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Abstract

In this paper, the likelihood function given a complete sample from the two-
parameter generalized Rayleigh model is derived. By making use of the Bayesian
framework, the posterior density function, the predictive density for a single future
response, a bivariate future response, and several future responses are derived. A
comparison of the predictive variability of the maximum likelihood estimates and some of
its neighborhood estimates are provided. The predictive means, standard deviations,
95% highest predictive density intervals, and the shape characteristics for a single future

response are determined. A real data set is utilized to illustrate the predictive results.
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1.Introduction

A large amount of life data has been collected and analyzed in connection with
recent advances in engineering and the biomedical sciences. These data may form a
complete sample. In order to make a scientific conclusion about the nature of the data, it
is important to use statistical and computational techniques. The generalized Rayleigh
model has been used in modeling the life data. Most of the studies on this model have
focused on estimation of the parameters, or on the reliability and hazard functions. There
are a number of studies related to the generalized Rayleigh model that have appeared in
the refereed journals, but none of them discussed predictive model for responses.

Inference about the future responses is known as predictive inference. Many
authors have studied the predictive inference to solve challenging issues in engineering
and biomedical sciences in recent years, for example, Mahdi et al [1], Thabane [2],
Thabane and Haq [3], Khan [4-6], Khan and Kabir [7], Khan et al. [8-10], Khan et al. [11],
Khan and Provost [12], among others.

One may consider the Bayesian method to derive predictive inference. The
Bayesian method considers prior distribution for the parameters and the prior is used to
drive the posterior density for the parameters. More about the Bayesian method, the
readers are referred to Ahsanullah and Ahmed [13], Bernardo and Smith [14], Berger
[15], and Geisser [16], among others.

Additional applications of the Bayesian method to predictive inference have
been discussed for instance by Khan et al. [8-10, 17], Khan et al. [18], Khan et al. [11],
Khan and Provost [12], Khan and Provost [19], Khan et al. [20], Thabane [2], Thabane
and Hagq [3], Ali-Mousa and Al-Sagheer [21], and Ragab [22], among others.

Recorded complete sample from an experiment may follow several statistical
probability models such as the exponential, gamma, Weibull, normal, half-normal, log-
normal, Rayleigh, generalized Rayleigh, and inverse gaussian. The two-parameter
generalized Rayleigh has been used in modeling the lifetime data. Several authors have
studied this model to estimate the parameters, to name a few, Ragab and Kundu [23]
described in details the generalized Rayleigh model with several properties. Kundu and
Ragab [24] used different methods to estimate the parameters. Al-khedhairi et al. [25]
proposed estimations for the two-parameter generalized Rayleigh model based on
grouped and censored data. They used goodness of fit tests to justify the two-parameter

generalized Rayleigh model fits the data set better than other models.
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Inference about the future responses from the generalized Rayleigh is also
important. Therefore, the aim of this paper is to derive the predictive inference from the
two-parameter generalized Rayleigh model given an observed complete sample.

Following Kundu and Ragab [24], the probability density function (pdf) for the
two-parameter generalized Rayleigh model is given by

2 a 2% x exp{~(Ax)*} (1 - exp{—(/lx)z})a_l, x>0, a, >0,

p(x|e, 4) =
0 elsewhere, @

where a and A are the shape and scale parameters respectively; and the distribution
function is
2 (24
F(x|a, A) = (1—exp{—(;tx) }) .

The rest of the paper is organized as follows: Section 2 presents the predictive
model, which includes the likelihood function, posterior density function, predictive
densities for a single future response, bivariate future response, and several future
responses given a complete sample of observations from the generalized Rayleigh

model. To illustrate the results, a numerical example is presented in Section 3. Finally, a

conclusion is added in Section 4.

2.The predictive model
Let z be a future response, then following Khan [26], the predictive density

of z given the observed data x is
pz1X) = [[p(zla 2) pla, A]X) d2 da,

where p(a, A|X) is the posterior density function, and P(z|a, A) represents the

probability density function of a future response (z) that may be defined from model (1).

The posterior density is given by

pla, A[x) =¥ (x) L(a, 1|X) p(a, 4),
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where L(a, A|X) is the likelihood function, p(e, A) is the prior density, and the

reciprocal of the normalizing constant is

Y(x)*t = ”L(a, 21X pla, A)dAda.

To derive the likelihood function, let X;, . . ., X, be arandom sample of size n
from model (1). Thus, X = (Xl, Cey Xn)' forms an observed sample. Then given a
setofdata X = (X, ..., X,) from (1), the likelihood function is given by

n n n a-l
L(a, A|X) o a" A% exp{—z (zxi)Z} {H(xi)} {H(l . exp{—(/ixi)z}) }

i=1 i=1 i=1

Ahmed [27] discussed an estimation theory under uncertain prior information.

Ahsanullah and Ahmed [13] discussed in details on Bayes and empirical Bayes
estimates of survival and hazard functions of a class of distribution. Ahmed and Tomkins
[28] estimated lognormal mean by making use of an uncertain prior information. Khan
[26] considered predictive inference problem for an independent future sample from a
two-parameter exponential model given a type 1l censored sample by making use of the
Bayesian approach. Khan et al. [17] derived the Bayesian predictive models given a
doubly censored sample from the two-parameter exponential model by means of a
conjugate prior for the scale parameter. Khan et al. [29] derived the Bayesian predictive
inference from the one-parameter Rayleigh life model under type Il censored sample
considering a conjugate prior for the scale parameter. Khan and Provost [19] derived the
Bayesian predictive inference from the two-parameter Rayleigh life model under type I
censored sample considering a uniform prior for the location parameter and a conjugate
prior for the scale parameter. Khan et al. [20] used the same prior to derive the predictive

inference from the two-parameter Rayleigh life model given a doubly censored sample.

Here, it is assumed that the prior density for the scale parameter (/1) is given by

p(1) « Aexp{-1}, 1>0. @)
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Following Khan et al. [9], the shape parameter (0{) has a uniform prior

over the interval (0, ) which is given below:

p(a) o< i, a >0. ®3)
(04

It is assumed that & and A are independently distributed. Thus, the joint prior

density of ¢ and A is

Aexp{-4}

p(a, A) o« , a, 1>0. @

Considering the prior density in (4), the posterior density of & and A is given

by

Bl A]X) =¥, (X) oMt pa exp{—zn:(ixi)z— l} {ﬁ(xl)} {ﬁ(l-exp{—(lxi)z})a_l}

i=1 i=1 i=1

where W (X) is a normalizing constant.

For the predictive density of z given a sample X = (X, ..., X,) is given by
p(z|x) = H p(z|a, ) pla, A|x)dA da.

The above model may then be utilized to evaluate the predictive density for responses

from the two-parameter generalized Rayleigh model.

2.1 Predictive density for a single future response
Let z be a single future response from the model specified by (1), where z is

independent of the observed data. Then, the predictive density for a single future

response (z) given X = (Xl, C ey Xn) is

p1x) =" [~ pzla 2) pla 41X) d2 da,

where p(Z | a, /1) may be defined from model (1), see Khan [26], Khan et al. [8, 17].
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Thus, the predictive density for a single future response is given by

-1

¥, (x) Jm J% " exp{—(iz)z} (1-exp{—(/12)2})a

a=04J1=0

pzlx) = XeXp{ Zl Hl_l[ } {1_1[(1 exp{~(4 )2})‘“} 4 da,

for z>0; a, 1>0,
0  elsewhere, (5)

where ¥, (X) is a normalizing constant.

2.2 Predictive density for more than one future response

Statistical inference about more than one future response is important, as
pointed out by Bain and Engelhardt [30], Khan et al. [9, 10]. Let Z;, and Z, be two
independent future responses from model (1). Then to derive the joint predictive model
of Z, and Z,, the posterior density of p(¢r, A|X) obtained in Section 2 is utilized.

Thus, the predictive density for a bivariate future response is given by

‘PZ(X) J‘[:’O :;aml 22145 H(Zi) eXp{—Z(ﬂZi)z}

x ﬁ(l - exp{—(ﬂbzi)z})w1 x exp{—i(ﬂxi)2 - /’L}

P2 %) = {]l[(x )} [H(l exp{- (iXi)z})a_l} d4 de,

for z. >0; a, 1>0,
0 elsewhere, (6)

where W, (X) is a normalizing constant.
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Similarly, let  Z .., Z,, be the m ordered future responses from model (1).

1 "

Thus,
le(X) j:joj;:)an+m—l J2n+2msl f[(zi) exp{_i (lzi)z}
x ﬁ(l - exp{—(/izi)z})afl x exp{—i(&xi)2 - /1}
p(z, ..., z,|x) =

x hi[(xi)} {ﬁ(l-exp{—(/lxi)z})al} dA de,

i=1
for z, >0; «, >0,
0 elsewhere, (7

where ‘Pm (X) is a normalizing constant. For m = 1, the above predictive density

reduces to the predictive density for a single future response obtained in equation (5);
when m = 2, the above predictive density reduces to the predictive density for a bivariate

future response obtained in equation (6); and so on.

3. lllustrative example

In this section a real data set that was originally given in Nelson [31] is used.
Al-khedhairi et al. [25] used the same data set to perform the goodness of fit tests and to
identify the best fit model. The lifetimes of eight unequally spaced inspections are given
as follows:
6.12, 19.92, 29.64, 35.40, 39.72, 45.24, 52.32, 63.48.

These data were used for goodness of fit tests for the exponential distribution
(ED), generalized exponential distribution (GED), and generalized Rayleigh distribution
(GRD). Al-khedhairi et al. [25] estimated the maximum likelihood estimators for the
parameters by using the data set. They used model testing criteria; the log-likelihood

function and the Kolmogorov-Smirnov (K-S) test statistics. They concluded that the GRD

((5{ = 0.684, A= 1425 x 104) fits the data much better than ED

(@= 12097 x 107) and GED (4 = 2.0285 x 10°?, 4= 17839). The results of
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the Kolmogorov-Smirnov (K-S) test statistics of the empirical model and the fitted model
given the data set were: K-S (ED) = 0.214; K-S (GED) = 0.144; and K-S (GRD) = 0.105.
The final conclusion was the data set follows the two-parameter generalized Rayleigh
model.

The present study deals with the same data set by assuming that the eight
items’ lifetimes were generated from a life testing experiment. Al-khedhairi et al. [25]
considered the lifetimes for eight unequally spaced inspections with the number of
failures recorded in each time interval and estimated the maximum likelihood estimators
for the parameters a and A. The estimated values are substituted in the predictive model
and an attempt is made to display the predictive density graphically. Unfortunately, the
estimated values did not display the predictive density. It may be the case that the data
point for each item’s lifetime is considered to form a complete sample. An iterative
technique is used to display the predictive density. In this case, we considered some
initial values of the estimates (since &, 4 > 0), and those values are substituted into
the predictive density (5) to display it graphically.

The numerical integration command ‘Nintegrate’ in conjunction with the
symbolic computational software Mathematica version 7.0, Wolfram Research [32] is
applied to determine the normalizing constants and to plot the predictive graphs. The
predictive means, standard deviations, highest predictive density (HPD) intervals, and
the measures of skewness and kurtosis are obtained. The Mathematica package is also
utilized to carry out all related calculations.

An HPD interval is the interval which includes the most probable values of a

given predictive density at a given significance level, subject to the condition that the

density function has the same value at the end points. Suppose @, and @, are to be
arbitrarily chosen values. The HPD interval [&,, a,] for Z must simultaneously satisfy
the following two conditions:

Pr@,<z<a,)=1-a and p(a |Xx) =p(a,|X).

For more about HPD intervals, the reader is referred to Box and Tiao [33],
Khan [26]. Thus, in light of the expression derived for p(z | x), in equation (5), one can

obtain the numerical solutions for & and &, . In the present study, by setting

p(a, |X) =p(a,|X) and aiming for Pr(a, <z<a,) = 095, 95% HPD

intervals from equation (5) are obtained.
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Figure 1 shows the graphical representation of the predictive densities with

respect to certain values of the estimated parameters. The predictive density with

respect to the estimated parameters (¢ = 140, A= 0.018) gives higher variability
than that of the predictive density with (& = 150, A = 0.02). The predictive densities

with (@ = 120, A= 0.014) gives higher variability than that of (¢ = 130, A= 0.016)
Similarly, in the case of Figure 2, the predictive density with the estimated

parameters (& = 102, ): = 0.001) has the highest variability than that of the predictive
densiies with (4= 110, 1= 0.012) ; (&= 105, A= 0.010) ; and
(= 103, A= 0.005), respectively.

It is observed that when the estimated values (&) goes less than one with

smaller scale parameter (ﬂ,) the predictive density does not produce its graph and
therefore, does not yield any inference. For the estimate of the shape parameter,

a 2050, one would have a right skewed unimodal density function as proposed by

Ragab and Kundu [23], which agrees the predictive results.
The predictive means, standard deviations, HPD intervals with the
combinations of certain values of the parameters which are given in Table 1. The

measures of skewness and kurtosis and normalizing constants are given in Table 2.
Based on the iterative values of ,Bl, a,and A in Table 2, it may be commented that

the predictive density for a single future response given a complete sample from the two-

parameter generalized Rayleigh model is positively skewed.
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Figure 1. Comparison of variability of the predictive densities for a single future response

with respect to certain iterative values of the parameters.
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Figure 2. Comparison of variability of the predictive densities for a single future response

with respect to certain iterative values of the parameters.
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Table 1. Predictive mean, standard deviation, and HPD intervals for a single future

response with some iterative values of the parameters given a complete sample.

Values of parameters Means (z) Standard 95% HPD intervals
a y) Deviations (z)

1.50 0.020 48.3471 22.5675 (7.8035, 92.4673)
1.40 0.018 56.2684 24.9361 (20.7331, 105.9830)
1.30 0.016 61.3983 27.9765 (11.0114, 115.5528)
1.20 0.014 67.9790 32.1577 (11.0331, 128.1190)
1.10 0.012 76.7034 38.0233 (11.0640, 143.9200)
1.05 0.010 90.2461 45.7288 (11.9380, 169.5650)
1.03 0.005 179.273 92.0130 (22.4144, 337.9660)
1.02 0.001 893.102 461.228 (278.943, 1914.3400)

Table 2. Predictive shape characteristics and normalizing constants for a single future

response with some iterative values of the parameters given a complete sample.

Values of parameters

o y B B2 Wi(x)
1.50 0.020 0.2572 2.9847 5.5153 x 10 °
1.40 0.018 0.2816 3.1184 1.21396 x 10
1.30 0.016 0.2473 2.9494 6.1851 x 10 °
1.20 0.014 0.2591 2.9325 2.42265 x 10
1.10 0.012 0.3113 3.0307 6.95083 x 10
1.05 0.010 0.3191 3.0159 1.80454 x 10
1.03 0.005 0.3514 3.1028 8.35731 x 10~
1.02 0.001 0.3667 3.1454 5.53648 x 10 ~°
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4, Conclusion

The predictive models for a single future response, a bivariate future response,
and several future responses from the two-parameter generalized Rayleigh model by
making use of the Bayesian method are derived. The normalizing constant for each of
the predictive density is estimated to plot the predictive density accurately. The predictive
means, standard deviations, and the highest predictive density intervals are obtained for
the predictive density of a single future response. The measures of skewness and

kurtosis of the predictive model are also given. Thus, one may infer that the predictive

interval is narrower when the combinations of the iterative values, @ =150 and /i:0.0ZO

and the predictive interval is wider with the combinations of the iterative values, a =

1.40; 1.30; 1.20; 1.10; 1.05; 1.03, 1.02, and A = 0.018; 0.016; 0.014; 0.012; 0.010; 0.005;
0.001, respectively. An advanced computational software package, ‘Mathematica version
7.0', is used to show the graphical representation of the predictive density for a single

future response and also to carry out all related calculations.
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