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Abstract 

A new model for both overdispersion and underdispersion using latent Markov 

processes modeled a stationary processes is proposed. The parameters in this model 

can be estimated by the Bayesian method. The performance of the proposed method for 

the new model, evaluating in term of bias, MSE and coverage probability, has been 

explored using numerical methods based on simulated and real data. 

______________________________ 
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1. Introduction 

Count data are commonly modeled using various parametric discrete models in 

practice such as Poisson and Negative Binomial distributions, etc. The Poisson 

distribution, which is generally used as the standard distribution for count data, is most 

frequently used by many practitioners, though it is restricted by the fact that the mean of 

this distribution is equal to its variance, known as equidispersion. However, in many 

practical scenarios the mean of a data set is often observed to be less than the variance 
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of data depicting a property known as overdispersion. Kibria [1] and Yang, et al. [2] 

suggested that the overdispersion often occur with Poisson likelihood. If we ignored, it 

can lead to loss of efficiency or obtain incorrect inference. Sometimes, count data 

contain a large proportion of zeros, which can also result into overdispersion. For 

example the number of heart attacks in a given period or the number of car accidents in 

a given period often have excess of counts with zero. Therefore, in lieu of using Poisson 

model, the other count data models such as zero-inflated Poisson model could be used. 

However, the case of underdispersion in the data is also important and is not inevitable 

even though it is relatively rare in practice. This problem is not as well explored as the 

overdispersion problem, but it can be observed in practice [3]. Ridout and Besbeas [4] 

presented many underdispersed count models such as the double Poisson distribution 

etc. 

To develop models that can account for both overdispersion and 

underdispersion is more important, mostly based on parametric models, Ghosh and Kim 

[5] were among the first ones to develop a new class of zero-altered distribution that can 

account for both dispersion and more importantly their models are not restricted to be 

parametric. It is a flexible class of semiparametric models that avoids practical 

limitations. It is appropriate only independent count data. However, in many situations, 

count data often are observed over time or in space across various locations. Such count 

data tend to be correlated across time and/or space, so we call these as correlated count 

data. The models that we discussed above are inadequate for modeling correlated count 

data. Many researchers proposed the models for correlated count data, for example, 

Dagne [6] presented a Bayesian hierarchical zero-inflated Poisson model which account 

for both overdispersion and excess zeros for correlated count data. Lee and Wang [7] 

presented a multi-level ZIP regression model for correlated count data with excess zeros. 

Note that most of models only account for overdispersion using correlated count data. 

But the problem of underdispersion for correlated count data is also not inevitable. 

Hence, in this article we would propose a new model that can account for both 

overdispersion and underdispersion using latent Markov processes (see [8-10]). The 

parameters in this model can be estimated via the Bayesian method which is developed 

as an alternative to analyze such data. It performs well and can be helpful in complex 

modeling situations where a frequentist method is difficult to estimate or does not exist. 

In addition, we also evaluate the performance of the proposed methods for this model in 

term of bias, MSE and coverage probability of 95% posterior intervals using simulated 

data scenarios.  
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In Section 2, we described a detail of model for both overdispersion and 

underdispersion  using latent Markov processes. The Bayesian analysis for estimating 

parameters in the model is presented in Section 3. We illustrate the results based on a 

simulation and case study in Section 4. Finally, the conclusion is given in Section 5. 

 

2. Model for both Overdispersion and Underdispersion using Latent Markov  

    Processes 

 We propose the following models for    
    and    

    which are allowed to be 

correlated over time: 

                                  Bernoulli (
  

      
)                  

                                Bernoulli (  (      )  (    )    )             

     Poisson (       (           ))             

          Poisson (   (      )     (      ))             

and finally set         (    )    for            where    be a discrete valued random 

variable (r.v.) taking values in    {       }     and    are independent. 

For the above model, we choose the parameter of the initial distribution of    to 

be  
  

      
  because this choice leads to a stationary process for    

   . Note that the mean 

of    (     ) and the variance of    (       )   do not change over time. Additionally, we 

choose the parameter of the initial distribution of     to be        (           ). This 

choice also leads to a stationary process for    
    because the mean of    (     ) and the 

variance of    (       ) do not change over time.  Hence, we have a stationary process 

for    
   , which implies that all marginal distributions possess the same distribution which 

can account for both over and under dispersion. See the derivation of the mean and the 

variance of    and    in Appendix A. 

Furthermore, the correlation between    and      is then given by 

                 (     )      (     )                   

and the correlation between    and      is given by 

              
            

√                
 

where              

              [
(     ) 

   

           
]        

      
   

      (      )
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           (     ) [
    

           
] [  (     )

      

           
]        

Parameter estimation in the proposed model is discussed in the next section. 

 

3. Bayesian Analysis 

In Bayesian analysis, we start with the prior distribution that contains all 

information about the parameter values before observing the data. When the prior 

distribution is updated, we obtain the posterior distribution. Actually, the posterior 

distribution is proportional to the product of the likelihood function and the prior 

distribution of the parameters. 

Here, we propose the prior distribution for the parameter   (           )  as 

follows: 

    Beta(     )   and        Beta(     ) 

     Gamma(     )   and             (     ). 

 

Consider the likelihood function of (     ), we have 

 (             )   ∏[(    )
       (  )

(      )  ][(  )
    (    ) (    )

(      )(    )]

 

   

 

                                                                                                                                    (3.1)            

and the likelihood function of (     ) is given by 

 (             )   ∏(
      

  

   
)

 (      )

(
      

  

   
)

 (      ) 

   

  

   (3.2)      

Then, the posterior distribution of (     ) is given by 

                 (∑   ∑            ∑   ∑    

 

   

 ∑         

 

   

 

   

 

   

 

   

) 

                 (∑     ∑          ∑         

 

   

 

   

 

   

) 

and the posterior distribution of (     ) is given by 

                   (∑ (      )      

 

   

 ∑ (      )     

 

   

) 

                  (∑(  ∑ (      )

 

   

)          ∑ (      )    

 

   

 

 

   

) 

The function  (      ) is defined as 
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 (      )   {

                  
                 

  

Here, we use the Bayesian software package known as WinBUGS [11] using a 

Markov Chain Monte Carlo (MCMC) method to compute the posterior mean as the 

Bayes estimators of (           ) in the proposed model given in Section 2. 

 

4. Simulation and Case Study 

In this section, we present the performance of the Bayesian method for this 

model which can account for both overdispersion and underdispersion using latent 

Markov processes. We use a simulation study to present the performance of the 

proposed method. We consider the posterior summary statistics such as posterior mean, 

median, standard deviation and 95% posterior intervals for each parameter estimate. 

This provides the Monte Carlo bias (median of posterior median - true value), the Monte 

Carlo mean squared error (MSE) and the coverage probability of 95% posterior intervals 

as the proportion of times the true value of parameter was included in the 95% posterior 

intervals to measure the performance of estimates. We also analyze a real data set 

shown in Figure 4 using the method in Section 3. 

 

4.1 A Simulation Study 

A simulation study is carried out to study the performance of the Bayesian 

method. We generate data sets    and    of size n = 50, n = 100 and n = 300 from the 

following model 

                                   Bernoulli (
  

      
)                  

                                Bernoulli (  (      )  (    )    )             

     Poisson (       (           ))             

          Poisson (   (      )     (      ))             

and finally set         (    )    for           

We choose the true value        (0.25, 0.50, 0.75) and        (1,2). In 

total, we have 36 different combinations with each of sample size n. We replicate the 

data generation each of sample size n for N = 500 Monte Carlo (MC) simulation runs. 

We use WinBUGS to generate 10,000 additional iterations obtaining the posterior 

estimates following a burn-in of 5,000 iterations with the prior distribution as 

           (   ) 

                                                                 Beta(   ) 

                                                                 Gamma(       ) 
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                                                                 Gamma(       ). 

Some results are summarized numerically in Table 1-2. The posterior summary 

of the Bayes estimators of (           ), consisting of the posterior mean, sd (standard 

deviation), median, 95% posterior intervals, bias, MSE and coverage probability of 95% 

posterior intervals, are presented in Table 1-2. In addition, we illustrate the performance 

of parameters by Box Plots for each of the sample size n=50 (first row), n=100 (second 

row) and n=300 (third row) as shown in Figures 1. Furthermore, we also present a 

graphical summary of absolute bias and MSE for all cases in Figures 2-3, respectively, 

for evaluating the performance of the proposed Bayesian methods.  

In Figures 2-3, it is clear that the Bayesian method provides asymptotically 

unbiased estimators of    and    nearly for all parameter combinations. Notice that not 

only the magnitude of the biases is very small but also has small MSE for all sample 

sizes. The biases and MSE of    and    tend to decrease when the sample sizes 

increase. This implies that it looks close to the true value. In addition, the performance of 

the proposed method, as measured by the coverage probability of 95% posterior 

intervals, is good. It is close to the desired value of 0.95 in each case. 

In the case of the Bayes estimator of   , the Bayesian method still provides an 

asymptotically unbiased estimator for all combinations of     0.25 such as the 

combinations of (   0.75    0.25     1    2 ), etc. It is clear that the biases and 

MSE are very small for all sample sizes. In particular, the MSE of    appears small and 

significantly decreases when the sample size is large. Meanwhile, all combinations of 

   0.50 also have small biases and the MSE is small and tend to decrease when 

increasing the sample sizes. Furthermore, the coverage probability of 95% posterior 

intervals of    is close to the nominal 95% level in each case. 

In the case of the Bayes estimator of   , the Bayesian method still provides an 

asymptotically unbiased estimator for all combinations of     (0.50,0.75) and (     ) 

such as the combinations of (   0.75    0.25     1    2 ), etc. It is clear that not 

only the magnitude of the biases are very small but also has small MSE for all sample 

sizes. In addition, the MSE of    tend to decrease when increasing the sample sizes. 

When we consider the coverage probability of 95% posterior intervals of    , note that it is 

close to 0.95. It means that the estimator of     is close to the true value. 

 

4.2 Monthly Claim Counts 

We apply the proposed model based on the Bayesian method with the claim 

counts data which is observed over time and tend to be correlated across time. All claims 
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are collected due to a burn related injury [12]. The data is shown in Figure 4, which 

consists of monthly claim counts of workers in the heavy manufacturing industry from the 

Richmond claims center between January 1987 and December 1994. Empirical mean 

and variance of the data are given by 8.6042 and 11.3575, respectively, indicating that 

the data is overdispersed. We use WinBUGS to compute the posterior mean as the 

Bayes estimators of (           ) with the prior distribution as            (   ), 

       Beta(   ),        Gamma(       ) and        Gamma(       ). The result is 

presented in Table 3. First, we consider the MC error, it gives us an idea about how good 

the parameters estimation are. Note that the MC error in Table 3 gives small values for 

all parameters. The posterior mean and 95% intervals of    and    are 0.5103, [0.0376, 

0.9735] and 0.0098, [0.0003, 0.0365], respectively. In addition, the posterior mean and 

95% intervals of    and    are 1.7780, [0.2042, 5.0900] and 7.6550, [7.1110, 8.2170], 

respectively.  

Next, we present the predicted values of    compared with the observed values 

(  ) to show how good is the prediction as shown in Figure 5. The bias of predicted 

values is shown in Figure 6. Notice that most of the bias of predicted biases is small and 

only 7 of the 95% intervals do not contain zero out of 96 cases. So, we can conclude that 

the proportion was included in the 95% intervals expected as   93%. It is close to 0.95.  

Hence, we could use this model to apply for such data based on the Bayesian method.  

 

Table 1. Posterior Summary for (   0.50    0.25    1    2). 

n Parameter Mean SD Median 95% Posterior 

Interval 

Bias MSE Coverage 

Prob. 

50    0.5140 0.1130 0.5149 (0.2931,0.7291) 0.0099 0.0131 0.9640 

    0.2674 0.0728 0.2628 (0.1388,0.4212) 0.0099 0.0058 0.9360 

    1.1917 0.6737 1.0457 (0.3596,2.8801) -0.0292 0.3099 0.9520 

    

 

1.9983 0.2603 1.9868 (1.5216,2.5393) -0.0065 0.0703 0.9380 

100    0.5030 0.0826 0.5032 (0.3417,0.6632) 0.0042 0.0070 0.9500 

    0.2594 0.0524 0.2570 (0.1640,0.3681) 0.0020 0.0029 0.9400 

    1.1287 0.3925 1.0788 (0.5133,2.0287) 0.0125 0.1583 0.9500 

    

 

2.0140 0.1848 2.0083 (1.6685,2.3916) 0.0095 0.0355 0.9380 

300    0.5009 0.0492 0.5015 (0.4046,0.5970) 0.0015 0.0024 0.9540 

    0.2545 0.0306 0.2515 (0.1970,0.3166) 0.0015 0.0011 0.9460 

    1.0857 0.2068 1.0545 (0.7190,1.5267) 0.0545 0.0477 0.9360 

    2.0144 0.1062 2.0160 (1.8117,2.2276) 0.0160 0.0104 0.9540 
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Table 2. Posterior Summary for (   0.75    0.25    1    2). 

n Parameter Mean SD Median 95% Posterior 

Interval 

Bias MSE Coverage 

Prob. 

50    0.7167 0.1122 0.7276 (0.4727,0.9006) -0.0248 0.0124 0.9520 

    0.2638 0.0687 0.2597 (0.1418,0.4088) 0.0032 0.0048 0.9520 

    1.1528 0.5969 1.0341 (0.3615,2.6228) -0.0400 0.2489 0.9740 

    

 

1.9767 0.2444 1.9667 (1.5270,2.4830) -0.0362 0.0601 0.9580 

100    0.7390 0.0817 0.7452 (0.5636,0.8795) -0.0005 0.0066 0.9640 

    0.2600 0.0495 0.2579 (0.1695,0.3626) 0.0050 0.0027 0.9520 

    1.1054 0.3532 1.0661 (0.5317,1.9007) 0.0145 0.1068 0.9620 

    

 

1.9878 0.1734 1.9826 (1.6627,2.3417) -0.0285 0.0327 0.9280 

300    0.7440 0.0493 0.7465 (0.6418,0.8340) -0.0035 0.0024 0.9540 

    0.2514 0.0287 0.2508 (0.1973,0.3095) 0.0008 0.0009 0.9480 

    1.0874 0.1943 1.0555 (0.7405,1.4996) 0.0555 0.0475 0.9200 

    1.9950 0.1000 1.9965 (1.8037,2.1954) -0.0035 0.0103 0.9540 

 

 

(a) (   0.50    0.25,    1    2)                (b) (   0.75    0.25,    1    2) 

    

 

Figure 1. Performance of the Bayesian method. 
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Figure 2. Absolute Bias of the Bayes Estimators of (           ). 

0.0000
0.0050
0.0100
0.0150
0.0200
0.0250
0.0300
0.0350

(0
.2

5
, 
0

.2
5
, 

1
, 

1
)

(0
.2

5
, 
0

.5
0
, 

1
, 

1
)

(0
.2

5
, 
0

.7
5
, 

1
, 

1
)

(0
.5

0
, 
0

.2
5
, 

1
, 

1
)

(0
.5

0
, 
0

.5
0
, 

1
, 

1
)

(0
.5

0
, 
0

.7
5
, 

1
, 

1
)

(0
.7

5
, 
0

.2
5
, 

1
, 

1
)

(0
.7

5
, 
0

.5
0
, 

1
, 

1
)

(0
.7

5
, 
0

.7
5
, 

1
, 

1
)

(0
.2

5
, 
0

.2
5
, 

1
, 

2
)

(0
.2

5
, 
0

.5
0
, 

1
, 

2
)

(0
.2

5
, 
0

.7
5
, 

1
, 

2
)

(0
.5

0
, 
0

.2
5
, 

1
, 

2
)

(0
.5

0
, 
0

.5
0
, 

1
, 

2
)

(0
.5

0
, 
0

.7
5
, 

1
, 

2
)

(0
.7

5
, 
0

.2
5
, 

1
, 

2
)

(0
.7

5
, 
0

.5
0
, 

1
, 

2
)

(0
.7

5
, 
0

.7
5
, 

1
, 

2
)

(0
.2

5
, 
0

.2
5
, 

2
, 

1
)

(0
.2

5
, 
0

.5
0
, 

2
, 

1
)

(0
.2

5
, 
0

.7
5
, 

2
, 

1
)

(0
.5

0
, 
0

.2
5
, 

2
, 

1
)

(0
.5

0
, 
0

.5
0
, 

2
, 

1
)

(0
.5

0
, 
0

.7
5
, 

2
, 

1
)

(0
.7

5
, 
0

.2
5
, 

2
, 

1
)

(0
.7

5
, 
0

.5
0
, 

2
, 

1
)

(0
.7

5
, 
0

.7
5
, 

2
, 

1
)

(0
.2

5
, 
0

.2
5
, 

2
, 

2
)

(0
.2

5
, 
0

.5
0
, 

2
, 

2
)

(0
.2

5
, 
0

.7
5
, 

2
, 

2
)

(0
.5

0
, 
0

.2
5
, 

2
, 

2
)

(0
.5

0
, 
0

.5
0
, 

2
, 

2
)

(0
.5

0
, 
0

.7
5
, 

2
, 

2
)

(0
.7

5
, 
0

.2
5
, 

2
, 

2
)

(0
.7

5
, 
0

.5
0
, 

2
, 

2
)

(0
.7

5
, 
0

.7
5
, 

2
, 

2
)|B

ia
s

| 
o

f 
(a

lp
h

a
0

) 

(alpha0, beta0, lambda0, lambda1) 

n = 50

n = 100

n = 300

0.0000

0.0050

0.0100

0.0150

0.0200

(0
.2

5
, 
0

.2
5
, 

1
, 

1
)

(0
.2

5
, 
0

.5
0
, 

1
, 

1
)

(0
.2

5
, 
0

.7
5
, 

1
, 

1
)

(0
.5

0
, 
0

.2
5
, 

1
, 

1
)

(0
.5

0
, 
0

.5
0
, 

1
, 

1
)

(0
.5

0
, 
0

.7
5
, 

1
, 

1
)

(0
.7

5
, 
0

.2
5
, 

1
, 

1
)

(0
.7

5
, 
0

.5
0
, 

1
, 

1
)

(0
.7

5
, 
0

.7
5
, 

1
, 

1
)

(0
.2

5
, 
0

.2
5
, 

1
, 

2
)

(0
.2

5
, 
0

.5
0
, 

1
, 

2
)

(0
.2

5
, 
0

.7
5
, 

1
, 

2
)

(0
.5

0
, 
0

.2
5
, 

1
, 

2
)

(0
.5

0
, 
0

.5
0
, 

1
, 

2
)

(0
.5

0
, 
0

.7
5
, 

1
, 

2
)

(0
.7

5
, 
0

.2
5
, 

1
, 

2
)

(0
.7

5
, 
0

.5
0
, 

1
, 

2
)

(0
.7

5
, 
0

.7
5
, 

1
, 

2
)

(0
.2

5
, 
0

.2
5
, 

2
, 

1
)

(0
.2

5
, 
0

.5
0
, 

2
, 

1
)

(0
.2

5
, 
0

.7
5
, 

2
, 

1
)

(0
.5

0
, 
0

.2
5
, 

2
, 

1
)

(0
.5

0
, 
0

.5
0
, 

2
, 

1
)

(0
.5

0
, 
0

.7
5
, 

2
, 

1
)

(0
.7

5
, 
0

.2
5
, 

2
, 

1
)

(0
.7

5
, 
0

.5
0
, 

2
, 

1
)

(0
.7

5
, 
0

.7
5
, 

2
, 

1
)

(0
.2

5
, 
0

.2
5
, 

2
, 

2
)

(0
.2

5
, 
0

.5
0
, 

2
, 

2
)

(0
.2

5
, 
0

.7
5
, 

2
, 

2
)

(0
.5

0
, 
0

.2
5
, 

2
, 

2
)

(0
.5

0
, 
0

.5
0
, 

2
, 

2
)

(0
.5

0
, 
0

.7
5
, 

2
, 

2
)

(0
.7

5
, 
0

.2
5
, 

2
, 

2
)

(0
.7

5
, 
0

.5
0
, 

2
, 

2
)

(0
.7

5
, 
0

.7
5
, 

2
, 

2
)

|B
ia

s
| 
o

f 
(b

e
ta

0
) 

(alpha0, beta0, lambda0, lambda1) 

n = 50

n = 100

n = 300

0.0000

0.5000

1.0000

1.5000

(0
.2

5
, 
0

.2
5
, 

1
, 

1
)

(0
.2

5
, 
0

.5
0
, 

1
, 

1
)

(0
.2

5
, 
0

.7
5
, 

1
, 

1
)

(0
.5

0
, 
0

.2
5
, 

1
, 

1
)

(0
.5

0
, 
0

.5
0
, 

1
, 

1
)

(0
.5

0
, 
0

.7
5
, 

1
, 

1
)

(0
.7

5
, 
0

.2
5
, 

1
, 

1
)

(0
.7

5
, 
0

.5
0
, 

1
, 

1
)

(0
.7

5
, 
0

.7
5
, 

1
, 

1
)

(0
.2

5
, 
0

.2
5
, 

1
, 

2
)

(0
.2

5
, 
0

.5
0
, 

1
, 

2
)

(0
.2

5
, 
0

.7
5
, 

1
, 

2
)

(0
.5

0
, 
0

.2
5
, 

1
, 

2
)

(0
.5

0
, 
0

.5
0
, 

1
, 

2
)

(0
.5

0
, 
0

.7
5
, 

1
, 

2
)

(0
.7

5
, 
0

.2
5
, 

1
, 

2
)

(0
.7

5
, 
0

.5
0
, 

1
, 

2
)

(0
.7

5
, 
0

.7
5
, 

1
, 

2
)

(0
.2

5
, 
0

.2
5
, 

2
, 

1
)

(0
.2

5
, 
0

.5
0
, 

2
, 

1
)

(0
.2

5
, 
0

.7
5
, 

2
, 

1
)

(0
.5

0
, 
0

.2
5
, 

2
, 

1
)

(0
.5

0
, 
0

.5
0
, 

2
, 

1
)

(0
.5

0
, 
0

.7
5
, 

2
, 

1
)

(0
.7

5
, 
0

.2
5
, 

2
, 

1
)

(0
.7

5
, 
0

.5
0
, 

2
, 

1
)

(0
.7

5
, 
0

.7
5
, 

2
, 

1
)

(0
.2

5
, 
0

.2
5
, 

2
, 

2
)

(0
.2

5
, 
0

.5
0
, 

2
, 

2
)

(0
.2

5
, 
0

.7
5
, 

2
, 

2
)

(0
.5

0
, 
0

.2
5
, 

2
, 

2
)

(0
.5

0
, 
0

.5
0
, 

2
, 

2
)

(0
.5

0
, 
0

.7
5
, 

2
, 

2
)

(0
.7

5
, 
0

.2
5
, 

2
, 

2
)

(0
.7

5
, 
0

.5
0
, 

2
, 

2
)

(0
.7

5
, 
0

.7
5
, 

2
, 

2
)|B

ia
s

| 
o

f 
(l

a
m

b
d

a
0

) 

(alpha0, beta0, lambda0, lambda1) 

n = 50

n = 100

n = 300

0.0000

0.2000

0.4000

0.6000

0.8000

(0
.2

5
, 
0

.2
5
, 

1
, 

1
)

(0
.2

5
, 
0

.5
0
, 

1
, 

1
)

(0
.2

5
, 
0

.7
5
, 

1
, 

1
)

(0
.5

0
, 
0

.2
5
, 

1
, 

1
)

(0
.5

0
, 
0

.5
0
, 

1
, 

1
)

(0
.5

0
, 
0

.7
5
, 

1
, 

1
)

(0
.7

5
, 
0

.2
5
, 

1
, 

1
)

(0
.7

5
, 
0

.5
0
, 

1
, 

1
)

(0
.7

5
, 
0

.7
5
, 

1
, 

1
)

(0
.2

5
, 
0

.2
5
, 

1
, 

2
)

(0
.2

5
, 
0

.5
0
, 

1
, 

2
)

(0
.2

5
, 
0

.7
5
, 

1
, 

2
)

(0
.5

0
, 
0

.2
5
, 

1
, 

2
)

(0
.5

0
, 
0

.5
0
, 

1
, 

2
)

(0
.5

0
, 
0

.7
5
, 

1
, 

2
)

(0
.7

5
, 
0

.2
5
, 

1
, 

2
)

(0
.7

5
, 
0

.5
0
, 

1
, 

2
)

(0
.7

5
, 
0

.7
5
, 

1
, 

2
)

(0
.2

5
, 
0

.2
5
, 

2
, 

1
)

(0
.2

5
, 
0

.5
0
, 

2
, 

1
)

(0
.2

5
, 
0

.7
5
, 

2
, 

1
)

(0
.5

0
, 
0

.2
5
, 

2
, 

1
)

(0
.5

0
, 
0

.5
0
, 

2
, 

1
)

(0
.5

0
, 
0

.7
5
, 

2
, 

1
)

(0
.7

5
, 
0

.2
5
, 

2
, 

1
)

(0
.7

5
, 
0

.5
0
, 

2
, 

1
)

(0
.7

5
, 
0

.7
5
, 

2
, 

1
)

(0
.2

5
, 
0

.2
5
, 

2
, 

2
)

(0
.2

5
, 
0

.5
0
, 

2
, 

2
)

(0
.2

5
, 
0

.7
5
, 

2
, 

2
)

(0
.5

0
, 
0

.2
5
, 

2
, 

2
)

(0
.5

0
, 
0

.5
0
, 

2
, 

2
)

(0
.5

0
, 
0

.7
5
, 

2
, 

2
)

(0
.7

5
, 
0

.2
5
, 

2
, 

2
)

(0
.7

5
, 
0

.5
0
, 

2
, 

2
)

(0
.7

5
, 
0

.7
5
, 

2
, 

2
)

|B
ia

s
| 
o

f 
(l

a
m

b
d

a
1

) 

(alpha0, beta0, lambda0, lambda1) 

n = 50

n = 100

n = 300



192                                                               Thailand Statistician, 2012; 10(2): 183-197 

 

 

 

 

 

 

 

 

Figure 3. MSE of the Bayes Estimators of (           ). 
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Figure 4. The Claim Counts Data. 

 

 

Table 3. WinBUGS Output. 

node mean sd MC error 2.5% median 97.5% start sample 

   0.5103 0.2820 0.0028 0.0376 0.5119 0.9735 5001 10000 

   0.0098 0.0099 0.0002 0.0003 0.0067 0.0365 5001 10000 

   1.7780 1.2800 0.0192 0.2042 1.4960 5.0900 5001 10000 

   7.6550 0.2855 0.0032 7.1110 7.6480 8.2170 5001 10000 
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Figure 5. Predicted vs Observed Values. 

 

 

 

Figure 6. Bias of Predicted Values. 

 

5. Conclusion 

In this article, a new model that can account for both overdispersion and 

underdispersion using latent Markov processes is proposed. The parameters in this 

model can be estimated via the Bayesian method. From a simulation study, it is clear 

that the proposed method performs well and provides asymptotically unbiased estimator 

for the parameters combinations of (           ) and (      ) used. Notice that the 
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MSE appears small and significantly decrease when increasing the sample sizes. The 

coverage probability of 95% posterior intervals of (           ) are close to 0.95. 
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Appendix A 
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