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Abstract 

 We propose analytical solutions to evaluate the characteristic of the control 

chart - the average run length (ARL) when the process is in-control for EWMA control 

chart for AR(1) process observations with exponential white noise. We use the integral 

equation technique to derive an explicit formula for the average run length. In several 

examples, the analytical solutions are compared with the results obtained from the 

numerical approximations. 

______________________________ 
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1.  Introduction 

Control charts are usually used to detect aberrant observations in a process. 

Besides, they are often used for monitoring and improving quality in many real 

applications, for instance, in Computer Science, Engineering, Business and Economics, 

Medicine, Biomedical and Life Sciences, Chemistry and Materials Science, Humanities, 
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Social Sciences and Law and in other areas of applications. Usually, the performance of 

the control chart is measured by the average run length (ARL). The 0ARL  is defined as 

the mean of false alarm time ( )τ  before an in-control process is taken to signal to be out 

of control. A sufficient large in-control 0ARL  is desired. When the process is out-of-

control, the performance of a control chart is usually used as 1ARL  or the average of 

delay (AD) time. It is the expected number of observations taken from an out-of-control 

process until the control chart signals that the process is out-of-control. Ideally, the AD 

time should be small. 

The methods for evaluating the characteristics of an Exponentially Weighted 

Moving Average (EWMA) control charts have been studied. Roberts [1] who first studied 

the properties of the EWMA chart in the case of normal distribution by using simulation. 

Next, the performance of EWMA, Cumulative Sum (CUSUM) and Shewhart control 

charts were compared by Roberts [2]. Brook and Evans [3] approximated the run length 

of EWMA by using a finite-state Markov Chain Approach (MCA) with discrete and 

continuous distributions. A numerically procedure for the tabulation of ARL of one- and 

two-sided EWMA charts were presented by Robinson and Ho [4]. A numerical procedure 

using integral equations for the tabulation of moments of run lengths of EWMA charts 

was presented by Crowder [5]. The two-sided EWMA chart assuming normal 

observations for both ARLs and standard deviations of run lengths were presented. 

Lucas and Saccucci [6] showed the properties of EWMA scheme used to monitor the 

mean of a normally distributed process by a Markov chain. A design procedure for 

EWMA schemes is given. The ARL of the Exponential EWMA chart were presented 

exactly based on the solution of a set of differential equations by Gan [7]. Borror [8] 

studied the ARL performance of EWMA chart for both skewed and heavy-tailed 

symmetric non-normal distributions using MCA. An integral equation for the ARL of the 

three-way control chart is analytically derived and numerical method for solving it has 

been studied for ARL by Calzada and Scariano [9]. They offered users software that 

reduce the computational burden and frees one to focus more fully on three-way design 

specifications appropriate for a particular application. Sukparungsee [10] introduced an 

analytical closed-form formula for determining the characteristics of EWMA charts for the 

cases of normal and some non-normal distributions by using a martingale-based 

technique. Wang [11] and Spliid [12] approximated the properties of the EWMA control 

chart by using the infinite state transition probability matrix similar to Lucas and Saccucci 

[6]. Explicit formulas for evaluating the characteristic of the control charts were 
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introduced recently. Areepong [13] derived the explicit formulas of ARL and AD for 

exponential EWMA charts. Mititelu et al. [14] presented the explicit formula for ARL by 

Feldhom Integral Equation for one-sided EWMA control chart with Laplace distribution 

and CUSUM control chart with hyperexponential distribution. 

In real applications, observations could be serially-correlated which often 

appear in finance and insurance. Autoregressive processes with non-Gaussian white 

noise are useful for modeling a wide range of observed phenomena which do not allow 

negative values or have a highly skewed distribution. Many problems such as daily flows 

of rivers, wind speeds, amount of dissolved oxygen in a river and etc. which are 

examples of real applications with serially-correlated processes. The full study of the 

case of the first-order autoregressive process AR(1) with marginal exponential 

distribution ( )( )1EAR process  was introduced by Gaver and Lewis [15].  Bell and Smith 

[16] considered inference for non-negative autoregressive schemes 1t t tX X Yρ −= +  

where ρ  is the autoregressive coefficient is ( )0 1ρ≤ <  and tY  are i.i.d. non - negative 

random variables. They assume that the initial observation is known and apply their 

results with problem in water quality analysis. Some references are Turkmann and 

Pereira [17], Andel [18], Andel and Zvara [19], Turkmann [20], Ibazizen and Fellag [21]. 

In this research we derived analytical formulas for ARL of the EWMA control 

chart when observations are AR(1) process with exponential white noise. The Integral 

Equations is used to derive this analytical formula. We compare our analytical results for 

ARL with results from numerical Integral Equation approximations. The paper is 

organized as follows: in section 2, we define the EWMA control chart for AR(1) process 

with exponential white noise. In sections 3, the explicit formula is derived for finding ARL 

of EWMA chart for AR(1) process with exponential white noise and Integral Equations for 

evaluating ARL for EWMA control chart for AR(1) process with exponential white noise 

will be discussed in section 4. In section 5, numerical comparisons with the analytical 

results are presented. The conclusions are discussed in section 6.      

 

2.  EWMA Control Chart for AR(1) Process with Exponential White Noise 

The performance of the control chart is measured by the ARL. The 0ARL  is 

defined as the expected of false alarm time ( )τ  before an in-control process is taken to 

signal to be out of control. A sufficient large in-control 0ARL  is desired. When the 

process is out-of-control, the performance of a control chart is usually used as the 1ARL  
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or average of delay (AD) time. It is the expected number of observations taken from an 

out-of-control process until the control chart signals that the process is out-of-control. 

Ideally, the AD time should be small. The EWMA control chart is widely used to 

monitoring and detecting a small shift in the process mean. The EWMA control chart for 

the discrete time case is defined as a recursive form 

( ) 11 , 1,2, ,t t tX X tλ λξ−= − + =               (1) 

where the smoothing parameter ( )0,1 ,λ ∈ tX  is the weighted average between current 

and previous observations, 0X  is initial value and the process { }, 1,2,...t tξ =  consists of 

is the independent observations with mean µ  and variance 2σ . The control limits are as 

the form 

UCL Lµ σ= +   and .LCL Lµ σ= −  

In this paper, we study the sequence { }tξ  consists of the first-order autoregressive 

(AR(1))  observations. The ( )1AR  process is defined as a solution of equation 

1 , 1,2, ,t t ty tξ φξ −= + =              (2) 

where ty  is white noise (see in Gaver and Lewis [15], Andel [18], Andel and Zvara [19], 

we assume that independent random variables ty  is the random error term at time t  

following ( )1Exp  and φ  is constant ( )0 1φ< <  and 0ξ  is initial value. The target in-

control parameter 0α  is supposed to be steady at target value, 0X  and 0ξ  are usually 

chosen to be the process in-control parameter, i.e., 0 0 0 .X ξ α= =  We mainly discuss the 

case an upper-sided EWMA control chart for AR(1) process with exponential white noise. 

The alarm times for this type of procedure are the following: 

{ }inf 0 : ,b tt X bτ = > >  where b  is the control limit.  

An exponential distribution with parameter 1 ( )( )1Exp  is defined by following function: 

( ) , 0.yf y e y−= ≥              (3) 

The ARL of EWMA control chart for AR(1) process with exponential white noise depends 

on the control limit ( )b and the smoothing parameter ( )λ . The control limits are as the 

form  

UCL L bµ σ= + =     and 0.LCL Lµ σ= − =  
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3. Explicit Formula for Evaluating ARL for EWMA Control Chart for AR(1) Process 
with Exponential White Noise  

 In this part, we use explicit formulas of the integral equation to find ARL for 

EWMA control chart for observations from the AR(1) process with exponential white 

noise. In real application, the AR(1) process often have a normal distribution. 

Nevertheless, a process may not follow a normal distribution as it may be right skewed. 

The AR(1) process with exponential white noise have been studied in the literature. 

Crowder’s (1987) method for computing the ARL of EWMA control chart is applied below. 

Let ( )L u  denote the ARL of one-sided EWMA control chart when the initial value is .u  

Since 0ty ≥ , we assume that the lower limit and the upper limit are 0LH =  and ,UH b=  

respectively. ( )L u  is given by the integral equation 

( ) ( ) ( )
( ) ( )

( )
0 10 1

1 1
u X b

L u L u u y f y dy
λ λ φ η

λ λ φ
≤ − + + ≤

= +  − + +  ∫ .         (4) 

After a change of variable, 

  ( ) ( ) ( )
0

111 ,
b y u

L u L y f u dy
λ

φ
λ λ

 − − 
= + − 

 
∫                        (5) 

where ( )L u  is a Fredholm integral equation of the second kind. 

From (5) if ( )~ 1ty Exp  then we have ( ) , 0yf y e y−= ≥  

( ) ( )11
,

uy
uy u

f u e e e
λ

φλ λ
λ

φ
λ

−
− − − 

− = 
 

     

then we obtain, 

( ) ( )
( )1

0

11
uy ub

L u L y e e dy
λ

φ
λ λ

λ

−
− +

= + ∫ .      

Let  

( )
( )1

; 0
u

u
C u e u b

λ
φ

λ
−

+
= ≤ ≤   

so, we have 

( ) ( ) ( )

( ) ( )

0

0

11 ; 0

1 .

yb

yb

L u L y e C u dy u b

C u
L y e dy

λ

λ

λ

λ

−

−

= + ≤ ≤

= +

∫

∫
  

We consider  

( )
0

,
yb

d L y e dyλ
−

= ∫    
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then we obtain 

  ( ) ( )1 .
C u

L u d
λ

= +                          (6) 

Now we can express the constant d  as 

  
( )

( )
0

0
1

yb

yb

d L y e dy

C y
d e dy

λ

λ

λ

−

−

=

 
= + 

 

∫

∫
  

( )

1
,

1
1

b

b
u

e

e
e

λ

φ

λ

λ

−

−

 
− − 

 =
−

+

                        (7) 

where substitute (7) into (6) the solution for the integral equation (5) is 

( )
( )

( )

( )

( )

1

1

1
11

1
1

1
1

1

b

u
u

b
u

b

u
u

b u

e
L u e

e
e

e
e e

e e

λ
λ

φ
λ

φ

λ
λ

φλ
φ

λ

λ

λ

λ

λ

−

−
+

−

−

−

−

 
− − 

 = +
−

+

 
− 

 = −
+ −

    

    

                   

( )1

1
1 .

1

u b

u b

e e

e e

λ
λ λ

φ

λ

λ

−
−

− −

 
− 

 = −
+ −

                             (8) 

 

4. Integral Equations for Evaluating ARL for EWMA Control Chart for AR(1) 

Process with Exponential White  Noise  

In this section we present a numerical method to evaluate solution of the 

integral equations. Firstly, recall the equation (5) 

( ) ( ) ( )
0

111
b y u

L u L y f u dy
λ

φ
λ λ

 − − 
= + − 

 
∫ . 

In general, we can approximate the Integral ( )
0

H

f z dz∫  by the sum of rectangles with 

bases H m  with heights chosen as the values of f  at the midpoints of intervals of 

length H m  beginning at zero, i.e. on the interval [ ]0, H  with the division points 
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1 2 30 ma a a a H≤ ≤ ≤ ≤ ≤ ≤  and weights jw H m= . We can rewrite the approximation for 

an integral is of the form: 

( ) ( )
10

,
H m

j j
j

f z dz w f a
=

≈ ∑∫                     

where 1 , 1,2,..., .
2j

Ha j k m
m
 = − = 
 

 

Then the Integral Equation (4) can be approximated as follows: 

( ) ( ) ( )
1

111 , 1,2,3,..., .
m

j i
i j j i

j

a a
L a w L a f a i m

λ
φ

λ λ=

 − − 
≈ + − =  

 
∑                

That is 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
1 1

1

2
2 2

1

3
3 3

1

1

111

111

111

111

m
j

j j
j

m
j

j j
j

m
j

j j
j

m
j m

m j j m
j

a a
L a w L a f a

a a
L a w L a f a

a a
L a w L a f a

a a
L a w L a f a

λ
φ

λ λ

λ
φ

λ λ

λ
φ

λ λ

λ
φ

λ λ

=

=

=

=

 − − 
≈ + −  

 
 − − 

≈ + −  
 
 − − 

≈ + −  
 

 − − 
≈ + −  

 

∑

∑

∑

∑



 

or in matrix form as 

1 1 11m m m m mL R L× × × ×= +  or ( ) 1 11 ,m m m m mI R L× × ×− =             (9) 

where 

( )
( )

( )

1

2
1 1

1
1

,1

1

m m

m

L a

L a
L

L a

× ×

      
   = =   
        


  

and 

( ) ( )

( ) ( )

( ) ( )

1 1 1
1 1 1

1 2 2
1 2 2

1
1

1 11 1

1 11 1

1 11 1

m
m

m
m

m m

m m m
m m m

a a a a
w f a w f a

a a a a
w f a w f a

R

a a a a
w f a w f a

λ λ
φ φ

λ λ λ λ

λ λ
φ φ

λ λ λ λ

λ λ
φ φ

λ λ λ λ

×

  − −   − − 
− −    

    
  − −   − −  − −    =     
 
 

 − −   − −  − −         





 


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and ( )1,1,...,1mI diag=  is the unit matrix of order m. If there exists ( ) 1 ,m m mI R −
×−  then the 

solution of the matrix equation (9) 

( ) 1
1 11 .m m m m mL I R −
× × ×= −    

We may approximate the function ( )L u  as 

( ) ( ) ( )
1

111 ,
m

j
j j

j

a u
L u w L a f u

λ
φ

λ λ=

 − − 
≈ + −  

 
∑    

where j
bw
m

=  and 1
2j

ba j
m
 = − 
 

. 

5. Numerical Comparisons 

 In this part, we compare the suggest formula results obtained with results by the 

numerical integral equations. In this work we assume that observations are from AR(1) 

processes with exponential white noise with parameter 1α =  and will consider with 

smoothing constants λ  are 0.2, 0.3, 0.4 and φ  are 0.1, 0.2, 0.3 for the explicit formula 

and numerical integral equation, as these values are recommended for EWMA control 

charts in the literature (i.e., Crowder [5] and Gan [7]). The results for ARL are computed 

for an initial value 0.1 for 0Z  and 0 .X  

In Table 1, we will consider the exponential distribution with mean 1 as this is 

representative of the situations of interest. We compare the numerical results obtained 

by explicit formulas with results by integral equations both for EWMA control chart with 

φ  is 0.1 calculations with equations (5) and (8), respectively give ARL in control for the 

optimal set of parameters λ  and b . Obviously, the explicit formulas from the suggested 

formulas give results which are very closed to the numerical integral equations. Note that, 

the calculations with explicit formula (8) are much faster. For example, when given that 

φ  is 0.1, calculations time based on our technique takes less than 1 second while the 

CPU time required for numerical integral equation for the EWMA run are inside the 

parentheses. 
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Table 1. Comparison of the ARL to the explicit formulas and the numerical integral 

equations when φ  is 0.1. The entries inside the parentheses are CPU times in seconds. 

 

λ  b  
ARL 

Explicit formulas Integral Equations 

0.2 

0.12 

0.17 

0.22 

2.585 (0.0001) 

5.099 (0.0034) 

377.439 (0.0058) 

2.585 (42.1675) 

5.099 (42.3767) 

377.438 (42.2609) 

0.3 

0.25 

0.30 

0.35 

3.825 (0.0001) 

7.331 (0.0033) 

154.177 (0.0035) 

3.824 (42.3756) 

7.330 (42.2582) 

154.178(42.3941) 

0.4 

0.40 

0.45 

0.50 

5.428 (0.0001) 

10.328 (0.0001) 

131.003 (0.0001) 

5.429 (42.3789) 

10.329 (43.7835) 

131.002 (43.0657) 
 

 

In Tables 2 and 3, we present ARL for φ  are 0.2 and 0.3 and smoothing constants ( )λ  

are 0.2, 0.3 and 0.4. It can be seen from ARL from that all of the explicit formulas give 

results which are close to the numerical integral equations with the same parameters. 

The entries inside the parentheses are CPU time.  

 
Table 2. Comparison of the ARL by the explicit formulas and the numerical integral 

equations when φ  is 0.2. The entries inside the parentheses are CPU times. 

 

λ  b  
ARL 

Explicit formulas Integral Equations 

0.2 

0.11 

0.16 

0.21 

2.374 (0.0034) 

4.410 (0.0001) 

30.281 (0.0001) 

2.375 (48.6926) 

4.411 (53.2442) 

30.280 (48.9279) 

0.3 

0.24 

0.29 

0.34 

3.585 (0.0052) 

6.547 (0.0001) 

45.060 (0.0001) 

3.584(49.6797) 

6.546(48.7315) 

45.061 (49.2111) 

0.4 

0.39 

0.44 

0.49 

5.188 (0.0001) 

9.585 (0.0001) 

70.746 (0.0001) 

5.187 (52.8878) 

9.586 (55.5022) 

70.747 (50.6929) 
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Table 3. Comparison of the ARL by the explicit formulas and the numerical integral 

equations when φ  is 0.3. The entries inside the parentheses are CPU times in seconds. 

 

λ  b  
ARL 

Explicit formulas Integral Equations 

0.2 

0.13 

0.17 

0.21 

2.976 (0.0033) 

5.525 (0.0001) 

42.503 (0.0001) 

2.975 (41.8028) 

5.525 (42.5282) 

42.501 (42.0791) 

0.3 

0.26 

0.30 

0.34 

4.530 (0.0040) 

8.496 (0.0001) 

89.455 (0.0038) 

4.531 (42.6632) 

8.495 (42.3023) 

89.454 (42.4041) 

0.4 

0.41 

0.45 

0.49 

6.749 (0.0001) 

13.161 (0.0001) 

408.918 (0.0032) 

6.748 (42.3786) 

13.162 (42.2238) 

408.919 (42.1813) 

 
Table 4. Comparison of the ARL obtained from the explicit formula and the numerical 

integral equations when φ  is 0.4 and λ  is 0.2. The entries inside the parentheses are 

CPU times in seconds. 
 

b  
ARL 

Explicit formulas Integral Equations 

0.21 

0.20 

0.19 

0.18 

0.17 

0.16 

0.15 

71.732 (0.0001) 

18.321 (0.0001) 

10.571 (0.0002) 

7.455 (0.0001) 

5.768 (0.0003) 

4.709 (0.0001) 

3.978 (0.0038) 

71.733 (42.2841) 

18.320 (42.1262) 

10.570 (42.2840) 

7.456 (42.5106) 

5.769 (44.3505) 

4.708 (42.9741) 

3.979 (43.5121) 

 

In Table 4 we calculate ARL by the explicit formulas and the numerical integral equations 

when given φ  is 0.4 and λ  is 0.2, It can be seen from Table 4 that all of the explicit 

formulas give results close to ARL for AR(1) observations with exponential white noise 

with the same optimal values b. 
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6. Conclusion 

We have presented that the explicit formulas for ARL of one-sided EWMA 

charts for the case of an AR(1) process with exponential white noise. We have shown 

that the proposed formulas are very accurate, easy to calculate and program. Using the 

formulas, we have been able to provide tables for the optimal weights, boundaries and 

approximations for ARL for one-sided EWMA charts for AR(1) process with exponential 

white noise. The performance comparison of the control charts has been based on the 

criteria of ARL. 
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