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Abstract

A new model for both overdispersion and underdispersion using latent Markov
processes modeled a stationary processes is proposed. The parameters in this model
can be estimated by the Bayesian method. The performance of the proposed method for
the new model, evaluating in term of bias, MSE and coverage probability, has been

explored using numerical methods based on simulated and real data.
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1.Introduction

Count data are commonly modeled using various parametric discrete models in
practice such as Poisson and Negative Binomial distributions, etc. The Poisson
distribution, which is generally used as the standard distribution for count data, is most
frequently used by many practitioners, though it is restricted by the fact that the mean of
this distribution is equal to its variance, known as equidispersion. However, in many

practical scenarios the mean of a data set is often observed to be less than the variance
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of data depicting a property known as overdispersion. Kibria [1] and Yang, et al. [2]
suggested that the overdispersion often occur with Poisson likelihood. If we ignored, it
can lead to loss of efficiency or obtain incorrect inference. Sometimes, count data
contain a large proportion of zeros, which can also result into overdispersion. For
example the number of heart attacks in a given period or the number of car accidents in
a given period often have excess of counts with zero. Therefore, in lieu of using Poisson
model, the other count data models such as zero-inflated Poisson model could be used.
However, the case of underdispersion in the data is also important and is not inevitable
even though it is relatively rare in practice. This problem is not as well explored as the
overdispersion problem, but it can be observed in practice [3]. Ridout and Besbeas [4]
presented many underdispersed count models such as the double Poisson distribution
etc.

To develop models that can account for both overdispersion and
underdispersion is more important, mostly based on parametric models, Ghosh and Kim
[5] were among the first ones to develop a new class of zero-altered distribution that can
account for both dispersion and more importantly their models are not restricted to be
parametric. It is a flexible class of semiparametric models that avoids practical
limitations. It is appropriate only independent count data. However, in many situations,
count data often are observed over time or in space across various locations. Such count
data tend to be correlated across time and/or space, so we call these as correlated count
data. The models that we discussed above are inadequate for modeling correlated count
data. Many researchers proposed the models for correlated count data, for example,
Dagne [6] presented a Bayesian hierarchical zero-inflated Poisson model which account
for both overdispersion and excess zeros for correlated count data. Lee and Wang [7]
presented a multi-level ZIP regression model for correlated count data with excess zeros.
Note that most of models only account for overdispersion using correlated count data.
But the problem of underdispersion for correlated count data is also not inevitable.
Hence, in this article we would propose a new model that can account for both
overdispersion and underdispersion using latent Markov processes (see [8-10]). The
parameters in this model can be estimated via the Bayesian method which is developed
as an alternative to analyze such data. It performs well and can be helpful in complex
modeling situations where a frequentist method is difficult to estimate or does not exist.
In addition, we also evaluate the performance of the proposed methods for this model in
term of bias, MSE and coverage probability of 95% posterior intervals using simulated

data scenarios.
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In Section 2, we described a detail of model for both overdispersion and
underdispersion using latent Markov processes. The Bayesian analysis for estimating
parameters in the model is presented in Section 3. We illustrate the results based on a

simulation and case study in Section 4. Finally, the conclusion is given in Section 5.

2. Model for both Overdispersion and Underdispersion using Latent Markov
Processes
We propose the following models for B/s and U,'s which are allowed to be

correlated over time:
Qo
ag+ Bo

B¢|Be—1 ~ Bernoulli (ag(1 — B—1) + (1 — Bo)Be_1), t=2,3,...
U, ~ Poisson (Al +log(1—e % + e"ll)), Ao, =20

B; ~ Bernoulli (

), 0 < apfo<1

Ug|U;—q ~ Poisson (Al (Up—; = 0) + 2,1 (U;—; # 0)), t=2,3,...
and finally set X, = B,(1+U,), for t=1,2,... where X; be a discrete valued random
variable (r.v.) taking values in I ={0,1,2,...}. B and U, are independent.

For the above model, we choose the parameter of the initial distribution of B to

be ’fr“ﬁ because this choice leads to a stationary process for B/s. Note that the mean

ot bo

of B; (E[B;]) and the variance of B; (Var[B;]) do not change over time. Additionally, we
choose the parameter of the initial distribution of U, to be A; +log(1 — e~% + e~4). This
choice also leads to a stationary process for U/s because the mean of U, (E[U,]) and the
variance of U, (Var[U,]) do not change over time. Hence, we have a stationary process
for X,'s, which implies that all marginal distributions possess the same distribution which
can account for both over and under dispersion. See the derivation of the mean and the
variance of B, and U, in Appendix A.
Furthermore, the correlation between B, and B;_, is then given by
Corr[B, Be—i]l = 1= (ag+ By), —1<1—(ag+Bo) <1 Vag,fo € [0,1]
and the correlation between U, and U,_; is given by
cov[Uy, U]
Var[U,]Var[U;_4]

Corr[Us, Up—4] =

where

(A4 — Ap)e™M

cov[Uy, Up_4] = 1ok toh

] E[U]

Aoe ™0 + 1 (1 — e~)
1—e o +eh

E[U:] = , Vit
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—e ~Ao

Var[U;] = 4 + (4o — 4) [ ) ] [1 + (Ao — /11)

_10 +e — _/10 +e M)

Parameter estimation in the proposed model is discussed in the next section.

3. Bayesian Analysis

In Bayesian analysis, we start with the prior distribution that contains all
information about the parameter values before observing the data. When the prior
distribution is updated, we obtain the posterior distribution. Actually, the posterior
distribution is proportional to the product of the likelihood function and the prior
distribution of the parameters.

Here, we propose the prior distribution for the parameter 8 = (ay, By, Ao, 41) a@s
follows:

~ Beta(aq,b;) and By~ Beta(a,, by)

Ao“’ Gamma(cl, dl) and ll“’ Gamma(CZ, dz)

Consider the likelihood function of («y, 8,), we have

n
Lo, BolBry s Ba) = | [C1 = Bo)Pes% (o) 1% [ ()P0 (1 = ) e8]
t=2

3.1
and the likelihood function of (4, 1) is given by
n oo Ut I(Ut-1=0) e—t1), U I(Ug-1#0)
Gttt = [ [ ()7 (2
U,! Uy!
t=2
(3.2)

Then, the posterior distribution of («,, B,) is given by

n n n n n
R IR WCRUSTES YR WORE) ARy
t=2 t=2 t=2

t=2 t=2

n n n
ﬁolBl, ...,Bn ~ Beta (Z Bt—l - Z Bt—lBt + az,z Bt—lBt + bz)
t=2 t=2 t=2

and the posterior distribution of (1, 4,) is given by

n n
/‘lolUl, ey Un ~ Gamma (Z I(Ut—l = O)Ut + Cq, Z I(Ut—l = O) + d1,>

t=2 t=2
n n n

WUy, ..., Uy ~Gamma (Z (1 - Zl(ut_1 = 0)) U4 cpn—1— Z Uy = 0) + d, )
t=2 t=2 t=2

The function I(U,_, = 0) is defined as
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_ _ 1 lf Ut—l = 0,
I(Ut_l - 0) - {0 if UL’—l *+ 0.

Here, we use the Bayesian software package known as WinBUGS [11] using a
Markov Chain Monte Carlo (MCMC) method to compute the posterior mean as the

Bayes estimators of (ay, Bg, 19, 41) in the proposed model given in Section 2.

4. Simulation and Case Study

In this section, we present the performance of the Bayesian method for this
model which can account for both overdispersion and underdispersion using latent
Markov processes. We use a simulation study to present the performance of the
proposed method. We consider the posterior summary statistics such as posterior mean,
median, standard deviation and 95% posterior intervals for each parameter estimate.
This provides the Monte Carlo bias (median of posterior median - true value), the Monte
Carlo mean squared error (MSE) and the coverage probability of 95% posterior intervals
as the proportion of times the true value of parameter was included in the 95% posterior
intervals to measure the performance of estimates. We also analyze a real data set
shown in Figure 4 using the method in Section 3.

4.1 A Simulation Study
A simulation study is carried out to study the performance of the Bayesian
method. We generate data sets B; and U; of size n = 50, n = 100 and n = 300 from the

following model
B; ~ Bernoulli (aaTOB)' 0 < app=1
0 0

B¢|B:_1 ~ Bernoulli (¢g(1 — B;_1) + (1 — Bo)B;—1), t=2,3,...
Uy ~ Poisson (A; +log(1 — e~ + e7*1)), 15,1, =0
Ue|U;—y ~ Poisson (I (Up—y = 0) + 1 I1(U;_y #0)), t=2,3,...
and finally set X, = B,(1+U,), for t=1,2,...

We choose the true value ay = B, =(0.25, 0.50, 0.75) and 15 = 4; = (1,2). In
total, we have 36 different combinations with each of sample size n. We replicate the
data generation each of sample size n for N = 500 Monte Carlo (MC) simulation runs.
We use WIinBUGS to generate 10,000 additional iterations obtaining the posterior
estimates following a burn-in of 5,000 iterations with the prior distribution as

a, ~ Beta(1,1)
Bo ~ Beta(1,1)
Ao ~ Gamma(0.1,0.1)
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A1 ~ Gamma(0.1,0.1).

Some results are summarized numerically in Table 1-2. The posterior summary
of the Bayes estimators of (g, By, A0, A1), cONsisting of the posterior mean, sd (standard
deviation), median, 95% posterior intervals, bias, MSE and coverage probability of 95%
posterior intervals, are presented in Table 1-2. In addition, we illustrate the performance
of parameters by Box Plots for each of the sample size n=50 (first row), n=100 (second
row) and n=300 (third row) as shown in Figures 1. Furthermore, we also present a
graphical summary of absolute bias and MSE for all cases in Figures 2-3, respectively,
for evaluating the performance of the proposed Bayesian methods.

In Figures 2-3, it is clear that the Bayesian method provides asymptotically
unbiased estimators of a, and B, nearly for all parameter combinations. Notice that not
only the magnitude of the biases is very small but also has small MSE for all sample
sizes. The biases and MSE of a,and B, tend to decrease when the sample sizes
increase. This implies that it looks close to the true value. In addition, the performance of
the proposed method, as measured by the coverage probability of 95% posterior
intervals, is good. It is close to the desired value of 0.95 in each case.

In the case of the Bayes estimator of 1,, the Bayesian method still provides an
asymptotically unbiased estimator for all combinations of B, = 0.25 such as the
combinations of (¢, =0.75, B, =0.25, 4, =1,1, =2), etc. It is clear that the biases and
MSE are very small for all sample sizes. In particular, the MSE of A, appears small and
significantly decreases when the sample size is large. Meanwhile, all combinations of
Bo =0.50 also have small biases and the MSE is small and tend to decrease when
increasing the sample sizes. Furthermore, the coverage probability of 95% posterior
intervals of 4, is close to the nominal 95% level in each case.

In the case of the Bayes estimator of 1,, the Bayesian method still provides an
asymptotically unbiased estimator for all combinations of a, = (0.50,0.75) and (45 < 4;)
such as the combinations of (a, =0.75, B, =0.25, 1, =1,4, =2), etc. It is clear that not
only the magnitude of the biases are very small but also has small MSE for all sample
sizes. In addition, the MSE of 1; tend to decrease when increasing the sample sizes.
When we consider the coverage probability of 95% posterior intervals of 4, , note that it is

close to 0.95. It means that the estimator of A, is close to the true value.

4.2 Monthly Claim Counts
We apply the proposed model based on the Bayesian method with the claim

counts data which is observed over time and tend to be correlated across time. All claims
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are collected due to a burn related injury [12]. The data is shown in Figure 4, which
consists of monthly claim counts of workers in the heavy manufacturing industry from the
Richmond claims center between January 1987 and December 1994. Empirical mean
and variance of the data are given by 8.6042 and 11.3575, respectively, indicating that
the data is overdispersed. We use WIinBUGS to compute the posterior mean as the
Bayes estimators of (a,Bo,40,41) with the prior distribution as «, ~ Beta(1,1),
Bo ~ Beta(1,1), 1, ~ Gamma(0.1,0.1) and 1; ~ Gamma(0.1,0.1). The result is
presented in Table 3. First, we consider the MC error, it gives us an idea about how good
the parameters estimation are. Note that the MC error in Table 3 gives small values for
all parameters. The posterior mean and 95% intervals of «, and 8, are 0.5103, [0.0376,
0.9735] and 0.0098, [0.0003, 0.0365], respectively. In addition, the posterior mean and
95% intervals of 1, and 1, are 1.7780, [0.2042, 5.0900] and 7.6550, [7.1110, 8.2170],
respectively.

Next, we present the predicted values of X, compared with the observed values
(X;) to show how good is the prediction as shown in Figure 5. The bias of predicted
values is shown in Figure 6. Notice that most of the bias of predicted biases is small and
only 7 of the 95% intervals do not contain zero out of 96 cases. So, we can conclude that
the proportion was included in the 95% intervals expected as = 93%. It is close to 0.95.

Hence, we could use this model to apply for such data based on the Bayesian method.

Table 1. Posterior Summary for (a, =0.50, 8, =0.25,1, =1, 1, =2).

n Parameter Mean SD Median 95% Posterior Bias MSE Coverage
Interval Prob.
50 Qg 0.5140 0.1130 0.5149 (0.2931,0.7291) 0.0099 0.0131 0.9640
Bo 0.2674 | 0.0728 | 0.2628 | (0.1388,0.4212) | 0.0099 | 0.0058 0.9360
Ao 11917 | 0.6737 | 1.0457 | (0.3596,2.8801) | -0.0292 | 0.3099 0.9520
A1 1.9983 0.2603 1.9868 (1.5216,2.5393) | -0.0065 | 0.0703 0.9380
100 @ 0.5030 | 0.0826 | 0.5032 | (0.3417,0.6632) | 0.0042 | 0.0070 0.9500
Bo 0.2594 0.0524 0.2570 (0.1640,0.3681) 0.0020 0.0029 0.9400
Ao 1.1287 0.3925 1.0788 (0.5133,2.0287) 0.0125 0.1583 0.9500
M 2.0140 | 0.1848 | 2.0083 | (1.6685,2.3916) | 0.0095 | 0.0355 0.9380
300 Qg 0.5009 0.0492 0.5015 (0.4046,0.5970) 0.0015 0.0024 0.9540
Bo 0.2545 | 0.0306 | 0.2515 | (0.1970,0.3166) | 0.0015 | 0.0011 0.9460
Ao 1.0857 | 0.2068 | 1.0545 | (0.7190,1.5267) | 0.0545 | 0.0477 0.9360
A 2.0144 0.1062 2.0160 (1.8117,2.2276) 0.0160 0.0104 0.9540
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Table 2. Posterior Summary for (aq

=0.75, B, =0.25, 1, =1, 1, =2).
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n Parameter Mean SD Median 95% Posterior Bias MSE Coverage
Interval Prob.
50 g 0.7167 | 0.1122 | 0.7276 | (0.4727,0.9006) | -0.0248 | 0.0124 0.9520
Bo 0.2638 0.0687 0.2597 (0.1418,0.4088) 0.0032 0.0048 0.9520
Ao 1.1528 0.5969 1.0341 (0.3615,2.6228) | -0.0400 | 0.2489 0.9740
A 1.9767 0.2444 1.9667 (1.5270,2.4830) | -0.0362 | 0.0601 0.9580
100 ay 0.7390 0.0817 0.7452 (0.5636,0.8795) | -0.0005 | 0.0066 0.9640
Bo 0.2600 0.0495 0.2579 (0.1695,0.3626) 0.0050 0.0027 0.9520
Ao 1.1054 | 0.3532 | 1.0661 | (0.5317,1.9007) | 0.0145 | 0.1068 0.9620
M 1.9878 | 0.1734 | 1.9826 | (1.6627,2.3417) | -0.0285 | 0.0327 0.9280
300 @, 0.7440 | 0.0493 | 0.7465 | (0.6418,0.8340) | -0.0035 | 0.0024 0.9540
Bo 0.2514 | 0.0287 | 0.2508 | (0.1973,0.3095) | 0.0008 | 0.0009 0.9480
Ao 1.0874 | 0.1943 | 1.0555 | (0.7405,1.4996) | 0.0555 | 0.0475 0.9200
M 1.9950 | 0.1000 | 1.9965 | (1.8037,2.1954) | -0.0035 | 0.0103 0.9540

(@) (ap =0.50, B, =0.25, 1, =1, 4, =2)

(b) (ap =0.75, B, =0.25, 1, =1, 1,

=2)
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Figure 1. Performance of the Bayesian method.
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Figure 4. The Claim Counts Data.
Table 3. WinBUGS Output.
node mean sd MC error 2.5% median | 97.5% start | sample
a, 0.5103 0.2820 0.0028 0.0376 | 0.5119 0.9735 5001 10000
Bo 0.0098 0.0099 0.0002 0.0003 | 0.0067 0.0365 5001 10000
Ao 1.7780 1.2800 0.0192 0.2042 1.4960 5.0900 5001 10000
A 7.6550 0.2855 0.0032 7.1110 | 7.6480 8.2170 5001 10000
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5. Conclusion

In this article, a new model that can account for both overdispersion and
underdispersion using latent Markov processes is proposed. The parameters in this
model can be estimated via the Bayesian method. From a simulation study, it is clear
that the proposed method performs well and provides asymptotically unbiased estimator
for the parameters combinations of (¢, = B, = 0.25) and (4, < 4,) used. Notice that the
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MSE appears small and significantly decrease when increasing the sample sizes. The

coverage probability of 95% posterior intervals of («y, By, 1, A1) are close to 0.95.
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Appendix A

The properties of B, :

By ~Bernouli (52-), 0 < ag,fo <1
0 0

B¢|B;_, ~ Bernoulli (¢g(1 —B;_1) + (1 = By)Bs_1), t=2,3,...

e The meanof B, :
E[Bt] = E[E(BtlBt—l)]

= ap+ (1 —ag — Bo)te-1, E[B—1] = me

t=2, g = ag+ {1 —ap—folu, E[Bi] = 1y

t=t = — ot (L= ao = o) i — |
" ag+ Bo o re Y oag+ By

Hence,
ao

E[B.] = a0t By’ vt

e The variance of B, :
Var[B,] = E[B.*] - {E[B]}?
Qo

E[B] = EIBe] = =

Hence,

Var[Bt] = %, vt

The properties of U, :
Uy ~ Poisson (A; + log(1 — e~ + e741)), 15,1, =0

Ue|U;—y ~ Poisson (gl (Us—y = 0) + 41 (Up—4 #0)), t=2,3,..

e Themeanof U, :
E[U;] = E[E(U¢|U;-1)]

= AoProqy + A4 (1 —Piy)
P, =P[U, = 0] = E[I(U; = 0)]
e~MP_y +e M1 - Py)

=b+(a—b)P_y, a=e M, b=e"h
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t=2, P,=b+(a—b)P;
t=t, Po=————+(a—b)1 PI—L]
1—(a—b) 1—(a—b)
where, P1=P[U1=0]=L
1—(a—b)
e™h

Hence, P; vt

Tl-ehte
Aoe_ao + /11(1 - e_lf’)

Therefore,  E[Ui] = ———— =,

, Vt

e The variance of U, :
Var[U] = E[U:*] - {E[U.]}?
E[U%] = AgPe—y + A (1 = Pe_y) + A°Pry + A,°(1 — Pr_y)
Then,

e~h 1—eh
Var[Ut] = Al + (AO - Al) [m] [1 + (/10 - 2.1) 1 , Vt

— e te i



