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Abstract

We propose analytical solutions to evaluate the characteristic of the control
chart - the average run length (ARL) when the process is in-control for EWMA control
chart for AR(1) process observations with exponential white noise. We use the integral
equation technique to derive an explicit formula for the average run length. In several
examples, the analytical solutions are compared with the results obtained from the

numerical approximations.
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1. Introduction

Control charts are usually used to detect aberrant observations in a process.
Besides, they are often used for monitoring and improving quality in many real
applications, for instance, in Computer Science, Engineering, Business and Economics,

Medicine, Biomedical and Life Sciences, Chemistry and Materials Science, Humanities,
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Social Sciences and Law and in other areas of applications. Usually, the performance of

the control chart is measured by the average run length (ARL). The ARL, is defined as
the mean of false alarm time (z) before an in-control process is taken to signal to be out

of control. A sufficient large in-control ARL, is desired. When the process is out-of-
control, the performance of a control chart is usually used as ARL, or the average of

delay (AD) time. It is the expected number of observations taken from an out-of-control
process until the control chart signals that the process is out-of-control. Ideally, the AD
time should be small.

The methods for evaluating the characteristics of an Exponentially Weighted
Moving Average (EWMA) control charts have been studied. Roberts [1] who first studied
the properties of the EWMA chart in the case of normal distribution by using simulation.
Next, the performance of EWMA, Cumulative Sum (CUSUM) and Shewhart control
charts were compared by Roberts [2]. Brook and Evans [3] approximated the run length
of EWMA by using a finite-state Markov Chain Approach (MCA) with discrete and
continuous distributions. A numerically procedure for the tabulation of ARL of one- and
two-sided EWMA charts were presented by Robinson and Ho [4]. A numerical procedure
using integral equations for the tabulation of moments of run lengths of EWMA charts
was presented by Crowder [5]. The two-sided EWMA chart assuming normal
observations for both ARLs and standard deviations of run lengths were presented.
Lucas and Saccucci [6] showed the properties of EWMA scheme used to monitor the
mean of a normally distributed process by a Markov chain. A design procedure for
EWMA schemes is given. The ARL of the Exponential EWMA chart were presented
exactly based on the solution of a set of differential equations by Gan [7]. Borror [8]
studied the ARL performance of EWMA chart for both skewed and heavy-tailed
symmetric non-normal distributions using MCA. An integral equation for the ARL of the
three-way control chart is analytically derived and numerical method for solving it has
been studied for ARL by Calzada and Scariano [9]. They offered users software that
reduce the computational burden and frees one to focus more fully on three-way design
specifications appropriate for a particular application. Sukparungsee [10] introduced an
analytical closed-form formula for determining the characteristics of EWMA charts for the
cases of normal and some non-normal distributions by using a martingale-based
technique. Wang [11] and Spliid [12] approximated the properties of the EWMA control
chart by using the infinite state transition probability matrix similar to Lucas and Saccucci

[6]. Explicit formulas for evaluating the characteristic of the control charts were
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introduced recently. Areepong [13] derived the explicit formulas of ARL and AD for
exponential EWMA charts. Mititelu et al. [14] presented the explicit formula for ARL by
Feldhom Integral Equation for one-sided EWMA control chart with Laplace distribution
and CUSUM control chart with hyperexponential distribution.

In real applications, observations could be serially-correlated which often
appear in finance and insurance. Autoregressive processes with non-Gaussian white
noise are useful for modeling a wide range of observed phenomena which do not allow
negative values or have a highly skewed distribution. Many problems such as daily flows
of rivers, wind speeds, amount of dissolved oxygen in a river and etc. which are
examples of real applications with serially-correlated processes. The full study of the

case of the first-order autoregressive process AR(1) with marginal exponential

distribution (EAR(1) process) was introduced by Gaver and Lewis [15]. Bell and Smith
[16] considered inference for non-negative autoregressive schemes X, =pX _, +Y,
where p is the autoregressive coefficient is (0< p<1) and Y, are i.i.d. non - negative

random variables. They assume that the initial observation is known and apply their
results with problem in water quality analysis. Some references are Turkmann and
Pereira [17], Andel [18], Andel and Zvara [19], Turkmann [20], Ibazizen and Fellag [21].
In this research we derived analytical formulas for ARL of the EWMA control
chart when observations are AR(1) process with exponential white noise. The Integral
Equations is used to derive this analytical formula. We compare our analytical results for
ARL with results from numerical Integral Equation approximations. The paper is
organized as follows: in section 2, we define the EWMA control chart for AR(1) process
with exponential white noise. In sections 3, the explicit formula is derived for finding ARL
of EWMA chart for AR(1) process with exponential white noise and Integral Equations for
evaluating ARL for EWMA control chart for AR(1) process with exponential white noise
will be discussed in section 4. In section 5, numerical comparisons with the analytical

results are presented. The conclusions are discussed in section 6.

2. EWMA Control Chart for AR(1) Process with Exponential White Noise

The performance of the control chart is measured by the ARL. The ARL, is
defined as the expected of false alarm time (z) before an in-control process is taken to
signal to be out of control. A sufficient large in-control ARL, is desired. When the

process is out-of-control, the performance of a control chart is usually used as the ARL,
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or average of delay (AD) time. It is the expected number of observations taken from an
out-of-control process until the control chart signals that the process is out-of-control.
Ideally, the AD time should be small. The EWMA control chart is widely used to
monitoring and detecting a small shift in the process mean. The EWMA control chart for

the discrete time case is defined as a recursive form

Xe=(1-A) X, +4&, t=12,.., 1)
where the smoothing parameter 2 (0,1), X, is the weighted average between current
and previous observations, X, is initial value and the process {§t,t:1,2,...} consists of

is the independent observations with mean x and variance . The control limits are as

the form
UCL=u+Lo and LCL=u-Lo.

In this paper, we study the sequence {;} consists of the first-order autoregressive
(AR(1)) observations. The AR(1) process is defined as a solution of equation

& =@+, t=12,., 2
where y, is white noise (see in Gaver and Lewis [15], Andel [18], Andel and Zvara [19],
we assume that independent random variables vy, is the random error term at time t
following Exp(1) and ¢ is constant (0<¢<1) and & is initial value. The target in-
control parameter ¢, is supposed to be steady at target value, X, and &, are usually
chosen to be the process in-control parameter, i.e., X, =¢; =«,. We mainly discuss the

case an upper-sided EWMA control chart for AR(1) process with exponential white noise.
The alarm times for this type of procedure are the following:

7, =inf {t >0: X, >b}, where b is the control limit.
An exponential distribution with parameter 1 (Exp(l)) is defined by following function:

f(y)=e”’,y=0. ®)
The ARL of EWMA control chart for AR(1) process with exponential white noise depends

on the control limit (b) and the smoothing parameter (). The control limits are as the

form
UCL=pu+Lo=b and LCL=u-Lo=0.
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3. Explicit Formula for Evaluating ARL for EWMA Control Chart for AR(1) Process
with Exponential White Noise

In this part, we use explicit formulas of the integral equation to find ARL for
EWMA control chart for observations from the AR(1) process with exponential white
noise. In real application, the AR(1) process often have a normal distribution.
Nevertheless, a process may not follow a normal distribution as it may be right skewed.
The AR(1) process with exponential white noise have been studied in the literature.
Crowder’s (1987) method for computing the ARL of EWMA control chart is applied below.

Let L(u) denote the ARL of one-sided EWMA control chart when the initial value is u.
Since y, >0, we assume that the lower limit and the upper limit are H_=0 and H, =b,

respectively. L(u) is given by the integral equation

L(u)=1+ e L[(1-2)u+A(gu+y)]f(y)dy. @)
After a change of variable,
L Lo y—(1-2)u
_1+;_|.0 L(y)f [ﬂ_(ﬁu dy, ®)

where L(u) is a Fredholm integral equation of the second kind.

From (5) if y, ~ Exp(1) then we have f(y)=e”,y>0

then we obtain,

Let
(17/1)u+¢u
C(u)=e * : 0<u<h
so, we have
=1+= I y)e’C )dy ; O0<u<b
C(u) b -y
:1+T-[0 L(y)ke ldy.
We consider

b oy
d =L L(y) *dy,
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then we obtain

L(u):1+cgu)d.

(6)

Now we can express the constant d as

b Y
d :IO L(y)e *dy

- I:[uc(ﬂy)d}eidy

b ! (7)
1+ (e _1) e¢u
A

where substitute (7) into (6) the solution for the integral equation (5) is

b
—ﬂ[e‘—l]
(l—l)u+ y
Lu)=1+te » * L

A

. 8
| ®)

4. Integral Equations for Evaluating ARL for EWMA Control Chart for AR(1)

Process with Exponential White Noise

In this section we present a numerical method to evaluate solution of the
integral equations. Firstly, recall the equation (5)

L(u):l+%_|';L(y)f (y_(l_/l)“—qﬁu]dy.

A

H
In general, we can approximate the Integral ff(z)dz by the sum of rectangles with
0

bases H/m with heights chosen as the values of f at the midpoints of intervals of

length H/m beginning at zero, i.e. on the interval [0,H] with the division points
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a7

0<a<a,<a <..<a <H andweightsw, = H/m . We can rewrite the approximation for

an integral is of the form:

where a.:i j—E ., k=12,..,m.
Y m 2

Then the Integral Equation (4) can be approximated as follows:

L(a) z1+%iij(aj) f (E”_(l_/l)za‘—(,ﬁai], i=123,..,m.

A

j=1
That is

o)1 3 S (a) o[ -8

=1

or in matrix form as

mel = lmxl + Rmxmmel or (Im - Rmxm) mel = 1m><1| (9)
where
L(a) 1
mel: .L(aZ) ’1m><1: 1
L(ay) 1
and
1o [a-(1-4)a a, —(1-4)a,
—wf - —w_f -
1 -(1-4)a 1 a,—(1-4)a
R e w8
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and I, =diag(L1,...,1) is the unit matrix of order m. If there exists (I, -R,.,)", then the
solution of the matrix equation (9)

Lya = (1o = Run) Ly
We may approximate the function L(u) as

m

E(u)z1+%2ij(aJ) f (aj_(l_’l)u—qju}

=t A

where w, :% and a, :%(j—%).
5. Numerical Comparisons

In this part, we compare the suggest formula results obtained with results by the
numerical integral equations. In this work we assume that observations are from AR(1)
processes with exponential white noise with parameter « =1 and will consider with
smoothing constants A are 0.2, 0.3, 0.4 and ¢ are 0.1, 0.2, 0.3 for the explicit formula
and numerical integral equation, as these values are recommended for EWMA control
charts in the literature (i.e., Crowder [5] and Gan [7]). The results for ARL are computed

for an initial value 0.1 for Z; and X,.

In Table 1, we will consider the exponential distribution with mean 1 as this is
representative of the situations of interest. We compare the numerical results obtained
by explicit formulas with results by integral equations both for EWMA control chart with

¢ is 0.1 calculations with equations (5) and (8), respectively give ARL in control for the

optimal set of parameters 1 and b. Obviously, the explicit formulas from the suggested
formulas give results which are very closed to the numerical integral equations. Note that,
the calculations with explicit formula (8) are much faster. For example, when given that
¢ is 0.1, calculations time based on our technique takes less than 1 second while the
CPU time required for numerical integral equation for the EWMA run are inside the

parentheses.



Wannaporn Suriyakat 49

Table 1. Comparison of the ARL to the explicit formulas and the numerical integral

equations when ¢ is 0.1. The entries inside the parentheses are CPU times in seconds.

ARL

* ° Explicit formulas Integral Equations

0.12 | 2.585(0.0001) 2.585 (42.1675)

0.2 | 0.17 | 5.099 (0.0034) 5.099 (42.3767)
0.22 | 377.439 (0.0058) 377.438 (42.2609)

0.25 | 3.825(0.0001) 3.824 (42.3756)

0.3 | 0.30 | 7.331(0.0033) 7.330 (42.2582)
0.35 | 154.177 (0.0035) 154.178(42.3941)

0.40 | 5.428 (0.0001) 5.429 (42.3789)

0.4 | 0.45 | 10.328 (0.0001) 10.329 (43.7835)
0.50 | 131.003 (0.0001) 131.002 (43.0657)

In Tables 2 and 3, we present ARL for ¢ are 0.2 and 0.3 and smoothing constants (1)

are 0.2, 0.3 and 0.4. It can be seen from ARL from that all of the explicit formulas give
results which are close to the numerical integral equations with the same parameters.

The entries inside the parentheses are CPU time.

Table 2. Comparison of the ARL by the explicit formulas and the numerical integral

equations when ¢ is 0.2. The entries inside the parentheses are CPU times.

ARL

* ° Explicit formulas Integral Equations
0.11 | 2.374(0.0034) 2.375 (48.6926)

0.2 | 0.16 | 4.410 (0.0001) 4.411 (53.2442)
0.21 | 30.281 (0.0001) 30.280 (48.9279)

0.24 | 3.585(0.0052) 3.584(49.6797)

0.3 | 0.29 | 6.547 (0.0001) 6.546(48.7315)
0.34 | 45.060 (0.0001) 45.061 (49.2111)

0.39 | 5.188 (0.0001) 5.187 (52.8878)

0.4 | 0.44 | 9.585 (0.0001) 9.586 (55.5022)
0.49 | 70.746 (0.0001) 70.747 (50.6929)
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Table 3. Comparison of the ARL by the explicit formulas and the numerical integral

equations when ¢ is 0.3. The entries inside the parentheses are CPU times in seconds.

ARL

* P Explicit formulas Integral Equations
0.13 | 2.976 (0.0033) 2.975 (41.8028)

0.2 | 0.17 | 5.525(0.0001) 5.525 (42.5282)
0.21 | 42.503 (0.0001) 42.501 (42.0791)

0.26 | 4.530 (0.0040) 4.531 (42.6632)

0.3 | 0.30 | 8.496 (0.0001) 8.495 (42.3023)
0.34 | 89.455 (0.0038) 89.454 (42.4041)

0.41 | 6.749 (0.0001) 6.748 (42.3786)

0.4 | 0.45 | 13.161 (0.0001) 13.162 (42.2238)
0.49 | 408.918 (0.0032) 408.919 (42.1813)

Table 4. Comparison of the ARL obtained from the explicit formula and the numerical

integral equations when ¢ is 0.4 and A is 0.2. The entries inside the parentheses are

CPU times in seconds.

ARL
b

Explicit formulas Integral Equations
0.21 71.732 (0.0001) 71.733 (42.2841)
0.20 18.321 (0.0001) 18.320 (42.1262)
0.19 10.571 (0.0002) 10.570 (42.2840)
0.18 7.455 (0.0001) 7.456 (42.5106)
0.17 5.768 (0.0003) 5.769 (44.3505)
0.16 4.709 (0.0001) 4.708 (42.9741)
0.15 3.978 (0.0038) 3.979 (43.5121)

In Table 4 we calculate ARL by the explicit formulas and the numerical integral equations

when given ¢ is 0.4 and A is 0.2, It can be seen from Table 4 that all of the explicit

formulas give results close to ARL for AR(1) observations with exponential white noise

with the same optimal values b.



Wannaporn Suriyakat 51

6. Conclusion

We have presented that the explicit formulas for ARL of one-sided EWMA

charts for the case of an AR(1) process with exponential white noise. We have shown

that the proposed formulas are very accurate, easy to calculate and program. Using the

formulas, we have been able to provide tables for the optimal weights, boundaries and

approximations for ARL for one-sided EWMA charts for AR(1) process with exponential

white noise. The performance comparison of the control charts has been based on the
criteria of ARL.
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