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Abstract

The objective of this study is to argue that two classical estimation methods
(method of moments and method of maximum likelihood) cannot be applied for a
construction of an asymptotic confidence ellipse for the Beta-Poisson dose-response
model directly. That is, the first moment for the probability density function of the Beta-
Poisson dose-response model exists for & = 1, but data known from literature show that
a typical values of @ is around a few hundredths, while a typical values of & is around a
few hundred. And the method of maximum likelihood, we cannot find parameter
estimators of the Beta-Poisson dose-response model and also it is not possible to find
the asymptotic covariance matrix from the Fisher information matrix, hence it is also not
possible to construct an asymptotic confidence ellipse based on the maximum likelihood
estimates.

For this purpose we need to use a suitable approximation for the Beta-Poisson
dose-response model. After that, we derive maximum likelihood equations for

parameters of the approximate Beta-Poisson dose-response model. For this model, we
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find the Fisher information matrix and construct a normal approximation that gives
elliptical confidence regions of the approximate Beta-Poisson dose-response model. We
use the coverage probabilities as the criteria for comparing with the nominal level 0.98
and investigate the accuracy of the confidence ellipses are fulfilled by the Monte-Carlo
method. Three sample sizes (n) are 100, 500, 1,000 and four cases of values for
parameters of the Beta-Poisson dose-response model ((i) e« = 0.1, =10 (ii)
e = 0.08, § =100 (i) e =03, =130 (iv) « = 0.7, § = 180) are studied here.
R (2.13.0) software is used for simulation technique with 10,000 iterations. The results of
this study are as followed:

The coverage probabilities of confidence ellipses for parameters of the
approximate Beta-Poisson dose-response model increase when sample sizes (i)
increase and also they are close to the confidence coefficient 0.98.

In addition, at various values of parameters of Beta-Poisson dose-response

model, the coverage probabilities are similar when = is fixed.

Keywords: Quantitative microbiological risk assessment (QMRA), Method of moments,

Method of maximum likelihood, Fisher information, Delta method.

1. Introduction

Risk analysis is a complex process consisting of risk assessment, risk
management, and risk communication. Over the past decade it has been developed as a
structured model for improving production control system in many branches of World
economy. For example, it can be applied for our food control systems with the objectives
of producing safer food, reducing the numbers of food-borne illnesses and facilitating
domestic and international trade in food. It also should be mentioned that risk
assessment helps us to organize all available data for better understanding the
interaction between human illnesses, microorganisms, and foods. Importantly, we are
able to estimate the risk that specific microorganismsin food can do to human health [1].

Microbiological risk assessmentcan be considered as a tool that can be used in
the management of the risks posed by food-borne pathogens and in the elaboration of
standards for food in international trade.

As it is mentioned in Haas et al. [2] “Quantitative microbiological risk
assessment (QMRA), is recognized as a resource-intensive task requiring a
multidisciplinary approach. Yet, food-borne iliness is among the most widespread public

health problems creating social and economic burdens as well as human suffering,
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making it a concern that all countries need to address. In a QMRA framework, the dose-
response assessment phase is the quantitative yardstick for risk estimation, as this
phase estimates a risk of response (infection, illness or death) with respect to a known
dose of a pathogen. The basis of the dose-response phase is the dose-response
models, which are mathematical functions that take as an argument a measure of dose
(which can be any non-negative number) and yields the probability of the particular
adverse effect, which is bounded by zero (no effect) and one (complete conversion to
adverse state). There are an infinite number of such possible functions. Even restricting
the universe to those functions that are monotonic (as dose increases, response
probability is nondecreasing) and bounded by zero and one (at dose = 0, no response;
as dose - &2, complete response), there remain an infinite number of possible functions.
In particular, the last set of conditions is identical to those required of cumulative
distribution functions, so any cumulative distribution function with support over {0, c2)
can be a candidate dose-response function”.

To be plausible, a model should consider the particulate nature of organisms,
which has a high variability at low dose. It should also be based on the concept of
infection from one or more “survivors” of the initial dose. Therefore dose response
models for QMRA need to be physiologically plausible and be derived from what is
known of the general infection process. There are two models which are derived based
on these needs for the QMRA dose response relationship, the Exponential and Beta-
Poisson models, specifically, the Beta-Poisson dose-response model (model with two
parameters) which is enlarged from the Exponential dose-response model (model with
only one parameter).

Furumoto & Mickey [3] described the Beta-Poisson as a random model of an
infection growing on a tobacco plant by a Mosaic virus. The infection can be described in
the following way. A leaf of tobacco plant is attacked by viruses. The number of viruses
is random and has a Poisson distribution with the intensity parameter x, denoted by
Pois(x). The plantis infected if at least one virus penetrates its cell. Each cell has some
(different for different types of cells) resistance, and hence the infection happens with
probability &, which is also considered to be a random variable. If we assume that & has
a Beta distribution with parameters & and #, then the probability of the infection as a
function of the intensity of virus flow x has a probability distribution of the Beta-Poison
dose-response model with the shape parameter & and scale parameter #.

Beta-Poisson dose response model has been considered in experimental data

of various infection cases; for example, Medema et al. [4] presented an assessment of
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the Beta-Poisson dose-response model of Campylobacter jejuni (C.jejuni), Teunis &
Havelaar [5] found that the Beta-Poisson dose-response model is not a single-hit model.
Single-hit models have played a prominent role in dose-response assessment for
pathogenic microorganisms. In particular the Beta-Poisson model, are used for
extrapolation of experimental dose-response data to low doses, as are often present in
drinking water or food products., Latimer et al. [6] described the development of a
weighted composite dose-response model for human Salmonellosis and Moon et al. [7]
presented comparison of microbial dose—-response models fitted to human data.

Nevertheless, all authors mentioned above have studied only point and interval
estimators of the parameters of Beta-Poisson dose-response model, but they have not
yet studied confidence regions of those parameters that have been studied in various
cases; such as, Takada [8] studied confidence sets for the mean of a multivariate normal
distribution with an unknown covariance matrix of the form 21, Dilba et al. [9] dealt with
the problem of simultaneously estimating multiple ratios, Menendez et al [10] presented
confidence sets for the parameters of a logistic regression model based on preliminary
minimum £-divergence estimators, Azad [11] invented a new method to test the
significance levels of common periodicities (if any) among sub-divisional rainfall time
series using the confidence ellipse technique and Chaudhuri [12] studied a simple least
squares method for fitting of ellipses and circles (depending on border points) of a two-
tone image and their 3-D extensions.

In this paper we focus on the Beta-Poisson dose-response model. This includes
investigating some limitations of parameters estimation for the Beta-Poisson dose-
response model and its approximation. Moreover, we find the Fisher information matrix
for construction of a normal approximation that gives elliptical confidence regions for
parameters. The article is organized as follows. In Section 2 we reveal framework for
mechanistic dose-response relationships. In Section 3 we present methodology. The
results are shown in Section 4 and simulation study is presented in Section 5. In Section

6 we show an example and concluding remarks are offered in Section 7.

2. Framework for Mechanistic Dose-Response Relationships

Haas et al. [2] described framework for mechanistic dose-response
relationships as follows:

The probability of investigating precisely j organisms from an exposure in which

the mean dose (the product of volume and density) is x (i.e., the first of the sequential

processes) is written as B, (j|x7, the probability of k organisms = jJ surviving to initiate
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an infectious process (the second step) is written as P; [klf]. If these two processes are
regarded as independent, the overall probability of k organisms surviving to initiate

infectious foci is given by (the law of independent events)
P(k) = Z Py (k)P Glx)
i=t

The function F, incorporates the individual-to-individual variation in actual
numbers of organismsingested or otherwise exposed, and the function F; expresses the
factors of the organisms-host interaction in vivo that allow some organisms to survive to
initiate infectious foci.

Infection occurs when at least some critical numbers of organisms survive to
initiate infection. If this minimum number is denoted as k,;;, , the probability of infection
(the fraction of subjects who are exposed to an average dose x who become infected)

may be written as

Blx) = i if—':(kl_.f:lﬁ(jlx]

k=kmin j=K

The two conceptual alternatives have been termed the hypothesis of
independent action, in which in principle k.;, equals 1, and the hypothesis of
cooperative interaction, in which k,,;, is some number greater than 1.

The simplest dose-response model that can be formulated assumes that the
distribution of organisms between doses is random (i.e., Poisson), that each organism
has an independent and identical survival probability, &. From the Poisson assumption,
we have

Pjx) = —m{__,ﬂ z
I
The assumption with respect to survival means that the Binomial distribution

can be used as

Pk} = k{;’—_k] gk(1 — g)i-k
Hence,

- = . } o (—x)xJ
ron 5 Sl on=e2]

R=Hmin J=H
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Fmin—1

_y Z exp(—x8) (—xg)
I k!
k=0
with the assumption of kn = 1, this yields
F(x) =1 — exp(—=x8) 1)

The Beta-Poisson dose-response model is enlarged from the Exponential
dose-response model. The Exponential dose-response model assumes constancy of the
pathogen-host survival probability (&). For some agents and populations of human
hosts, there may be variation in this success rate. Such variation may be due to diversity
in human responses, diversity of pathogen competence, or both. This variation can be
captured by allowing & to be governed by a probability distribution. This phenomenon of
host variability was perhaps first invoked by Moran [13].

The mixing distribution f{#) should have (its only) support over the interval
(0,1), corresponding to the allowable range of variability of & itself. Use of the above
equation is identical to applying the mixture operation directly to equation (1) if the

Poisson distribution for dose-to-dose variation is assumed, thus yielding

1
A = [[1- e (—xe)f@)as
i

1
—1- j exp(—x6) F(8)de
i ]

A logical distribution, which offers a great deal of flexibility, is the Beta

distribution. Incorporating this into above equation, yields

1
Bz, f)

Plx) =1- flw{—xe]] [ g% t(1 — Er]f"-l] d@ (2)
i}

Notice that, equation (2) describes the cumulative distribution function of the
Beta-Poisson dose-response model.

The cumulative distribution function of a continuous random variable X under
the Beta-Poisson dose-response model (BP-dose-response model) with parameters «

and 3, denoted by BP(a, §) is
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1

Flx;a.f) =1 —m

1
J‘ exp{—8x} #91(1 — 8)Fds, €))
o
where x =0, & =0, # =0 and o« and # are the slope and scale parameter,

respectively. The probability density function of the Beta-Poisson dose-response model

is

1
1
. —_ _ = _ &-
Flxie, £) —E{mlg:]!mp{ Bx} 68%(1 — 8)F-1d8. (%)

3. Methodology

Firstly, we argue that two classical estimation methods (method of moments
and method of maximum likelihood) do not work to construct an asymptotic confidence
ellipse for the Beta-Poisson dose-response model directly and for this purpose we need
to find a suitable approximation for the Beta-Poisson dose-response model. Next, we
derive maximum likelihood equations for parameters of the approximate Beta-Poisson
dose-response model. Moreover, we find the Fisher information matrix and construct a
normal approximation that gives elliptical confidence regions of approximating the
Beta-Poisson dose-response model.

Three sample sizes {n) are 100, 500, 1,000 and four cases of values for
parameters of the Beta-Poisson dose-response model ((i) o« =0.1,8 =10 (i)
=008, § =100 (i) e =03 F=150 (iv) & = 0.7, § = 180) are studied here.
R (2.13.0) software is used for simulation technique with 10,000 iterations. For each
case we compare coverage probability of confidence ellipse with the nominal level 0.98

and investigate the accuracy of the confidence ellipses by the Monte-Carlo method.

4. Results

In this section, we describe results of this study as follows:
4.1 Beta-Poisson Dose-Response Model

4.1.1 The problem of parameters estimation by Method of Moments to
Construct an Asymptotic Confidence Ellipse

If EC¥%Y is finite, where k is a positive integer, then E{¥%) is called the k-th
moments of X (or the distribution of X). Given X has a probability distribution of the

BP(a, ). Then the k-th moments of X is
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(v = _k.{a-l-_.‘.?—ll'ia+_E—2J"'{|:t+_3—k,]
TR (@—1ia—2)la -k :

Note that E{X¥)} exists only if @ = k& and the method of moments estimators

o= k.

(MME) &™ME) and f(MMZ) of parameters @ and # are as follows:

5:-X%
~(MME) — 9 —
o Ter_ ¥z
. _ Sy R-2X
gome) — (g )T —— =%

£ _ FI
where ¥ =§ N =§ I AR B

Theoretically by using the Delta method for normal approximation it is possible
to find the asymptotic covariance matrix of two parameter estimates by method of
moments &MME) and f™M™E] and after constructing an asymptotic confidence ellipse.
However, the calculations are extremely cumbersome, and are not recommended for
practical applications. Moreover, these lengthy calculations would be useless for
statistical analysis of epidemiological data, because data known from literature show that
a typical values of & is around a few hundredths, while a typical values of f is around a
few hundred. Even the first moment for the probability density function of the

Beta-Poisson dose-response model exists for e = 1.

4.1.2 The problem of parameters estimation by Method of Maximum
Likelihood to Construct an Asymptotic Confidence Ellipse

To construct an asymptotic confidence ellipse we need to find the asymptotic
covariance matrix of these two maximum likelihood estimates &™) and &) from
the Fisher information matrix and using the Delta method for normal approximation.

However, we cannot find maximum likelihood estimators and also it is not
possible to calculate the Fisher information matrix in closed form for the probability
density function of the Beta-Poisson dose-response model (4), hence it is also not
possible to construct an asymptotic confidence ellipse based on the maximum likelihood

estimates.

4.2 The Approximate Distribution Function of the Beta-Poisson Dose-Response
Model
From the distribution function (3) we make a substitution £ = ## and obtain the

integral
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B{a ) f ]H(l ‘é]a_ld@

]

:—B{ﬂ,;jﬁar_\j EIPI—%C} t‘"‘-i(l _éj at.

If # — coand o — 0 such that &ffi = constant then
B-1

(1 —%] ~exp{—t}

then the integral | possesses an equivalent form

- ﬁf o[- -

e GG k)

B{a E]E“

with the help of the Gamma function

=

[le) = J‘ ¥t expl—x} dx

o
Inourcasex =t {% + 1). Applying these formulae we obtain
[le)
¥ @
B p)pe(5+1)
B [l + 50 el
- @
rr@pe (5 +1)

Il + ) -a
~ @ (5

The approximation error is the order 1,/T().

Because under our assumptions on & and f, the expression
Cle + )
res
We obtain the cumulative distribution function of a continuous random variable

X under the approximate Beta-Poisson dose-response model (ABP-dose-response

model) with parameters « and &, denoted by ABP (e, f)is
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Frap~Floafp)=1-(1+3) ©

The density function of this model is

{x:u,]=;ﬂ.
T

(6)

As ¥ — 0 or x — o this function is equivalent to the density function of a
Beta-Poisson dose-response model and this function is proposed in Furumoto & Mickey

[3].

4.2.1 The problem of parameters estimation by Method of Moments to
Construct an Asymptotic Confidence Ellipse for the Approximate Beta-Poisson
Dose-Response Model

The Beta function is defined as follows:
1
Bla,f) = f t71(1 — £)F1ds, a=08=0
o

In this integral, if we make a substitution « = ﬁ , we can have the following

equivalent form of the Beta function

= ot
Bla,B) = f ———du.
) (1 +w

Now we calculate k-th moments for the probability density function of the

approximate Beta-Poisson dose-response model

==

E(X%) = g =f x5 f (e Bldx
o

=
. e
= xh'

o B (1 +%:I

1 4%

. - d
Making the substitution u = %, then du = FI . Hence

. r . it
EX®) =, = Dj{_ﬁu] m_ﬁdu

(e+1d-
,u.n+:L 1

= ﬂ.EHJ‘ (1 + o) F+O+le-1 du
i}
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Note that the Beta function B(a, §) is defined for @ = 0 and § = 0, we obtain
that the last integral exists if k +1 =0 and & — k = 0, thatis & = k.

For the probability density function of the ABP{e, f), the k-th moments exist
only if & = k. Hence we cannot apply method of moments to construct an asymptotic
confidence ellipse, because data known from literature show that a typical values of & is

around a few hundredths, while a typical values of § is around a few hundred.

4.2.2 The Equations for Finding Maximum Likelihood Estimators for the
Approximate Beta-Poisson Dose-Response Model

The likelihood function of AEF (&, £ is

n & —la+1)

Lle, B:x) = a™(f)" H(l +ELJ

i=1 :
We obtain the system of maximum likelihood equations by evaluating

derivatives with respect to @ and f5.

Tl
Elnl{u,_ﬁ;x] =7 —Z ln(l +_EjL

a n x5
a—lnl{m_ﬁ:x] =——+(a+ ljz—lx_.
.E _3 [=1-E:(1+EL:I

Hence the Maximum likelinood estimators (MLE) & ™ and § & of ¢ and 7
can be obtained by simultaneously solving iln L{a,B:x) = Dand 31.9 InLix, g:x) =0,

ie.,
n

sz (1+%)

n

o

n _X
=L+
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4.2.3 The Fisher Information of Parameters for the Approximate
Beta-Poisson Dose-Response Model

From the approximate distribution function of the Beta-Poisson dose-response
model (4), we obtain the second derivatives of log function ABP (e, 8] as

& 1
Elnf{x:u,}?] =—-—

l (e + Dx(28 +x)
g x
g4 (1 +_E]

g) =

r™ aglnf{x @ f) =

_3=(1 +f§‘]

and expected values of the second derivatives with respect to &, & and «f as follows:

E[%::lnf(x:a,ﬁ]] =E [—%] = —l.

8+
[ mf{xam] S{a+?]

a+1) [ﬂ'_.[?ﬂ'a

Inflx:a. E]] lnf{x:a,ﬁ‘]].

E
e
Now we can present the Fisher information matrix about &, § obtained from a

single observation X.
1 1

1 =ram= Ala +1)
v Bla+1) BUa+2)/
the Fisher information matrix for a sample size n:
I1,(8) = nI(8)

where & is a two-dimensional parameters vector, 8" = {u,_ﬁl

The Fisher’s information matrix about &, § obtained from X, X;, ... X, is
1 1

F T gle + 1)
In{ﬂ:] =n 1 o
v Bla+1) BiHa+2)/

Because properties of maximum likelihood estimators (MLE) are under certain

regularity conditions on f (x; 8), The MLE 8] of 8 based on a sample sizes n from
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flx:8) is asymptotic normal distribution. The vector of estimates

-~ [MLEY' ~ ML - [MLE) . . L .
ﬂn" : =(aﬂ"“‘£:' ..fj‘ﬂ" ) has a two-dimensional normal distribution with the

mean equal to the vector of true values of the parameters, that is 8 = (& £) and the
covariance matrix equals the inverse to the Fisher information matrix, denoted by

A =1,7*(8). Thatis, as n — o0,

an (MLE) _ N, {E, I, —1{9:])
and the inverse of the Fisher information matrix is computed as
3 no Tn
af*la+ 1)« +2) | g2 2 1
_f'!, — In_l{ﬂ:l — L ﬂ: E {I:.tn-l_ :] E{aﬂ-l_ :]
Bl + 1) o’
1 a’la +1)° Bale + 1)(a + 2)
=— (e + 20 |,

nl fale + 1e+2) g% +1)°

4.2.4 Asymptotic Normal Distribution

From the Delta method theorem, consider the sequence of random variables
= [MLE)
{Eﬂ" '}such that

— = [MLE)

d
Vn (8, —8)-x
are distributed as the bivariate normal distribution, denoted by N,(0,I-*(8))

— (ﬁr- [MLE)

Vn - 6) = x~,(0,1°1(8)).

Asymptotic normal distribution as n — o2, we get
Va (8, - o)

NISHC)
(. o)

VI, 7' e)

d
—* Z"\-’N: ':l], I::]

d
- Z~N,(0,1,)
which is equivalent to

d
= Z~N,(0,1,)
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(7)

(%) (2.2 -6) 2zom0.1)

_f1 0
where I; = {U 1).
If Z, and Z, are independent N{0,1} random variables, Then Z' = (Z,.Z,) has

the bivariate normal distribution ¥,{0, I, ). From equation (7)
[ML r _L _L = [ML = (ML r — [ML
" _g) (A :](A :)(aﬂ-‘m ~6)=(8,""" -0) A+ (8,"" - 9)
= Zzl
i=1

c
is distributed as ¥Z., where yZ_denotes the chi-square distribution with 2 degrees of

(X1

+2Z

Ll 5

=2Z=12

freedom.

4.2.5 Confidence Regions of Parameters for the Approximate

Beta-Poisson Dose-Response Model
The N, (E,Iﬂ'l'{{i]) distribution assigns probability 1 —a to the ellipse

Iﬁﬂmwj:{ﬁﬂ[mm - E) At {ﬁﬂmm - E) = ;}:::{a]}, where y? (&) denotes the
upper (100a)th percentile of the 2 distribution.
The 100(1 — )% confidence region for parameters @' = (&, ) of a two-

dimensional normal distribution is the ellipse determined by all & such that

{ﬁﬂim@ _E)’A_i{aﬂ-:mﬁ:n _ E) = 3%, (@)

which is equivalent
= [MLE) ' — [MLE} -
(6, —8) 1,0) (8,"" - 6) = »*, (@

where
{ﬁﬂ (MiE) E)I 1,(8) (ﬁn (MzE) E)
1 1 .\
— (n (mzg) _ nni:»m:) _ _.'3’) ﬂ a::]- _E{l‘:‘;ﬁ (&;r‘::: _ a)l
[ —-F

' a |
v Bla+1) pHat+2)/



Noppadol Angkanavisal 29

So, the 100(1 — &)% confidence region for @ consists of all value (e, f)

satisfying
(g : M (e - (MLE)
2@ —a) -5 @™ - a) (4™ - 4)
n« . (MLE) 2 i}
WECTS) (8. - 8) =27,

5. Simulation Study

In this section, a simulation study is carried out to construct asymptotic
confidence ellipses for parameters of the approximate Beta-Poisson dose-response
model and compare the coverage probabilities for confidence ellipses of parameters for
approximation of the Beta-Poisson dose-response model with the confidence coefficient
0.98.

The results of this study are classified according to the values of parameters for
the Beta-Poisson dose-response model and sample sizes.

In an effort to find maximum likelihood estimates we will study by numerical
method. For calculate the simulated errors of maximum likelihood estimates and
construct sets of parameters we need a sample from the probability density function of
the Beta-Poisson dose-response model. First we generate a sample & from the Beta
distribution with parameters &« and # and we use this & to generate a sample x from the
Exponential distribution with parameter &. For the Exponential distribution we use the
density function

fe(x:0)=0Bexp { — Ox).

A sample, x4.% ;... X, is thus obtained from &, &;. .... &,. This x;,x; ... x, will
have the probability density function from the Beta-Poisson dose-response model with
parameters o and .

After we obtain 10,000 replications of each sample, we compute the
Monte-Carlo estimations of errors of the estimates: average of differences between the
true value of the parameters and the true values of simulation and the percentages of

absolute relative errors. If we obtained 10,000 replications of estimators of & where

. o (MLE) 5 (MLE) (MLE) L
8" = (a.f), thatis, 8, .8, ses B 10000 , we will estimate the errors as

10000

= [ML 1 = [ML
Errors of E'i,!"hz:| = 10,000 Z {E — EL-"JME:')
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and the percentages of absolute relative errors as

|E'rru*r's of 8,

[MLE} |

g

= 100,

Now, we present confidence ellipses of parameters as shown in Figures 1 — 12

and present maximum likelihood estimates of « and f, the percentages of absolute

relative errors and coverage probabilities of confidence ellipses for parameters of the

approximate Beta-Poisson dose-response model at 98% confidence level as follows

Tables 1 - 3.

1) Case n = 100,

Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model

fi(MLE)
0

0.10
A(MLE)

Figure 1: A 98% confidence ellipse for = and i based on

maximum likelihood estimates when i« = 0.1 f = 13.

Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model

FMLE)

100 150 200 250 300
|

30

1
1

0.30 0.35 0.40 0.45

S(MLE)

Figure 3: A 98% confidence ellipse for = and Ji based on

maximum likelihood estimates when o = 0.3, fi = 130.

Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model

= 8-
e
g
. T T T T
0.04 0.08 o0.08 0.10 0.12
&(MLE)

Figure 2: A 98% confidence ellipse for = and Ji based on

maximum likelihood estimates when = 0.08, f = 100.

Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model

300 400

FIMLE)
200

100

&(MLE)

Figure 4: A 98% confidence ellipse for = and Ji based on

maximum likelihood estimates when o = 0.7, fi = 133.
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Table 1. Maximum likelihood estimates of @ and #, these errors and coverage
probabilities of confidence ellipses for parameters of the approximate
Beta-Poisson dose-response model when n = 100 at 98% confidence level.

Maximum likelihood The percentages of
o B estimates absolute relative errors Cover-a.g-e
g, [MLE) | nﬂ [MLE) a, [(MLE) | ﬁﬂ [MLE) probabilities
0.1 10 0.10159 10.85432 1.59000 8.54320 0.9549
0.08 100 0.08097 109.39572 1.21250 9.39572 0.9491
0.3 150 0.30588 161.38292 1.96000 7.58861 0.9648
0.7 180 0.71743 194.31646 2.49000 7.95359 0.9604

2) Case n = 500,

Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model
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f(MLE)

010 0.1 01z
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Figure 5: A 98% confidence ellipse for = and i based on

maximum likelihood estimates when i = 0.1, f = 17.
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Figure 7: A 98% confidence ellipse for = and f based on

maximum likelihood estimates when = = 0.3, f = 153.
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Figure 6: A 98% confidence ellipse for = and f based on

maximum likelihood estimates when i = 0.05, f = 100
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Figure 8: A 98% confidence ellipse for = and f based on

maximum likelihood estimates when = = 0.7, f = 130.
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Table 2. Maximum likelihood estimates of @ and #, these errors and coverage

probabilities of confidence ellipses for parameters of the approximate

Beta-Poisson dose-response model when n = 300 at 98% confidence level.

Maximum likelihood The percentages of
I 8 estimates absolute relative errors Coverage
~ [MLE) . [MLE) ~ [MLE) - [MLE] probabilities
G Hn Bn Mn
0.1 10 0.10059 10.13029 0.59000 1.30290 0.9684
0.08 100 0.08022 102.77953 0.27500 2.77953 0.9639
0.3 150 0.30165 152.77005 0.55000 1.84670 0.9704
0.7 180 0.70505 183.40679 0.72143 1.89266 0.9687
3) Casewhen n = 1,000,
Confidence Ellipse of Parameters for the Approximate Confidence Ellipse of Parameters for the Approximate
Beta-Poisson Dose-Response Model Beta-Poisson Dose-Response Model

0.080 0085 0100 0105 0110 0.115

H(MLE)

Figure 9: A 98% confidence ellipse for = and f based on

maximum likelihood estimates when i = 0.1, f = 17.
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Figure 11: A 98% confidence ellipse for = and fi based on

maximum likelihood estimates when i = 0.3, ff = 153.
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Figure 10: A 98% confidence ellipse for = and fi based on
maximum likelihood estimates when = 005, f = 130.
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Figure 12: A 98% confidence ellipse for = and ji based on

maximum likelihood estimates when = 0.7, f = 150.
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Table 3. Maximum likelihood estimates of @ and #, these errors and coverage
probabilities of confidence ellipses for parameters of the approximate

Beta-Poisson dose-response model when n = 1,000 at 98% confidence level.

Maximum likelihood The percentages of
o B estimates absolute relative errors Coverage
&, [MLE) ﬁﬂ [MLE) g, [MLE) | ﬁﬂ (MLE) probabilities
0.1 10 0.10034 9.94527 0.34000 0.54730 0.9771
0.08 100 0.08015 101.05571 0.18750 1.05571 0.9729
0.3 150 0.30079 151.33427 0.26333 0.88951 0.9779
0.7 180 0.70253 181.66574 0.36143 0.92541 0.9773

6. An Example

W e consider the 33 outbreak reports collected from the published literature and
from unpublished data received by Food and Agriculture Organization of the United
Nations (FAO) and World Health Organization (WHO) [14] following Table 4, 23
contained sufficient information on the number of people exposed, the number of people
that become ill, and the number of organisms in the implicated food to enable calculation
of a dose-response relationship. Of the 23 outbreaks, 3 were excluded because the
immune status of the persons exposed could not be determined. The remaining 20
outbreaks comprise the database used to calculate a dose-response relationship.

Of the 20 outbreaks in the database, 11 occurred in Japan and 9 occurred in
North America. Several Salmonella (S.) serotypes were associated with the outbreaks,
including S. Enteridies (12 outbreaks), S. Typhimurium (3 outbreaks), and in single
outbreaks, S. Heidelberg, S. Cubana, S. Infantis, S. Newport and S. Oranienburg.
Several vehicles were implicated, including food (meat, eggs, dairy products and others),
water, and a medical dye capsule (carmine dye).

The maximum likelihood technique was used as the basis for generating the
best fitting curve to the data. The fit was optimized using an iterative technique that
minimized the deviance statistic, based upon a Binomial assumption. The parameters of
the Beta-Poisson dose-response relationship are & = 0.1324 and § = 51.45.

Using our study, we obtain the maximum likelihood estimates &« = 0.1635 and
g = 50.42 and we compare the outbreaks data with the Beta-Poisson dose-response

model as follows Figure 13. If we use the Beta-Poisson as the mathematical form for the
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relationship, and this was fitted to the outbreaks data. The model tends to close to

estimate the probability of illness as observed in the outbreaks data.

o

Probability of response

0.2

0.0

Log dose

Figure 13: Comparison of the Beta-Poisson dose-response model and reported

outbreaks data.

We construct confidence ellipse of parameters for the Beta-Poisson

dose-response model is shown in Figure 14.

Confidence Ellipse of Paran
the Approximate Beta-Poi

Figure 14: A 98% confidence ellipse for @ and § based on outbreaks data.

7. Conclusions

In this article, we have investigated some limitations of parameters estimation

for the Beta-Poisson dose-response model and its approximation.

For the Beta-Poisson dose-response model, theoretically by using the Delta

method for normal approximation it is possible to find the asymptotic covariance matrix of

two parameter estimates by method of moments and after constructing an asymptotic

confidence ellipse. However, the calculations are extremely cumbersome, and are not

recommended for practical applications. Moreover, these lengthy calculations would be
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useless for statistical analysis of epidemiological data, because data known from
literature show that a typical values of @ is around a few hundredths, while a typical
values of #is around a few hundred. Even the first moment for the probability density
function of the Beta-Poisson dose-response model exists for & = 1. For the method of
maximum likelihood, we cannot find parameter estimators of the Beta-Poisson
dose-response model and also it is not possible to find the asymptotic covariance matrix
for maximum likelihood estimates of the Beta-Poisson dose-response model from the
Fisher information matrix in closed form for the probability density function of the
Beta-Poisson dose-response model, hence it is also not possible to construct an
asymptotic confidence ellipse based on the maximum likelihood estimates.

For the approximate Beta-Poisson dose-response model, the first moment for
the probability density function with parameters @ and §# exists only if & = 1. Hence we
cannot apply method of moments to construct an asymptotic confidence ellipse, because
data known from literature show that a typical values of & is around a few hundredths,
while a typical values of §is around a few hundred. Nevertheless, we can derive the
parameter estimators of the approximate Beta-Poisson dose-response model by the
method of maximum likelihood. After that, we calculate the Fisher information matrix in
closed form for the probability density function of the approximate Beta-Poisson
dose-response model. In addition, we find the covariance matrix which equals the inverse
to the Fisher information matrix to construct a normal approximation that gives elliptical
confidence regions with center 8 = (&, ) for all 12 cases.

In simulation study, we construct asymptotic confidence ellipses for parameters
of the approximate Beta-Poisson dose-response model and compared the coverage
probabilities for confidence ellipses of both parameters for approximating a Beta-Poisson
dose-response model with the nominal level 0.98. The coverage probabilities of
confidence ellipses for parameters of an approximation of the Beta-Poisson
dose-response model increase when sample sizes (1) increase and also they are close
to the confidence coefficient 0.98. In addition, at various values of parameters of the
Beta-Poisson dose-response model, the coverage probabilities are similar when = is

fixed.
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Appendix
Table 4 Summary of outbreaks data [14]
Case Dose®® Log Attack
no. Serovar Food CFU Rate(Z)(%)
. Typhimurium Water 231 10.63%
1
. Typhimurium Water 231 18.91%
2 . Heidelberg Cheddar 2.22 32.76%
cheese
3 . Cubana Carmine dye 4.57 70.93%
4 . Infantis Ham 6.46 100.00%
P Imitation ice o
5 . Typhimurium cream 3.79 55.00%
7 . Newport Hamburger 1.23 1.07%
11 . Enteritidis Hollandaise 474 100.00%
sauce
12 . Enteritidis Ice cream 2.09 6.80%
. Typhimurium Ice cream 8.70 100%
13
. Typhimurium Ice cream 8.00 100%
18 . Enteritidis Roasted 5.41 60.00%
beef
19 . Enteritidis Grated yam 6.31 93.93%
with soup
Beef and
20 . Enteritidis bean 2.97 26.86%
sprouts
22 . Enteritidis Scallop with 6.30 56.01%
egg yolk
23 . Enteritidis Cake 5.80 84.62%
24 . Enteritidis Peanut 1.72 16.41%
sauce
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Table 4 (Continue)

Case @ Dose®? Log Attack
no. Serovar Food Pop. CFU Rate(z)(%)
S. Enteritidis Chickenand | 3.63 18.75%
25 €gg
S. Enteritidis Chickenand | & 3.63 42.74%
egg
30 S. Enteritidis Cooked egg N 3.80 64.18%
31 S. Enteritidis Cake N 2.65 27.33%
32 S. Enteritidis Egg salad S 1.40 26.92%
33 | S.Oranienburg | Crated yam N 9.90 100%
with soup

Notes: (1) Pop. = population exposed, where N = Normal population and
S = Susceptible population.
(2) Expected value based on defined uncertainty ranges and distributions.
Susceptibility in this analysis was therefore limited to outbreaks data for
individuals less than 5 years old being classified as "susceptible", with other outbreaks

data representing a "normal" population [15].

References

[1] Vose, D. Risk Analysis: A quantitative guide (second edition). New York: John
Wiley & Sons, 2000.

[2] Haas, C. N, Rose, J. B., & Gerba, C. P. Quantitative microbial risk assessment.
New York: John Wiley & Sons, 1999.

[3] Furumoto, W. A., & Mickey, R. A mathematical model for the infectivity dilution
curve of tobacco mosaic virus: theoretical considerations. Virology, 1967; 32:216.

[4] Medema, G. J., Teunis, P. F. M., Havelaar, A. H., & Haas, C. N. Assessment of the
dose-response relationship of Campylobacter jejuni. Int. J. Food Microbiol., 1996;
30:1-2.

[5] Teunis, P. F. M., & Havelaar, A. H. The Beta Poisson dose-response model is not a
single-hit model. Risk Analysis, 2000; 20: 513-20.

[6] Latimer, K., Jaykus, L.-A., Morales, R. A., Cowen, P., & Brown, D. C. A weighted
composite dose-response model for human salmonellosis. Risk Analysis, 2001; 20:
295-306.


http://www.sciencedirect.com/science/journal/01681605

38

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

Thailand Statistician, 2012; 10(1):15-39

Moon, H., Chen, J. J., Gaylor, D. W., & Kodell, R. L. A comparison of microbial
dose—response models fitted to human data. Regul. Toxicol. Pharmacol., 2004; 40:
177-184.

Takada, Y. Asymptotic improvement of the usual confidence set in a multivariate
normal distribution with unknown variance. J. Stat. Plan. Infer., 1998; 64: 118-130.
Dilba, G., Bretz, F., & Guiard, V. Simultaneous confidence sets and confidence
intervals for multiple ratios. J. Stat. Plan. Infer., 2006; 136: 2640-2658.

Menendez, M. L., Pardo, L., & Pardo, M. C. Confidence sets and coverage
probabilities based on preliminary estimators in logistic regression models. J.
Comput. Appl. Math., 2009; 224: 193-203.

Azad, S. A wavelet based search for periodicities in Indian monsoon rainfall time
series. (Doctoral dissertation, University of Delhi, India). Ann Arbor, MI: University
Microfilms International, 2008.

Chaudhuri, D. A simple least squares method for fitting of ellipses and circles
depends on border points of a two-tone image and their 3-D extensions. Pattern
Recognition Letters, 2010; 31: 818-829.

Moran, P. A. P. The dilution assay of viruses. J. Hyg., 1954; 52: 189-193.

World Health Organization, Food and Agriculture Organization of the United
Nations. Risk assessments of Salmonella in eggs and broiler chickens. Microbial
risk assessment series 2, ltaly: WHO/FAO, 2002.

Fazil, A. M. A quantitative risk assessment model for salmonella. Drexel University,
Philadelphia PA. 1996 [Dissertation].



	Thailand Statistician
	January 2012; 10(1) : 15-39
	http://statassoc.or.th

