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Abstract

This paper considers stratified inverse sampling with four variations from each
stratum, namely inverse random sampling with replacement, inverse random sampling
without replacement, inverse probability proportional to size (PPS) sampling with
replacement and inverse PPS sampling without replacement. Unbiased estimators of the
mean of a study variable in the whole population and the number of units in a class of
interest together with their unbiased variance estimators are given. Estimation of the
mean per unit in the class of interest is also presented. A simulation study is employed to
study the properties of these sampling designs and the results indicate that inverse
sampling without replacement is more efficient than inverse sampling with replacement.
Inverse PPS sampling gives higher efficiencies of the estimates than inverse random
sampling when correlation coefficient between auxiliary and study variables is large.
When the number of sampled units in a class of interest increases, the variance and

mean squared error of the estimate decreases.
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1. Introduction

This paper introduces stratified inverse sampling designs which are appropriate
when the population under study contains only a small fraction of units having a
particular characteristic of interest. Such population is called a rare population. In
examples of rare population surveys, it is desirable to estimate the total number of the
animals, trees and plants with a special characteristic in a given forest. A survey may
apply to sampling a human population at risk for HIV/AIDS. A sampling design might be
concerned with a minority population, specific age/sex group such as males aged 18 to
24, the persons with rare diseases. Methods of sampling rare populations have been
reviewed by Kalton and Anderson [1]. A wide variety of methods has been used for
sampling rare populations including two-stage cluster, two-phase, network, snowball,
multiple-frames and stratified sampling. The use of adaptive cluster sampling is
described in Thompson and Seber [2]. One disadvantage of these sampling designs is
that a sample may contain the units without a characteristic of interest. In order to obtain
a given number of sampled units with characteristics of interest, Haldane [3] considered
an inverse sampling with equal probabilities with replacement. An unbiased estimator of
the prevalence of a characteristic was given. However, the formula for the variance of
the estimator was complicated and an unbiased estimator of the variance was not given.
Finney [4] gave an unbiased estimator of the variance of Haldane’s estimator. Mikulski
and Smith [5], Sathe [6] derived upper and lower bounds of the variance of Haldane’s
unbiased estimator. Salehi and Seber [7] found an unbiased estimator of the population
mean and an unbiased estimator of its variance when an inverse sampling was without
replacement. Christman and Lan [8] developed inverse adaptive cluster sampling. Three
stopping rules were considered which depended on the number of units of interest. They
found an unbiased estimator of the population total but an unbiased estimator of its
variance was not considered. Salehi and Seber [9] developed general inverse adaptive
cluster sampling. They presented an unbiased estimator of the population total under
sampling without replacement and an unbiased estimator of the variance was also given.
The sampling schemes aforementioned were considered under sampling with equal
probabilities. Greco and Naddeo [10] considered inverse sampling with unequal
probabilities with replacement. An unbiased estimator of the population total and an
unbiased estimator of its variance were also given. Sangngam and Suwattee [11]
considered inverse sampling with unequal probabilities and without replacement by

modifying Midzuno’s scheme [12].
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Another method of reducing the variance of an estimator is to stratify a
population into strata with varying prevalence of characteristic of interest. Usually,
stratified random sampling with a disproportional allocation of the sample size is applied
for rare population. In this paper, we consider variations of stratified inverse sampling for
a rare population. The parameters to be estimated are the mean of a study variable in
the whole population, the number of units with characteristic of interest and the mean of
a study variable in a class of interest. A simulation study is employed to compare the four

inverse sampling under consideration.
2. Notations

Let U={u,Uu,,..,uy} denote a finite population of N distinct and identifiable

units. Assume that the population consists of two subpopulations, C and C with

cardinality M and N—M, respectively. It is assumed that units belonging to classes C

or C are unknown before sampling. The population is stratified into L strata. A

L
subpopulation consists of N, units for h=1,2,...,L where ZNh =N. Let u, denote the
h=1

j-th unit in the stratum h and y,; a study value of the unit u,;. A stratum is partitioned into

— L
C, and C, with cardinality M, and N, —M, respectively where M, >2 and ZMh =M.

h=1
Let n, be the sample size in stratum h and m, be the number of sample units in the
class C,. For example, Cy ={uhj:yhj2b} and Cj, :{uhj:yhj<b}, where b is a given

constant. In stratum h, let z,; be the selection probability of a unit j, z¢, = > z,; be the

jeCh
probability of selecting a unit in C,,, zg, = Z zyj=1-2¢, the probability of selecting a
jeCh
2
L. = 2 1 Yhi  Yen i i .
unit in C,, og, =——>_ ;| =——-—="-| the variance of a study variable for units in
Ch jeCh Zpj  Zch

2
RS ) ) o
class C,, o2 - > zhj(h—ﬂ the variance of study variable for units in class
Znj  Zgn

ch =5 2
Ch jeCh

Ch: Yen - > ? the mean of study values per probability of selection for sampled
o

h jescnh hj
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units in a set s¢,, Vg, :; z I the mean of study values per probability of

Mh =M jesg, Zhj

2
selection for sampled units in a set sg, , 6%, = ! > [y"j—ych] the variance of

My =155 Zng
2
. . 2 1 Yhi - .
sampled units in a set sy, and S Z — —Vg, | the variance of
Mh =My —djesg, \ Znj

sampled units in a set s, . From definition of 6%, and 6%h, assume that m, >1 and

L
n,—m, >1. The number of units in the class of interest is given by M =ZMh. The
h=1

L Ny
population total of a study variable is denoted by Y =
h

Yy - The population mean of a

=1 j=1

study variable is Y = Y/N . The total of a study variable in a class of interest is denoted

L
by Yo=Y >y, . The mean of a study variable in C is given by Y. =Y./M.

h=1 jeCh

3. Stratified Inverse PPS Sampling

3.1 Stratified Inverse PPS Sampling with Replacement

In stratum h, a unit u,, is selected with probability z,, and with replacement
until the sample contains m, units (including replicates ) from class C, where m, is

fixed in advance. The sample consists of m,, units from C, and n, —m, units from C,, .
The sh:(il,iz,...,inh) denotes the sample from stratum h. The sample s, can be

partitioned into two sets s, and sz, of units from C, and C, , respectively.

Theorem 3.1 Under stratified inverse PPS sampling with replacement, an unbiased

estimator of the population mean is

_ 1&rs .
Yt :NZ[Ph Yon + (- Ph))’ah] (3.1)

h=1
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where B, =M _11 . The variance of yj is
ny —

2

2
v Ll Yo Yan 5 Sen (52 Och 5 5
V=122 [a—a V(Ph)+m—hE( h)+—mh_1E[Ph(1—Ph)] . (3.2)

where Y, =Yy, and Y, =Yy, .For m, >2, an unbiased estimator of the variance
jeCh jeCh

is

\A/(Vst) :izzl_:

AN NPT S .
NZ |:(7Ch_ych)2V(Ph)+%Ph+ GChl{P“_mh;P“H’ (3.3)
=1

my, my — h

i P . _ B
where V(B,)=——" and P, _(my ~1)(m, -2)
My =2 (np =1)(ny - 2)

Proof: Greco and Naddeo [10] showed that \?h :Ishych+(1—l5h)yéh is an unbiased
N,

estimator of Y, = thj . They also showed that
j=1

2
V(\A(h)=[h—&] V(ﬁ’h)+c—é‘E(ﬁﬁ)+iilE[l3h(l—f’h)} and an unbiased

Zen  Zga my, my,
estimator of V(\?) is \7(\? ):(_ e (B )+ S S (p  ma-lp
)= (Fen ~Ten) V(Br)+ my -1 h—zphj' e
N R I L S . . .
get that E(ysl)=NhZ:1E(Yh)=thz‘1j§yhj =Y, since the estimates are unbiased in the

individual strata. Because of the samples are drawn independently in different strata, the

covariance between \?h and \?k equals to O for h=k=1,2,...,L. This gives the results

(3.2) and (3.3). Note that when the number m, increases the variance of y, decreases.

Corollary 3.1 An unbiased estimator of M is

L ~
Mg =D P, [1 > 1] , (3.4)

v(mst):iw;v(ﬁhpﬁg(g)} @5)
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2
where % =— ——% . For m, > 2, an unbiased estimator of V(Mst) is
Zeh jeCh Zhj Zch

V(W)= i[ 2 1J2V(ﬁ’h)+%ﬁ’ﬁ , (3.6)

1\ My jeCh Zhj h

2
o 1 11 1

where 65, = 12 > =
My —Licson \ Zhi  Mh jes, Zhj

Proof: Define y;, to be 1if the unit belongs to C, and 0 if the unit belongs to C,. Then

Np, L ~
M, :Zy;j and M :ZMh is estimated unbiasedly by M in (3.4). For the study value

j=1 h=1
y;;» taking on values 1 or 0, the variance, of, and sampled variance, 6, are replaced

2

by o and G5 respectively.

Corollary 3.2 An unbiased estimator of the total of a study variable in class C is

~ L ~
Yest = 2 PnYen With the variance
h1

o) (2] v ()| 67

h=1| \ Zch h

For m, >2, an unbiased estimator of the variance of \A(cSt is

(Y- i{yahv(rsh)ﬁm—é:ﬁ;] ©9)

h=1
Proof:  Define new variable y;; to be y,, if the unit belongs to C, and to be 0 if the

—_— Nh
unit belongs to class C, . Then Y, = Zyhj and YCSI is an unbiased estimator of
j=1

L

Y :Zch . For the study value yy,, taking on values y; or 0, we get that Y =0,
h=1

2

2.=0,y,=0and 6% =0.

C
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Theorem 3.2 yCSt:\l\(/?St is a biased estmator of Y., with bias
st
—CoV(Ycg, M B(Yy .

B(Veyt) = (Ve M) and | (yC“)‘l <CV(Mg) . An approximate mean squared
[V(stt):Iz

error of the estimator is MSE(VCSt)z#[?@V(I\Aﬂst)+V(\?Cst)—ZVCCov(Mst,\A(Cst)}

~ “ L " n2 .

where Cov(Mst,YCst)=Z{wv(Ph)+%E(th)} and

h=1 Zcn m,

G//Z _ 1 ZZ 1 Mh th YCh
ch=——2°% "7 |l-~7 |-
Zch jeC Zpi  Zcn )\ Znj  Zcn

Proof: COV(stt’ |\7|5t) = E(VcStMst)* E(stt)E(MS‘) = E(

<>

c MstJ— M E(V¢y) - Hence,

st

<

COV(stt ' Mst ) ]

E(Yest)= Yo - M
1
S0 E(Ves)~ Yo —_COV(VCSt’MSt) and ‘B(VCS‘)‘ = Corr(stt,Mst) V(yst)v(mst) ?
Cst c~ 1 —
[V(yw )]E M ‘ V(yst)
.ot
MU | ) |
ST = CV(Mst). The approximate mean squared error of y_, can derive by

using linearization method.

3.2 Stratified Inverse PPS Sampling without Replacement

When the probability proportional to size without replacement at each draw is
taken, we get a PPS sample without replacements. Since the selection probabilities
change from draw to draw, to estimate the population total, we can use the Horvitz-
Thompson estimator. Unfortunately, inclusion probabilities from inverse sampling depend
on the unknown parameter M. It is not easy to use the Horvitz-Thomson estimator.
Salehi and Seber [7] proved that the Murthy's estimator can be applied to inverse

sampling. From stratum h, the first unit is drawn using the probability of selection z,; and

the remaining units are drawn one by one with equal probabilites and without

replacement until the sample contains m, units from class C, . Assume that m, <M, .
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The sample is s, :{illiz!"'lin"} where n, is the sample size. Let s, denote the set of

units from class C, and s, the set of units from C, with cardinalites m, and n, -m, ,

respectively, where s, Ns, =¢ and s, Us, =5, .

Theorem 3.3 In stratified inverse PPS sampling without replacement, an unbiased

estimator of Y is

1L (m, -1) m,
==\ 7 | I . 3.9
yst N hZ::1 m Z Zh] Z ZhJ Jegéh yh] m Z Zh] Z ZhJ Jgih th ( )
jesy Jesen jesy Jesen
The variance of y, is
2
_ 1 L |NoL N, P(sy I)P(sy 1) |[ ye Vi
\Y =— 1-y 2 L Zhi W77, 3.10
(yst) Nz hz=:1 |=Zl j=i+1|: sgé‘j P(S) Zhi Zhj hi<hj ( )

For m, >2, an unbiased estimator of V(Vsi) is

1

hzzhi - Z Zyi

iesy, iesgy

~ 1 & Y Y
V(yst):N—Z[ j{kmz 3 [Zh _JJ ZyZy+ Ky D Z(yh _i] ZyZy;
iesey j<iescy hi hj iesey jesg, hl hj

iesg, j<iesg, Zyi hj

Ky D D [y“' —ﬁ) ZyZy t (3.11)

where k,, = (N, ~1)(m, -2) _ (mhil)z ,
n -2
“ [mhzzm—z ]
‘ ~ (N -9(m,-1)  m,(m,-1)
h2 — n _2
" (mhzzhi__z Zhi]
_ 2
and khsz(Nh ym, _ m,

2 (thzhi—sz)

iesy, iesgy
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Proof: Murthy's unbiased estimator of the population total in stratum h is
(3.12)

_no P(sy 1)
h _thj P(Sh) '

=1
is the sample size. Under stratified inverse PPS sampling without

where n,
replacement,
__m-t ;jes
mYz-Yz O
P(su ) _ P(swd) _ DRI

P(s)) zyP(s) | m jes.
my, Zzhj - Z Zy; @
lesy 1€Sen

By substituting P(s, | j)/P(sh) into (3.12), an unbiased estimator of Y, is obtained. This

estimator does not depend on the order of selection of the units. The variance of \?h is

given by
2
~ Ny Ny P(s, |1)P(s, 1] o Y
V(Yh)=ZZ 1- Z.M RENRLY P (3.13)
i=1 j<i spoi.j P(Sh) Zpi Zhj
An unbiased estimator of the variance of estimator \?h is
(3.14)

L. . R 2
- ool P(sylid) P(syli)P(suli) |[ v Yu -
Zhi Zhj hi“hj 1

V(%)=22 ) [P(s,)]

where P(sh |i,j) refers to the probability of getting sample s given that the i-th and j-th

units are selected in any order in the first two draws. From stratified inverse PPS

sampling without replacement, for m, > 2,

(m, —2)(N, ~1) ijese
n-2mTa- T
P(Pszll’)]): (mh _1)(Nh _1) ;iesch andjeséh'
S
|-z 2
m, (N, =1) jesg,
(nh —2)(mhzzm _.Z Zhi
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P j P i) .
By substituting the expressions (S“IJ) and M into (3.14), an unbiased

P(sy) P(sy)
estimator of the variance of \?h is obtained. Because of the independence of samples

across strata, we get (3.9) and (3.11).

Corollary 3.3 In stratified inverse PPS sampling without replacement, an unbiased

estimator of Y, is given by

~ L (mh —1)
Y. = R G| e S -, 3.15
Cst =1 Z Zhj _ Z Zhj jeéh yhj ( )
Jesy 1€sch

with the variance

V(QCSI): EL: Nhil Ni |:1— > W}(L&_EJ Z,Zy b (3.16)

h=1| i=1 jeiel Snol P(sh) Z,  Zy

where Y  refers to summation over all samples, s, which contains the i-th and j-th

spoiLj

units. For m, > 2, an unbiased estimator of V(\?Cst) is

jesy iesen

+ khZMZ zh,-][z Z—m (3.17)

in (3.15).

N, L ~
Proof: We have Y., =Yy and Y, =ZYCh is estimated unbiasedly by Y_
h=1

=

st

For the study value y;;, taking on values y,; or 0, we get that the variance of \A(Cst and

its unbiased estimate are given by expressions (3.16) and (3.17), respectively.

Corollary 3.4 In stratified inverse PPS sampling without replacement, an unbiased

estimator of M is given by

m, (m, -1) .
n=1 mhz Zy - > z

&8y 1€scn

st

(3.18)

M

For m, >2, an unbiased variance estimator of I\A/Ist is given by



Prayad Sangngam 79

el

+kh2[]§ zhjj{; %J} (3.19)

Np L ~
Proof: We have M, :Zy;j and M :ZMh is estimated by expression (3.18). So M,

j=1 h=1

is an unbiased estimator of M. For the study value y;j, taking on values 1 or 0, an

unbiased estimator of V(I\A/Ist) is obtained as expressions (3.19).

Theorem 3.4 Under stratified inverse PPS sampling without replacement, the bias of a

Y S —Cov(y, M
ratio estimator, Y, =~ of Y. is given by B(ycﬁ):M
st

and its bound is

‘BLCS{)L < CV(|\7|5t) . An approximate mean squared error of the estimator y is
[V(VCSI)]E
given by Mse(ym)zﬂvgv(mstpv(vm)_zvcc()v(vm,mst)} where

Cov(Yey M, ) - igg{l_ 5 W}[V_ﬁ_ﬁ][x_ﬁ-_?]zmzm,

h=li=lj<i Sp o] P(Sh) Zyi o Zy )\ Zii hj

.| Yni 1jeC, , 1 :jeC,
Vi = - _ and Xy = o= .
0 ;jeC, 0 ;jeC,

Proof: The proof is similarly to that in theorem 3.2.

4. Stratified Inverse Random Sampling
4.1 Stratified Inverse Random Sampling with Replacement

If the probabilities of selection are equal to th:Ni for j=1,2,...,N, and
h

h=12,...,L, stratified inverse PPS sampling with replacement reduces to stratified
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inverse random sampling with replacement. Estimators under stratified inverse PPS

sampling are reduced to the following forms. An unbiased estimator of Y is given by

L ~ ~
Voo = 2 W Py Ven + 0= P) Vg | (4.1)
h=1
where W, :&, ﬁ’h =mh—_1, Yen - >y, and ¥ _ L Y'Y, - The variance of y
N h _1 h jescn mh Jesg,
is
Lzl (5 o (b ). e e(a2), O e[5 5
V(7)) =S W2| (Yo - Y= )V V(B )+ SCE (R +—E[P l—P], 4.2
(yst) hzﬂ h ( ch Ch) (h) m, (h) m, -1 h( h) (4.2)
— — 2
where YCh zymv ch — 1 ZYhJ ' h (th Ych) and
h jeCh Nh h jeCh Mh jeCh
- \2
o :;z (yhj—YEh) . An unbiased estimator of the variance is

Ch 2
Ny - My &

oo wel (o 5 V(P Sen 5 6(2:h (“7mh—1“*
V(yst)_hz_lwh|:(ych VCh) V(Ph) mhp+mh—1LPh mh—ZPh . 43

where Q(ﬁh)=@, pro(Mn-b(my-2) =, 1 Y (Yy-Yer) and

n, -2 (n,-1)(n, -2) my —1,%2
&%h:ﬁ > (yhj—yéh)z. Estimators of Y, and M are derived in the same
h =My =1iE
ways.

4.2 Stratified Inverse Random Sampling without Replacement

If the probabilities of selection are equal to th:Ni for h=12,...,N, and
h

j=12,...,L, stratified inverse PPS sampling without replacement reduces to stratified

inverse random sampling without replacement. An unbiased estimator of Y is given by
p— L - p— iy p—
Vo = 2 Wi, [Ph Yon +(1- Ph)y(;h:| , (4.4)
h=1

where P, =r:h—_1 + Yen S >y, and ¥ -1 >y, - The variance of yj is

h -1 h jescn h jesg,
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V(Vy)= hZL:_l\th {(YCh Y, )zv(ﬁh){l_'\r:_:JSZﬂE(ﬁﬁ)

my
S2 - ~ N, —m

+—SE| By (1P, ) 1B (4.5)

my, -1 Np =My
where ?ch =i2yhj , véh =;zyhj ’ Séh = Z (yhj _?Ch )2 and

thm Nh_th@ Mh_lkw
— 2

sz 1 Z (yhj —Yéh) . An unbiased estimator of the variance is

ch =
N, — My, _1je6h

L 2

V(7. ) = S W2 (Voo — 5 V(P )+ S| pr M g
V(Vst)*hZZan {(VCh Yen) V(Ph)+ -~ [Ph N, Ph]

& ﬁh(l—ﬁh)_l_ﬁh i V(R,) @

ey PlP) e (m-(m-2) g, 1 e
where V(Ph):ﬁ , Ph:m- Sch=m_z (yhj_yCh) and

JeSch

1

@ . L
n,-m,-1

> (yhj—yéh)z. Estimators of Y, and M are similarly derived. Note

jesgh

that the variance V() decreases when the number of sampled units in C, increases.

5.Simulation Study

To compare the estimators for the four sampling designs described above,

simulation is used. Six populations, each of size N =10,000, were created from the
model® where the correlation coefficients (p) between the study variable (y) and the
auxiliary variable (x) are p=0.1,0.2,0.5,0.6,0.8 and 0.9. Each population is divided into
five strata. The class of interest is a set of units with values of a study variable greater

than or equal to the 90-th percentile of each population data set, i.e. C, ={uhj Ve 2 Pgo} .

" The model y, = ax, +(1-a)w, where x, ~N(500,100°) and ~w; ~N(500,100°) is used. The value

of a depends on the correlation coefficient between x and y.
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From each population, 10,000 Monte Carlo samples were drawn using the four stratified

inverse sampling schemes. The values of m, are set to be 2, 5, 8and 10 percent of

M, . The estimates \7(@) and MéE(é) are calculated as \7(6):1%10 (6,-6)?

‘= 10,000 -1
.. 10000 (é -0)? . 000, )
MSE(G): Z -1~ where 6= z 0; Is the mean of the estimates of 0 from
‘= 10,000 10,000 4=

10,000 samples. The formula of relative efficiency of two estimators under sampling

V(a)

design A and sampling design Bis R.E.(é): -

V(6)

under sampling designs A and B, respectively. For biased estimator, we replace \7(@)

where 6, and 6 are estimators

with MéE(é) .

Table 5.1. Comparison of the Relative Efficiencies of the Estimates under Stratified

Inverse Sampling with and without Replacement

Stratified Inverse Random
Sampling with to without Stratified Inverse PPS Sampling
N % of M, Replacement with to without Replacement
RE.(7,) R.E.(I\Allst) RE(Ves) | RE(7.) R.E.(I\A/IS‘) RE.(Ves )
1.030 1.004 0.995 1.026 1.016 1.013
5 1.054 1.071 1.059 1.063 1.035 1.054
01 8 1.084 1.079 1.070 1.078 1.068 1.076
10 1.128 1.123 1.088 1.119 1.114 1.116
2 1.053 1.031 1.020 1.051 1.047 1.018
5 1.038 1.034 1.063 1.053 1.046 1.055
02 8 1.107 1.104 1.071 1.101 1.058 1.056
10 1.118 1.092 1.124 1.125 1.095 1.105
2 1.015 1.008 1.022 1.086 1.072 1.014
5 1.051 1.032 1.051 1.199 1.064 1.054
05 8 1.118 1.131 1.100 1.288 1.079 1.073
10 1.083 1.079 1.083 1.335 1117 1.094
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Stratified Inverse Random
Sampling with to without Strétified In.verse PPS Sampling
N % of M, Replacement with to without Replacement
RE(7,) R.E.(Mst) RE(Ves) |RE(Vy) R.E.(Mst) RE.(Ves)
2 1.024 1.023 1.032 1.097 1.021 1.025
1.067 1.052 1.038 1.270 1.106 1.039
06 8 1.027 1.041 1.131 1.335 1.102 1.078
10 1.102 1.122 1.137 1.469 1.141 1.120
2 1.050 1.038 1.030 1.232 0.947 1.004
5 1.061 1.062 1.052 1.430 1.021 1.011
08 8 1.007 1.040 1.074 1.466 1.067 1.075
10 1.138 1.121 1.104 1.529 1.128 1.088
2 1.036 1.055 1.042 1.301 1.059 0.995
5 1.038 1.062 1.040 1.501 1.153 1.011
09 8 1.083 1.080 1.087 1.505 1.140 1.034
10 1.051 1.067 1.107 1.532 1.098 1.053

Table 5.1. indicates that the estimates under stratified inverse random sampling

without replacement are more efficient than those with replacement. The estimates

under stratified inverse PPS sampling without replacement have higher efficiencies than

those under stratified inverse PPS sampling with replacement.

Table 5.2. Comparison of the Relative Efficiencies of the Estimates under Stratified

Inverse Random Sampling and Stratified Inverse PPS Sampling

Stratified Inverse PPS Sampling to Inverse PPS Sampling to
Random Sampling with Random Sampling without
p % of M, Replacement Replacement
RE(V.) RE(M.) RE(V.) |RE(V.) RE(M,) RE(Ve)
2 0.911 0.984 0.983 0.908 0.995 1.000
o1 5 0.891 1.013 1.026 0.898 0.979 1.020
' 8 0.908 1.014 1.001 0.903 1.003 1.006
10 0.900 1.019 0.976 0.893 1.011 1.002
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Stratified Inverse PPS Sampling to |Stratified Inverse PPS Sampling to
Random Sampling with Random Sampling without
o % of M, Replacement Replacement
RE.(7.) R.E.(I\?IS‘) RE(Vei) | RE(Va) R.E.(Mst) RE(Ve)
2 0.929 1.006 1.000 0.927 1.022 0.998
0.895 1.001 1.008 0.909 1.012 1.000
02 8 0.912 1.030 0.999 0.907 0.987 0.985
10 0.915 0.998 1.007 0.920 1.001 0.990
2 0.930 1.009 1.009 0.995 1.074 1.001
5 0.838 1.027 0.998 0.957 1.058 1.001
05 8 0.811 1.081 1.045 0.934 1.031 1.019
10 0.733 1.005 0.999 0.903 1.040 1.009
0.914 1.045 1.007 0.980 1.043 1.001
5 0.802 1.000 1.004 0.954 1.052 1.005
00 8 0.734 1.013 1.051 0.954 1.072 1.002
10 0.683 1.045 1.016 0.910 1.063 1.001
1.102 1.152 1.026 1.293 1.052 1.000
0.924 1.045 1.042 1.244 1.004 1.001
08 8 0.857 1.063 1.018 1.248 1.090 1.019
10 0.868 1.036 1.040 1.166 1.042 1.025
2 1.639 1.141 1.067 2.059 1.145 1.018
1.431 1.100 1.051 2.069 1.195 1.022
09 8 1.352 1.054 1.055 1.878 1.112 1.004
10 1.332 1.088 1.054 1.943 1.120 1.003

Table 5.2. shows that when the correlation coefficient (p) is greater than 0.8, the
efficiencies of the estimates under stratified PPS sampling with replacement are larger
than those under stratified inverse random sampling with replacement. When the
correlation coefficient is greater than 0.7 the relative efficiencies of the estimates under
stratified PPS sampling without replacement are larger than those under stratified
inverse random sampling without replacement. However, the relative efficiencies of the

estimates decrease when m, increases.
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6. Conclusion

This paper considers stratified inverse sampling with four variations. The

parameters estimated are the population mean of a study variable (\7) the number of
units in a class of interest (M) and the mean from units in a class of interest (\_(c).

Unbiased estimators of Y and M are given and unbiased estimates of their variances
are found. The biased estimate of \_(C is presented. When the number of sampled units

in a class of interest increases, the variances or mean squared errors of the estimators
decrease. The results of the simulation study indicate that stratified inverse random
sampling without replacement have a smaller estimates of variances or mean squared
error of estimators than that of estimates under random sampling with replacement.
Stratified inverse PPS sampling without replacement gives higher efficient estimators
than PPS sampling with replacement. Stratified inverse PPS sampling designs should be

used in a survey when the auxiliary variable is highly correlated to the study variable.
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