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Abstract 

When the errors of statistical models are not independent, such as in the 

existence of the autocorrelation (AR) and/or moving average (MA) problems, the values 

of the standard model selection criteria are not correct and hence may affect the 

acquisition of the true model. This paper attempts to modify the Bayesian information 

criterion (BIC) in order to select the most appropriate simultaneous equations model 

(SEM). The first criterion, a system of simultaneous equation BIC (SBIC), is constructed 

after correcting the second-order autocorrelation, AR(2), problem. The second criterion is 

the adjusted BIC when the AR(2) problem is ignored. If there is no AR(2) problem in the 

errors, SBIC reduces to BIC. Using an extensive simulation study, SBIC and BIC are 

compared with SAIC and AIC, the measures of model selection in SEM that were 

introduced by Keerativibool et al. (2011). From the simulation study we conclude that 

SBIC convincingly outperformed the other criteria and the rest of the criteria can be 

ordered according to their performance by BIC, SAIC, and AIC. 

______________________________ 

Keywords: Bayesian information criterion (BIC), model selection criteria, second-order 

autocorrelation [AR(2)], simultaneous equations model (SEM), system of simultaneous 

equation BIC (SBIC). 
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1. Introduction  

In the application of statistics, the statistical modeling is considered a major task 

of study. Three statistical processes to guide a model, which has the parsimony, 

goodness-of-fit, and generalizability properties, are the hypothesis testing of parameters, 

variable selection algorithms, and model selection criterion. The model selection criterion 

is a popular tool for selecting the best model. The first model selection criterion to gain 

widespread acceptance was the Akaike information criterion, AIC [1-6]. Other criteria 

were subsequently introduced and studied such as, Bayesian information criterion, BIC 

[7-9], Hannan and Quinn criterion, HQ [10-11], and Kullback information criterion, KIC 

[12-19]. AIC and BIC are two well-known measures, although AIC remains arguably the 

most widely used of the model selection criterion, BIC is a popular competitor. In fact, 

BIC is often preferred over AIC by practitioners who find appeal in either its Bayesian 

justification or its tendency to choose more parsimonious models than AIC. Neath and 

Cavanaugh [8]; Cavanaugh [12]; Giombini and Szroeter [20] concluded that AIC was an 

asymptotically efficient criterion, then in the large sample, AIC chose the model with 

minimum mean squared error (MSE) whereas BIC was a consistent criterion and could 

identify the correct model asymptotically with probability one. As a result, when the 

generating model is a finite order and is represented in the collection of candidate 

families under consideration model, the efficient criterion as AIC is an inconsistent 

criterion and tends, asymptotically, to overestimate the dimension of the parameter 

vector for the model. 

Unfortunately, all of the standard model selection criteria are stated above 

cannot be used in a SEM when the autocorrelation (AR) and/or moving average (MA) 

problems occurred, except SAIC in [6] can be used in the SEM when there is the AR(2) 

problem. Keerativibool and Keerativibool et al. [21-25] concluded that the AR and MA 

problems made the overestimated of the errors whether the models were regression or 

SEM. Consequently, the values of all model selection criteria are incorrect.  The AR and 

MA problems are usually found in time-series and panel data. The economic time-series 

and panel cross sectional data often display a memory in that variation around the 

regression function is not independent from one period to the next. The seasonally 

adjusted price and quantity series published by government agencies are examples. 

With this motivation, this study has three objectives as follows. Firstly, a GLS 

transformation matrix proposed in Keerativibool’s paper [24] is used to correct the AR(2) 

problem. Secondly, a system of simultaneous equations BIC, called SBIC, is proposed to 
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select the best SEM. SBIC is considered after the AR(2) problem are corrected, but the 

contemporaneously correlated errors still being considered. Also, BIC introduced by 

Schwarz [7] is slightly adjusted in order to use in a SEM when the AR(2) problem is 

ignored. The last objective, the performance of proposed model selection criteria, SBIC 

and BIC, are compared with SAIC and AIC, the measures of model selection proposed 

by Keerativibool et al. [6]. 

The remainder of this study is organized as follows. In Section 2, we summarize 

the main characteristics of the model to consider this study, including a GLS 

transformation matrix to correct the AR(2) problem. Derivations of the model selection 

criteria, called SBIC and BIC, follow in Section 3. Section 4 demonstrates the steps to 

construct the SEM when the errors are AR(2) and contemporaneously schemes, the 

steps to transform the errors of SEM to be independent, the steps of model selection, 

and shows all results of the simulation study. Finally, Section 5 is the conclusion, 

discussion, and further study.  

 

2. A simultaneous equations model (SEM) and a GLS transformation matrix to 

correct the AR(2) problem 

 The structural and reduced-forms of the SEM [26] may be represented, 

respectively, as follows: 

  YΓ XB U  and  Y XΠ V , (1) 

where Y  is a T M  matrix of observations, X  is a T K  design matrix of full-column 

rank, Γ  is an M M  nonsingular matrix of coefficients of endogenous variables, B  is 

a K M  matrix of coefficients of predetermined variables, 
1Π = BΓ  is a K M  

matrix of unknown parameters, U  and 
1

V = UΓ  are the T M  matrices of AR(2) and 

contemporaneously correlated errors. The t
th

 observation vector of reduced-form model 

in (1) is  

 
t t t y Π x v

T
, (2) 

where 

 1 1 2 2 ; 1, 2, ,t t t t t T    v v v ε  , (3) 

the l -periods back error vector t lv  is called the l
th

 lag of error vector
 tv , the 

autoregressive parameters 1  and 2  of the model must satisfy the stationary 

conditions [27], and 
tε  is a multivariate normal vector given zero mean vector and 
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contemporaneous covariance matrix Σ , which is assumed nonsingular and positive 

symmetric definite, 

11 12 1

12 22 2

1 2

M

M

M M MM

 
 
 
 
 
 

Σ

  

  

  

. 

That is, the error vector
 tε  should be 

tε ~  ,MN 0 Σ . (4) 

 Combine every observation vectors of the model in (2) to a stack model as 

follows: 

  
1

2

T

 
 
 
 
 
 

y

y

y

 
1 1

2 2

T T

     
     
      
     
     
      

Π 0 0 x v

x v0 Π 0

x v0 0 Π

T

T

T

 

       y   Π x v
T

. (5) 

The GLS transformation matrix 
MP I  proposed in Keerativibool’s paper [24] 

to correct the AR(2) problem in the error vector v  in (5) is expressed as 

 

    

M 1 M 2 M

M 1 M 2 M

M 1 M

M

M M 1 M 2 M

2 2

2 M 1 M

2

2 2

2 2 1

M

2

.

1
1

1

1 1

1

  
 

  
 
 
 
 
 

    
 

  
 
 
 

   
  

I I I 0 0 0 0

0 I I I 0 0 0

0 0 I I 0 0 0

0 0 0 I 0 0 0

P I 0 0 0 0 I I I

0 0 0 0 0 I I

0 0 0 0 0 0 I

 

 



 


 



  



 (6) 

 The special case of the SEM in (5) is the case of the number of equations equal 

to one ( M  = 1), then the SEM can be reduced to the multiple linear regression model 

and the GLS transformation in (6) can be rewritten as 
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 (7)  

 

3. Derivations of the proposed model selection criteria 

Based on AIC [1-2] and BIC [7], the penalized likelihoods which are the 

negative log likelihoods plus their penalty term have been proposed as follows:  

  ˆAIC 2log 2L K  θ y , (8) 

    ˆBIC 2log logL K T  θ y , (9) 

where θ̂  is the estimator of the parameter vector θ ,  ˆL θ y  is the likelihood function 

corresponding to the candidate model, K  represents the dimension of the parameter 

vector for the model, and T  represents the sample size.  

The criteria in (8) and (9) are not yet available in the SEM when there is the 

AR(2) problem, adjustment of the penalty terms are required before. Keerativibool et al. 

[6] have constructed a system of simultaneous equations AIC, called SAIC, in order to 

select the best SEM when occurred the AR(2) problem as 

  ˆSAIC log 5T M K M   Σ , (10) 

and also constructed an adjusted AIC when the AR(2) problem is ignored as 

  1
ˆAIC log 1T M K M   Σ , (11) 

where Σ̂  and 1Σ̂  are the estimated contemporaneous covariance matrices Σ , which 

1Σ̂  still exists the AR(2) problem.  

 In this study, we propose two new criteria for selecting the best SEM, that are a 

system of simultaneous equations BIC, called SBIC, and an adjusted BIC as follows in 

Theorem 1 and 2, respectively.  
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Theorem 1. When the AR(2) problem is corrected, a system of simultaneous equations 

BIC, called SBIC, is defined to be  

   
 

 
5

ˆSBIC log log 1 log
2

M M
T KM T T


   Σ , (12) 

where Σ̂  is the unbiased estimator of the contemporaneous covariance matrix Σ , T  is 

the sample size, M  is the number of equations in a SEM, and K  is the number of 

independent variables in each equation. 

 

Theorem 2. When the AR(2) problem is ignored, a Bayesian information criterion for 

SEM is defined to be 

   
 

 1

1
ˆBIC log log 1 log

2

M M
T KM T T


   Σ , (13) 

where 
1Σ̂  is the unbiased estimator of the contemporaneous covariance matrix Σ  which 

still includes the AR(2) problem, T  is the sample size, M  is the number of equations in 

a SEM, and K  is the number of independent variables in each equation. 

 

4. Simulation study 

 In this simulation study, we use the SAS programming version 9.1 to generate 

one thousand iterations of a system of three simultaneous equations with four relevant 

independent variables. Each equation composes of one hundred observations. The 

steps of simulation and all results are displayed as follows. 

1. Generate 100,000 vectors of the 3x1 multivariate normal 
tε  in (4) by the IML 

procedure, given zero mean vector and contemporaneous covariance matrix Σ ,  

tε ~ 3

0.49 0.392 0.504

, 0.392 0.64 0.648 ; 1, 2, , 100,000.

0.504 0.648 0.81

N t

  
  

   
    

0 Σ  

2. Construct the 3x1 AR(2) and contemporaneously correlated error vectors tv  in 

(3), using the multivariate normal vectors 
tε  in Step 1, where the first-two error vectors 

tv  are arbitrarily given as  

 1 3 5 7 v ,  0 4 6 8v , 

and the first-two autoregressive parameters are arbitrarily given as 1 0.6 , 2 0.5  . 

Therefore, we have 
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1 20.6 0.5 ; 1, 2, , 100,000.t t t t t    v v v ε  

Split the series of error vectors 
tv  in sequence to preserve the autocorrelation 

relationship into 1,000 samples, each of which consists of 100 vectors. Then, estimate 

the autoregressive parameters, test the AR(2) properties, and test the multivariate 

normality for the residuals by the ARIMA and MODEL procedures, respectively. 

3. Generate 100,000 observations of six series of independent variables 
2tx , 

3tx , 

4tx , 
5tx , 

6tx , and 
7tx  by the UNIFORM function where the relevant independent 

variables 
2tx , 

3tx , and 
4tx  are 

2tx ~  1,7U , 
3tx ~  2,9U , 

4tx ~  3,6U , and irrelevant 

independent variables 
5tx , 

6tx , and 
7tx  are 

5tx ~  4,12U , 
6tx ~  5,10U , 

7tx ~  6,8U . 

In this study, 
1tx  is given as a constant which equal to one. Again, split the series of 

independent variables in sequence into 1,000 samples, each of which consists of 100 

observations. Then, test the multicollinearity problem for the series of independent 

variables. 

4. Construct 1,000 samples of the 3x1 dependent vectors 
ty  in (2), using the 

relevant independent variables in Step 3 and the AR(2) error vectors in Step 2, as the 

following form where the parameters of the model (Π ) are arbitrarily given, 

1 1

2

2 2

3

3 3

4

1
20 5 7 12

12 4 11 20 ; 1, 2, , 100.

15 6 9 16

t t

t

t t

t

t t

t

y v
x

y v t
x

y v
x

 
      
              
          

 

 

For each sample, we combine all one hundred observations of 
ty , 

tx , and 
tv  

in Steps 4, 3, and 2, respectively, as a stack model in (5).  

5. Construct the estimate of GLS transformation matrix 
MP I  in (6) to eliminate 

the AR(2) problem of the model in Step 4. 

6. Estimate the parameters   of the models before and after transformation in 

Steps 4 and 5, respectively, by the MODEL procedure. For the model after 

transformation, examine the AR(2) problem in the residuals and the normality of the 

residuals by the ARIMA and MODEL procedures, respectively. The tests confirm that the 

residuals of all 1,000 transformed samples are independent.  

7. Compare the values of estimated parameters   and compare their standard 

deviations of the models before and after transformation by the TTEST procedure. The 

results in Tables 1 and 2 show that, the averages of all estimated parameters from the 



170                                                                  Thailand Statistician, 2012; 10(2): 163-181 

models before and after transformation in 1,000 samples are insignificantly different. 

Whereas, the averages of all standard deviations of estimated parameters from the 

model before transformation are greater than the model after transformation at the 5% 

level of significance. 

 

Table 1. Summary statistics of the estimated parameters from the models before and 

after transformation in 1,000 samples with the t and p values of the tests. 

Equations 
True 

Parameters 
Estimated 

Parameters 

Statistics 
t-test p-value 

Average S.D. Max Min 

1
st
 

11 20  
11̂  

before 19.999 0.584 21.843 18.419 
-0.42 0.6761 

after 19.990 0.372 21.153 18.603 

21 5  
21̂  

before 5.001 0.051 5.180 4.824 
0.35 0.7242 

after 5.002 0.033 5.108 4.907 

31 7  
31̂  

before 6.999 0.045 7.141 6.848 
0.72 0.4746 

after 7.000 0.028 7.097 6.923 

41 12  
41̂  

before 11.999 0.110 12.348 11.697 
0.08 0.9331 

after 12.000 0.067 12.271 11.772 

2
nd

 

12 12  
12̂  

before 11.985 0.651 14.198 10.028 
0.07 0.9445 

after 11.986 0.420 13.144 10.414 

22 4  
22̂  

before 4.002 0.057 4.217 3.815 
0.23 0.8209 

after 4.002 0.038 4.123 3.891 

32 11  
32̂  

before 10.999 0.049 11.158 10.805 
0.75 0.4544 

after 11.001 0.032 11.111 10.905 

42 20  
42̂  

before 20.002 0.123 20.393 19.626 
-0.52 0.6002 

after 20.000 0.077 20.319 19.731 

3
rd

 

13 15  
13̂  

before 15.006 0.752 17.629 12.750 
-0.67 0.5048 

after 14.987 0.480 16.360 13.198 

23 6  
23̂  

before 6.003 0.064 6.237 5.806 
-0.07 0.9460 

after 6.002 0.043 6.145 5.884 

33 9  
33̂  

before 8.999 0.058 9.176 8.742 
0.95 0.3419 

after 9.001 0.037 9.142 8.868 

43 16  
43̂  

before 15.997 0.138 16.467 15.591 
0.37 0.7087 

after 15.999 0.087 16.309 15.704 
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Table 2. Summary statistics of the standard deviations of estimated parameters from the 

models before and after transformation in 1,000 samples with the t and p values of the 

tests. 

Equations 
Standard Deviations of 
Estimated Parameters 

Statistics 
t-test p-value 

Average S.D. Max Min 

1
st
 

 11
ˆsd   

before 0.572 0.062 0.789 0.357 
-87.12 < 0.0001 

after 0.367 0.041 0.509 0.258 

 21
ˆsd   before 0.052 0.005 0.073 0.037 

-95.08 < 0.0001 
after 0.033 0.004 0.047 0.023 

 31
ˆsd   before 0.045 0.005 0.063 0.030 

-91.22 < 0.0001 
after 0.028 0.003 0.039 0.018 

 41
ˆsd   before 0.104 0.011 0.145 0.072 

-90.89 < 0.0001 
after 0.066 0.007 0.096 0.049 

2
nd

 

 12
ˆsd   before 0.649 0.074 0.923 0.447 

-82.73 < 0.0001 
after 0.418 0.049 0.589 0.273 

 22
ˆsd   before 0.059 0.006 0.080 0.038 

-89.36 < 0.0001 
after 0.037 0.004 0.052 0.025 

 32
ˆsd   before 0.051 0.006 0.070 0.033 

-86.27 < 0.0001 
after 0.032 0.004 0.044 0.022 

 42
ˆsd   before 0.118 0.012 0.158 0.083 

-88.84 < 0.0001 
after 0.075 0.009 0.110 0.051 

3
rd

 

 13
ˆsd   before 0.729 0.081 1.065 0.475 

-84.00 < 0.0001 
after 0.470 0.054 0.652 0.315 

 23
ˆsd   before 0.066 0.007 0.090 0.048 

-89.64 < 0.0001 
after 0.042 0.005 0.061 0.029 

 33
ˆsd   before 0.057 0.006 0.081 0.038 

-86.21 < 0.0001 
after 0.036 0.004 0.051 0.024 

 43
ˆsd   before 0.132 0.014 0.185 0.096 

-89.36 < 0.0001 
after 0.085 0.010 0.127 0.059 

 

8. Calculate the sum of squares errors (SSE) of the models before and after 

transformation, using the corresponding residuals of the model in Step 6, 

  ˆ ˆSSE before  v v
T

 and   ˆ ˆSSE after  ε εT
. 

 Compare the SSE of both models by the TTEST procedure. The results in 

Table 3 and Figure 1 show that, the average of SSE from the model before 

transformation in 1,000 samples is greater than the model after transformation at the 5% 

level of significance. The relative efficient of the SSE’s variances before and after 

transformation is equal to 22.68%, which means that the SSE’s variance of the 
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transformed model is less than the one before transformation about 4 times. These 

results implied that, the SSE values of SEM with AR(2) errors are overestimate.  

 

Table 3. Summary statistics of the SSE from the models before and after transformation 

in 1,000 samples with the t and p values of the tests. 

Statistics 
SSE 

before transformation after transformation 

Average 296.5040 184.7150 
S.D. 50.5266 24.1581 
Max 487.4125 285.4189 
Min 160.6269 110.9055 

t-test -63.12 
p-value < 0.0001 

Relative efficient of the SSEbefore with SSEafter 
 
 

1
0.2286

4
  

after

before

Var SSE

Var SSE
 

 

9. Calculate SAIC and SBIC in (10) and (12), respectively, for 1,000 transformed 

samples of 100 observations, using the estimated contemporaneous covariance matrix 

of the model after transformation, Σ̂ , from the MODEL procedure in Step 6. For each 

sample, we use SAIC and SBIC to determine which potential independent variables, 
2tx  

until 
7tx , should be included in the model by the criteria of minimum-SAIC and minimum-

SBIC. Therefore, the candidate models to consider in this study are equal to 2
6
 = 64 

models.  

10. Calculate AIC and BIC in (11) and (13), respectively, for 1,000 samples of 100 

observations, using the estimated contemporaneous covariance matrix of the model 

before transformation, 
1Σ̂ , from the MODEL procedure in Step 6. As in Step 9, for each 

sample we use AIC and BIC to determine which potential independent variables, 
2tx  

until 
7tx , should be included in the model by considering among 64 candidate models 

and using the criteria of minimum-AIC and minimum-BIC. 

11. The results of Steps 9 and 10 in Table 4 can be concluded that, SBIC 

convincingly outperformed the other criteria. It correctly chooses the true model 99.0% of 

the time, compared to a 67.1% correctly selection rate for SAIC. The correctly selection 

rates of SAIC and SBIC are more than AIC and BIC, respectively, because under the 

correct specification of the true independent variables, the SSE of the model before 

transformation tends to overestimate as shown in Table 3 and Figure 1. Comparison of 

SAIC, SBIC, AIC, and BIC in Table 5 and Figure 2 found that, on the average of 1,000 
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samples, the model with relevant independent variables 
2tx , 

3tx ,
 
and 

4tx , including a 

constant 
1tx  in the candidate no. 23, has the minimum values of all model selection 

criteria because it is the generating model.  

 

Figure 1. SSE of 1,000 samples from the models before and after transformation. 
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Table 4. Frequency of order selected by SAIC, SBIC, AIC, and BIC in 1,000 samples. 

The number of independent variables  
in the model 

SAIC SBIC AIC BIC 

None or only a constant 
1tx  0 0 0 0 

1 0 0 0 0 
2 0 0 0 0 

3 or True model: 
1tx , 

2tx , 
3tx ,

 
and 

4tx  671 990 639 987 

4 294 10 319 13 
5 30 0 37 0 
6 5 0 5 0 

 

Table 5. Summary statistics of the model selection criteria in 64 candidate models. 

Candidate 
models 

Independent variables 
in the model 

SAIC SBIC AIC BIC 

Average S.D. Average S.D. Average S.D. Average S.D. 

1 xt1 or constant equal to one 980.58 30.91 1019.66 30.91 900.45 23.41 923.89 23.41 
2 xt1 and xt2 501.16 34.72 548.05 34.72 481.59 27.71 512.86 27.71 
3 xt1 and xt3 842.43 29.14 889.33 29.14 788.62 23.86 819.88 23.86 
4 xt1 and xt4 888.29 29.71 935.19 29.71 833.50 24.21 864.76 24.21 
5 xt1 and xt5 981.45 31.16 1028.34 31.16 903.48 23.61 934.74 23.61 
6 xt1 and xt6 981.61 30.89 1028.50 30.89 903.31 23.57 934.57 23.57 
7 xt1 and xt7 985.69 31.00 1032.59 31.00 903.32 23.57 934.58 23.57 
8 xt1, xt2 and xt3 302.12 26.46 356.83 26.46 338.24 28.61 377.31 28.61 
9 xt1, xt2 and xt4 352.10 26.92 406.81 26.92 387.16 28.73 426.24 28.73 

10 xt1, xt2 and xt5 493.23 29.04 547.94 29.04 484.59 27.98 523.67 27.98 
11 xt1, xt2 and xt6 493.23 28.84 547.93 28.84 484.35 27.80 523.43 27.80 
12 xt1, xt2 and xt7 496.66 29.04 551.37 29.04 484.49 27.92 523.56 27.92 
13 xt1, xt3 and xt4 180.83 27.39 235.54 27.39 215.97 29.61 255.05 29.61 
14 xt1, xt3 and xt5 843.70 29.36 898.41 29.36 791.63 24.09 830.71 24.09 
15 xt1, xt3 and xt6 843.73 29.23 898.44 29.23 791.50 24.01 830.58 24.01 
16 xt1, xt3 and xt7 847.41 29.23 902.12 29.23 791.55 24.03 830.63 24.03 
17 xt1, xt4 and xt5 889.52 29.82 944.23 29.82 836.58 24.40 875.66 24.40 
18 xt1, xt4 and xt6 889.79 29.73 944.50 29.73 836.46 24.37 875.54 24.37 
19 xt1, xt4 and xt7 893.43 29.86 948.14 29.86 836.37 24.36 875.45 24.36 
20 xt1, xt5 and xt6 982.46 31.10 1037.17 31.10 906.32 23.75 945.40 23.75 
21 xt1, xt5 and xt7 986.55 31.29 1041.26 31.29 906.36 23.78 945.43 23.78 
22 xt1, xt6 and xt7 986.73 30.98 1041.44 30.98 906.18 23.75 945.26 23.75 
23 xt1, xt2, xt3 and xt4 -378.08 25.71 -315.55 25.71 -253.86 32.79 -206.97 32.79 

24 xt1, xt2, xt3 and xt5 304.22 26.47 366.74 26.47 341.18 28.87 388.07 28.87 
25 xt1, xt2, xt3 and xt6 304.12 26.57 366.64 26.57 341.03 28.79 387.93 28.79 
26 xt1, xt2, xt3 and xt7 306.63 26.72 369.16 26.72 341.16 28.81 388.06 28.81 
27 xt1, xt2, xt4 and xt5 354.20 26.90 416.72 26.90 390.19 28.92 437.08 28.92 
28 xt1, xt2, xt4 and xt6 354.29 26.92 416.81 26.92 390.02 28.90 436.91 28.90 
29 xt1, xt2, xt4 and xt7 356.80 27.07 419.32 27.07 390.04 28.84 436.93 28.84 
30 xt1, xt2, xt5 and xt6 494.72 28.92 557.24 28.92 487.33 28.07 534.22 28.07 
31 xt1, xt2, xt5 and xt7 498.14 29.11 560.66 29.11 487.47 28.20 534.37 28.20 
32 xt1, xt2, xt6 and xt7 498.17 28.89 560.69 28.89 487.24 28.02 534.13 28.02 
33 xt1, xt3, xt4 and xt5 182.98 27.55 245.50 27.55 219.01 29.85 265.90 29.85 
34 xt1, xt3, xt4 and xt6 183.02 27.52 245.55 27.52 218.86 29.82 265.75 29.82 
35 xt1, xt3, xt4 and xt7 185.35 27.53 247.87 27.53 218.95 29.77 265.84 29.77 
36 xt1, xt3, xt5 and xt6 844.98 29.44 907.50 29.44 794.49 24.22 841.38 24.22 
37 xt1, xt3, xt5 and xt7 848.72 29.51 911.25 29.51 794.57 24.27 841.46 24.27 
38 xt1, xt3, xt6 and xt7 848.74 29.41 911.27 29.41 794.44 24.20 841.33 24.20 
39 xt1, xt4, xt5 and xt6 891.02 29.83 953.54 29.83 839.53 24.54 886.42 24.54 
40 xt1, xt4, xt5 and xt7 894.66 29.93 957.18 29.93 839.44 24.57 886.33 24.57 
41 xt1, xt4, xt6 and xt7 894.89 29.81 957.42 29.81 839.33 24.56 886.22 24.56 
42 xt1, xt5, xt6 and xt7 987.56 31.13 1050.09 31.13 909.19 23.94 956.08 23.94 
43 xt1, xt2, xt3 xt4 and xt5 -375.08 25.71 -304.74 25.71 -250.90 33.03 -196.19 33.03 
44 xt1, xt2, xt3, xt4 and xt6 -375.19 25.87 -304.85 25.87 -251.10 32.93 -196.39 32.93 
45 xt1, xt2, xt3, xt4 and xt7 -375.20 25.93 -304.86 25.93 -250.90 32.97 -196.19 32.97 
46 xt1, xt2, xt3, xt5 and xt6 306.17 26.62 376.51 26.62 343.95 29.05 398.66 29.05 
47 xt1, xt2, xt3, xt5 and xt7 308.75 26.75 379.09 26.75 344.11 29.06 398.82 29.06 
48 xt1, xt2, xt3, xt6 and xt7 308.64 26.83 378.98 26.83 343.95 28.99 398.66 28.99 
49 xt1, xt2, xt4, xt5 and xt6 356.37 26.91 426.71 26.91 393.03 29.09 447.74 29.09 
50 xt1, xt2, xt4, xt5 and xt7 358.91 27.08 429.25 27.08 393.05 29.02 447.76 29.02 
51 xt1, xt2, xt4, xt6 and xt7 359.00 27.12 429.34 27.12 392.88 29.03 447.59 29.03 
52 xt1, xt2, xt5, xt6 and xt7 499.69 28.99 570.03 28.99 490.21 28.30 544.92 28.30 
53 xt1, xt3, xt4, xt5 and xt6 185.17 27.69 255.51 27.69 221.89 30.07 276.60 30.07 
54 xt1, xt3, xt4, xt5 and xt7 187.46 27.70 257.80 27.70 221.97 30.01 276.68 30.01 
55 xt1, xt3, xt4, xt6 and xt7 187.53 27.66 257.87 27.66 221.83 30.00 276.54 30.00 
56 xt1, xt3, xt5, xt6 and xt7 849.93 29.61 920.27 29.61 797.43 24.41 852.13 24.41 
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Table 5. (Continued) 

Candidate 
models 

Independent variables 
in the model 

SAIC SBIC AIC BIC 

Average S.D. Average S.D. Average S.D. Average S.D. 

57 xt1, xt4, xt5, xt6 and xt7 896.18 29.92 966.52 29.92 842.38 24.74 897.09 24.74 
58 xt1, xt2, xt3, xt4, xt5 and xt6 -372.21 25.87 -294.06 25.87 -248.14 33.17 -185.62 33.17 
59 xt1, xt2, xt3, xt4, xt5 and xt7 -372.22 25.94 -294.06 25.94 -247.94 33.20 -185.42 33.20 
60 xt1, xt2, xt3, xt4, xt6 and xt7 -372.33 26.09 -294.17 26.09 -248.14 33.12 -185.62 33.12 
61 xt1, xt2, xt3, xt5, xt6 and xt7 310.72 26.90 388.87 26.90 346.87 29.24 409.40 29.24 
62 xt1, xt2, xt4, xt5, xt6 and xt7 361.08 27.08 439.24 27.08 395.87 29.20 458.40 29.20 
63 xt1, xt3, xt4, xt5, xt6 and xt7 189.65 27.83 267.81 27.83 224.85 30.25 287.37 30.25 
64 xt1, xt2, xt3, xt4, xt5, xt6 and xt7 -369.34 26.11 -283.37 26.11 -245.20 33.35 -174.86 33.35 
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Figure 2. Averages of the model selection criteria in 1,000 samples. 

 

5. Conclusion, discussion, and further study 

 This study would like to show that, the AR(2) problem makes the overestimated  

values of the model selection criteria and then affects the performance of selecting the 

true model. Two model selection criteria are proposed to select the most appropriate 

SEM. Firstly, SBIC, is proposed after correcting the AR(2) problem in the errors by the 

GLS transformation. Secondly, the original BIC is slightly adjusted when the AR(2) 

problem is ignored. If there is no AR(2) problem in the errors, SBIC reduces to BIC. The 

results of simulation can be concluded as follows. The averages of the estimated 

parameters from the models before and after transformation are insignificantly different. 

Whereas, the averages of the standard deviations of estimated parameters from the 

model before transformation are greater than the model after transformation at the 5% 
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level of significance. The errors after using the GLS transformation are white noises and 

that before removing the AR(2) errors; the average of SSE is greater than the one after 

the AR(2) problem has been corrected, at the 5% level of significance. The relative 

efficient of the SSE’s variances before and after transformation is equal to 22.68%, which 

means that the SSE’s variance of the transformed model is less than the one before 

transformation about 4 times. These results implied that, the SSE values of SEM with 

AR(2) errors are overestimate. Comparing the correctly selection performance of the 

proposed model selection criteria, SBIC and BIC, with the model selection criteria 

proposed by Keerativibool et al. [6], SAIC and AIC, found that SBIC convincingly 

outperformed the other criteria and the rest of the criteria can be ordered according to 

their performance by BIC, SAIC, and AIC. On the average of 1,000 iterations, the SEM 

with relevant independent variables and constant term has the minimum values of all 

model selection criteria because it is the generating model. 

 AIC and BIC are most popular model selection criteria. While AIC is an 

asymptotically efficient criterion which motivated by minimized MSE, BIC is a consistent 

criterion which developed from the Bayesian idea that the model with the largest 

posterior probability should be chosen. Consequently, AIC is inconsistent whereas BIC is 

consistent and then the new criteria, SBIC and BIC perform favorably than SAIC and AIC. 

When there is the AR(2) problem in a SEM, AIC and BIC provide the inflated values and 

then should not be used. Hence, SBIC is a recommended criterion when the AR(2) 

problem is found. 

 Nowadays, there is not much the criterion to select the best SEM. Therefore, it 

should be studied and established the other criteria, such as Kullback information 

criterion (KIC), the corrected versions of AIC, BIC, and KIC for small sample cases. 

Including, other schema of the error-generation might also be considered, such as the 

moving average, autoregressive and moving average schemes instead of only the 

autoregressive scheme. 
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Appendix 

 

Proof of Theorem 1. Since, the reduced-form model in (5) after using the GLS 

transformation in (6) satisfies the usual assumptions of multivariate model that is the 

mean of error vector is insignificantly different from zero and does not have the AR(2) 

problem, but the contemporaneously correlated errors still exist [24], 

   M M   P I y P I Π x ε
T

, 

where  Mε = P I v  and ε ~   T,TMN 0 I Σ . 

 Therefore, we may apply the multivariate normal density [28] to yield the 

likelihood, 

       
1

1
22

T T T

1
, 2 exp

2

TM

L
  

     
 

ε I Σ I Σ ε I Σ ε T
. (A.1) 

The determinant of contemporaneous covariance  
T

I Σ  in (A.1) is equal to 

  T T

M T T
   I Σ I Σ Σ . (A.2) 

Using (A.2), we have the log of likelihood function in (A.1) as follows:  

       
1

T T

1
log , log 2 log

2 2 2

TM T
L


     ε I Σ Σ ε I Σ ε T

. (A.3) 

 Given a vector of unbiased estimators  ˆ ˆˆ,θ = ε Σ , the minus twice of the log-

likelihood function in (A.3) can be written as 

       
1

T T
ˆ ˆ ˆˆ ˆ ˆ2log , log 2 logL TM T



     ε I Σ Σ ε I Σ ε T
. (A.4) 

Consider the last term in (A.4), 

  
1

T
ˆˆ ˆ



ε I Σ ε
T

 

1

1

1
2

1 2

1

ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ

ˆˆ

T

T







   
   
         
   
    

Σ 0 0 ε

ε0 Σ 0
= ε ε ε

ε0 0 Σ

T T T
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1 2

1 1 1

ˆˆ ˆ ˆ ˆ ˆˆ ˆ2
T T M M

jj ij

t t tj ti tj

t t j i j

ε σ ε ε σ

   

 
 

 
   = ε Σ ε =

T
, (A.5) 

where ˆ ij  represents the element of the i
th

 row and j
th
 column of 

1ˆ 
Σ . 

 Using the fact that, the unbiased estimators of 
jj  and 

ij  are, respectively,  

1
ˆ ˆ

T
2

jj tj

t=1

ε
T K




  and 
1

ˆ ˆ ˆ
T

ij ti tj

t=1

ε ε
T K




 . 

Then, (A.5) becomes 

     
1

ˆˆ ˆ



T

ε I Σ ε
T  

1

ˆ ˆ ˆ ˆ2
M M

jj ij

jj ij

j i j

T K
 

 
  

 
 =       

      11 22 12 13 1

11 22 12 13 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2MM M

MM MT K       =              

 
 

  1 ,23 24 2

23 24 2 1 ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ M MM

M M M




              

       11 12 1 12 22 2

11 12 1 12 22 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆM M

M MT K       =              

  1 2

1 2
ˆ ˆ ˆ ˆ ˆ ˆM M MM

M M MM          . (A.6) 

 Since the estimated contemporaneous covariance matrix, Σ̂ , is symmetric, we 

have ˆ ˆ
ij ji  , including ˆ ˆij ji  . Then, 

    
1

1 2

1 2

1 1 1

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
M M M

j j jM

T j j Mj

j j j

T K


  

 
     

 
  ε I Σ ε =      T

. (A.7) 

 Due to the elements 
1

ˆ ˆ ; 1, 2, ,
M

ji

ij

j

i M


   in (A.7) are the elements in main 

diagonal of the matrix 
1ˆ ˆ

M

 ΣΣ I . Therefore, (A.7) is equivalent to  

     
1

ˆˆ ˆ
T T K M



 ε I Σ ε =
T

. (A.8) 

Replacing (A.8) into (A.4) yields the minus twice log-likelihood function as 

       ˆ ˆˆ2log , log 2 1 logTL TM KM T     ε I Σ Σ . (A.9) 

 Dropping the first term in (A.9),   log 2 1TM  , which has no effect on the 

minimum-SBIC, and use the concept of BIC in (9) to construct a system of simultaneous 

equations BIC, called SBIC,  
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 

 
1

ˆSBIC log 2 log
2

M M
T KM M T KM

 
     

 
Σ , (A.10) 

where 
 

 
1

2 log
2

M M
KM M T

 
  

 
 is the bias adjustment, KM  represents the 

number of independent variable in a SEM, 
 1

2

M M 
 represents the number of 

parameters in contemporaneous covariance matrix Σ , and 2M  represents the number 

of autoregressive parameters in a SEM. Combining the last two terms in (A.10), 

 
    

 
 

1 5
2 log log 1 log

2 2

M M M M
KM M T KM KM T T

  
      

 
. 

     (A.11) 

Replacing (A.11) into (A.10) yields SBIC in (12).  

 

Proof of Theorem 2. From the minus twice log-likelihood function proposed in [6], 

      1 1
ˆ ˆ ˆ2log , log 2 1 logL TM T KM    Π Σ Σ . (A.12) 

 Dropping the first term in (A.12),   log 2 1TM  , which has no effect on the 

minimum-BIC, and then use the concept of BIC in (9) to construct an adjusted BIC in 

order to use in a SEM, 

  
 

 1

1
ˆBIC log log

2

M M
T KM T KM

 
    

 
Σ , (A.13) 

where 
 

 
1

log
2

M M
KM T

 
 

 
 is the bias adjustment as in (A.10), except the 

number of autoregressive parameters 2M . Combine the last two terms in (A.13), 

        
 

    
 

 
1 1

log log 1 log
2 2

M M M M
KM T KM KM T T

  
     

 
. (A.14) 

Replacing (A.14) into (A.13) yields BIC in (13).  


