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Abstract 

 It is a common practice among applied researchers to assume normal 

distribution for naturally occurring data over the real line. But often one is not sure about 

the assumption of normality for various reasons, including the fact that the standard 

goodness of fit tests are not effective enough always, especially for small sample sizes. In 

such a scenario one would be better off by starting with a more versatile skew-normal 

distribution which is defined over the whole real line, and is a natural generalization of the 

usual normal distribution. This paper deals with the standard skew-normal distribution 

which can reduce to the standard normal distribution if the skew parameter takes the value 

zero. Depending on the value of the skew parameter, the standard skew-normal 

distribution can be either positively skewed, symmetric (standard normal), or negatively 

skewed. This paper is devoted to various estimation and hypothesis testing methods for 

the skew parameter which, to the best of our knowledge, is the first comprehensive work in 

this direction.  

______________________________ 

Keywords: Skew parameter, asymptotic distribution, penalized likelihood estimation, 

parametric bootstrap.  
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1. Introduction 

  There has been a growing interest lately in the skew-normal distribution(‘ SND ’ 

hereafter) due to its flexibility in modeling real-life data sets. The SND density, which has 

an extra skew (or shape) parameter to regulate skewness, includes the usual normal 

density as a special case. As a result, the SND  class of densities incorporates 

negatively skewed, positively skewed as well as the symmetric normal densities which 

makes it quite versatile in fitting data over the real-line.  

A random variable X  is said to have a SND  with location parameter  , 

scale parameter   and skew (or shape) parameter  , henceforth denoted by 

),,( SND , provided the  pdf of X  is given by   

),)/(())/(()(2/=),,|(   xxxf    ℝ, µ  ℝ,   ℝ
+
,   ℝ;

         (1.1) 

where   and   are the standard normal pdf  and cdf  respectively. A positive 

(negative) value of   indicates positive (negative) skewness of the distribution. Also 

note that ),(0)=,,( 2 NSND   distribution. 

In many applied problems it is customary to assume normality for the data set(s) 

mainly due to convenience. Usual goodness of fit tests, like Anderson-Darling test, 

Shapiro-Wilk test, etc., are often applied to justify the use of normality. However, it should 

be kept in mind that such tests are asymptotic in nature, which means,—they are not very 

effective for small sample sizes, and do not possess good power unless the alternative 

model is highly skewed. Further, there aren’t too many skewed distributions defined on the 

real-line which are widely used. Therefore, it would make sense if one starts with a SND  

for the given data, and then proceeds with the next step of inferences. After assuming a 

SND  for a given dataset, the first logical step would be to estimate the skew parameter 

 , followed by a test to see if   is actually zero or not. If the null hypothetical value of 

zero is accepted for   then the model reduces to a regular normal distribution; 

otherwise, one ought to use the SND  model for further inferences. 
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 The SND  in the present form (see (1.1)) has been made popular mainly by 

Azzalini [1] who coined the name of the distribution. Initially, SND  was used in a few 

applications by Roberts [2], O’Hagan and Leonard [3], and Aigner and Lovell [4]. 

Subsequently many interesting properties of the distribution have been studied by other 

researchers, notably – Azzalini [5]; Azzalini and Dalla Valle [6]; Arnold and Lin [7]; Gupta, 

Nyuyen and Sanqui [8]. The last two papers are particularly important as they discuss 

many characterization properties of the distribution. These characterizations are often 

helpful in simulation studies to generate SND  data.  

 More recently, Pal, Chang and Lin [9] extended the famous Stein’s normal 

identity (see Stein [10]) for the SND . A further generalization of the univariate SND  

has been introduced by Gomez, Salinas and Bolfarine [11], whereas Gupta, Chen and 

Tang [12] provided a multivariate generalization. 

The focus of this paper is   special case of the SND , that is the standard 

skew-normal distribution (‘ )(SSND ’ hereafter) which is obtained from 

),,( SND  with 0=  and 1= . Our interest lies in inferences on   for 

SSND . The tools and ideas developed here will be used for general SND  which will be 

discussed in a follow-up future paper. 

As we will see in the rest of the paper, inferences with SND  (or SSND ) is not 

easy. First of all, the sampling distributions are intractable; and secondly, there are many 

computational challenges one has to overcome. 

Before we go into the structure of this paper and further details about inferences 

on  , let us revisit some basic and interesting results of SND . 

If ),,(~ SNDX , then 

).()(0,1,~)/(=  SSNDSNDXZ   Further,  

(i) )1/()(2/=)( 2 ZE ; 

(ii) )/(1)(2/1=)( 22  ZVar ; 

(iii)    ~           ;  

(iv)          ~                                                          ; 

(v) ).1/(/2)(exp2=)](exp[=)( 22   tttZEtM Z  
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(vi) The SND  identity (Pal, Chang and Lin [9]) says that if g  is a real valued  

differentiable function such that 0)()( uug   as u  then 

2 2[( ) ( )] = [ ( )] (2 / )( / 1 [ ( )]E X g X E g X E g X      
    

where ))/(1,(follows 22   NX   , and provided all expectations exist. 

(vii) If 1V and 2V are iid (0,1)N random variables, then

2 2

1 2={( / 1 ) | | (1/ 1 ) }~ ( )V V V SSND      . 

The above identity (vi) comes handy to evaluate moments of SND  in a very 

convenient way. Also, the property (vii) can be used to generate )(SSND  

observations. 

Since this paper deals with the special case of )(SSND                    

(i.e., )),1,=0,=( SND  the rest of the paper is organized in a straightforward 

way. In Section 2 we consider point estimation of the skew parameter  , whereas 

Section 3 deals with hypothesis testing of  . Each section provides comprehensive 

simulation results to justify our suggested methods.  

  It may appear that there has been some overlapping of our work with some 

recent works, especially with Liseo and Loperfido [13], Sartori [14], Pewsey [15] and Dalla 

Valle [16], but most of the results presented here are new to the best of our knowledge.  

 

2. Estimation of the Skew Parameter 

Assume that iid  observations nXXX ,,, 21   are available from 

)(SSND  with the following pdf ( from (1.1))    

 xxxxf 0,>),()(2=)|(  ℝ                     (2.1) 

Maximum likelihood estimation of   based on ),,,(= 21 nXXXX   remains a 

contentious issue. The log-likelihood function  

1 1

( | ) 2 ( ) ( )
n n

n n i i

i i

L L X nln ln X ln X  
 

     
   

(2.2) 

can not be maximized always to find the MLE of  . Note that if all observations are 

nonnegative, then L  is nondecreasing in  , and hence the MLE of   becomes  
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(  ). Similarly, on the other hand, if all observations are nonpositive, then the MLE of 

  becomes (  ).  

Let 0)>(= iXPp . Then, the probability of all observations becoming 

nonnegative (nonpositive) is ))((1 nn pp   . The following table (Table 2.1) gives the 

values of p  for different values of  . Because ML̂ , the MLE of  , can take   

with positive probability, it is not meaningful to evaluate its bias and/or MSE (mean 

squared error) in the usual sense.   

 

Table 2.1 : Values of p  for various   ℝ 

  -7 -6 -5 -4 -3 -2 -1 0 

p  0.0452 0.0526 0.0628 0.0780 0.1024 0.1476 0.2500 0.500 

 

  1 2 3 4 5 6 7 8 

p  0.7500 0.8524 0.8976 0.9220 0.9372 0.9474 0.9548 0.9604 

 

Further, since ML̂  takes the boundary values (  ) of the parameter space of 

 (which isℝ), the standard asymptotic theory doesn’t apply to study the asymptotic 

distribution of ML̂ . For the model (2.1) Fisher information per observation is  

2 2( ) = ( ( | ) = 2 ( )( ( )) / ( ) ,i E l X u u u u du     



         (2.3)                   

where )|(=)|(  XlnfXl , and
2 2( | ) = ( | ) / .l X l X     Liseo and 

Loperfido [17] explored the properties of )(i  and observed that (i) )(i  is symmetric 

about 0,=  and is decreasing in ||  ; (ii) the tails of )(i  are of order )( 3O . 

Though a lot has been studied about the properties of the SND , relatively little 

attention has been paid to inferences on  . As an alternative to the MLE, Liseo and 

Loperfido [17] proposed a Bayesian estimation technique which we will discuss later. But 

first we look into the possible frequentist methods. 

When the MLE is not readily available the common sense dictates that we look at 
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the method of moment(s) estimator (MME). By equating the first sample moment with the 

population one we have  

,)1/()(2/=)( 2 XXE i   (2.4) 

 which, upon solving for  , yields the MME of   as  

  .1))(1/(2/)(=ˆ 1/22 
XXofsignMM   (2.5) 

(From (2.4) it is obvious that the MME of   must carry the sign of X .) The 

square-root of the term inside the }{  in (2.5) is not meaningful unless the term is 

nonnegative. Hence }{  needs to be truncated at 0 if it ever becomes negative. In other 

words, the MME of   is modified to look as  

  ,1))(1/(2/)(=ˆ 1/22 

 XXofsignMM   (2.6) 

where for any real value c , ).(0,max= cc  

Since the MLE of   can assume   with positive probability, we propose an 

alternative approach through ‘Penalized Maximum Likelihood Estimation’ (PMLE) where a 

suitable penalty function is attached to the log-likelihood function as 

= ( | ) = ( | ) ( )n n n nL L X L X h       (2.7) 

where )(nh  is a suitable penalty function, may be dependent on n , goes to   as 

  approaches  . For notational and computational convenience we drop the first 

two terms of (2.2) which are free from  . Therefore, we consider the reduced expression 

of nL
~

as  

=1

( | ) = ( ) ( ).
n

n i n

i

L X ln X h        (2.8) 

  The following result gives a sufficient condition for obtaining PML̂ , a penalized 

MLE of  . 

 

Proposition 2.1 The penalized likelihood function nL
~

 in (2.8) attains a maximum at a 

finite   provided the penalty function )(nh  is strictly convex, i.e., ( ) > 0.nh   
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Proof. From (2.8),  

 2 2

=1

/ = ( ) / ( ).
n

n i n

i

L ln X h          

If ( ) > 0nh  then it is enough to show that each )( iXln   is concave with 

respect to   so that nL
~

 is concave to attain a maximum at finite  . Note that  

.))(}]/())(()()({[=)/( 22222

iiiiiii uuuuuuXln   
         (2.9) 

where )(= ii Xu  . So, )( iXln   is concave w.r.t.   for each ,,1,2,= ni   

provided 0>))(()()( 2

iiii uuuu    iu ℝ; 

i.e., 0>)()(=)( iiii uuuu    iu ℝ . Note that ( ) = ( ) > 0i iu u 

 iu ℝ; i.e., )( iu  is increasing. Therefore, it is enough to show that 0=)(  

such that 0)( iu  always. By L’Hospital’s rule, the limit of )),(( ii uu  as 

iu , is )),(( 2

ii uu   which is zero. 

 

Remark 2.1. For the penalty function, 0=)(nh  is not a choice since this leads to the 

MLE which can be   with positive probability. We must have )(nh  such that 

( )nh  is strictly positive so that it has a dampening effect on )}.({
1= i

n

i
Xln   

The PMLE (penalized MLE) of  , i.e., PML̂  is obtained by solving the 

equation   

 
=1

( ) / ( ) ( ) = 0.
n

i i i n

i

X X X h    
   

(2.10) 

 

Remark 2.2. The choice of the penalty function )(nh  is critical in estimating   by 

.ˆ
PML  Following the standard asymptotic theory we need to choose )(nh  such that 
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nn ch 2=)(  , where 0/ cncn   for some 00 c .The following general result 

gives us an idea about the asymptotic behavior of PML̂ .  

 

Proposition 2.2 Let 
2=)(  nn ch  where 0/ cncn   as n . Then, under 

standard regularity conditions (the ones used for Cramér-Rao inequality), asymptotically  

))(),1/(/2()ˆ( 0  iicNn
D

PML   

where )(i  is given in (2.3).  

 

Proof. See Appendix A.1   

  Using the penalty function as given in Proposition 2.2, obtaining PML̂  now boils 

down to solving the equation   

   0,=2)()/(
1=

 niii

n

i

cXXX     (2.11) 

where ./ 0cncn   

  For a demonstration purpose we generate 5=n  observations from 

)(SSND   

(i.e., )(0,1,SND ) with 1=  as ,0.2601}790,1.92500.4498,1.5{0.5501,

         (2.12) 

(using the template available at  http://azzalini.stat.unipd.it/SN/index.html). The following 

Figure 2.1 plots the LHS  of (2.11) as a function of  , given the above dataset (2.12), 

with 0.5=nc . Here 0.723281=ˆ
PML . Using 0,=0.5,= 0ccn  and hence PML̂  

is asymptotically unbiased.    
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Figure 2.1. Plot of LHS  of (2.11) with 5=n , 0.5=nc  for the dataset in (2.12). 

 

  Apart from the frequentist estimators discussed above one can also consider a 

Bayes estimator under a suitable prior )(  of  . Based on iid  observations from 

(2.1), the posterior distribution of   given ),,,(= 21 nXXXX   has the form   

=1 =1( | ) = ( ){ ( )}/ ( ){ ( )} .n n

i i i iX X X d        



    (2.13) 

There doesn’t appear to be any natural conjugate prior for the SND  skew 

parameter. The easiest prior one can think of is   

 ,|=|),|( 00

       (2.14) 

where 0  is any real value that   is thought to be close to. The posterior distribution 

with the above prior (2.14) is   
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0 =1 0 =1( | ) =| | { ( )}/ | | { ( )} ,n n

i i i iX X X d 

        


 


    

         (2.15) 

Provided ( | )X  is integrable, i.e.,   

 .<)}({||=),( 1=00  





  dX i

n

i   (2.16) 

 The following Figures 2.2a, 2.2b show the plots of the posterior distribution in 

(2.15) for various values of  . However, the above condition (2.16) does not hold for all 

0.  If 0= , then  

  dXdX i

n

ii

n

i

)}({=)}({=)(0, )(1=

1=

0  







 

 .))}(({)}({= )(1=
0

)(1=
0

 dXdX i

n

ii

n

i  


 (2.17) 

   

  

   

 

Figure 2.2a. Plots of the posterior pdf for the dataset in (2.12) under prior (2.14). 
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Figure 2.2b. Plots of the posterior pdf for the dataset in (2.12) under prior (2.14). 

 

Without loss of generality, assume that 0.>(1)X  Then the first term of (2.17) 

is bounded below by  dX n)))((( (1)
0




. Since this integrand goes to 1 as  , 

the whole integral is .  However, a negative value of 0)<(  can ensure that the 

posterior ( | )X  is proper. In our subsequent derivations we will be using 0<  

and 0=0  (without loss of generality).  
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One can also use Jeffrey’s noninformative prior which seems to be a natural 

candidate for estimating  , and it is given as   

 .3)).((2())((=)( 1/2 seeiJ      (2.18) 

The posterior distribution of   under )( J  is   

 
2 2 1/2

=1

( | ) = { ( )}{ ( )( ( )) / ( ) }
n

J i

i

X X u u u u du       



    (2.19) 

where   is the normalizing constant. Liseo and Loperfido [13] has discussed details of 

the mean of the posterior (2.19) as an estimator of the skew parameter.  

As a demonstration, we plot the posterior pdf  of   under Jeffery’s prior for 

the dataset (2.12) in Figure 2.3. 

 

 

 

Figure 2.3. Plot of the posterior pdf for the dataset in (12) under Jeffery’s prior. 

 

In the following we compare the estimators developed above in terms of 

standardized bias (SB) and standardized MSE (SMSE). For an estimator ̂  of  , SB 

and SMSE are defined as   

 ./)ˆ(=),|ˆ(;)/ˆ(=),|ˆ( 22   EnSMSEEnSB  (2.20) 

The estimators of primary interest are :   
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=ˆ
mm  the (modified) MME as given in (2.6)  

=ˆ
)(mean  posterior mean of ( | )X   in (2.15)  

=ˆ
)(median  posterior median of ( | )X  in (2.15)  

=ˆ
)(mode  posterior mode of ( | )X   in (2.15)  

=ˆ
)(meanJ  posterior mean of ( | )J X   in (2.19)  

=ˆ
)(medianJ  posterior median of ( | )J X   in (2.19)  

=ˆ
)(modeJ  posterior mode of ( | )J X  in (2.19)  

=ˆ
PMLE  by solving equation (2.11)  

These eight estimators are compared in terms of SB and SMSE by simulation. In 

this simulation we use 1=   for )(
ˆ

mean , )(
ˆ

median  and )(
ˆ

mode . We choose 

1=nc  to obtain the estimator PMLE̂  by solving the equation (2.11). For a fixed n  and 

 , iid  observations nXX ,,1   are generated from ( )SSND   (using the 

property (vii) in Section 1) in a particular replication. In the 
thk  replication, ,1 Kk   

the estimator ̂  ( which is any one of the eight estimators) is denoted by 
)(̂k . Then the 

SB and SMSE of ̂  are approximated as  

 andKnSB k
K

k

}/)/ˆ({),|ˆ( )(

1=

    

 .}//)ˆ({),|ˆ( 22)(

1=

KnSMSE k
K

k

    

The simulated SB and SMSE values are presented in the Tables 

3.1 (a,b,c) and 3.2 (a,b,c), respectively. The estimated SB and SMSE of each estimator 

are computed based on 5000=K  replications for each ,82,3,0.1,0.5,1,=  . If 

we look at SB and SMSE criteria then it is obvious that there is no clear-cut winner. Some 

estimators perform well when   is close to zero, and others perform better asdeviates 

greatly from zero. However, taking overall performance into consideration, it appears that 


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out of 8 estimators )(
ˆ

medianJ , )(
ˆ

modeJ  and PMLE̂  are the top three estimators 

compared to other estimators. 

 

Table 3.1a. Table of SB for 5=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

 

 

 

5 

MM̂
 

0.7386 0.1062 -0.2541 -0.5698 -0.7446 -0.7579 -0.8175 -0.8423 -0.872 -0.888 

)(
ˆ

mean  1.0105 1.9039 1.2671 0.5732 0.1254 -0.1254 -0.292 -0.4059 -0.4901 -0.5514 

)(
ˆ

median
 

15.4213 3.1729 1.4988 00.65 0.178 -0.0822 -0.255 -0.3745 -0.4631 -0.5271 

)(
ˆ

mode  10.5722 2.8513 0.8203 0.6609 0.1878 -0.0903 -0.2599 -0.3817 -0.4703 -0.0712 

)(
ˆ

meanJ  0.1119 0.5449 0.047 -0.2653 -0.4763 -0.5937 -0.6747 -0.7275 -0.7659 -0.7952 

)(
ˆ

medianJ
 

0.0638 0.397 0.4024 0.1002 -0.1755 -0.3172 -0.4281 -0.5087 -0.5254 -0.3214 

)(
ˆ

modeJ
 

1.1424 0.105 -0.2177 -0.4322 -0.5868 -0.6638 -0.7245 -0.7653 -0.8005 -0.8219 

pmle̂  -0.5292 -0.3979 0.5523 -0.6923 -0.7834 -0.8289 -0.863 -0.8848 -0.9005 -0.9127 

 

Table 3.1b. Table of SB for 10=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

10 

MM̂
 

0.802 0.1565 -0.1482 -0.4466 -0.6338 -0.6813 -0.7783 -0.7724 -0.8337 -0.8624 

)(
ˆ

mean  1.5705 1.2102 0.983 0.5096 0.1576 -0.1027 -0.2679 -0.3814 -0.4675 -0.5305 

)(
ˆ

median  5.7053 1.4594 0.9973 0.5406 0.1985 -0.0667 -0.2364 -0.3529 -0.4426 -0.5081 

)(
ˆ

mode  6.179 1.4038 0.6891 0.4244 0.4261 0.4442 0.4523 0.2571 0.1003 -0.0127 

)(
ˆ

meanJ  0.5772 0.3474 0.143 -0.1736 -0.4011 -0.5479 -0.6414 -0.7056 -0.7495 -0.7848 

)(
ˆ

medianJ  0.5125 0.2677 0.3197 0.2263 0.0761 -0.1308 -0.262 -0.3496 -0.424 -0.4392 

)(
ˆ

modeJ
 

0.4098 0.0876 -0.0088 -0.1813 -0.3048 -0.4449 -0.5365 -0.5895 -0.644 -0.6752 

pmle̂  -0.0892 -0.233 -0.3633 -0.5705 -0.6835 -0.7585 -0.8035 -0.835 -0.8575 -0.8743 
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Table 3.1c. Table of SB for 25=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

 

 

 

25 

MM̂
 

0.0092 0.1697 0.1181 -0.2743 -0.4608 -0.6338 -0.7003 -0.5803 -0.7747 -0.803 

)(
ˆ

mean  0.4511 0.4712 0.4342 0.3659 0.1494 -0.0621 -0.2189 -0.338 -0.4281 -0.4966 

)(
ˆ

median  -1.0286 0.3506 0.4049 0.3647 0.178 -0.0347 -0.1913 -0.313 -0.4061 -0.4768 

)(
ˆ

mode  2.3163 0.4413 0.3213 0.3423 0.3048 0.3758 0.3661 0.2377 0.0863 -0.0169 

)(
ˆ

meanJ  -0.0373 0.0838 0.129 0.0981 -0.0535 -0.2066 -0.3286 -0.4257 -0.5011 -0.5593 

)(
ˆ

medianJ  0.0324 0.0596 0.0965 0.0724 -0.0621 -0.2017 -0.3182 -0.4134 -0.4891 -0.5354 

)(
ˆ

modeJ
 

-0.1026 0.0048 0.0263 0.0352 -0.0416 -0.1024 -0.1783 -0.2475 -0.3164 -0.3704 

pmle̂  -0.1579 -0.0979 -0.181 -0.3973 -0.5493 -0.6451 -0.7096 -0.7557 -0.7885 -0.8147 

 

Table 3.2a. Table of SMSE  for 5=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

 

 

 

5 

MM̂  166.0259 7.7135 2.5598 1.0613 0.7268 0.7579 0.8835 0.7697 0.8007 0.8293 

)(
ˆ

mean  325.608 15.2418 3.304 0.4601 0.0361 0.0195 0.087 0.1655 0.2406 0.3042 

)(
ˆ

median  378.3882 15.5778 3.5538 0.5597 0.0576 0.0122 0.0671 0.1411 0.215 0.2781 

)(
ˆ

mode  292.1193 22.9046 2.5853 0.692 0.1035 0.0333 0.0817 0.1549 0.2282 0.0405 

)(
ˆ

meanJ  90.2509 3.9596 0.3939 0.1034 0.233 0.3536 0.4559 0.5296 0.5868 0.6324 

)(
ˆ

medianJ  72.2579 3.2004 1.4229 0.2524 0.1109 0.1318 0.2007 0.269 0.3009 0.187 

)(
ˆ

modeJ  32.6716 1.1489 0.3067 0.231 0.3606 0.4488 0.5298 0.5891 0.6428 0.6774 

pmle̂  12.8321 0.584 0.3795 0.4862 0.6157 0.6877 0.7452 0.7831 0.8112 0.8332 
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Table 3.2 b. Table of SMSE  for 10=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

 

 

10 

MM̂  113.08 2.7959 1.0502 1.1919 0.7658 1.223 0.8952 2.0565 0.7983 0.8186 

)(
ˆ

mean  107.6475 6.0347 2.0517 0.4112 0.0482 0.0168 0.0738 0.1462 0.2189 0.2817 

)(
ˆ

median  123.0445 6.008 2.1295 0.4845 0.072 0.0135 0.0591 0.1256 0.1965 0.2584 

)(
ˆ

mode  96.8018 6.9892 1.6921 0.7478 0.5607 0.4417 0.3527 0.1477 0.0601 0.0294 

)(
ˆ

meanJ  38.1697 2.0836 0.3501 0.0642 0.1664 0.3026 0.4126 0.4988 0.5624 0.6164 

)(
ˆ

medianJ  33.5793 1.8212 1.1005 0.4405 0.1518 0.0849 0.1026 0.1418 0.1929 0.2118 

)(
ˆ

modeJ  22.3294 1.1428 0.3916 0.1557 0.1548 0.23 0.309 0.3632 0.4254 0.4657 

pmle̂  11.8783 0.4526 0.1956 0.3324 0.4686 0.576 0.6459 0.6974 0.7354 0.7645 

 

Table 3.2c. Table of SMSE  for 25=n . 

  

n Estimator 0.1 0.5 1 2 3 4 5 6 7 8 

 

 

 

 

 

 

 

25 

MM̂  
8.0383 1.1141 1.5411 1.1236 1.0464 0.7564 0.7714 0.8064 0.9098 0.816 

)(
ˆ

mean  18.7428 0.8948 0.6041 0.3014 0.0556 0.0127 0.0499 0.115 0.1837 0.2468 

)(
ˆ

median  74.4606 1.3795 0.5735 0.3262 0.0724 0.0134 0.0393 0.099 0.1654 0.2276 

)(
ˆ

mode  24.7823 0.6695 0.4656 0.4857 0.3493 0.3795 0.2737 0.1302 0.0499 0.0249 

)(
ˆ

meanJ  8.3374 0.4616 0.2889 0.1383 0.0381 0.055 0.1118 0.183 0.2521 0.3134 

)(
ˆ

medianJ  8.3155 0.4283 0.2648 0.1423 0.0474 0.0575 0.1069 0.1736 0.2408 0.2929 

)(
ˆ

modeJ  7.3245 0.3652 0.2293 0.2651 0.1657 0.1303 0.1141 0.1243 0.1499 0.1766 

pmle̂  6.1883 0.2438 0.0905 0.1665 0.3036 0.4168 0.5038 0.5712 0.6218 0.6638 
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3. Testing on the Skew Parameter 

  Based on the iid  observations from (2.1) we want to test     

 000 =:=:  AHvsH      (3.1) 

for any 0 ℝ. However, our interest lies primary in 0=0  since this leads to the 

standard normal distribution, and hence all our computational results are provided 

accordingly. However, here we present the theory for general 0 .  

  As mentioned in the previous sections the main challenge of SND (or SSND ) 

is the sampling distributions of the estimators of  . As a result we will focus on deriving 

tests based on the asymptotic theory as well as parametric bootstrap.  

Liseo and Loperfido [17] proposed a Bayesian test for (3.1) based on the prior 

(2.18). The procedure is computationally intensive, and requires the MCMC algorithm. 

Dalla Valle [16] proposed a general goodness of fit test for the SND  based on a 

modified version of the Anderson-Darling test (usually used for a normal goodness of fit 

test). Though critical values have been provided for large sample sizes, how this test 

performs for small sample sizes is yet to be seen. The three test procedures developed in 

this section are not only easy to implement, but also two of the three tests attain the 

nominal level closely even for small sample sizes.  

 

3.1. A Simple Asymptotic Test 

Possibly the simplest asymptotic test one can think of is based on the sample 

average X  when iid  observations are available from )(SSND . Using the moment 

properties discussed in Section 1, and using the Central Limit Theorem (CLT), it is easy to 

see that as n  

  .)))//(1)((2/(1),1/()(2 222 nNX
D

    (3.2) 

Therefore, under 00 =: H ,   

 
1/2

2 2 2

1 0 0 0 0= { (2 )( / 1 )}/ 1 (2 ) / (1 ) ( ,~ 0 1)Q n X N        

         (3.3) 

 asymptotically as .n  Therefore, the test based on 1Q  suggests that   

/2)(10 |>| zQifHreject      (3.4) 
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 where /2)(z is the upper /2)(  tail probability cut off point of (0,1)N .   

 

3.2. Asymptotic Test Based on PMLE 

Under 00 =: H , and using the Proposition 2.2, one has   

))(),1/(/2()ˆ( 00000  iicNn
D

PML     (3.5) 

 i.e., (0,1))(/2)ˆ()(= 000002 NicinQ
D

PML    as .n  Note 

that, as stated in Section 2, by our choice 0=0c . Hence, the test based on 2Q  

suggests that   

.|>| /2)(20 zQifHreject      (3.6) 

 

 3.3. A Parametric Bootstrap Test 

In the following we present the parametric bootstrap test (PBT) as given in Pal, 

Lim and Ling [18]. The PBT is implemented through the following steps:   

Step-1:Obtain PML̂  (as shown in Section 2 by solving (2.11) with ( ) = 2n nh c  ).  

Step-2:Assume that .= 0  Generate
* * *

1 2, , , nX X X iid  from ),( 0SSND  and    

recalculate the PMLE using this bootstrap data, and call the PBT PMLE as 


PML̂ . 

Step-3:Repeat the above Step-2 a large number of times (say, M  times), and the 

resultant PBT PMLEs are denoted by .ˆ,,ˆ 1 M

PMLPML

    Further, order them as 

.ˆˆ )((1) M

PMLPML

     

Step-4:The upper and lower cut-off points of the PBT are found as 
)/2)((ˆ=ˆ M

PMLL

 
 and 

)/2)((1ˆ=ˆ M

PMLU

 
. Retain 0H  if PMLL  ˆˆ   (from Step-1) U̂ ; reject 0H  

otherwise.  

 

3.4. Numerical Comparison of the Three Tests 

  In the following we provide the simulated size/power of the above three tests  

through a large number of replications. For fixed n  and   ℝ we test (3.1) with 0=0 . 
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From a practical point of view one should be interested to know if the )(SSND  can be 

reduced to the (0,1)N  distribution or not. We generate iid  observations from 

)(SSND  a large number of times, say N  times, and apply each test                 

( PBTQQ ,&, 21 ). We had chosen several values for 1=nc , 0.5 , 0.25  and n1/ ; 

however, we only report the results for 0.5=nc . The simulated size/power is computed 

by the proportion of times (out of N ) the test rejects 0H .The following table (Table 3.7) 

shows the simulation results with 
410=N  (and for PBT we have used 

410=M ). 

 

Table 3.3. Simulated size/power for testing 0=:0=:0  AHversusH  at 

0.05= . 

λ 

n Test 0 0.5 1 1.5 2 2.5 3 3.5 4 

 
Q1 0.0488 0.1125 0.1983 0.2626 0.2953 0.3209 0.3292 0.3335 0.3343 

5 Q2 ( cn = 0.5 )  0.0093 0.0183 0.0425 0.0714 0.0985 0.1126 0.1317 0.1346 0.1453 

 PBT ( cn =0.5) 0.0475 0.0974 0.2017 0.3059 0.4004 0.4561 0.5088 0.5385 0.5688 

 
Q1 0.0519 0.1888 0.4104 0.5572 0.6589 0.7057 0.7333 0.7632 0.7756 

10 Q2 ( cn = 0.5 )  0.0642 0.2240 0.5353 0.7888 0.9239 0.9685 0.9891 0.9947 0.9981 

 PBT ( cn = 0.5 ) 0.0511 0.1812 0.4700 0.7347 0.8855 0.9495 0.9786 0.9895 0.9956 

 
Q1 0.054 0.2677 0.6084 0.7953 0.8733 0.9166 0.9333 0.9491 0.9557 

15 Q2 ( cn = 0.5 )  0.075 0.3204 0.7614 0.9497 0.9929 0.9992 1.0000 1.0000 1.0000 

 PBT ( cn = 0.5 ) 0.0506 0.2399 0.6695 0.9109 0.9843 0.9969 0.9998 0.9998 1.0000 

 
Q1 0.0514 0.3469 0.7431 0.9176 0.9608 0.9819 0.9910 0.9923 0.9934 

20 Q2 ( cn = 0.5 )  0.0687 0.4003 0.8796 0.9906 0.9996 1.0000 1.0000 1.0000 1.0000 

 PBT ( cn =0.5 ) 0.0479 0.3182 0.8195 0.9811 0.9989 1.0000 1.0000 1.0000 1.0000 

 
Q1 0.0489 0.4258 0.8504  0.9680 0.9928 0.9968 0.9985 0.9992 0.9994 

25 Q2 ( cn = 0.5 )  0.0663 0.4825 0.9382 0.9977 0.9999 1.0000 1.0000 1.0000 1.0000 

 PBT ( cn =0.5 ) 0.0534 0.438 0.922 0.9964 0.9999 1.0000 1.0000 1.0000 1.0000 

 
Q1 0.0471 0.7237 0.9932 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

50 Q2 ( cn = 0.5 )  0.0597 0.7744 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 PBT ( cn =0.5 ) 0.0503 0.7680 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Remark 3.1: From the computational results it is clear that the test based on 2Q  is not 

very good in maintaining the nominal level  . For 5=n  the test is very conservative, 

while for other moderate sample sizes it is quite liberal. Only for large sample size          

( 50=n ) does it have a proper size; on the other hand, both the tests based on 1Q  and 

PBT are quite good in the following nominal level 0.05= . Yet, between these two 

tests, PBT exhibits higher power as   moves moderately away from the null hypothesis 

value.  
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Appendix 

A.1. Proof of Proposition 2.2  

The proof is quite general, and hence it is given in a quite general form.  

Let 1= ( , , )nX X X be a random sample where each 

( | ) ={ ( | }~ ) :iX f x f x   F . We assume that the regularity conditions 

(those of Cramér-Rao inequality) hold. Using the penalty function ,=)( 2 nn ch  the 

PMLE of   is given by     

 },)|({=ˆ 2

1=

 ni

n

i

PML cXlargmax     (a.1) 

where )|(=)|(  xflnxl  is the score function and 0>nc  is the regularization 

parameter. Let 
2

=1
( ) ( |  )

n

n i ni
L l X c    be the 2l  penalized likelihood function 

and let )ˆ(=  PMLn nT  be the scaled and centered 2l -penalized MLE, 

http://geostasto.eco.uniroma1.it/utenti/liseo/liseosent.pdf
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respectively. Note that ,=ˆ 1/2

nPML Tn  and since PML̂  maximizes nL
~

)(  w.r.t. 

 , we have  

1/2( ) = 0n nL n T  
 

i.e.,
1/2 1/2( ) = 0n nL n T n     

i.e., nT  is the solution of
1/2 1/2( ) = 0nL n t n    ;  

i.e., nT  is the value of t  which also maximizes   

1/2= ( ) ( ).n nL n t L         (a.2) 

 Therefore,  

1/2= { ( ) ( )}n t n nT argmax L n t L    

 

)})(())|()|(({= 221/21/2

1=

   tncxlxtnlargmax nii

n

i

t

 

)},(2)((1/2))({= 1/21/22   nOtcnittSargmax Pnnnt 
 

(a.3) 

 Where 
1/2

=1
( ) = ( | )

n

n ii
S n l' x   is the sample score function,

1

=1
( ) = ( | )

n

n ii
i n l x    is the sample Fisher information (per observation), and the 

remainder term is of order )( 1/2nOp  uniformly on compact set in t  (i.e., n  

(remainder term) goes to 0 in probability as n  increases to  ). Since )(nS  

converges to ))((0, iN  in distribution, )(ni  converges to )(i  in probability, and 

by assumption ,0

1/2 ccn n 


 it thus follows that )ˆ(=  PMLn nT  converges in 

distribution to )),(),1/(/2( 0  iicN   where ( ) = ( ( | ))i E l x  is the Fisher 

information per observation. [The above asymptotic distribution of nT  comes from noting 

that nT , which maximizes the term inside }{  in (3), except the )( 1/2nOP  term, is in 

fact ).()/2)( 1/2  icnS nn

  ]   


