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Abstract

When the errors of statistical models are not independent, such as in the
existence of the autocorrelation (AR) and/or moving average (MA) problems, the values
of the standard model selection criteria are not correct and hence may affect the
acquisition of the true model. This paper attempts to modify the Bayesian information
criterion (BIC) in order to select the most appropriate simultaneous equations model
(SEM). The first criterion, a system of simultaneous equation BIC (SBIC), is constructed
after correcting the second-order autocorrelation, AR(2), problem. The second criterion is
the adjusted BIC when the AR(2) problem is ignored. If there is no AR(2) problem in the
errors, SBIC reduces to BIC. Using an extensive simulation study, SBIC and BIC are
compared with SAIC and AIC, the measures of model selection in SEM that were
introduced by Keerativibool et al. (2011). From the simulation study we conclude that
SBIC convincingly outperformed the other criteria and the rest of the criteria can be
ordered according to their performance by BIC, SAIC, and AIC.

Keywords: Bayesian information criterion (BIC), model selection criteria, second-order
autocorrelation [AR(2)], simultaneous equations model (SEM), system of simultaneous
equation BIC (SBIC).
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1. Introduction

In the application of statistics, the statistical modeling is considered a major task
of study. Three statistical processes to guide a model, which has the parsimony,
goodness-of-fit, and generalizability properties, are the hypothesis testing of parameters,
variable selection algorithms, and model selection criterion. The model selection criterion
is a popular tool for selecting the best model. The first model selection criterion to gain
widespread acceptance was the Akaike information criterion, AIC [1-6]. Other criteria
were subsequently introduced and studied such as, Bayesian information criterion, BIC
[7-9], Hannan and Quinn criterion, HQ [10-11], and Kullback information criterion, KIC
[12-19]. AIC and BIC are two well-known measures, although AIC remains arguably the
most widely used of the model selection criterion, BIC is a popular competitor. In fact,
BIC is often preferred over AIC by practitioners who find appeal in either its Bayesian
justification or its tendency to choose more parsimonious models than AIC. Neath and
Cavanaugh [8]; Cavanaugh [12]; Giombini and Szroeter [20] concluded that AIC was an
asymptotically efficient criterion, then in the large sample, AIC chose the model with
minimum mean squared error (MSE) whereas BIC was a consistent criterion and could
identify the correct model asymptotically with probability one. As a result, when the
generating model is a finite order and is represented in the collection of candidate
families under consideration model, the efficient criterion as AIC is an inconsistent
criterion and tends, asymptotically, to overestimate the dimension of the parameter
vector for the model.

Unfortunately, all of the standard model selection criteria are stated above
cannot be used in a SEM when the autocorrelation (AR) and/or moving average (MA)
problems occurred, except SAIC in [6] can be used in the SEM when there is the AR(2)
problem. Keerativibool and Keerativibool et al. [21-25] concluded that the AR and MA
problems made the overestimated of the errors whether the models were regression or
SEM. Consequently, the values of all model selection criteria are incorrect. The AR and
MA problems are usually found in time-series and panel data. The economic time-series
and panel cross sectional data often display a memory in that variation around the
regression function is not independent from one period to the next. The seasonally
adjusted price and quantity series published by government agencies are examples.
With this motivation, this study has three objectives as follows. Firstly, a GLS
transformation matrix proposed in Keerativibool's paper [24] is used to correct the AR(2)

problem. Secondly, a system of simultaneous equations BIC, called SBIC, is proposed to
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select the best SEM. SBIC is considered after the AR(2) problem are corrected, but the
contemporaneously correlated errors still being considered. Also, BIC introduced by
Schwarz [7] is slightly adjusted in order to use in a SEM when the AR(2) problem is
ignored. The last objective, the performance of proposed model selection criteria, SBIC
and BIC, are compared with SAIC and AIC, the measures of model selection proposed
by Keerativibool et al. [6].

The remainder of this study is organized as follows. In Section 2, we summarize
the main characteristics of the model to consider this study, including a GLS
transformation matrix to correct the AR(2) problem. Derivations of the model selection
criteria, called SBIC and BIC, follow in Section 3. Section 4 demonstrates the steps to
construct the SEM when the errors are AR(2) and contemporaneously schemes, the
steps to transform the errors of SEM to be independent, the steps of model selection,
and shows all results of the simulation study. Finally, Section 5 is the conclusion,
discussion, and further study.

2. A simultaneous equations model (SEM) and a GLS transformation matrix to
correct the AR(2) problem

The structural and reduced-forms of the SEM [26] may be represented,
respectively, as follows:

YI'+XB=U and Y=XII+V, 1)
where Y isa T xM matrix of observations, X isa T xK design matrix of full-column
rank, I' is an M xM nonsingular matrix of coefficients of endogenous variables, B is
a KxM matrix of coefficients of predetermined variables, II=-BI'" is a KxM
matrix of unknown parameters, U and V =UI'" are the TxM matrices of AR(2) and
contemporaneously correlated errors. The t" observation vector of reduced-form model
in (1) is

Y, = l'ITxt +Vv,, 2
where
Vi,=pV,+poV, ,+g  t=12 ..., T, 3)

the |-periods back error vector v, is called the |"

lag of error vector v,, the
autoregressive parameters p, and p, of the model must satisfy the stationary

conditions [27], and g, is a multivariate normal vector given zero mean vector and
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contemporaneous covariance matrix X, which is assumed nonsingular and positive

symmetric definite,

0 Op O1m
oy, © o.
Z — 12 .ZZ 2M
Om O - Oum
That is, the error vector ¢, should be g ~N,, (0, X). 4

Combine every observation vectors of the model in (2) to a stack model as

follows:
n o .. x, | [v,
Ya 0 I ... 0 [|X] |V,
Yo | = . . . . . +| .
Y+ 0 0 HT XT VT
y =I'x+v. (%)

The GLS transformation matrix P®1,, proposed in Keerativibool's paper [24]

to correct the AR(2) problem in the error vector V in (5) is expressed as

My —ply —ply O ... 0 0 0
0 Iy —poly =Py .- O 0 0
0 0 I, —-ply .. O 0 0
0 0 0 1, 0 0 0 (6)
P®ly =0 0 0 0 ... 1y —-pl, — ol

1+
0 0 0 0 .. 0 e, —p Py,

1-p,

1+ p,)((1-p,) - pF

0o 0 0 0 .. 0 0 I( (Y 1)lM
L V 1—,02 B

The special case of the SEM in (5) is the case of the number of equations equal
to one (M = 1), then the SEM can be reduced to the multiple linear regression model

and the GLS transformation in (6) can be rewritten as
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1 —-p —p, O 0 0 0

0 1 -p —p, ... O 0 0

0 0 1 -—p 0o 0 0

o 0o o0 1 0 o 0 (7)
P=|o 0 0 0 1 —p — P,

o 0 0 o0 oi-pZ  -p 1+p,

1-p,
J(upz)((lpz)zpf)
0O 0 0 0 .. 0 O
L 1-p, i

3. Derivations of the proposed model selection criteria
Based on AIC [1-2] and BIC [7], the penalized likelihoods which are the
negative log likelihoods plus their penalty term have been proposed as follows:

AIC = —2log L((:)‘y)+2K, ®)
BIC:—2logL(§‘y)+Klog(T), ©)

where 0 is the estimator of the parameter vector 0, L(é‘y) is the likelihood function

corresponding to the candidate model, K represents the dimension of the parameter
vector for the model, and T represents the sample size.

The criteria in (8) and (9) are not yet available in the SEM when there is the
AR(2) problem, adjustment of the penalty terms are required before. Keerativibool et al.
[6] have constructed a system of simultaneous equations AIC, called SAIC, in order to
select the best SEM when occurred the AR(2) problem as

SAIC=Tlog| £[+M (K+M +5), (10)
and also constructed an adjusted AIC when the AR(2) problem is ignored as

AIC:Tlog‘)il +M(K+M +1), (11)

A A

where X and X, are the estimated contemporaneous covariance matrices X, which

)i‘.l still exists the AR(2) problem.

In this study, we propose two new criteria for selecting the best SEM, that are a
system of simultaneous equations BIC, called SBIC, and an adjusted BIC as follows in

Theorem 1 and 2, respectively.
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Theorem 1. When the AR(2) problem is corrected, a system of simultaneous equations
BIC, called SBIC, is defined to be
M (M +5)

SBIC=T log| £ |+ KM (log(T)-1)+ >

log(T), (12)

where X is the unbiased estimator of the contemporaneous covariance matrix X, T is
the sample size, M is the number of equations in a SEM, and K is the number of

independent variables in each equation.

Theorem 2. When the AR(2) problem is ignored, a Bayesian information criterion for
SEM is defined to be

M (M +1)

5 log(T), (13)

BIC =T log| £, |+KM (log(T)-1)+

where )il is the unbiased estimator of the contemporaneous covariance matrix X which

still includes the AR(2) problem, T is the sample size, M is the number of equations in

a SEM, and K is the number of independent variables in each equation.

4. Simulation study

In this simulation study, we use the SAS programming version 9.1 to generate
one thousand iterations of a system of three simultaneous equations with four relevant
independent variables. Each equation composes of one hundred observations. The

steps of simulation and all results are displayed as follows.

1. Generate 100,000 vectors of the 3x1 multivariate normal g, in (4) by the IML
procedure, given zero mean vector and contemporaneous covariance matrix X ,

049 0.392 0.504
g~N;|0,X=/0392 064 0648| |; t=1 2, ...,100,000.
0.504 0.648 0.81

2. Construct the 3x1 AR(2) and contemporaneously correlated error vectors Vv, in
(3), using the multivariate normal vectors g, in Step 1, where the first-two error vectors
v, are arbitrarily given as
v_1:[3 5 7], v, =[4 6 8],
and the first-two autoregressive parameters are arbitrarily given as p, =0.6, p, =-0.5.

Therefore, we have
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v, =0.6v,, -0.5v_,+¢g ; t=1 2, ...,100,000.
Split the series of error vectors Vv, in sequence to preserve the autocorrelation

relationship into 1,000 samples, each of which consists of 100 vectors. Then, estimate
the autoregressive parameters, test the AR(2) properties, and test the multivariate

normality for the residuals by the ARIMA and MODEL procedures, respectively.

3. Generate 100,000 observations of six series of independent variables X, , X;,
X4 X5, Xg. and X, by the UNIFORM function where the relevant independent
variables X, X, and X, are X,~U(L7), x,~U(2,9), x,~U(3,6), and irrelevant
independent variables X, X, and X, are X;~U(4,12), x,~U(510), x,~U(6,8).
In this study, X, is given as a constant which equal to one. Again, split the series of

independent variables in sequence into 1,000 samples, each of which consists of 100
observations. Then, test the multicollinearity problem for the series of independent
variables.

4. Construct 1,000 samples of the 3x1 dependent vectors y, in (2), using the

relevant independent variables in Step 3 and the AR(2) error vectors in Step 2, as the

following form where the parameters of the model (I1') are arbitrarily given,

1
o] [20 5 7 12 Vy

Vo [=[12 4 11 20 e, Vi, [; t=1,2,...,100.
Vo | 115 6 9 16 23 y

t3
4

For each sample, we combine all one hundred observations of y , X, and v,
in Steps 4, 3, and 2, respectively, as a stack model in (5).

5. Construct the estimate of GLS transformation matrix P®,, in (6) to eliminate
the AR(2) problem of the model in Step 4.

6. Estimate the parameters 7 of the models before and after transformation in
Steps 4 and 5, respectively, by the MODEL procedure. For the model after
transformation, examine the AR(2) problem in the residuals and the normality of the
residuals by the ARIMA and MODEL procedures, respectively. The tests confirm that the
residuals of all 1,000 transformed samples are independent.

7. Compare the values of estimated parameters 7 and compare their standard
deviations of the models before and after transformation by the TTEST procedure. The

results in Tables 1 and 2 show that, the averages of all estimated parameters from the
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models before and after transformation in 1,000 samples are insignificantly different.
Whereas, the averages of all standard deviations of estimated parameters from the
model before transformation are greater than the model after transformation at the 5%

level of significance.

Table 1. Summary statistics of the estimated parameters from the models before and

after transformation in 1,000 samples with the t and p values of the tests.

: True Estimated Statistics
Equations P t P t t-test p-value
arameters arameters  average  S.D. Mo Min

. before  19.999 0584  21.843 18.419
7, =20 i 042 0.6761
after  19.990 0372 21.153 18.603

. before 5.001 0.051 5.180 4.824
7y =5 Ty 0.35 0.7242
after 5.002 0.033 5.108 4.907

15!
R before 6.999 0.045 7.141 6.848
Ty =1 Ty 0.72  0.4746
after 7.000 0.028 7.097 6.923
N before 11.999 0.110 12.348  11.697
7y =12 Fu 0.08  0.9331
after 12.000 0.067 12,271 11772
. before  11.985 0.651 14,198  10.028
7, =12 7y 0.07  0.9445
after 11.986 0.420 13.144  10.414
. before 4.002 0.057 4.217 3.815
7, =4 Zp 023  0.8209
o after 4.002 0.038 4.123 3.891
N before  10.999 0.049 11.158  10.805
7Ty =11 g 0.75  0.4544
after 11.001 0.032 11.111  10.905
. before  20.002 0.123 20.393  19.626
7, =20 Ty -0.52  0.6002
after 20.000 0.077 20.319 19.731
. before 15.006 0.752 17.629  12.750
7, =15 g -0.67  0.5048
after 14.987 0.480 16.360  13.198
N before 6.003 0.064 6.237 5.806
Ty =6 Ty -0.07  0.9460
3¢ after 6.002 0.043 6.145 5.884

before 8.999 0.058 9.176 8.742
Ty =9 Tl33 0.95 0.3419
after 9.001 0.037 9.142 8.868

R before 15997 0.138  16.467 15.501
7y =16 Mg 0.37  0.7087
after 15999  0.087 16.309 15.704
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Table 2. Summary statistics of the standard deviations of estimated parameters from the

models before and after transformation in 1,000 samples with the t and p values of the

tests.
Fati Statistics
Equations ?Etar)darddDSwatlons of t-test p-value
stimate arameters Average sS.D. Max Min
A before 0.572 0.062 0.789 0.357
sd (#,) -87.12  <0.0001
after 0.367 0.041 0.509 0.258
before 0.052 0.005 0.073 0.037
sd (7,,) -95.08 <0.0001
- after 0.033 0.004 0.047 0.023
before 0.045 0.005 0.063 0.030
sd (7,) 91.22 <0.0001
81 after 0.028 0.003 0.039 0.018
before 0.104 0.011 0.145 0.072
sd (7,,) -90.89 <0.0001
“ after 0.066 0.007 0.096 0.049
before 0.649 0.074 0.923 0.447
sd () -82.73 <0.0001
12 after 0.418 0.049 0.589 0.273
before 0.059 0.006 0.080 0.038
sd(7,,) -89.36 <0.0001
e after 0.037 0.004 0.052 0.025
before 0.051 0.006 0.070 0.033
sd (75,) -86.27 <0.0001
82 after 0.032 0.004 0.044 0.022
before 0.118 0.012 0.158 0.083
sd (7,,) -88.84  <0.0001
2 after 0.075 0.009 0.110 0.051
before 0.729 0.081 1.065 0.475
sd (7,3) -84.00 <0.0001
18 after 0.470 0.054 0.652 0.315
before 0.066 0.007 0.090 0.048
sd (7,3) -89.64 <0.0001
- = after 0.042 0.005 0.061 0.029
before 0.057 0.006 0.081 0.038
sd (7) -86.21 <0.0001
3 after 0.036 0.004 0.051 0.024
before 0.132 0.014 0.185 0.096
sd (7,) -89.36 <0.0001
s after 0.085 0.010 0.127 0.059

8. Calculate the sum of squares errors (SSE) of the models before and after

transformation, using the corresponding residuals of the model in Step 6,
SSE (before) ="V and SSE (after)=2'¢.

Compare the SSE of both models by the TTEST procedure. The results in
Table 3 and Figure 1 show that, the average of SSE from the model before
transformation in 1,000 samples is greater than the model after transformation at the 5%
level of significance. The relative efficient of the SSE’s variances before and after

transformation is equal to 22.68%, which means that the SSE’s variance of the
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transformed model is less than the one before transformation about 4 times. These

results implied that, the SSE values of SEM with AR(2) errors are overestimate.

Table 3. Summary statistics of the SSE from the models before and after transformation

in 1,000 samples with the t and p values of the tests.

Statistics - SSE -
before transformation after transformation
Average 296.5040 184.7150
S.D. 50.5266 24,1581
Max 487.4125 285.4189
Min 160.6269 110.9055
t-test -63.12
p-value < 0.0001
Var (SSE )

Relative efficient of the SSEpefore With SSEser = =0.2286 z%

Var (SSEyyy )

9. Calculate SAIC and SBIC in (10) and (12), respectively, for 1,000 transformed
samples of 100 observations, using the estimated contemporaneous covariance matrix
of the model after transformation, )f‘., from the MODEL procedure in Step 6. For each

sample, we use SAIC and SBIC to determine which potential independent variables, X,
until X, , should be included in the model by the criteria of minimum-SAIC and minimum-

SBIC. Therefore, the candidate models to consider in this study are equal to 2° =64
models.
10. Calculate AIC and BIC in (11) and (13), respectively, for 1,000 samples of 100

observations, using the estimated contemporaneous covariance matrix of the model
before transformation, ﬁl, from the MODEL procedure in Step 6. As in Step 9, for each
sample we use AIC and BIC to determine which potential independent variables, X,

until X, , should be included in the model by considering among 64 candidate models

and using the criteria of minimum-AIC and minimum-BIC.

11. The results of Steps 9 and 10 in Table 4 can be concluded that, SBIC
convincingly outperformed the other criteria. It correctly chooses the true model 99.0% of
the time, compared to a 67.1% correctly selection rate for SAIC. The correctly selection
rates of SAIC and SBIC are more than AIC and BIC, respectively, because under the
correct specification of the true independent variables, the SSE of the model before
transformation tends to overestimate as shown in Table 3 and Figure 1. Comparison of
SAIC, SBIC, AIC, and BIC in Table 5 and Figure 2 found that, on the average of 1,000
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samples, the model with relevant independent variables X, , X, and X, , including a

constant X, in the candidate no. 23, has the minimum values of all model selection

criteria because it is the generating model.

'
4
Sample No.
Sample No.
[— = SSE (Before) SSEgAfter)\ — — SSE(Before) SSE (After)

Sample No. Sample No.
[— — sSE(Betore) SSE (Aften) | [— — ssE(efore) SSE (After) |
500
450 i
400 {' Y
350
@
& 300
250
150 Y
100
B N A
2522885828285
§89I IR EeeLseee
Sample No. Sample No.
[— — ssE(Before) SSE (After) | [— — ssE(efore) SSE (After) |

— — SSE(Before) SSE (After) — — SSE (Before) SSE (After) |
500 X
450 )
a00 4 i ! H
350
w
@ 300 1 \
250
2o AN A o
150 = ! ¥
100
B A A A A
253282522928 25R288 5
8858388338 885588 8
Sample No. Sample No.
[— — ssE(efore) SSE (After) | [— — ssE Before) SSE (Aften) |

Figure 1. SSE of 1,000 samples from the models before and after transformation.
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Table 4. Frequency of order selected by SAIC, SBIC, AIC, and BIC in 1,000 samples.

The number of independent variables

h SAIC SBIC AIC BIC
in the model
None or only a constant x,, 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 or True model: X, X,, X5, and x, 671 990 639 987
4 294 10 319 13
5 30 0 37 0
6 5 0 5 0
Table 5. Summary statistics of the model selection criteria in 64 candidate models.
Candidate Independent variables SAIC SBIC AlC BIC
models in the model Average S.D. Average S.D. Average S.D. Average S.D.
1 Xy Or constant equal to one 980.58 30.91 1019.66 30.91 900.45 23.41 923.89 23.41
2 Xa and Xz 501.16 3472 54805 3472 48159 2771 51286  27.71
3 X1 and Xig 84243  29.14  889.33  29.14 78862  23.86  819.88  23.86
4 X1 and Xig 88829 2971 93519 2971 83350 2421 86476  24.21
5 Xa and Xis 981.45  31.16  1028.34 31.16 90348 2361 93474  23.61
6 Xa and X 981.61  30.89 102850 30.89  903.31 2357 93457 2357
7 X1 and X7 985.69  31.00 103259 31.00  903.32 2357 93458 2357
8 Xi1, Xz and Xz 302.12 2646  356.83 2646 33824 2861  377.31 2861
9 X1, Xiz and Xeq 352.10  26.92 40681  26.92  387.16 2873 42624  28.73
10 X1, Xiz and X 49323  29.04  547.94  29.04 48459  27.98 52367  27.98
11 Xi1, Xz and Xeg 49323  28.84  547.93 2884 48435  27.80 52343  27.80
12 Xi1, Xz @nd Xz 496.66  29.04  551.37  29.04 48449  27.92 52356  27.92
13 X1, Xz and X 180.83  27.39 23554  27.39 21597 2961 25505  29.61
14 X1, Xz and X 843.70  29.36  898.41  29.36  791.63  24.09 83071  24.09
15 Xi1, X and X 84373  29.23 89844 2923 79150  24.01 83058  24.01
16 Xi1, X and X 847.41 2923  902.12 2923 79155  24.03  830.63  24.03
17 X1, X and X 889.52  29.82 94423  29.82  836.58 2440 87566  24.40
18 X1, X and X 889.79  29.73 94450  29.73 83646 2437 87554  24.37
19 Xi1, Xis @N X7 89343  29.86  948.14 2986  836.37 2436 87545 2436
20 Xi1, X5 and X 982.46  31.10  1037.17 3110  906.32  23.75 94540  23.75
21 X1, Xis and X 986.55  31.29  1041.26 31.29  906.36  23.78 94543  23.78
22 X1, Xis and X 986.73  30.98 104144 30.98  906.18 2375 94526  23.75
23 Xu1, Xiz» Xtz @nd Xy -378.08 2571  -31555 2571  -253.86 3279  -206.97 32.79
24 X1, 2o Xtz @nd Xis 30422 2647  366.74 2647 34118  28.87  388.07  28.87
25 X1 Xi2» X3 @nd Xeg 304.12 2657  366.64 26,57  341.03 2879  387.93  28.79
26 X1 Xiz» Xi3 @nd X7 306.63 2672  369.16 26,72  341.16 2881  388.06  28.81
27 Xi1s Xiz» Xta AN X;s 35420  26.90 41672 2690  390.19 2892  437.08  28.92
28 X1, 2o Xta AN Xig 35429 2692  416.81 2692  390.02 2890 43691  28.90
29 X1 Xiz» Xea AN X7 356.80  27.07 41932  27.07  390.04  28.84 43693  28.84
30 X1 Xiz» X5 @nd Xig 49472 2892  557.24  28.92  487.33  28.07 53422  28.07
31 X1, Xiz» Xis @nd X7 498.14 2911  560.66 ~ 29.11  487.47 2820 53437  28.20
32 X1, iz Xig @Nd X7 498.17  28.89  560.69 2889  487.24  28.02 53413  28.02
33 X1 Xz, Xea @Nd Xis 182.98 2755 24550 2755  219.01  29.85 26590  29.85
34 X1 Xz, Xea AN Xig 183.02 2752 24555 2752 21886  29.82 26575  29.82
35 X1, i3 Xta AN X7 185.35  27.53  247.87 2753 21895  29.77  265.84  29.77
36 X1, i@ Xis and Xig 84498 2944  907.50  29.44 79449 2422 84138 2422
37 X1 Xz, Xis @nd X7 848.72 2951 91125 2951 79457 2427 84146  24.27
38 X1 Xz, Xi @Nd X7 848.74  29.41 91127  29.41 79444 2420 84133  24.20
39 i1, Xea» Xis AN Xig 891.02  29.83 95354  29.83  839.53 2454  886.42 2454
40 Xi1, X4 Xis @Nd X7 894.66  29.93  957.18  29.93  839.44 2457  886.33 2457
41 Xt Xiar Xig AN X7 894.89 2981  957.42  29.81  839.33 2456  886.22  24.56
42 X1 Xis» Xt @Nd X7 987.56  31.13  1050.09 31.13  909.19  23.94  956.08  23.94
43 Xi1, Xi2» X3 Xia AN X;5 -375.08 2571  -30474 2571  -250.90 33.03 -196.19  33.03
44 Xi1, X2 Xtz Xia @Nd Xig -375.19  25.87  -304.85 2587 -251.10 3293  -196.39  32.93
45 Xt Xiz» X3 Xia @Nd X7 37520 2593  -304.86 2593  -250.90 32.97 -196.19  32.97
46 Xt Xiz» X3, Xi5 and Xig 306.17  26.62 37651  26.62  343.95  29.05  398.66  29.05
47 X1, X2 Xz Xis and Xz 30875 2675  379.09 2675 34411  29.06  398.82  29.06
48 Xi1, X2 Xz Xis @nd Xz 30864  26.83 378.98 2683 34395 2899 39866  28.99
49 Xet Xiz» Xea Xi5 @Nd Xig 356.37 2691 42671 2691  393.03  29.09  447.74  29.09
50 Xet Xiz» Xea Xis @Nd X7 358.91  27.08 42925  27.08  393.05  29.02  447.76  29.02
51 Xi1, X2 X4 Xis @Nd X7 359.00 27.12  429.34 2712 39288  29.03 44759  29.03
52 Xi1, X2, X5, Xis @nd Xz 499.69 2899  570.03 2899  490.21  28.30 54492  28.30
53 et Xizr Xea Xis @Nd Xig 185.17  27.69 25551  27.69 22189  30.07  276.60  30.07
54 Xet Xizr Xea Xis @nd X7 187.46  27.70  257.80  27.70 22197  30.01  276.68  30.01
55 Xi1, X3 Xia Xis @nd X7 187.53 2766  257.87  27.66  221.83  30.00 276,54  30.00
56 Xi1, i@ X5 Xis and X7 849.93  29.61 92027  29.61  797.43 2441 85213 2441
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Table 5. (Continued)
Candidate Independent variables SAIC SBIC AIC BIC
models in the model Average S.D. Average S.D. Average S.D. Average S.D.
57 X1, Xear Xeo X AN X7 896.18  29.92 96652  29.92  842.38 2474  897.09  24.74
58 X1, Xe2» Xe@» Xea Xis AN Xig 37221 2587  -294.06 2587  -248.14  33.17  -18562  33.17
59 Xe1, Xi21 i3, Xt X5 AN X7 -372.22 25.94 -294.06 25.94 -247.94 33.20 -185.42 33.20
60 X1, Xezo Xiz: Xear X6 AN X7 -372.33 26.09  -294.17 26.09 -248.14 3312  -185.62  33.12
61 X1, X2y Xe@» Xis, Xis AN X7 31072  26.90 388.87 2690  346.87  29.24  409.40  29.24
62 X1, X2y Xeas Xis, Xi AN X7 361.08  27.08  439.24  27.08 39587 2920 45840  29.20
63 X1, Xz, Xiar X5, Xig AN X7 189.65 27.83 267.81 27.83 224.85 30.25 287.37 30.25
64 X1, Xi2o Xi3s Xuas Xt X6 AN Xi7 -369.34 26.11 -283.37 26.11 -245.20 33.35 -174.86 33.35
‘ — o —SAIC — & — SBIC —=a— AIC ---+--- BIC
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Figure 2. Averages of the model selection criteria in 1,000 samples.
5. Conclusion, discussion, and further study

This study would like to show that, the AR(2) problem makes the overestimated

values of the model selection criteria and then affects the performance of selecting the

true model. Two model selection criteria are proposed to select the most appropriate

SEM. Firstly, SBIC, is proposed after correcting the AR(2) problem in the errors by the

GLS transformation. Secondly, the original BIC is slightly adjusted when the AR(2)

problem is ignored. If there is no AR(2) problem in the errors, SBIC reduces to BIC. The

results of simulation can be concluded as follows. The averages of the estimated

parameters from the models before and after transformation are insignificantly different.

Whereas, the averages of the standard deviations of estimated parameters from the

model before transformation are greater than the model after transformation at the 5%
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level of significance. The errors after using the GLS transformation are white noises and
that before removing the AR(2) errors; the average of SSE is greater than the one after
the AR(2) problem has been corrected, at the 5% level of significance. The relative
efficient of the SSE’s variances before and after transformation is equal to 22.68%, which
means that the SSE’s variance of the transformed model is less than the one before
transformation about 4 times. These results implied that, the SSE values of SEM with
AR(2) errors are overestimate. Comparing the correctly selection performance of the
proposed model selection criteria, SBIC and BIC, with the model selection criteria
proposed by Keerativibool et al. [6], SAIC and AIC, found that SBIC convincingly
outperformed the other criteria and the rest of the criteria can be ordered according to
their performance by BIC, SAIC, and AIC. On the average of 1,000 iterations, the SEM
with relevant independent variables and constant term has the minimum values of all
model selection criteria because it is the generating model.

AIC and BIC are most popular model selection criteria. While AIC is an
asymptotically efficient criterion which motivated by minimized MSE, BIC is a consistent
criterion which developed from the Bayesian idea that the model with the largest
posterior probability should be chosen. Consequently, AIC is inconsistent whereas BIC is
consistent and then the new criteria, SBIC and BIC perform favorably than SAIC and AIC.
When there is the AR(2) problem in a SEM, AIC and BIC provide the inflated values and
then should not be used. Hence, SBIC is a recommended criterion when the AR(2)
problem is found.

Nowadays, there is not much the criterion to select the best SEM. Therefore, it
should be studied and established the other criteria, such as Kullback information
criterion (KIC), the corrected versions of AIC, BIC, and KIC for small sample cases.
Including, other schema of the error-generation might also be considered, such as the
moving average, autoregressive and moving average schemes instead of only the

autoregressive scheme.
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Appendix

Proof of Theorem 1. Since, the reduced-form model in (5) after using the GLS
transformation in (6) satisfies the usual assumptions of multivariate model that is the
mean of error vector is insignificantly different from zero and does not have the AR(2)
problem, but the contemporaneously correlated errors still exist [24],

(P®1,)y=(P®I, )0 x+g,
where £=(P®I,,)v and £~ Ny, (0, (I, ®X)).

Therefore, we may apply the multivariate normal density [28] to yield the
likelihood,

L(e (I, ®X)) = (27;)% I, ®% |*§ exp(— %ST (I, ®Z)lsj. (A1)
The determinant of contemporaneous covariance (IT ®Z) in (A.1) is equal to
ez =|1, [" x|z =|=[ . (A.2)
Using (A.2), we have the log of likelihood function in (A.1) as follows:
logL(e, (I, ®L))= —%Iog(Zn)—%lom x|- %aT (L,®X)'e. (A3
Given a vector of unbiased estimators 6=(é, )i) the minus twice of the log-

likelihood function in (A.3) can be written as

“2log L(é, (1, %) ) =TM log(27)+T log| £|+&" (I ®5:)'1é . (A%
Consider the last term in (A.4),
) I | 0 |[g
. O 0 ||


http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Box,%20George%20E%20P.&ri=2&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=AL@!Jenkins,%20Gwilym%20M.&menu=search&submenu=basic_search&source=202.28.16.20@!nidadb
http://libsearch.nida.ac.th/ipac20/ipac.jsp?session=12P642S2714C3.25544&profile=main&uri=search=TL@!Time%20series%20analysis%20:%20forecasting%20and%20control%20/&term=&aspect=basic_search&menu=search&source=202.28.16.20@!nidadb
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T T M M
=2 EETE = Z{Zéi-&" +2 4ty j : (A5)
where &Y represents the element of the i'" row and j" column of 7.

Using the fact that, the unbiased estimators of o; and o; are, respectively,

Then, (A.5) becomes
! M - M N
& (L®L) &=(T- K)[Z&H&” +2Z&ij&”j

=(T-K)((6,,6"+6,,6%+..+6 MV+2(6,,6%+6,.6% +...+6,,6M
11 22 MM 12 13 Y

A A23 A A24 ~ ~A(M-1),M
+0,3,0 +0,0 +...+O'2MG +. +O_(M 1) MG ))

_ AAL A AL2 A~ AIM A A2 A A2 A AoM
—(T—K)((ano' +6,6 +...4 6,6 )+(0'12<7l +6,6% +...+ 6,6 )

+...+(61M&1M +6,, 6™ +...+ 6, ™ )) (A.6)

Since the estimated contemporaneous covariance matrix, X , is symmetric, we

have &; =&, including & i =& Then,

sT(IT®52)_1é=(T—K (i +Z:o-2J jz+..,+ic}w&j”‘} (A7)
j j=1

M .
Due to the elements z U&” ;i=12,..., M in (A.7) are the elements in main

diagonal of the matrix ryt= I,, . Therefore, (A.7) is equivalent to

&7 (1, ®F) 2=(T-K)M. (A8)
Replacing (A.8) into (A.4) yields the minus twice log-likelihood function as
~2log L(é, (1, ®i)) =TM (log(27)+1)- KM +T log| £|. (A.9)

Dropping the first term in (A.9), TM (Iog(2;z-)+1), which has no effect on the

minimum-SBIC, and use the concept of BIC in (9) to construct a system of simultaneous
equations BIC, called SBIC,
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) M (M +1)
SBIC:TIog‘Z‘+ KM + == —+2M log(T)-KM , (A.10)

M (M +1

where (KM +T)+2MJI09(T) is the bias adjustment, KM represents the

. . _ M (M +1)
number of independent variable in a SEM, T represents the number of

parameters in contemporaneous covariance matrix X, and 2M represents the number
of autoregressive parameters in a SEM. Combining the last two terms in (A.10),
M (M +5)

(KM +M+2MJI09(T)—KM = KM (log(T)-1)+——

log(T).

(A.11)
Replacing (A.11) into (A.10) yields SBIC in (12).

Proof of Theorem 2. From the minus twice log-likelihood function proposed in [6],

—2log L(ﬁ, il) =TM (log(27) +1)+T Iog‘ 2 |-KM. (A.12)

Dropping the first term in (A.12), TM (Iog(27z)+1), which has no effect on the
minimum-BIC, and then use the concept of BIC in (9) to construct an adjusted BIC in

order to use in a SEM,

. M (M +1)
BIC=Tlog | £, |+| KM + = |log(T) - KM, (A.13)

M (M +1) ) _ . .
where | KM +T Iog(T) is the bias adjustment as in (A.10), except the

number of autoregressive parameters 2M . Combine the last two terms in (A.13),
M (M +1)

> log(T). (A.14)

[KM +W]log(T)—KM = KM (log(T)-1)+

Replacing (A.14) into (A.13) yields BIC in (13).



