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Abstract

It is a common practice among applied researchers to assume normal
distribution for naturally occurring data over the real line. But often one is not sure about
the assumption of normality for various reasons, including the fact that the standard
goodness of fit tests are not effective enough always, especially for small sample sizes. In
such a scenario one would be better off by starting with a more versatile skew-normal
distribution which is defined over the whole real line, and is a natural generalization of the
usual normal distribution. This paper deals with the standard skew-normal distribution
which can reduce to the standard normal distribution if the skew parameter takes the value
zero. Depending on the value of the skew parameter, the standard skew-normal
distribution can be either positively skewed, symmetric (standard normal), or negatively
skewed. This paper is devoted to various estimation and hypothesis testing methods for
the skew parameter which, to the best of our knowledge, is the first comprehensive work in
this direction.

Keywords: Skew parameter, asymptotic distribution, penalized likelihood estimation,
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1. Introduction
There has been a growing interest lately in the skew-normal distribution(* SND"

hereafter) due to its flexibility in modeling real-life data sets. The SND density, which has

an extra skew (or shape) parameter to regulate skewness, includes the usual normal

density as a special case. As a result, the SND class of densities incorporates
negatively skewed, positively skewed as well as the symmetric normal densities which
makes it quite versatile in fitting data over the real-line.

A random variable X is said to have a SND with location parameter 1,

scale parameter O and skew (or shape) parameter A , henceforth denoted by

SND(, 0, A) , provided the pdf of X is given by

f(X| i,0,4) = 2lo)p((X— ) o) PAX— ) o), x €R, PER, cER’, L€R;
(1.1)

where ¢ and @ are the standard normal pdf and cdf respectively. A positive

(negative) value of A indicates positive (negative) skewness of the distribution. Also

note that SND(z, 5,4 =0) = N (1, 5°) distribution.

In many applied problems it is customary to assume normality for the data set(s)
mainly due to convenience. Usual goodness of fit tests, like Anderson-Darling test,
Shapiro-Wilk test, etc., are often applied to justify the use of normality. However, it should
be kept in mind that such tests are asymptotic in nature, which means,—they are not very
effective for small sample sizes, and do not possess good power unless the alternative

model is highly skewed. Further, there aren’t too many skewed distributions defined on the

real-line which are widely used. Therefore, it would make sense if one starts with a SND

for the given data, and then proceeds with the next step of inferences. After assuming a
SND for a given dataset, the first logical step would be to estimate the skew parameter
A , followed by a test to see if A is actually zero or not. If the null hypothetical value of
zero is accepted for A then the model reduces to a regular normal distribution;

otherwise, one ought to use the SND model for further inferences.
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The SND in the present form (see (1.1)) has been made popular mainly by

Azzalini [1] who coined the name of the distribution. Initially, SND was used in a few
applications by Roberts [2], O’'Hagan and Leonard [3], and Aigner and Lovell [4].
Subsequently many interesting properties of the distribution have been studied by other
researchers, notably — Azzalini [5]; Azzalini and Dalla Valle [6]; Arnold and Lin [7]; Gupta,
Nyuyen and Sanqui [8]. The last two papers are particularly important as they discuss

many characterization properties of the distribution. These characterizations are often

helpful in simulation studies to generate SND data.

More recently, Pal, Chang and Lin [9] extended the famous Stein’'s normal

identity (see Stein [10]) for the SND . A further generalization of the univariate SND
has been introduced by Gomez, Salinas and Bolfarine [11], whereas Gupta, Chen and
Tang [12] provided a multivariate generalization.

The focus of this paper is a special case of the SND, that is the standard
skew-normal distributon ( SSND(A) ° hereafter) which is obtained from
SND(u,0,A) with £=0 and o =1. Our interest lies in inferences on A for
SSND . The tools and ideas developed here will be used for general SND  which will be

discussed in a follow-up future paper.

As we will see in the rest of the paper, inferences with SND (or SSND ) is not
easy. First of all, the sampling distributions are intractable; and secondly, there are many
computational challenges one has to overcome.

Before we go into the structure of this paper and further details about inferences
on A, let us revisit some basic and interesting results of SND .

If X ~SND(u,0,1),then
Z = (X —u)lo~SND(0,1, 1) = SSND(A). Further,

0 E(2) = @/z)(UN1+ %)
Giy Var(Z) =1—(2/z) A2 1(1+ %) ;

(i) (=Z) ~ SND(0,1,~1) = SSND(-1);
(v) Z*>~ x. (Chi-square with 1df);
v M, (t) = E[exp(tZ)] = 2exp (t*/2)D(At/N1+ 7).
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(viy The SND identity (Pal, Chang and Lin [9]) says that if g is a real valued

differentiable function such that g(u)@(u) — 0 as U — +oo then

E[(X ~09(X)] = o”E[9'(X)]+o/(2/ 7) (A1 N1+ A*E[g(X.)]
where X, follows N (z, 6*/(1+ A%)) , and provided all expectations exist.

(vii) IfV; andV, are iid N (0,1) random variables, then

V ={(A/N1+2%) |V, | +(1/ 1+ A% V,}~SSND(A) .

The above identity (vi) comes handy to evaluate moments of SND in a very
convenient way. Also, the property (vi) can be used to generate SSND(A)
observations.

Since this paper deals with the special case of SSND(A)

(i.e., SND(1=0,0 =1, 1)), the rest of the paper is organized in a straightforward

way. In Section 2 we consider point estimation of the skew parameter A, whereas

Section 3 deals with hypothesis testing of A . Each section provides comprehensive
simulation results to justify our suggested methods.

It may appear that there has been some overlapping of our work with some
recent works, especially with Liseo and Loperfido [13], Sartori [14], Pewsey [15] and Dalla

Valle [16], but most of the results presented here are new to the best of our knowledge.

2. Estimation of the Skew Parameter

Assume that 1id observations X, X,,---, X, are available from

SSND(A) with the following pdf ( from (1.1))
f (XA) = 2¢(X)D(1x), A >0, X €R (2.1)
Maximum likelihood estimation of A based on X = (X, X,,---, X)) remains a

contentious issue. The log-likelihood function
L, =L, (A1 X)=nIn2+>"Inp(X,)+ > In®(AX,) 2.2)
i=L i=1

can not be maximized always to find the MLE of A . Note that if all observations are

nonnegative, then L is nondecreasing in A , and hence the MLE of A becomes
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(+00). Similarly, on the other hand, if all observations are nonpositive, then the MLE of
A becomes (—o0).

Let p, =P(X; >0). Then, the probability of all observations becoming
nonnegative (nonpositive) is p; ((1— pl)”). The following table (Table 2.1) gives the

values of P, for different values of A . Because A, ,the MLE of A, cantake o0

with positive probability, it is not meaningful to evaluate its bias and/or MSE (mean

squared error) in the usual sense.

Table 2.1 : Values of P, for various A €R

A -7 -6 -5 -4 -3 -2 -1 0

P, 0.0452 | 0.0526 | 0.0628 | 0.0780 | 0.1024 | 0.1476 0.2500 0.500

A 1 2 3 4 5 6 7 8

P, 0.7500 0.8524 0.8976 0.9220 0.9372 0.9474 0.9548 0.9604

A

Further, since /IML takes the boundary values (% c0) of the parameter space of

A (which isR), the standard asymptotic theory doesn't apply to study the asymptotic

A

distribution of ﬂML. For the model (2.1) Fisher information per observation is
i(1)=—E("(1| X)=2 j " U2 p(u)(@(Au))? / D(Au) du, 2.3)

where 1(A]| X)=Inf (X |A) , and 1"(A]| X)=0°1(A]| X)/BA®. Liseo and

Loperfido [17] explored the properties of 1(A4) and observed that (i) 1(1) is symmetric

about A =0, and is decreasingin | A |; (ii) the tails of i(1) are of order O(A7).
Though a lot has been studied about the properties of the SND, relatively little

attention has been paid to inferences on A . As an alternative to the MLE, Liseo and
Loperfido [17] proposed a Bayesian estimation technique which we will discuss later. But
first we look into the possible frequentist methods.

When the MLE is not readily available the common sense dictates that we look at
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the method of moment(s) estimator (MME). By equating the first sample moment with the

population one we have
E(X,) =@ z)(AUN1+ )= X, (2.4)

which, upon solving for A , yields the MME of A as

A = (sign of X){(@/z)(WX)? -1, 25)

(From (2.4) it is obvious that the MME of A must carry the sign of X .) The

square-root of the term inside the {} in (2.5) is not meaningful unless the term is
nonnegative. Hence {} needs to be truncated at O if it ever becomes negative. In other

words, the MME of A is modified to look as

-1/2

A, = (sign of X){(2/)(1X)? ~1}

+

(2.6)
where for any real value C, C, = max(O,c).

Since the MLE of A canassume F00 with positive probability, we propose an
alternative approach through ‘Penalized Maximum Likelihood Estimation’ (PMLE) where a

suitable penalty function is attached to the log-likelihood function as
L= L2 %) = L2 X)-h,(2) @
where h, (1) is a suitable penalty function, may be dependent on N, goes to ®© as

A approaches Fo0. For notational and computational convenience we drop the first

two terms of (2.2) which are free from A . Therefore, we consider the reduced expression

~

of L as

n

LX) =3 (X, -, (2) 29

The following result gives a sufficient condition for obtaining /IPML , a penalized

MLE of A .

Proposition 2.1 The penalized likelihood function Ln in (2.8) attains a maximum at a

finitt A provided the penalty function h,(A) is strictly convex, i.e., Iy’ (1) > 0.
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Proof. From (2.8),

oL 104% = Zn:{a In®(AX,)/ 8247} ~h(A).

i=1

It (A1) > Othen it is enough to show that each In ®(AX,) is concave with

respectto A sothatl, isconcave to attain a maximum at finite A . Note that

oIn ©(AX )0 =[-2ui{up(u)D(u,) + ($(u,))* 1D (u,))*.
2.9)
where U; = (4X;).So, IN®(AX;) isconcavew.rt. A foreach i =1,2,---,n,

provided U,¢(U,)P(U,) + (4(U;))* >0 Vu, er;

ie, K(U;) =u;dU;)+4U;)>0 Vu, e r. Note that x'(u;) =D(y,)>0
YU, €R;ie., x(U;) is increasing. Therefore, it is enough to show that x(—o0) =0
such that x(U;) >0 always. By L'Hospital's rule, the limit of (U,®(U;)), as

U, — —00, is (—ui2¢(ui)), which is zero.

Remark 2.1. For the penalty function, h (4) =0 is not a choice since this leads to the

MLE which can be £ 00 with positive probability. We must have |’ln (/1) such that

h”(A) is strictly positive so that it has a dampening effect on {Zin:lln d(AX))}.

A

The PMLE (penalized MLE) of A, ie., A, is obtained by solving the

equation

n

D {Xi @(AX) [ D(AX,)}—hi(A) = 0. (2.10)

i=1

Remark 2.2. The choice of the penalty function N, (A1) is critical in estimating 4 by

A

Aoy - Following the standard asymptotic theory we need to choose hn (A) such that
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hn (/1) = A°C_, where Cn/\/ﬁ — C, for some C, > (0 .The following general result

n:
A

gives us an idea about the asymptotic behavior of ipML .

Proposition 2.2 Let h (1) =c, A where cn/\/ﬁ—>c0 as N—>00. Then, under

standard regularity conditions (the ones used for Cramér-Rao inequality), asymptotically

(o = A) N (=2¢,Ali(A),1/i(A))

where 1(A) is givenin (2.3).

Proof. See Appendix A.1

A

Using the penalty function as given in Proposition 2.2, obtaining /1PM|_ now boils

down to solving the equation

Zn:{xi¢(ixi)/®(/1xi)}—20nﬂ, =0, 2.11)

i=1
where Cn/\/ﬁ — Cq.

For a demonstration purpose we generate N=5 observations from

SSND(1)
(i.e., SND(0,1,1) ) with 4 =1 as{0.5501,-0.4498,1.5790,1.9250,0.2601}
(2.12)

(using the template available at http://azzalini.stat.unipd.it/SN/index.html). The following

Figure 2.1 plots the LHS of (2.11) as a function of A , given the above dataset (2.12),

Py

with C, =0.5. Here /iPML =0.723281. using ¢, =0.5,c, =0, and hence Apy,

is asymptotically unbiased.
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LHS of {2.11)

Figure 2.1. Plotof LHS of (2.11)with N =5, ¢, =0.5 for the dataset in (2.12).

Apart from the frequentist estimators discussed above one can also consider a

Bayes estimator under a suitable prior 7(A) of A . Based on lid observations from

(2.1), the posterior distribution of A given X = (X, X,,:++, X)) has the form

7(AX) = 7OR [Te@@AX )M [~ 2L [m®@(AX)} A (219

There doesn’'t appear to be any natural conjugate prior for the SND skew

parameter. The easiest prior one can think of is
m(Aa, ) =| A=A, [, (2.14)
where /10 is any real value that A is thought to be close to. The posterior distribution

with the above prior (2.14) is
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7, (UX) = =2 [ “ L [T ®AX)H [ 14— Ao [ { [®(2X,)} A4,
(2.15)

Provided 77, (4| X) is integrable, i.e.,

(e, Ay) = j:u—zﬂ L [TL®@(AX,)}dA < . (2.16)

The following Figures 2.2a, 2.2b show the plots of the posterior distribution in

(2.15) for various values of & . However, the above condition (2.16) does not hold for all

a>0.1f =0, then

K(0.4)=[ £ ﬂ@(zxi)} di= [ [TLe(:X)}d2

= [ATT@GX A+ [ {[THPAEX ) 2 @an

Figure 2.2a. Plots of the posterior pdf for the dataset in (2.12) under prior (2.14).
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Figure 2.2b. Plots of the posterior pdf for the dataset in (2.12) under prior (2.14).

Without loss of generality, assume that X(l) > 0. Then the first term of (2.17)

00
is bounded below by '[0 (CD(l(X(l))))n dA . since this integrand goes to 1 as A —» o0,
the whole integral is °0. However, a negative value of (< 0) can ensure that the
posterior 77, (ﬂ,|)~() is proper. In our subsequent derivations we will be using & < 0

and 2,0 =0 (without loss of generality).
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One can also use Jeffrey’s noninformative prior which seems to be a natural

candidate for estimating A , and it is given as
7, () =[N (see ((2.3)). (2.18)

The posterior distribution of A under 7, (A) is

7 (%) = ol [0 X)H] () p(au)? 1 D(A) du* @ 19

i=1
where K is the normalizing constant. Liseo and Loperfido [13] has discussed details of

the mean of the posterior (2.19) as an estimator of the skew parameter.
As a demonstration, we plot the posterior pdf of A under Jeffery’s prior for

the dataset (2.12) in Figure 2.3.

ar(dlx)
o5k

0.4

1 M B T T T ——— |
-1 1 2 3 4

Figure 2.3. Plot of the posterior pdf for the dataset in (12) under Jeffery’s prior.

In the following we compare the estimators developed above in terms of

A

standardized bias (SB) and standardized MSE (SMSE). For an estimator A of A, SB
and SMSE are defined as

SB(A|A,n) = E(1—A)A; SMSE(A|A,n)=E(1—A)212. (2.20)

The estimators of primary interest are :
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>

= the (modified) MME as given in (2.6)

mm+
Aa(mean) = posterior mean of 77, (4| X) in (2.15)
Aa(median) = posterior median of 7, (4|X)in (2.15)
Aa(mode) = posterior mode of 7z, (A|X) in (2.15)
/iJ(mean) = posterior mean of 7, (A|X) in (2.19)

A~

J(median) = Posterior median of 7, (A|X) in (2.19)

A

Ay (modey = Posterior mode of 7z; (| X)in (2.19)

A

Aepie = by solving equation (2.11)

These eight estimators are compared in terms of SB and SMSE by simulation. In

~ A

this simulation we use @ =-1 for A A A

a(mean) * a(mediar) @Nd Ay (mode) - We choose

A

C, =1 to obtain the estimator /1PM,_E by solving the equation (2.11). For afixed N and

A, iid observations X,,---, X, are generated from SSND(A) (using the

n

property (vii) in Section 1) in a particular replication. In the K™ replication, 1<k <K,

A

the estimator A (which is any one of the eight estimators) is denoted by ﬂ(k) . Then the

A

SB and SMSE of A are approximated as

A K A,
SB(A[4,n) ~{> (A -1)/IA}K and
k=1

~ K ~,
SMSE(A] 2,n) ~{> (A% —~ 2)2122}K.
k=1

The simulated SB and SMSE values are j presented in the Tables

3.1 (a,b,c) and 3.2 (a,b,c), respectively. The estimated SB and SMSE of each estimator
are computed based on K =5000 replications for each 4 =0.1,0.5,1,2,3,---,8. If
we look at SB and SMSE criteria then it is obvious that there is no clear-cut winner. Some

estimators perform well when A is close to zero, and others perform better asdeviates

greatly from zero. However, taking overall performance into consideration, it appears that
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out of 8 estimators A,

compared to other estimators.

(median) *

~

Table 3.1a. Table of SBfor N =5

Thailand Statistician, 2012; 10(2): 225-246

A

lj(mode) and Ao, e are the top three estimators

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8
/iMM 0.7386 | 0.1062 | -0.2541 | -0.5698 | -0.7446 | -0.7579 | -0.8175 | -0.8423| -0.872 | -0.888
+
j’ 1.0105 | 1.9039 | 1.2671 | 0.5732 | 0.1254 | -0.1254| -0.292 | -0.4059 | -0.4901 | -0.5514
o (mean)
) . 15.4213| 3.1729 | 1.4988 | 00.65 | 0.178 |-0.0822| -0.255 |-0.3745|-0.4631| -0.5271
o (median)
/) 10.5722| 2.8513 | 0.8203 | 0.6609 | 0.1878 | -0.0903 | -0.2599 | -0.3817 | -0.4703 | -0.0712
a(mode)
/) 0.1119 | 0.5449 | 0.047 | -0.2653|-0.4763| -0.5937 | -0.6747 | -0.7275| -0.7659 | -0.7952
5 J (mean)
) i 0.0638 | 0.397 | 0.4024 | 0.1002 | -0.1755| -0.3172| -0.4281 | -0.5087 | -0.5254 | -0.3214
J (median)
j: 1.1424 | 0.105 |-0.2177|-0.4322| -0.5868 | -0.6638 | -0.7245 | -0.7653 | -0.8005 | -0.8219
J (mode)
/"i | -0.5292| -0.3979 | 0.5523 | -0.6923 | -0.7834 | -0.8289 | -0.863 | -0.8848 | -0.9005 | -0.9127
pmle
Table 3.1b. Table of SB for N =10
n Estimator 0.1 0.5 1 2 3 4 5 6 7 8
ﬂvMMJr 0.802 |0.1565 |-0.1482 |-0.4466 |-0.6338 |-0.6813 |-0.7783 (-0.7724 |-0.8337 |-0.8624
o (mean) 1.5705 |1.2102 | 0.983 | 0.5096 | 0.1576 |-0.1027 |-0.2679 |-0.3814 |-0.4675 |-0.5305
10 o (median) | 57053 |1.4594 | 0.9973 | 0.5406 | 0.1985 |-0.0667 |-0.2364 |-0.3529 |-0.4426 |-0.5081
a(mode) 6.179 [1.4038 | 0.6891 | 0.4244 | 0.4261 | 0.4442 | 0.4523 | 0.2571 | 0.1003 [-0.0127
J (mean) 0.5772 (0.3474 | 0.143 |-0.1736 |-0.4011 |-0.5479 |-0.6414 |-0.7056 |-0.7495 |-0.7848
/1J(median) 0.5125 (0.2677 | 0.3197 | 0.2263 | 0.0761 |-0.1308 | -0.262 |-0.3496 | -0.424 |-0.4392
J (mode) 0.4098 |0.0876 |-0.0088 (-0.1813 [-0.3048 (-0.4449 |-0.5365 |-0.5895 | -0.644 |-0.6752
ﬂvpm|e -0.0892 | -0.233 |-0.3633 |-0.5705 |-0.6835 |-0.7585 |-0.8035 | -0.835 |-0.8575 |-0.8743
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Table 3.1c. Table of SB forn = 25.
n | Estimator 0.1 0.5 1 3 4 5 6 7 8
/1MM+ 0.0092 | 0.1697 |0.1181|-0.2743| -0.4608 |-0.6338| -0.7003 | -0.5803 | -0.7747 | -0.803
«(mean) 0.4511|0.4712|0.4342| 0.3659 | 0.1494 |-0.0621|-0.2189 | -0.338 | -0.4281 | -0.4966
o (median) -1.0286| 0.3506 |0.4049| 0.3647 | 0.178 |[-0.0347(-0.1913 | -0.313 | -0.4061 | -0.4768
a(mode) 2.3163(0.4413]0.3213| 0.3423 | 0.3048 |0.3758| 0.3661 | 0.2377 | 0.0863 | -0.0169
25 J (mean) -0.0373|0.0838 | 0.129 | 0.0981 | -0.0535 |-0.2066( -0.3286 | -0.4257 | -0.5011 | -0.5593
ﬂJ(median) 0.0324 | 0.0596 |0.0965 | 0.0724 | -0.0621 |-0.2017|-0.3182 | -0.4134 | -0.4891 | -0.5354
J(mode)  |-0.1026|0.0048 |0.02630.0352 | -0.0416 (-0.1024|-0.1783 | -0.2475 | -0.3164 | -0.3704
/’tpmle -0.1579(-0.0979| -0.181 |-0.3973| -0.5493 |[-0.6451| -0.7096 | -0.7557 | -0.7885 | -0.8147
Table 3.2a. Table of SMSE for N=5
n Estimator 0.1 0.5 1 2 3 4 5 6 7 8
i 166.0259 | 7.7135 |2.5598 | 1.0613 | 0.7268 | 0.7579 | 0.8835 | 0.7697 | 0.8007 | 0.8293
MM +
7 325.608 |15.2418 | 3.304 |0.4601 |0.0361 | 0.0195 | 0.087 |0.1655 [0.2406 | 0.3042
‘«(mean)
) X 378.3882 | 15.5778 | 3.5538 | 0.5597 | 0.0576 | 0.0122 | 0.0671 | 0.1411 | 0.215 |0.2781
‘«(median)
) 292.1193 | 22.9046 | 2.5853 | 0.692 |0.1035 |0.0333 | 0.0817 | 0.1549 |0.2282 | 0.0405
a(mode)
) 90.2509 | 3.9596 |[0.3939 |0.1034 | 0.233 |0.3536 | 0.4559 | 0.5296 [0.5868 | 0.6324
5 J (mean)
i ) 72.2579 | 3.2004 |1.4229 [0.2524 |0.1109 |0.1318 | 0.2007 | 0.269 |0.3009 | 0.187
J (median)
j: 32.6716 | 1.1489 |0.3067 | 0.231 |0.3606 |0.4488 | 0.5298 | 0.5891 [0.6428 | 0.6774
J (mode)
/7’: | 12.8321 0.584 |0.3795 |0.4862 |0.6157 |0.6877 | 0.7452 |0.7831 | 0.8112 | 0.8332
pmle
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Table 3.2 b. Table of SMSE for n =10

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8
j: 113.08 |2.7959 [1.0502 |1.1919 |0.7658 | 1.223]0.8952 |2.0565 |0.7983 |0.8186
MM +
jv 107.6475|6.0347 |2.0517 |0.4112 | 0.0482 |0.0168 |0.0738 |0.1462 | 0.2189 |0.2817
«(mean)
) . 123.0445| 6.008 |2.1295 |0.4845 | 0.072]0.0135 |0.0591 |0.1256 |0.1965 |0.2584
o (median)
) 96.8018 [6.9892 |1.6921 |0.7478 | 0.5607 | 0.4417 [0.3527 |0.1477 | 0.0601 |0.0294
«(mode)
10 ~
A 38.1697 [2.0836 |0.3501 |0.0642 |0.1664 |0.3026 [0.4126 |0.4988 | 0.5624 |0.6164
J (mean)
) . 33.5793 [1.8212 |1.1005 |0.4405 |0.1518 |0.0849 [0.1026 [0.1418 |0.1929 |0.2118
J (median)
j, 22.3294 |[1.1428 |0.3916 |0.1557 |0.1548 0.23 | 0.309|0.3632 |0.4254 | 0.4657
J (mode)
/{ | 11.8783 |0.4526 |0.1956 |0.3324 |0.4686 | 0.576 |0.6459 |0.6974 |0.7354 |0.7645
pmle
Table 3.2c. Table of SMSE for n =25
n Estimator 0.1 0.5 1 2 3 4 5 6 7 8
j:MM 8.0383 | 1.1141| 1.5411| 1.1236| 1.0464| 0.7564| 0.7714]| 0.8064| 0.9098| 0.816
+
7 18.7428| 0.8948| 0.6041| 0.3014| 0.0556| 0.0127| 0.0499| 0.115 | 0.1837| 0.2468
‘a(mean)
) 74.4606] 1.3795| 0.5735| 0.3262| 0.0724| 0.0134| 0.0393]| 0.099 | 0.1654| 0.2276
a(median)
) 24.7823] 0.6695| 0.4656| 0.4857| 0.3493| 0.3795| 0.2737| 0.1302| 0.0499| 0.0249
a(mode)
) 8.3374 | 0.4616| 0.2889| 0.1383| 0.0381| 0.055| 0.1118| 0.183 | 0.2521| 0.3134
25 J (mean)
i 8.3155 | 0.4283| 0.2648| 0.1423| 0.0474| 0.0575| 0.1069| 0.1736| 0.2408| 0.2929
J (median)
) 7.3245 | 0.3652| 0.2293| 0.2651| 0.1657| 0.1303| 0.1141| 0.1243| 0.1499] 0.1766
J (mode)
i 6.1883 | 0.2438| 0.0905| 0.1665| 0.3036| 0.4168| 0.5038| 0.5712| 0.6218] 0.6638

pmle
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3. Testing on the Skew Parameter

Based on the iid observations from (2.1) we want to test
Hy:A=4, vs H,:A# 4, 3.1)
for any A, €R. However, our interest lies primary in Ay =0 since this leads to the

standard normal distribution, and hence all our computational results are provided

accordingly. However, here we present the theory for general /10 .

As mentioned in the previous sections the main challenge of SND (or SSND )

is the sampling distributions of the estimators of A . As a result we will focus on deriving
tests based on the asymptotic theory as well as parametric bootstrap.

Liseo and Loperfido [17] proposed a Bayesian test for (3.1) based on the prior
(2.18). The procedure is computationally intensive, and requires the MCMC algorithm.

Dalla Valle [16] proposed a general goodness of fit test for the SND based on a
modified version of the Anderson-Darling test (usually used for a normal goodness of fit
test). Though critical values have been provided for large sample sizes, how this test
performs for small sample sizes is yet to be seen. The three test procedures developed in
this section are not only easy to implement, but also two of the three tests attain the

nominal level closely even for small sample sizes.

3.1. A Simple Asymptotic Test
Possibly the simplest asymptotic test one can think of is based on the sample

average X when iid observations are available from SSND(A) . Using the moment

properties discussed in Section 1, and using the Central Limit Theorem (CLT), it is easy to
see thatas N —> 0

X E) N (11 27) (UNL+ 22), (-2 ) (API(1+ 22)))/n) (3.2)
Therefore, under Hy 1A =4,

Q = VX —J@0) (4o 1+ 22 W {L-@m) 22 1(1+2D)] ~ N(0.1)

(3.3)

asymptotically as N —> 00. Therefore, the test based on Q1 suggests that

reject H, if |Q, > 2., (3.4)
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where Z,,\is the upper (c/2) tail probability cut off point of N(0,1).

3.2. Asymptotic Test Based on PMLE

Under H, : A = 4,, and using the Proposition 2.2, one has
TN, — 20) = N(26,2fi(20), /i) (3.5)
Q, = i) (o —Ao)+ 26,20/ fi(i) > N(0,1) as N—>o0. Note

that, as stated in Section 2, by our choice C, = 0. Hence, the test based on Q2
suggests that
reject Hy if [Q, [> Z,)- (3.6)

3.3. A Parametric Bootstrap Test
In the following we present the parametric bootstrap test (PBT) as given in Pal,
Lim and Ling [18]. The PBT is implemented through the following steps:

Step-1:0btain Apy,,  (as shown in Section 2 by solving (2.11) with I/ (1) = 2C,A).

Step-2:Assume that A = A,. Generate X:,X;,---,X: iid from SSND(4,), and

recalculate the PMLE using this bootstrap data, and call the PBT PMLE as /T;,ML .
Step-3:Repeat the above Step-2 a large number of times (say, M times), and the
resultant PBT PMLEs are denoted by /1PML, “,/1%- Further, order them as
7*(1) 7+(M)
A <2+ < Aoy -

(a2)M)

Step-4:The upper and lower cut-off points of the PBT are found as /1 ;LPM,_ and

A A

Ay = ﬂ;«dLmz)M). Retain H, if A <Ay, (from Step-1) <A, ; reject H,

otherwise.

3.4. Numerical Comparison of the Three Tests

In the following we provide the simulated size/power of the above three tests

through a large number of replications. For fixed N and A € R we test (3.1) withﬂO =0.
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From a practical point of view one should be interested to know if the SSND(A) can be

reduced to the N(0,1) distribution or not. We generate iid observations from

SSND(A) a large number of times, say N

times,

and apply each test

(Q,,Q,,& PBT ). We had chosen several values for ¢, =1,0.5,0.25 and 1Un;

however, we only report the results for C, = 0.5. The simulated size/power is computed

by the proportion of times (out of N ) the test rejects H0 .The following table (Table 3.7)

shows the simulation results with N =10* (and for PBT we have used M =10%).

Table 3.3. Simulated size/power for testing H,

:A=0 versusH,:1#0 at

a=0.05.
A
n Test 0 0.5 1 15 2 25 3 35 4
Q: 0.0488 | 0.1125 | 0.1983 | 0.2626 | 0.2953 | 0.3209 | 0.3292 | 0.3335 | 0.3343
5 |Q:(cn=05) 0.0093 | 0.0183 | 0.0425 | 0.0714 | 0.0985 | 0.1126 | 0.1317 | 0.1346 | 0.1453
PBT (¢, =0.5) 0.0475 | 0.0974 | 0.2017 | 0.3059 | 0.4004 | 0.4561 | 0.5088 | 0.5385 | 0.5688
Q: 0.0519 | 0.1888 | 0.4104 | 0.5572 | 0.6589 | 0.7057 | 0.7333 | 0.7632 | 0.7756
10 |Q2(c,=0.5) 0.0642 | 0.2240 | 0.5353 | 0.7888 | 0.9239 | 0.9685 | 0.9891 | 0.9947 | 0.9981
PBT (¢, =0.5) | 0.0511 | 0.1812 | 0.4700 | 0.7347 | 0.8855 | 0.9495 | 0.9786 | 0.9895 | 0.9956
Q: 0.054 | 0.2677 | 0.6084 | 0.7953 | 0.8733 | 0.9166 | 0.9333 | 0.9491 | 0.9557
15 |Q2(c,=0.5) 0.075 | 0.3204 | 0.7614 | 0.9497 | 0.9929 | 0.9992 | 1.0000 | 1.0000 | 1.0000
PBT (cn=0.5) | 0.0506 | 0.2399 | 0.6695 | 0.9109 | 0.9843 | 0.9969 | 0.9998 | 0.9998 | 1.0000
Q. 0.0514 | 0.3469 | 0.7431 | 0.9176 | 0.9608 | 0.9819 | 0.9910 | 0.9923 | 0.9934
20 |Q2(c,=0.5) 0.0687 | 0.4003 | 0.8796 | 0.9906 | 0.9996 | 1.0000 | 1.0000 | 1.0000 | 1.0000
PBT (¢,=0.5) 0.0479 | 0.3182 | 0.8195 | 0.9811 | 0.9989 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Q: 0.0489 | 0.4258 | 0.8504 | 0.9680 | 0.9928 | 0.9968 | 0.9985 | 0.9992 | 0.9994
25 [Q2(cy=0.5) 0.0663 | 0.4825 | 0.9382 | 0.9977 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
PBT (cn=0.5) | 0.0534 | 0.438 | 0.922 | 0.9964 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Q. 0.0471 | 0.7237 | 0.9932 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
50 [Q2(cn=0.5) 0.0597 | 0.7744 | 0.9994 | 1.0000 | 1.0000 [1.0000 | 1.0000 | 1.0000 | 1.0000
PBT (¢, =0.5) | 0.0503 | 0.7680 | 0.9992 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
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Remark 3.1: From the computational results it is clear that the test based on Q, is not

very good in maintaining the nominal level & . For N =5 the test is very conservative,

while for other moderate sample sizes it is quite liberal. Only for large sample size

(N =50) does it have a proper size; on the other hand, both the tests based on Q, and

PBT are quite good in the following nominal level & = 0.05. vet, between these two

tests, PBT exhibits higher power as 4 moves moderately away from the null hypothesis

value.
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Appendix
A.1. Proof of Proposition 2.2

The proof is quite general, and hence it is given in a quite general form.

et X =(X,---,X,) be a random sample where each
X, ~ f(x|0) e F={f(x]|60):0®}. we assume that the regularity conditions
(those of Cramér-Rao inequality) hold. Using the penalty function h, (€)= Cn(92, the

PMLE of & is given by

O = argmax> 1(0] X,) —c,0°}, @l)

i=1

where [(€|X) =In f(x]|8) is the score function and C, >0 is the regularization
parameter. Let |:n(l9) :Z::1| (0] X,)—C, & be the l, —penalized likelihood function

and let T, :\/E(QPML—H) be the scaled and centered |, -penalized MLE,


http://geostasto.eco.uniroma1.it/utenti/liseo/liseosent.pdf
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respectively. Note that éPML =6+n" n» and since éPML maximizes En (49) w.r.t.
@, we have

L@+n"T)=0

ie, L (@+n™T )N =0

ie., T, isthe solutionof L' (8+nt)nY2=0;

i.e., T, isthe value of t which also maximizes

A=L (0+n"t)-L (6). (@2)

Therefore,

T, = argmax {L, (9+n ) - L, (6)}

= afgmaxt{zn:(l (@+n7"t %) =101 %)) —c, (0 +n""1)* - 6°)}

i=1

= argmax {tS, (0) — (1/2)t%i (8)-2n"c 0t +0O, (N}, (@23

Where S, (0) = n_mZ::1|'(l9| X)) is the sample score function,

. _ n
i (0)=-n" _|"(0]%) is the sample Fisher information (per observation), and the

remainder term is of order Op(nfllz) uniformly on compact set in t (i.e., Jn
(remainder term) goes to 0 in probability as N increases to o0 ). Since Sn(9)
converges to N (0,i(6)) in distribution, 1,(€) converges to i(6) in probability, and
by assumption nfl/ZCn —> Cy, it thus follows that T, = \/ﬁ(ép,v”_ —60) converges in
distribution to N (—2¢,di(6),1/i(0)), where i(d) = E(-1"(€]X)) is the Fisher
information per observation. [The above asymptotic distribution of Tn comes from noting

-1/2

that T, , which maximizes the term inside { } in (3), exceptthe Op(N""°) term, isin

fact S, (6)—2n"c_0)/i(6). ]



