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Abstract 

 In this paper, the likelihood function given a complete sample from the two-

parameter generalized Rayleigh model is derived. By making use of the Bayesian 

framework, the posterior density function, the predictive density for a single future 

response, a bivariate future response, and several future responses are derived. A 

comparison of the predictive variability of the maximum likelihood estimates and some of 

its neighborhood estimates are provided. The predictive means, standard deviations, 

95% highest predictive density intervals, and the shape characteristics for a single future 

response are determined. A real data set is utilized to illustrate the predictive results. 

_________________ 
Keywords: Statistical inference, Generalized Rayleigh model, Likelihood function, 

Posterior density, Predictive inference. 
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1. Introduction 

 A large amount of life data has been collected and analyzed in connection with 

recent advances in engineering and the biomedical sciences. These data may form a 

complete sample. In order to make a scientific conclusion about the nature of the data, it 

is important to use statistical and computational techniques. The generalized Rayleigh 

model has been used in modeling the life data. Most of the studies on this model have 

focused on estimation of the parameters, or on the reliability and hazard functions. There 

are a number of studies related to the generalized Rayleigh model that have appeared in 

the refereed journals, but none of them discussed predictive model for responses.  

              Inference about the future responses is known as predictive inference. Many 

authors have studied the predictive inference to solve challenging issues in engineering 

and biomedical sciences in recent years, for example, Mahdi et al [1], Thabane [2], 

Thabane and Haq [3], Khan [4-6], Khan and Kabir [7], Khan et al. [8-10], Khan et al. [11], 

Khan and Provost [12], among others. 

              One may consider the Bayesian method to derive predictive inference. The 

Bayesian method considers prior distribution for the parameters and the prior is used to 

drive the posterior density for the parameters. More about the Bayesian method, the 

readers are referred to Ahsanullah and Ahmed [13], Bernardo and Smith [14], Berger 

[15], and Geisser [16], among others.  

              Additional applications of the Bayesian method to predictive inference have 

been discussed for instance by Khan et al. [8-10, 17], Khan et al. [18], Khan et al. [11], 

Khan and Provost [12], Khan and Provost [19], Khan et al.  [20], Thabane [2], Thabane 

and Haq [3], Ali-Mousa and Al-Sagheer [21], and Raqab [22], among others. 

               Recorded complete sample from an experiment may follow several statistical 

probability models such as the exponential, gamma, Weibull, normal, half-normal, log-

normal, Rayleigh, generalized Rayleigh, and inverse gaussian. The two-parameter 

generalized Rayleigh has been used in modeling the lifetime data. Several authors have 

studied this model to estimate the parameters, to name a few, Raqab and Kundu [23] 

described in details the generalized Rayleigh model with several properties. Kundu and 

Raqab [24] used different methods to estimate the parameters. Al-khedhairi et al. [25] 

proposed estimations for the two-parameter generalized Rayleigh model based on 

grouped and censored data. They used goodness of fit tests to justify the two-parameter 

generalized Rayleigh model fits the data set better than other models. 
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             Inference about the future responses from the generalized Rayleigh is also 

important. Therefore, the aim of this paper is to derive the predictive inference from the 

two-parameter generalized Rayleigh model given an observed complete sample.  

            Following Kundu and Raqab [24], the probability density function (pdf) for the 

two-parameter generalized Rayleigh model is given by 

 

{ } { }( ) 12 2 22     exp ( )  1 - exp ( ) ,  0;  , > 0,

( | ,  ) = 
0      elsewhere,                                                                 (1)  

x x x x

p x

α
α λ λ λ α λ

α λ

− − − ≥



  

 

where α and λ are the shape and scale parameters respectively; and the distribution 

function is  

 

{ }( )2( | ,  ) = 1 - exp ( ) .F x x
α

α λ λ−  

 
               The rest of the paper is organized as follows: Section 2 presents the predictive 

model, which includes the likelihood function, posterior density function, predictive 

densities for a single future response, bivariate future response, and several future 

responses given a complete sample of observations from the generalized Rayleigh 

model. To illustrate the results, a numerical example is presented in Section 3. Finally, a 

conclusion is added in Section 4. 

 
 
2. The predictive model 

                    Let z be a future response, then following Khan [26], the predictive density 

of z given the observed data x is 

( | ) = ( | ,  ) ( ,  | )  ,p z p z p d dα λ α λ λ α∫ ∫x x
 

where ( ,  | )p α λ x  is the posterior density function, and  ( | ,  )p z α λ   represents the 

probability density function of a future response (z) that may be defined from model  (1). 

The posterior density is given by 

( ,  | ) = ( ) L( , | ) ( ,  ),p pα λ α λ α λΨx x x  
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where  L( ,  | )α λ x  is the likelihood function, ( ,  )p α λ   is the prior density, and the 

reciprocal of the normalizing constant is 

 

1( )  = L( , | x) ( ,  )  .p d dα λ α λ λ α−Ψ ∫ ∫x  

To derive the likelihood function, let  1,  . . . , nx x  be a random sample of size n 

from model (1). Thus,  1  ( ,  . . . , ) 'nx x=x   forms an observed sample. Then given a 

set of data  1  ( ,  . . . , )nx x=x   from (1), the likelihood function is given by 

 

{ }( ) 12 2 2

1 1 1

L( , | )     exp ( )  ( )  1 - exp ( ) .
n nn

n n
i i i

i i i

x x x
α

α λ α λ λ λ
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= = =

    
∝ − −     

     
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Ahmed [27] discussed an estimation theory under uncertain prior information. 

Ahsanullah and Ahmed [13] discussed in details on Bayes and empirical Bayes 

estimates of survival and hazard functions of a class of distribution. Ahmed and Tomkins 

[28] estimated lognormal mean by making use of an uncertain prior information. Khan 

[26] considered predictive inference problem for an independent future sample from a 

two-parameter exponential model given a type II censored sample by making use of the 

Bayesian approach. Khan et al. [17] derived the Bayesian predictive models given a 

doubly censored sample from the two-parameter exponential model by means of a 

conjugate prior for the scale parameter. Khan et al. [29] derived the Bayesian predictive 

inference from the one-parameter Rayleigh life model under type II censored sample 

considering a conjugate prior for the scale parameter. Khan and Provost [19] derived the 

Bayesian predictive inference from the two-parameter Rayleigh life model under type II 

censored sample considering a uniform prior for the location parameter and a conjugate 

prior for the scale parameter. Khan et al. [20] used the same prior to derive the predictive 

inference from the two-parameter Rayleigh life model given a doubly censored sample. 

Here, it is assumed that the prior density for the scale parameter ( )λ  is given by 

 

                                             { }( )   exp ,   0.p λ λ λ λ∝ − >                             (2)          
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Following Khan et al. [9], the shape parameter ( )α  has a uniform prior 

over the interval (0,  )α  which is given below: 

 

                                     
1( )  ,   0.p α α
α

∝ >                                       (3)           

 
 
 
              It is assumed that α  and λ  are independently distributed. Thus, the joint prior 

density of α and λ  is 

                            
{ } exp
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∝ >                                (4) 

             Considering the prior density in (4), the posterior density of α  and λ  is given 

by 
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where 0 ( )Ψ x  is a normalizing constant. 

             For the predictive density of z given a sample 1  ( ,  . . . , )nx x=x  is given by 

( | ) = ( | ,  ) ( ,  | )  .p z p z p d dα λ α λ λ α∫ ∫x x  

 
The above model may then be utilized to evaluate the predictive density for responses 

from the two-parameter generalized Rayleigh model. 

 

2.1 Predictive density for a single future response 

               Let z be a single future response from the model specified by (1), where z is 

independent of the observed data. Then, the predictive density for a single future 

response (z) given 1  ( ,  . . . , )nx x=x     is 

0 0
( | ) = ( | ,  ) ( ,  | )  ,p z p z p d d

α λ
α λ α λ λ α

+∞ +∞

= =∫ ∫x x  

 
where ( | ,  ) p z α λ may be defined from model (1), see Khan [26], Khan et al. [8, 17]. 
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                  Thus, the predictive density for a single future response is given by 
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where 1( )Ψ x  is a normalizing constant. 
 
2.2 Predictive density for more than one future response 

 
                   Statistical inference about more than one future response is important, as 

pointed out by Bain and Engelhardt [30],  Khan et al. [9, 10].  Let 1z  and  2z  be two 

independent future responses from model (1). Then to derive the joint predictive model 

of  1z  and 2z ,  the posterior density of ( ,  | )p α λ x  obtained in Section 2 is utilized. 

Thus, the predictive density for a bivariate future response is given by 
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where 2 ( )Ψ x  is a normalizing constant. 
 



Hafiz M. R. Khan                                     59 

                 Similarly, let   1,  . . . , mz z  be the m ordered future responses from model (1).  
Thus, 
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where ( )mΨ x  is a normalizing constant. For m = 1, the above predictive density 

reduces to the predictive density for a single future response obtained in equation (5); 

when m = 2, the above predictive density reduces to the predictive density for a bivariate 

future response obtained in equation (6); and so on. 

 
 
3. Illustrative example 
 
                    In this section a real data set that was originally given in Nelson [31] is used. 

Al-khedhairi et al. [25] used the same data set to perform the goodness of fit tests and to 

identify the best fit model. The lifetimes of eight unequally spaced inspections are given 

as follows: 
6.12, 19.92, 29.64, 35.40, 39.72, 45.24, 52.32, 63.48. 

 
                  These data were used for goodness of fit tests for the exponential distribution 

(ED), generalized exponential distribution (GED), and generalized Rayleigh distribution 

(GRD). Al-khedhairi et al. [25] estimated the maximum likelihood estimators for the 

parameters by using the data set. They used model testing criteria; the log-likelihood 

function and the Kolmogorov-Smirnov (K-S) test statistics. They concluded that the GRD 

( )4ˆˆ  0.684,   1.425  10α λ −= = ×  fits the data much better than ED  

( )2ˆ  1.2097  10α −= ×  and GED ( )2 ˆˆ  2.0285  10 ,   1.7839α λ−= × = . The results of  
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the Kolmogorov-Smirnov (K-S) test statistics of the empirical model and the fitted model 

given the data set were: K-S (ED) = 0.214; K-S (GED) = 0.144; and K-S (GRD) = 0.105. 

The final conclusion was the data set follows the two-parameter generalized Rayleigh 

model.  

                  The present study deals with the same data set by assuming that the eight 

items’ lifetimes were generated from a life testing experiment. Al-khedhairi et al. [25] 

considered the lifetimes for eight unequally spaced inspections with the number of 

failures recorded in each time interval and estimated the maximum likelihood estimators 

for the parameters α and λ. The estimated values are substituted in the predictive model 

and an attempt is made to display the predictive density graphically. Unfortunately, the 

estimated values did not display the predictive density. It may be the case that the data 

point for each item’s lifetime is considered to form a complete sample. An iterative 

technique is used to display the predictive density. In this case, we considered some 

initial values of the estimates (since ,   0α λ > ), and those values are substituted into 

the predictive density (5) to display it graphically. 

                  The numerical integration command ‘NIntegrate’ in conjunction with the 

symbolic computational software Mathematica version 7.0, Wolfram Research [32] is 

applied to determine the normalizing constants and to plot the predictive graphs. The 

predictive means, standard deviations, highest predictive density (HPD) intervals, and 

the measures of skewness and kurtosis are obtained. The Mathematica package is also 

utilized to carry out all related calculations.  

                  An HPD interval is the interval which includes the most probable values of a 

given predictive density at a given significance level, subject to the condition that the 

density function has the same value at the end points. Suppose 1a  and 2a  are to be 

arbitrarily chosen values. The HPD interval [ 1 2, a a ] for z  must simultaneously satisfy 

the following two conditions: 

                               1 2Pr( ) = 1 - a z a α≤ ≤   and  1 2( | ) ( | ).p a p a=x x     

                  For more about HPD intervals, the reader is referred to Box and Tiao [33], 

Khan [26]. Thus, in light of the expression derived for p(z | x), in equation (5), one can 

obtain the numerical solutions for 1a  and 2a . In the present study, by setting 

1 2( | ) ( | )p a p a=x x and aiming for 1 2Pr( )  0.95a z a≤ ≤ = ,  95% HPD 

intervals from equation (5) are obtained. 
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                  Figure 1 shows the graphical representation of the predictive densities with 

respect to certain values of the estimated parameters. The predictive density with 

respect to the estimated parameters ( ˆˆ  1.40,   0.018α λ= = ) gives higher variability 

than that of the predictive density with ( ˆˆ  1.50,   0.02α λ= = ). The predictive densities 

with ˆˆ(  1.20,   0.014)α λ= =  gives higher variability than that of ˆˆ(  1.30,   0.016)α λ= =  

.              Similarly, in the case of Figure 2, the predictive density with the estimated 

parameters ˆˆ(  1.02,   0.001)α λ= =  has the highest variability than that of the predictive 

densities with ˆˆ(  1.10,   0.012)α λ= = ; ˆˆ(  1.05;   0.010)α λ= = ; and 

ˆˆ(  1.03,   0.005),α λ= =  respectively. 

                    It is observed that when the estimated values ( )α  goes less than one with 

smaller scale parameter ( )λ , the predictive density does not produce its graph and 

therefore, does not yield any inference. For the estimate of the shape parameter, 

0.50α ≥ , one would have a right skewed unimodal density function as proposed by 

Raqab and Kundu [23], which agrees the predictive results. 

                   The predictive means, standard deviations, HPD intervals with the 

combinations of certain values of the parameters which are given in Table 1. The 

measures of skewness and kurtosis and normalizing constants are given in Table 2. 

Based on the iterative values of 1,  ,β α and λ  in Table 2, it may be commented that 

the predictive density for a single future response given a complete sample from the two-

parameter generalized Rayleigh model is positively skewed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62                                                                         Thailand Statistician, 2012; 10(1):53-68 

 
 
Figure 1. Comparison of variability of the predictive densities for a single future response 

with respect to certain iterative values of the parameters. 
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Figure 2. Comparison of variability of the predictive densities for a single future response 

with respect to certain iterative values of the parameters. 
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Table 1. Predictive mean, standard deviation, and HPD intervals for a single future 

response with some iterative values of the parameters given a complete sample. 
 
Values of parameters Means (z) Standard 

Deviations (z) 

95% HPD intervals 

 

 

α  λ  

1.50 0.020 48.3471 22.5675 (7.8035, 92.4673) 

1.40 0.018 56.2684 24.9361 (10.7331, 105.9830) 

1.30 0.016 61.3983 27.9765 (11.0114, 115.5528) 

1.20 0.014 67.9790 32.1577 (11.0331, 128.1190) 

1.10 0.012 76.7034 38.0233 (11.0640, 143.9200) 

1.05 0.010 90.2461 45.7288 (11.9380, 169.5650) 

1.03 0.005 179.273 92.0130 (22.4144, 337.9660) 

1.02 0.001 893.102 461.228 (278.943, 1914.3400) 

 
 

Table 2. Predictive shape characteristics and normalizing constants for a single future 

response with some iterative values of the parameters given a complete sample. 
 
Values of parameters  

β1 

 

β2 

 

Ψ1(x) 

 

α  λ  

1.50 0.020 0.2572 2.9847 5.5153 × 10−18 

1.40 0.018 0.2816 3.1184 1.21396 × 10−17 

1.30 0.016 0.2473 2.9494 6.1851 × 10−18 

1.20 0.014 0.2591 2.9325 2.42265 × 10−18 

1.10 0.012 0.3113 3.0307 6.95083 × 10−19 

1.05 0.010 0.3191 3.0159 1.80454  × 10−19 

1.03 0.005 0.3514 3.1028 8.35731 × 10−22 

1.02 0.001 0.3667 3.1454 5.53648 × 10−28 
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4. Conclusion 
 
                The predictive models for a single future response, a bivariate future response, 

and several future responses from the two-parameter generalized Rayleigh model by 

making use of the Bayesian method are derived. The normalizing constant for each of 

the predictive density is estimated to plot the predictive density accurately. The predictive 

means, standard deviations, and the highest predictive density intervals are obtained for 

the predictive density of a single future response. The measures of skewness and 

kurtosis of the predictive model are also given. Thus, one may infer that the predictive 

interval is narrower when the combinations of the iterative values, ˆ 1.50α = and ˆ 0.020λ =  

and the predictive interval is wider with the combinations of the iterative values, α̂  = 

1.40; 1.30; 1.20; 1.10; 1.05; 1.03, 1.02, and λ̂ = 0.018; 0.016; 0.014; 0.012; 0.010; 0.005; 

0.001, respectively. An advanced computational software package, ‘Mathematica version 

7.0’, is used to show the graphical representation of the predictive density for a single 

future response and also to carry out all related calculations. 
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