6)

If wger —we =0 then F',,(x,w) >0 ;k=0,1,....,m—1 and w; —wy = 0 implied that
wy =0, w, —w; = 0 implied that wy, = wy, w4 — wy,_, = 0 implied that wy,_; = w,,_,,
Wi — Wy_1 = 0 implied that 1 > w,,_,. Hence, we can conclude that F,(x,w) is the cdf
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Consider mixture of Beta densities:

xk—l(l_x)m—k

m-—1 _ _
kK Blm—rk+) Ykt Wk( )xk 1(1 — x)m-k @)

fmCow) =35 w k-1

Clearly, the Bernstein Polynomial f,,(x,w) can be shown to be a density on [0,1] if

wy = 0Vkand X7, wy, = 1.

xk_l(l—x)m_k

i —_ m
Since fr, (x,w) = Y7L, wy S GmkAD)

m-—1 _ -
=mEy we () xI =™

Xk_l(l—x)m_k

Let b, = saomoir Ve get fi (x,w) = X7, wb, and we know that
m—1\ k-1,1 _ ,ym-k
(k _1 )x 1-x) = 0.

xk—l(l_x)m—k

— m
Thus, fm(x,w) = X¥L; wy Blom—k+1)

>0 if WkZO

Xk—l(l_x)m—k
kB km—k+1)

1 xk-1(1-x)m-k

dx =YL, wy [, ——— ——dx =

1 1
Next, J;* fn e, w)dx = Ji* S, w —

150f X, we = 1.

Hence, [ fu(x,w)dx =1 if w, > forallk and TjL, wy = 1.
Thus, we can conclude that f,(x,w) is a probability density on [0,1] if w, = 0 Vk and

ZZL:l Wi = 1.

2.2 Density estimation using Bernstein Polynomial with support [a,b]

In general, the estimators may not be observed to lie in the domain [0,1]. To
satisfy domain restriction, we use the linear transformation defined as follows for all our
empirical applications. A polynomial in Bernstein form can be defined over arbitrary

domain intervals by introducing the change of variables

X—Qm
u=-——"

bp—am

;where am = x(1) — 8, by = Xy + 8 and § = sd(x) > 0 (8)

where x(;y = mini<iemXi, Xn) = MaX1<ismX; denote the minimum and maximum order
statistics, and sd(x) represents the sample standard deviation of x;; i = 1,2,...,m. This

variable transformation from x to u when

0<u=2w gy map sx € [a,b] to u € [0,1] where a could approach —o and b

X(n)—X(1)+286 —

could approach co.
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Then, we have

kg

bzt ©

X—am )k_l( bm—x )m—

fnCe,w) =30, wy (Zl_—ll) (bm—am e

Bim-k+1

Similar to the previous approach, we use the Constraints Least Squares (CLS)

method to estimate w;,. Consider the cdf based on f,, (x, w),

En(u,w) = Xjty wieFp(x —a)/(b — a),k,m =k + 1), (10)

where Fy(uk,m—k+1) = [\ f,(w,k,m —k + 1)du and the cdf of Beta(k,m —k +1)
distribution. We obtain w; by minimizing a scaled squared distance between F,, and F,
using V(£ () = F() S N (0, F()(1 - F(x)))-

We solve the following constrained weighted least squares problem:

O V(R = B w)’
Minimize Z (Fn(xi))(l — Fn(xi))

m
subject towy, = 0 andz w,=1 fork12,..,m
k=1

i=1

Next, in general case we change to simply notation for minimize:

n ‘/E(Fn(xi)_ﬁn(xi-ﬂ))z
=1 (R () +e) (L+e=Fy (x))

n ‘/H(Fn(xi)_wi’ﬁ)z
=1 (B (ar) +8) (1+E—Fn (x1)

Minimize : Y, = Minimize : Y, (11)

So, the estimator w, can be shown to be the solution of the following

N Mg Wi-wir B)?
optimization problem: Minimize : 31—, T

subject to R = c.As F,(x,w)is linear

in w, the above optimization problem can easily be solved by using a quadratic
programming algorithm. The estimator wy, can be calculated with the least squares
method shown in the next section. A quadratic programming algorithm (e.g., quadprog in

R) is proposed as a tool to solve this optimization problem.
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3. The least squares method for optimization of the estimators
In the previous section, we use the Constraints Least Squares (CLS) method to
estimate wy. We obtain w;, by minimizing a scaled squared distance between F,, and F,

as follows:

Stepl : Computation the estimator w, when the target function is cdf. Consider the
Bernstein  polynomials F,(x, w) = Xfe, Wk (;{n) (1 —-x)™F 0<x<1 which
resembles the general linear model. We use the least squares method to estimate w,.

The estimator w; can be shown to be the solution of the following optimization problem:

m
Minimize : Z (Fy(x)) — En(x, w))? subjectto:0<w; <w, <...<w;_; < 1.
i=0

Let U; = E,(x), w = (Wy,Wp,...,Wp_q) and sy, = (;(n) x*(1 —x)™k, where k =1,2,...,m

andi=1,2,...,n.

Then,
En(x,w) =27, WiSik (12)
F(x) — Fp(x, w)=(U; - xlm) — (W1Sip +W2Sip+.. . +Win_1Sim—1)
=(; —s'yw) ; wherev; = (U; —x™),s; = (Si1,--+» Sim—1)
o (Fu(x) — Ep(x, w))? =W —sw)w —sw) (13)
S11 " Sim-1

S21 7 Sam-1
where v = (v4,...,7) and s = :
Sp1 " Snm-1

Thus, we define the optimization problem on the coefficients as follows:

Minimize : (v — sw)(v — sw)

subjectto: Rw =[0 0 - 0 —1]
Wy
1 00 - 0 0 [ ]
1)
[—1 10 — 0 0]
w3
whereR=| 0 _% 1 0 :0|andw= : |
lo 00 .. -1 1J -2
0 00 .. 0 -1 m-t
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The above optimization problem can be effectively solved by the general
quadratic programming [14]. Quadratic programming has been used to impose the
necessary density estimation by using Bernstein polynomials method. In this study, we
use the available R package quadproc developed by Turlach and Weingessel [15] to

solve quadratic programming problem.

Step 2: Computation of the estimator w;, when the target function is pdf. From the result
in stepl, we have two conditions; wy, = 0 Vk and Y7, wy = 1. Therefore, we use CLS

method to estimate wy,. Starting with the cdf, F(x) by considering

x thla-pm-*

En(x;w) = X311 wy J ki D dt = Y7, wiFg(x, k,m —k+ 1) (14)

where Fgz(x,k,m —k + 1) is the cdf of a Beta(k,m — k + 1) distribution. It is more well

known to substitute w; with F, (%) -E (ﬁ) ;k=123,...,m. So, we get
k k-1
Fn(xiyw) = 2y Wb () = Fa G0 Fp (x, kym — ke + 1) (15)

It is a consistent estimator of F, i.e. supx |(F,(x;,w) — F(x)| Soasmo oo,n — oo and
m
— — 00,

We obtain w, by minimizing a scaled squared distance between F,, and E,

using Vn(E,(x) — F(x)) 4 N(0,F(x)(1 —F(x))). We solve the following constrained
weighted least squares problem:

VR (Fp (X)) =Fn (x;W))? (16)

ik n
Minimize Ximy = a=Fuoeo)

subjecttow, =20 fork=12,...,m andz wy = 1.
k=1

Next, in general case we change to simply notation for minimize:

N VR -RER) S - w! )
Minimize £, (Fy(x) + &)1+ & — Fu(x) Mlmmlze; T
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So, The estimator w, can be shown to be the solution of the following optimization

problem:
P n i-wir B)? ;

Minimize Y7, —_— subjecttoRf = ¢ a7

As F, (x,w) is linear in w, the above optimization problem can easily be solved by using

a quadratic programming algorithm (e.g., quadprog in R).

Step 3: Estimation of f,,(x,w), in this section we develop a novel method to estimating
the weights that satisfy the desired constraint and then propose a method to select m.
We use the following class of estimators:

fm (X, W) = Yoy wiefy ((x — @)/ (b —a),k,m =k +1)/(b — a) (18)

where w;, are unknown weights satisfying w, =0 and Y7, wy =1, fy(w,k,m—k+1)
denotes the density of Beta(k,m — k + 1) distribution. Thus, we would like to estimate
wy in fi (x, w) satisfying the following constraint: (i) wy, = 0, (ii) iz, wy = 1. Finally, the
smoothness of f;,,(:, w) would be controlled by suitably selecting m. Consider the smooth

cdf based on
Fn (2, W) = Sy wieFy((x — @)/ (b — @), k,m — k + 1) (19)

where F,(wk,m—k+1)= [ f,(v,k,m—k+1)dv is the cdf of Beta(k,m—k+1)
distribution.

Notice that F,,(-) can be computed numerically (p Beta in R). We obtain w;, by
minimizing a scaled squared distance between F,, and F, using the fact that vn(F,(x) —

F(x))iN(O,F(x)(l—F(x))). We solve the following constrained weighted least
squares problem:

n (F (i) =Fn(xw))?

Minimize 37, ) o F) with respect to w (20)

m
subject towy, = 0, Zwk=1 ; fork=12,....m
k=1
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where ¢, = fol gla+ (b —-awfy(u k,m—k+1)du. As F,(x,w) is linear in w the above
optimization problem can easily be solved by using a quadratic programming algorithm.
One may replace the denominator (F,(x;))(1 — E,(x;)) by (F,(x;) + €,)(1 + &, — F, (%))
where &, = 3/8n has been suggested by Anscombe and Aumann [16]. Optimal
asymptotic rates for choosing m = m(n) has been derived by Vitale [7] and Tenbusch
[17]. However, in practice such asymptotic rates are not very useful as the rates depend
on the unknown density f. In simulation studies optimal m is obtain by minimizing the

Mean Integrated Squared error (MISE).

4. Simulation studies

In this section, we present several scenarios using simulated data to validate
the performance of our method to explore how well the estimated Bernstein polynomials
density approximates the underlying true density. First, suppose we have n observations
from the known density. Then we can estimate the estimator w;, by constrainted least
squares method described in section 3 and construct the estimated density. We consider
simulated samples from three kinds of distribution families with sample sizes n=50, 100,
150 and 200. The software used for computation is R. The results compare the
smoothing estimation, i.e. traditional kernel estimation and Bernstein Polynomials
estimation to the true density. For Monte Carlo simulation, we obtain simulated data from
three kinds of distribution families to cover all data in real line. For density with support,
within R = [—o0, 0], we use the standard Normal distribution to illustrate our method for
this support. For density with finite support within [a,b], we use the Beta density to
illustrate method. For density with semi-finite support within (—oo, b] or [a, ), we use the
Gamma density to illustrate method. Also, the algorithm for finding m optimal has several
steps as shown in the following; First, generation of data set, in order to represent all
standard density function, the Normal, Gamma and Beta distribution functions have been
used as the input data set in the simulation. Second, solving the following constrained
weighted least squares problem, first considering w;, for moment of constraints as the
algorithm to calculate wy. Third, finding the estimate density, f,,(x,w), after we get the
wy, itis used in Bernstein polynomial to estimate the density function, £, (x,w), Then,
the actual density function generated from the simulation is compared to the estimated
density from our method. The bias, standard deviation and MISE are the parameters in
the simulation that we can get the average from a thousand of Monte Carlo simulation.
Fourth, finding optimal density function, the w; from the algorithm has been determined

by the number of parameters in the F,(u;, k, m — k + 1) function, m. In our simulation, we
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used m that was varied from five to fifteen and we can select the optimal m from the
lowest MISE situations. Then, we use the case that has the optimal m to estimate
density function of sample. Finally, comparing with various constrains, because the w;
has constrains in function, we have tried our algorithm in various constrains and
re-simulate the results. We use simulated data sets to explore how well the estimated
Bernstein polynomials approximates the underlying true density with the criteria to select
m as follows:

1. In cdf, the Root Mean Integrated Squared Error is defined as

RMISE = J [ [Var(f(x)) + Bias?(f (x))]dx,
2. In pdf, the Mean Integrated Squared Error is defined as
MISE[f] = [ [Var(f (x)) + Bias(f (x))]dx

where f(x) and f(x) are estimated density and true density, respectively.

5. Results of the study

The objective of this research is to develop novel density estimation by using
Bernstein polynomials. For numerical illustration, we start to simulate of the Bernstein
polynomials estimator for distribution function from three different distributions, then to
explore the performance of the proposed Bernstein polynomials method by using
simulated data and to compare the performance of the proposed method to the kernel
method. The results have two sections: Bernstein polynomials estimator for distribution

function and Bernstein polynomials estimator for density function.

5.1 Results for Bernstein polynomials estimator for distribution function

In Figures 1-3, we display the plot of true and Bernstein polynomials estimator
of distribution function, the behaviour of the bias-corrected estimate, Root Mean
Integrated Squared Error (RMISE) for three distributions, Normal(2,1), Beta(3.5,4.5) and
Gamma(3,1). These figures give the results on 1,000 simulated samples for the sample
sizes n = 50, 100, 150 and 200. The graphes between True and estimated distribution
function for each sample size show that the Bernstein polynomials estimator for the
distribution function presents impressively smooth curve in the approximation of true
distribution. Also, as presented from Figure 1 to Figure 3 when number of sample size
increases, RMISE of the estimation function reduces. It means that the estimator is
closer to the actual distribution function. In details it can be shown that the results of this

simulation study as follows:
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Figure 1: Bernstein polynomials estimator for distribution function from Normal
distribution. The true cdf (Ftrue in solidcurve), Kernel density estimator (Fn in dash
curved) and the Bernstein polynomials estimator (Fhat in dotted curve). The bias,
standard deviation and RMISE for the cdf estimation method are based on 1,000 Monte

Carlo repetitions.
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Figure 2: Bernstein polynomials estimator for distribution function from Beta distribution.
The true cdf (Ftrue in solid curve), Kernel density estimator (Fn in dash curved) and the
Bernstein polynomials estimator (Fhat in dotted curve). The bias, standard deviation and
RMISE for the cdf estimation method are based on 1,000 Monte Carlo repetitions.
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Figure 3: Bernstein polynomials estimator for distribution function from Gamma
distribution. The true cdf (Ftrue in solid curve), Kernel density estimator (Fn in dash
curved) and the Bernstein polynomials estimator (Fhat in dotted curve). The bias,
standard deviation and RMISE for the cdf estimation method are based on 1,000 Monte

Carlo repetitions.
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5.2 Results for Bernstein polynomials estimator for density function
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In Figures 4-6, we display the plot of true and Bernstein polynomials estimator

of density function, the behaviour of the bias-corrected estimate, MISE for three

distributions, Normal(0,1), Beta(3.5,4.5) and Gamma(3,1). These figures give the results

on 1,000 simulated samples for the sample sizes n = 50, 100, 150 and 200. The graphs

show that the Bernstein polynomials estimator for the distribution function presents

impressively smooth curve in the approximation of true distribution.
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Figure 4: True and estimated density for different sample from Normal density. The true

pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve).

The bias, standard deviation and optimal m for the density estimation method are based

on 1,000 Monte Carlo repetitions.
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Figure 5: True and estimated density for different sample from Beta density. The true
pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve).
The bias, standard deviation and optimal m for the density estimation method are based
on 1,000 Monte Carlo repetitions.
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Figure 6: True and estimated density for different sample from Gamma density. The true
pdf (Ftrue in solid curve) and the Bernstein polynomials estimator (Fhat in dash curve).
The bias, standard deviation and optimal m for the density estimation method are based

on 1,000 Monte Carlo repetitions.
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The more detail information is presented in Table 1. The estimation used m that
was varied from five to fifteen and we can select the optimal m from the lowest MISE
situations. Then we use the optimal m to estimate density function of sample. At the m
optimal, comparing with Kernel method, the Bernstein polynomials can provide better
(less) MISE for all simulated types of probability function. Also, when number of sample
size increases, MISE of the estimation function reduces. It means that the estimator is
closer to the actual distribution function. Therefore, from the above results it proves that,
the proposed method to choose m optimal explained in Section 4 is suitable to achieve

the good approximation of probability density function.

Table 1: MISE of Bernstein polynomials method for different sample from Normal, Beta

and Gamma densities. (1,000 replications).

MISE Optimal MISE (optimal)

n Min Median Mean Max m BP Kernel

Normal 50 0.0647 | 0.0900 0.0903 0.1195 0.0650 | 0.0665

density 100 | 0.0355 | 0.0456 0.0477 0.0627 0.0350 | 0.0369

150 | 0.0239 | 0.0335 0.0361 0.0707 0.0244 | 0.0258

200 | 0.0190 | 0.0262 0.0315 0.0815 0.0199 | 0.0207

50 3.3500 | 4.7690 4.7820 6.5380 3.2078 | 3.2397

Beta 100 | 1.5830 | 2.6720 2.6370 3.3380 1.4845 | 1.8619

density 150 | 1.0330 | 2.0250 1.9900 3.5330 0.9912 | 1.3661

200 | 0.8163 | 1.5440 1.6730 3.6910 0.7864 | 1.0851

50 0.3351 | 0.4781 0.4692 0.6059 0.0428 | 0.0509

Gamma | 100 | 0.1980 | 0.2468 0.2515 0.3134 0.0235 | 0.0298

density | 150 | 0.1431 | 0.1696 0.1885 0.3590 0.0172 | 0.0213

| 0 N| o o ol g g1 0| ©| N O

200 | 0.1191 | 0.1399 0.1639 0.4020 0.0145 | 0.0172

6. Conclusions and Discussion

The weighted parameter can be determined by the constraint least squares
method for each number of order of the Bernstein polynomials, m. Because the MISE
varies whenever the m is changed, the optimal m is chosen from the case that has the
lowest MISE. At the optimal m, the optimal weight parameter is obtained and the optimal
density is finally estimated. The method is validated by many simulated data science.
The input data are considered in three different distributions i.e. Normal, Beta and
Gamma and the simulation was run 1,000 times for each data set. Three scenarios with

constraints and without constraint are simulated while the number of samples is varied.
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There are various value of MISE at different degree of Bernstein polynomials m. From
our method, the MISE at m optimal will have the lowest value compared with other m.
This result proved that m optimal is suitable to achieve the best density estimation. At the
m optimal, comparing with Kernel method, the Bernstein polynomials can provide better
(less) MISE for all simulated types of probability function. So, by converting the Bernstein
polynomial to the weighted least squares method, this new approach can provide better

density estimation.
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