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Abstract 

 This paper considers stratified inverse sampling with four variations from each 

stratum, namely inverse random sampling with replacement, inverse random sampling 

without replacement, inverse probability proportional to size (PPS) sampling with 

replacement and inverse PPS sampling without replacement. Unbiased estimators of the 

mean of a study variable in the whole population and the number of units in a class of 

interest together with their unbiased variance estimators are given. Estimation of the 

mean per unit in the class of interest is also presented. A simulation study is employed to 

study the properties of these sampling designs and the results indicate that inverse 

sampling without replacement is more efficient than inverse sampling with replacement. 

Inverse PPS sampling gives higher efficiencies of the estimates than inverse random 

sampling when correlation coefficient between auxiliary and study variables is large. 

When the number of sampled units in a class of interest increases, the variance and 

mean squared error of the estimate decreases. 

_________________ 
Keywords: inverse sampling, stratified sampling, unequal probability sampling. 
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1.  Introduction 

This paper introduces stratified inverse sampling designs which are appropriate 

when the population under study contains only a small fraction of units having a 

particular characteristic of interest. Such population is called a rare population. In 

examples of rare population surveys, it is desirable to estimate the total number of the 

animals, trees and plants with a special characteristic in a given forest. A survey may 

apply to sampling a human population at risk for HIV/AIDS. A sampling design might be 

concerned with a minority population, specific age/sex group such as males aged 18 to 

24, the persons with rare diseases. Methods of sampling rare populations have been 

reviewed by Kalton and Anderson [1]. A wide variety of methods has been used for 

sampling rare populations including two-stage cluster, two-phase, network, snowball, 

multiple-frames and stratified sampling. The use of adaptive cluster sampling is 

described in Thompson and Seber [2]. One disadvantage of these sampling designs is 

that a sample may contain the units without a characteristic of interest. In order to obtain 

a given number of sampled units with characteristics of interest, Haldane [3] considered 

an inverse sampling with equal probabilities with replacement. An unbiased estimator of 

the prevalence of a characteristic was given. However, the formula for the variance of 

the estimator was complicated and an unbiased estimator of the variance was not given. 

Finney [4] gave an unbiased estimator of the variance of Haldane’s estimator. Mikulski 

and Smith [5], Sathe [6] derived upper and lower bounds of the variance of Haldane’s 

unbiased estimator. Salehi and Seber [7] found an unbiased estimator of the population 

mean and an unbiased estimator of its variance when an inverse sampling was without 

replacement. Christman and Lan [8] developed inverse adaptive cluster sampling. Three 

stopping rules were considered which depended on the number of units of interest. They 

found an unbiased estimator of the population total but an unbiased estimator of its 

variance was not considered. Salehi and Seber [9] developed general inverse adaptive 

cluster sampling. They presented an unbiased estimator of the population total under 

sampling without replacement and an unbiased estimator of the variance was also given. 

The sampling schemes aforementioned were considered under sampling with equal 

probabilities. Greco and Naddeo [10] considered inverse sampling with unequal 

probabilities with replacement. An unbiased estimator of the population total and an 

unbiased estimator of its variance were also given. Sangngam and Suwattee [11] 

considered inverse sampling with unequal probabilities and without replacement by 

modifying Midzuno’s scheme [12]. 
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Another method of reducing the variance of an estimator is to stratify a 

population into strata with varying prevalence of characteristic of interest. Usually, 

stratified random sampling with a disproportional allocation of the sample size is applied 

for rare population. In this paper, we consider variations of stratified inverse sampling for 

a rare population. The parameters to be estimated are the mean of a study variable in 

the whole population, the number of units with characteristic of interest and the mean of 

a study variable in a class of interest. A simulation study is employed to compare the four 

inverse sampling under consideration.  

 

2.  Notations 

Let { }1 2 NU u , u , ,u=   denote a finite population of N  distinct and identifiable 

units. Assume that the population consists of two subpopulations, C  and C  with 

cardinality M  and N M− , respectively. It is assumed that units belonging to classes C  

or C   are unknown before sampling. The population is stratified into L  strata. A 

subpopulation consists of hN  units for h 1,2, ,L=   where 
L

h
h 1

N N
=

=∑ . Let hju  denote the 

j-th unit in the stratum h and hjy  a study value of the unit hju . A stratum is partitioned into 

hC  and hC  with cardinality hM  and h hN M−  respectively where hM 2>  and 
L

h
h 1

M M
=

=∑ . 

Let hn  be the sample size in stratum h and hm  be the number of sample units in the 

class hC . For example, { }h hj hjC u : y b= ≥  and { }h hj hjC u : y b= < , where b  is a given 

constant. In stratum h, let hjz  be the selection probability of a unit j, Ch hj
j Ch

z z
∈

= ∑  be the 

probability of selecting a unit in hC , hj ChCh
j Ch

z z 1 z
∈

= = −∑  the probability of selecting a 

unit in hC , 
2

hj2 Ch
Ch hj

Ch hj Chj Ch

y Y1 z
z z z∈

 
 s = − 
 

∑  the variance of a study variable for units in 

class hC , 
2

hj2 Ch
hjCh

hjj ChCh Ch

y Y1 z
z z z∈

 
 s = − 
 

∑  the variance of study variable for units in class 

hC , 
Ch

hj
Ch

h hjj s

y1y
m z∈

= ∑  the mean of study values per  probability of selection for sampled 
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units in a set Chs , 
Ch

hj
Ch

h h hjj s

y1y
n m z∈

=
− ∑  the mean of study values per probability of 

selection for sampled units in a set Chs , 
Ch

2
hj2

Ch Ch
h hjj s

y1ˆ y
m 1 z∈

 
s = −  −  

∑  the variance of 

sampled units in a set Chs  and 
Ch

2
hj2

Ch Ch
h h hjj s

y1ˆ y
n m 1 z∈

 
s = −  − −  

∑  the variance of  

sampled units in a set Chs . From definition of 2
Chŝ and 2

Chŝ , assume that hm 1>  and 

h hn m 1− > . The number of units in the class of interest is given by 
L

h
h 1

M M
=

= ∑ . The 

population total of a study variable is denoted by 
hNL

hj
h 1 j 1

Y y
= =

= ∑∑ . The population mean of a 

study variable is Y Y N= . The total of a study variable in a class of interest is denoted 

by 
L

C hj
h 1 j Ch

Y y
= ∈

= ∑∑ . The mean of a study variable in C  is given by C CY Y M= . 

 

 

3.  Stratified Inverse PPS Sampling 

3.1 Stratified Inverse PPS Sampling with Replacement 

In stratum h, a unit hju  is selected with probability hjz  and with replacement 

until the sample contains hm  units (including replicates ) from class hC  where hm  is 

fixed in advance. The sample consists of hm  units from hC  and h hn m−  units from hC . 

The ( )hh 1 2 ns i ,i , ,i=   denotes the sample from stratum h. The sample hs  can be 

partitioned into two sets Chs  and Chs  of units from hC  and hC , respectively. 

 

Theorem 3.1 Under stratified inverse PPS sampling with replacement, an unbiased 

estimator of the population mean is  
L

st h Ch h Ch
h 1

1 ˆ ˆy P y (1 P ) y
N =

 = + − ∑ ,     (3.1) 
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where h
h

h

m 1P̂
n 1

−
=

−
. The variance of sty  is  

( ) ( ) ( ) ( )
2 22L

2Ch Ch Ch Ch
st h h h h2

Ch h hh 1 Ch

YY1 ˆ ˆ ˆ ˆV y V P E P E P 1 P
z z m m 1N =

   ss   = − + + −      −  
∑ , (3.2) 

where Ch hj
j Ch

Y y
∈

= ∑  and hjCh
j Ch

Y y
∈

= ∑ . For hm 2> , an unbiased estimator of the variance 

is 

( ) ( ) ( )
22L 2 * *Ch Ch h

st Ch h h h hCh2
h h hh 1

ˆˆ1 m 1ˆ ˆ ˆ ˆ ˆ ˆV y y y V P P P P
m m 1 m 2N =

 s  s −
= − + + −   − −   

∑ , (3.3) 

where ( ) ( )h h
h

h

ˆ ˆP 1 Pˆ ˆV P
n 2

−
=

−
 and ( )( )

( )( )
h h*

h
h h

m 1 m 2
P̂

n 1 n 2
− −

=
− −

. 

Proof: Greco and Naddeo [10] showed that h h Ch h Ch
ˆ ˆ ˆY P y (1 P ) y= + −  is an unbiased 

estimator of 
nN

h hj
j 1

Y y
=

= ∑ . They also showed that 

( ) ( ) ( ) ( )
2 22

2Ch Ch Ch Ch
h h h h h

Ch h hCh

YYˆ ˆ ˆ ˆ ˆV Y V P E P E P 1 P
z z m m 1

  ss  = − + + −      − 
 and an unbiased 

estimator of ( )ˆV Y  is ( ) ( ) ( )
222 * *Ch Ch h

h Ch h h h hCh
h h h

ˆˆ m 1ˆ ˆ ˆ ˆ ˆ ˆ ˆV Y y y V P P P P
m m 1 m 2

s  s −
= − + + −  − − 

. We 

get that ( ) ( ) hNL L

st h hj
h 1 h 1 j 1

1 1ˆE y E Y y Y
N N= = =

= = =∑ ∑∑ , since the estimates are unbiased in the 

individual strata. Because of the samples are drawn independently in different strata, the 

covariance between hŶ  and kŶ  equals to 0 for h k 1,2, ,L≠ =  . This gives the results 

(3.2) and (3.3). Note that when the number hm  increases the variance of sty  decreases. 

 

Corollary 3.1 An unbiased estimator of M  is  

 
Ch

L

st h
h hjh 1 j s

1 1ˆ ˆM P
m z= ∈

 
 =
 
 

∑ ∑  ,      (3.4) 

with the variance  

( ) ( ) ( )
22L

2Chh
st h h2

hh 1 Ch

Mˆ ˆ ˆV M V P E P
mz=

 ′s
= + 

  
∑ ,    (3.5) 
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where 
2

2 h
Ch hj

Ch hj Chj Ch

1 1 Mz
z z z∈

 
′  s = − 

 
∑ . For hm 2> , an unbiased estimator of ( )st

ˆV M  is  

( ) ( )
2

2L
*Ch

st h h
h hj hh 1 j Ch

ˆ1 1ˆ ˆ ˆ ˆ ˆV M V P P
m z m= ∈

   ′s  = +  
   

∑ ∑ ,    (3.6) 

where 
Ch Ch

2
2

Ch
h hj h hjj s j s

1 1 1 1ˆ
m 1 z m z∈ ∈

 
′  s = −

 −  
∑ ∑ . 

Proof:  Define hjy′  to be 1 if the unit belongs to hC  and 0  if the unit belongs to hC . Then 

hN

h hj
j 1

M y
=

′= ∑  and 
L

h
h 1

M M
=

= ∑  is estimated unbiasedly by stM̂  in (3.4). For the study value 

hjy′ , taking on values 1 or 0 , the variance, 2
Chs  and sampled variance, 2

Chŝ  are replaced 

by 2
Ch′s  and 2

Chˆ ′s  respectively. 

 

Corollary 3.2 An unbiased estimator of the total of a study variable in class C  is 

L

Cst h Ch
h 1

ˆ ˆY P y
=

= ∑  with the variance 

( ) ( ) ( )
2 2L

2Ch Ch
Cst h h

Ch hh 1

Yˆ ˆ ˆV Y V P E P
z m=

   s = +     
∑ .    (3.7) 

For hm 2> , an unbiased estimator of the variance of CstŶ  is  

( ) ( )
2L

2 *Ch
Cst Ch h h

hh 1

ˆˆ ˆ ˆ ˆ ˆV Y y V P P
m=

 s
= + 

  
∑ .     (3.8) 

Proof:    Define new variable hjy′′  to be hjy  if the unit belongs to hC  and to be 0  if the 

unit belongs to class hC . Then 
hN

Ch hj
j 1

Y y
=

′′= ∑  and CstŶ  is an unbiased estimator of 

L

C Ch
h 1

Y Y
=

= ∑ . For the study value hjy′′ , taking on values hjy  or 0 , we get that ChY 0= , 

2
Ch 0s = , Chy 0=  and 2

Ch
ˆ 0s = . 
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Theorem 3.2 Cst
Cst

st

Ŷy
M̂

=  is a biased estimator of CY  with bias 

( )
( )Cst st

Cst

ˆCov y ,M
B y

M

−
= and 

( )

( )
( )Cst

st1
2Cst

B y ˆCV M
V y

≤
  

. An approximate mean squared 

error of the estimator is ( ) ( ) ( ) ( )2
Cst C st Cst C st Cst2

1 ˆ ˆ ˆ ˆMSE y Y V M V Y 2Y Cov M ,Y
M

 ≈ + −   

where ( ) ( ) ( )
2L

2h Ch Ch
st Cst h h2

hh 1 Ch

M Yˆ ˆ ˆ ˆCov M ,Y V P E P
mz=

 ′′s
= + 

  
∑   and 

hj2 Chh
Ch hj

Ch hj Ch hj Chj C

y Y1 1 Mz
z z z z z∈

  
′′s = − −    

  
∑ . 

Proof:
 

( ) ( ) ( ) ( )Cst st Cst st Cst st
ˆ ˆ ˆCov y ,M E y M E y E M= − ( )C

st Cst
st

Ŷ ˆE M M E y
M̂

 
= −  

 
. Hence, 

( )
( )Cst st

Cst C

ˆCov y ,M
E y Y

M
= − .  

So ( )
( )Cst st

Cst C

ˆCov y ,M
E y Y

M

−
− =  and

 

( )

( )

( ) ( ) ( )
( )

1
2

Cst st st stCst
1

st2Cst

ˆ ˆCorr y ,M V y V MB y
M V y

V y

 
 =
 
     

( ) ( )
1
2

st
st

ˆV M
ˆCV M

M

 
 ≤ = .  The approximate mean squared error of Csty  can derive by 

using linearization method. 

 
3.2 Stratified Inverse PPS Sampling without Replacement 

When the probability proportional to size without replacement at each draw is 

taken, we get a PPS sample without replacements. Since the selection probabilities 

change from draw to draw, to estimate the population total, we can use the Horvitz-

Thompson estimator. Unfortunately, inclusion probabilities from inverse sampling depend 

on the unknown parameter M . It is not easy to use the Horvitz-Thomson estimator. 

Salehi and Seber [7] proved that the Murthy’s estimator can be applied to inverse 

sampling. From stratum h, the first unit is drawn using the probability of selection hjz  and 

the remaining units are drawn one by one with equal probabilities and without 

replacement until the sample contains hm  units from class hC . Assume that h hm M≤ . 
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The sample is { }hh 1 2 ns i ,i , ,i=   where hn  is the sample size. Let Chs  denote the set of 

units from class hC  and Chs  the set of units from hC  with cardinalities hm  and h hn m− , 

respectively, where Ch Chs s∩ = φ  and Ch hChs s s∪ = .  

 

Theorem 3.3 In stratified inverse PPS sampling without replacement, an unbiased 

estimator of Y  is 

  ( )
Ch Ch

h Ch h Ch

L h h
st hj hj

h 1 j s j sh hj hj h hj hj
j s j s j s j s

m 11 my y y
N m z z m z z= ∈ ∈

∈ ∈ ∈ ∈

 
− = +∑ ∑ ∑ − −∑ ∑ ∑ ∑  

.  (3.9) 

The variance of sty  is  

  ( ) ( ) ( )
( )

h h

h

2
N 1 NL hjh h hi

st hi hj2
h 1 i 1 j i 1 s i, j hi hj

yP s | i P s | j1 yV y 1 z z
N P s z z

−

= = = + ∋

    = − − ∑ ∑ ∑ ∑        
. (3.10) 

For hm 2> , an unbiased estimator of ( )stV y  is 

 

 

( )
Ch Ch Ch Ch

h Ch

2 2
L

hj hjhi hi
st h1 hi hj h2 hi hj2

h 1 i s j i s i s j shi hj hi hj
h hi hi

i s i s

y y1 1 y yV̂ y k z z k z z
N z z z z

m z z= ∈ < ∈ ∈ ∈

∈ ∈

    = − + −             −  
 

∑ ∑ ∑ ∑ ∑
∑ ∑

 

     
Ch Ch

2

hjhi
h3 hi hj

i s j i s hi hj

yyk z z
z z∈ < ∈

  + −      
∑ ∑ ,    (3.11) 

where ( )( ) ( )

h Ch

2
h h h

h1
h

h hi hi
i s i s

N 1 m 2 m 1
k

n 2
m z z

∈ ∈

− − −
= −

−  
−  

 
∑ ∑

,

 ( )( ) ( )

h Ch

h h h h
h2

h
h hi hi

i s i s

N 1 m 1 m m 1
k

n 2
m z z

∈ ∈

− − −
= −

−  
−  

 
∑ ∑

 

and     ( )

h Ch

2
h h h

h3
h

h hi hi
i s i s

N 1 m mk
n 2

m z z
∈ ∈

−
= −

−  
−  

 
∑ ∑

. 
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Proof:  Murthy’s unbiased estimator of the population total in stratum h is  

  ( )
( )

hn
h

h hj
j 1 h

P s | j
Ŷ y

P s=
= ∑ ,      (3.12) 

where hn  is the sample size. Under stratified inverse PPS sampling without 

replacement,  

  ( )
( )

( )
( )

h Ch

h Ch

h
Ch

h hj hj
j s j sh h

hh hj h
Ch

h hj hj
j s j s

m 1 ; j s
m z z

P s | j P s , j
mP s z P s ; j s

m z z

∈ ∈

∈ ∈

− ∈ −= = 
 ∈
 −


∑ ∑

∑ ∑

.    

By substituting ( ) ( )h hP s | j P s  into (3.12), an unbiased estimator of hY  is obtained. This 

estimator does not depend on the order of selection of the units. The variance of hŶ  is 

given by 

  ( ) ( ) ( )
( )

h h

h

2
N N

hjh h hi
h hi hj

i 1 j i s i, j h hi hj

yP s | i P s | j yˆV Y 1 z z
P s z z= < ∋

  
= − − ∑ ∑ ∑     

.   (3.13) 

An unbiased estimator of the variance of estimator hŶ  is  

  ( ) ( )
( )

( ) ( )
( )

h

2
n n hjh h h hi

h hi hj2
i 1 j i h hi hjh

yP s | i, j P s | i P s | j yˆ ˆV Y z z
P s z zP s= <

    = − − ∑∑        

,  (3.14) 

where ( )hP s | i, j  refers to the probability of getting sample s given that the i-th and j-th 

units are selected in any order in the first two draws. From stratified inverse PPS 

sampling without replacement, for hm 2> ,  

  ( )
( )

( )( )

( )

( )( )

( )

( )

( )

h Ch

h Ch

h Ch

h h
Ch

h h hi hi
i s i s

h h h
Ch Ch

h
h h hi hi

i s i s

h h
Ch

h h hi hi
i s i s

m 2 N 1
;i, j s

n 2 m z z

P s | i, j m 1 N 1
;i s and j s

P s
n 2 m z z

m N 1
;i, j s

n 2 m z z

∈ ∈

∈ ∈

∈ ∈




− − ∈   − −    
 − −= ∈ ∈

  − −   
 

 −
 ∈

 
− −     

∑ ∑

∑ ∑

∑ ∑

. 
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By substituting the expressions ( )
( )

h

h

P s | j
P s

 and ( )
( )
h

h

P s | i, j
P s

 into (3.14), an unbiased 

estimator of the variance of hŶ  is obtained. Because of the independence of samples 

across strata, we get (3.9) and (3.11).  

 

Corollary 3.3 In stratified inverse PPS sampling without replacement, an unbiased 

estimator of  CY  is given by  

( )
Ch

h Ch

L h
Cst hj

h 1 j sh hj hj
j s j s

m 1
Ŷ y

m z z= ∈
∈ ∈

 
− = ∑ ∑ −∑ ∑  

,     (3.15) 

 with the variance 

( ) ( ) ( )
( )

h h

h

2
N 1 NL hjh h hi

Cst hi hj
h 1 i 1 j i 1 s i, j h hi hj

yP s | i P s | j yˆV Y 1 z z
P s z z

−

= = = + ∋

    ′′′′ = − − ∑ ∑ ∑ ∑        
,  (3.16) 

where 
hs i, j∋
∑  refers to summation over all samples, hs  which contains the i-th and j-th 

units. For hm 2> , an unbiased estimator of ( )Cst
ˆV Y  is 

( )
Ch Ch Ch

h Ch

22L
hj

Cst h1 hj hj
h 1 j s j s j shj

h hj hj
j s j s

y1ˆ ˆV Y k z y
z

m z z= ∈ ∈ ∈

∈ ∈

        = −                  −  
 

∑ ∑ ∑ ∑
∑ ∑

ChCh

2
hj

h2 hj
j s j s hj

y
k z

z∈ ∈

     +          
∑ ∑ .       (3.17) 

Proof:  We have 
hN

Ch hj
j 1

Y y
=

′′= ∑  and 
L

C Ch
h 1

Y Y
=

= ∑  is estimated unbiasedly by CstŶ  in (3.15). 

For the study value hjy′′ , taking on values hjy  or 0 , we get that the variance of CstŶ  and 

its unbiased estimate are given by expressions (3.16) and (3.17), respectively. 

 
Corollary 3.4 In stratified inverse PPS sampling without replacement, an unbiased 

estimator of M  is given by 

( )

h Ch

L h h
st

h 1 h hj hj
j s j s

m m 1
M̂

m z z=
∈ ∈

−
= ∑

−∑ ∑
.           (3.18) 

For hm 2> , an unbiased variance estimator of stM̂  is given by 
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 ( )
Ch Ch

h Ch

L
2

st h1 hj h
h 1 h s j s hj

h hj hj
j s j s

1 1ˆ ˆV M k z m
z

m z z= ∈ ∈

∈ ∈

      = −            −  
 

∑ ∑ ∑
∑ ∑

ChCh

h2 hj
j s j s hj

1k z
z∈ ∈

  +         
∑ ∑ .          (3.19) 

Proof: We have 
hN

h hj
j 1

M y
=

′= ∑  and 
L

h
h 1

M M
=

= ∑  is estimated by expression (3.18). So stM̂  

is an unbiased estimator of M . For the study value hjy′ , taking on values 1 or 0, an 

unbiased estimator of ( )st
ˆV M is obtained as expressions (3.19). 

 
Theorem 3.4 Under stratified inverse PPS sampling without replacement, the bias of a 

ratio estimator, Cst
Cst

st

Ŷy
M̂

=  of CY  is given by ( )
( )Cst st

Cst

ˆCov y ,M
B y

M

−
=  and its bound is 

( )

( )
( )Cst

st1
2Cst

B y ˆCV M
V y

≤
  

. An approximate mean squared error of the estimator Csty  is 

given by ( ) ( ) ( ) ( )2
Cst C st Cst C Cst st2

1 ˆ ˆ ˆ ˆMSE y Y V M V Y 2Y Cov Y ,M
M

 ≈ + −   where 

( ) ( ) ( )
( )h

L N N hj hjh h hi hi
Cst st hi hj

h 1 i 1 j i s i, j h hi hj hi hj

y xP s | i P s | j y xˆ ˆCov Y ,M 1 z z
P s z z z z= = < ∋

    ′′ ′′′ ′
= − − −  ∑ ∑∑ ∑       

, 

hj h
hj

h

y ; j C
y

0 ; j C

∈′′ = 
∈

 and h
hj

h

1 ; j C
x

0 ; j C

∈′ = 
∈

.  

Proof: The proof is similarly to that in theorem 3.2. 

 

 

4. Stratified Inverse Random Sampling 

4.1 Stratified Inverse Random Sampling with Replacement 

If the probabilities of selection are equal to hj
h

1z
N

=  for hj 1,2, , N=   and 

h 1,2, ,L=  , stratified inverse PPS sampling with replacement reduces to stratified 
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inverse random sampling with replacement. Estimators under stratified inverse PPS 

sampling are reduced to the following forms. An unbiased estimator of Y  is given by 

L

st h h Ch h Ch
h 1

ˆ ˆy W P y (1 P ) y
=

 = + − ∑ ,     (4.1) 

where h
h

NW
N

= , h
h

h

m 1P̂
n 1

−
=

−
, 

Ch

Ch hj
j sh

1y y
m ∈

= ∑  and 
Ch

hjCh
j sh

1y y
m ∈

= ∑ . The variance of sty  

is  

 ( ) ( ) ( ) ( ) ( )
22L 22 2Ch Ch

st h Ch h h h hCh
h hh 1

ˆ ˆ ˆ ˆV y W Y Y V P E P E P 1 P
m m 1=

 ss  = − + + −   −  
∑ , (4.2) 

where Ch hj
j Chh

1Y y
M ∈

= ∑ , hjCh
j Chh h

1Y y
N M ∈

=
− ∑  , ( )22

Ch hj Ch
h j Ch

1 y Y
M ∈

s = −∑  and 

( )22
hjCh Ch

h h j Ch

1 y Y
N M ∈

s = −
− ∑ . An unbiased estimator of the variance is 

 ( ) ( ) ( )
22L 22 * *Ch Ch h

st h Ch h h h hCh
h h hh 1

ˆˆ m 1ˆ ˆ ˆ ˆ ˆ ˆV y W y y V P P P P
m m 1 m 2=

 s  s −
= − + + −   − −   
∑ , (4.3) 

where ( ) ( )h h
h

h

ˆ ˆP 1 Pˆ ˆV P
n 2

−
=

−
, ( )( )

( )( )
h h*

h
h h

m 1 m 2
P̂

n 1 n 2
− −

=
− −

, ( )
Ch

22
Ch hj Ch

h j s

1ˆ y y
m 1 ∈

s = −
− ∑  and 

( )
Ch

22
hjCh Ch

h h j s

1ˆ y y
n m 1 ∈

s = −
− − ∑ . Estimators of CY  and M  are derived in the same 

ways. 

 

4.2 Stratified Inverse Random Sampling without Replacement 

 If the probabilities of selection are equal to hj
h

1z
N

=  for hh 1,2, , N=   and 

j 1,2, ,L=  , stratified inverse PPS sampling without replacement reduces to stratified 

inverse random sampling without replacement. An unbiased estimator of Y  is given by 
L

st h h Ch h Ch
h 1

ˆ ˆy W P y (1 P ) y
=

 = + − ∑ ,     (4.4) 

where h
h

h

m 1P̂
n 1

−
=

−
, 

Ch

Ch hj
j sh

1y y
m ∈

= ∑  and 
Ch

hjCh
j sh

1y y
m ∈

= ∑ . The variance of sty  is  
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 ( ) ( ) ( ) ( )
2L 22 2Chh

st h Ch h hCh
h hh 1

Smˆ ˆV y W Y Y V P 1 E P
M m=

  
= − + −     
∑

( )
2
Ch h h

h h
h h h

S n mˆ ˆE P 1 P 1
m 1 N M

  −
+ − −   − −    

,    (4.5) 

where Ch hj
j Chh

1Y y
M ∈

= ∑ , hjCh
j Chh h

1Y y
N M ∈

=
− ∑  , ( )22

Ch hj Ch
h j Ch

1S y Y
M 1 ∈

= −
− ∑  and 

( )22
hjCh Ch

h h j Ch

1S y Y
N M 1 ∈

= −
− − ∑ . An unbiased estimator of the variance is 

 ( ) ( ) ( )
2L 22 *Ch h

st h Ch h h hCh
h hh 1

Ŝ mˆ ˆ ˆ ˆ ˆV y W y y V P P P
m N=

  
= − + −     
∑

( ) ( )h h h2 h
Ch

h h h h

ˆ ˆ ˆ ˆP 1 P V Pˆ1 PŜ
m 1 N n m

 − −  + − −  − −  

,    (4.6) 

where ( ) ( )h h
h

h

ˆ ˆP 1 Pˆ ˆV P
n 2

−
=

−
, ( )( )

( )( )
h h*

h
h h

m 1 m 2
P̂

n 1 n 2
− −

=
− −

, ( )
Ch

22
Ch hj Ch

h j s

1Ŝ y y
m 1 ∈

= −
− ∑  and 

( )
Ch

22
hjCh Ch

h h j s

1Ŝ y y
n m 1 ∈

= −
− − ∑ . Estimators of CY  and M  are similarly derived. Note 

that the variance ( )stV y  decreases when the number of sampled units in hC  increases. 

 

 

5. Simulation Study 

To compare the estimators for the four sampling designs described above, 

simulation is used. Six populations, each of size N 10,000= , were created from the 

model1 where the correlation coefficients ( )ρ  between the study variable ( )y  and the 

auxiliary variable ( )x  are 0.1,0.2,0.5,0.6,0.8ρ =  and 0.9 . Each population is divided into 

five strata. The class of interest is a set of units with values of a study variable greater 

than or equal to the 90-th percentile of each population data set, i.e. { }h hj hj 90C u : y P= ≥ . 

                                                           
1 The model ( )i i iy x 1 w= α + −α  where ( )2

ix ~ N 500,100  and   ( )2
iw ~ N 500,100  is used. The value 

of α  depends on the correlation coefficient between x and y. 
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From each population, 10,000  Monte Carlo samples were drawn using the four stratified 

inverse sampling schemes. The values of hm  are set to be 2, 5, 8 and 10 percent of 

hM . The estimates ( )ˆV θ  and ( )ˆMSE θ  are calculated as ( )
210,000

j

j 1

ˆ( )ˆV
10,000 1=

θ − θ
θ =

−∑


 and 

( )
210,000

j

j 1

ˆ( )ˆMSE
10,000=

θ − θ
θ = ∑  where 

10,000

j
j 1

1 ˆ
10,000 =

θ = θ∑  is the mean of the estimates of θ  from 

10,000 samples.  The formula of relative efficiency of two estimators under sampling 

design A and sampling design B is ( ) ( )
( )

A

B

ˆV
ˆR.E.

ˆV

θ
θ =

θ




where Aθ̂  and Bθ̂  are estimators 

under sampling designs A and B, respectively. For biased estimator, we replace ( )ˆV θ  

with ( )ˆMSE θ . 

 
Table 5.1. Comparison of the Relative Efficiencies of the Estimates under Stratified 

Inverse Sampling with and without Replacement 

 

ρ  % of hM  

Stratified Inverse Random 
Sampling with to without 

Replacement 

Stratified Inverse PPS Sampling 

with to without Replacement 

( )stR.E. y  ( )st
ˆR.E. M  ( )CstR.E. y  ( )stR.E. y  ( )st

ˆR.E. M  ( )CstR.E. y  

0.1 

2 1.030 1.004 0.995 1.026 1.016 1.013 

5 1.054 1.071 1.059 1.063 1.035 1.054 

8 1.084 1.079 1.070 1.078 1.068 1.076 

10 1.128 1.123 1.088 1.119 1.114 1.116 

0.2 

2 1.053 1.031 1.020 1.051 1.047 1.018 

5 1.038 1.034 1.063 1.053 1.046 1.055 

8 1.107 1.104 1.071 1.101 1.058 1.056 

10 1.118 1.092 1.124 1.125 1.095 1.105 

0.5 

2 1.015 1.008 1.022 1.086 1.072 1.014 

5 1.051 1.032 1.051 1.199 1.064 1.054 

8 1.118 1.131 1.100 1.288 1.079 1.073 

10 1.083 1.079 1.083 1.335 1.117 1.094 
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ρ  % of hM  

Stratified Inverse Random 

Sampling with to without 
Replacement 

Stratified Inverse PPS Sampling 
with to without Replacement 

( )stR.E. y  ( )st
ˆR.E. M  ( )CstR.E. y  ( )stR.E. y  ( )st

ˆR.E. M  ( )CstR.E. y  

0.6 

2 1.024 1.023 1.032 1.097 1.021 1.025 

5 1.067 1.052 1.038 1.270 1.106 1.039 

8 1.027 1.041 1.131 1.335 1.102 1.078 

10 1.102 1.122 1.137 1.469 1.141 1.120 

0.8 

2 1.050 1.038 1.030 1.232 0.947 1.004 

5 1.061 1.062 1.052 1.430 1.021 1.011 

8 1.007 1.040 1.074 1.466 1.067 1.075 

10 1.138 1.121 1.104 1.529 1.128 1.088 

0.9 

2 1.036 1.055 1.042 1.301 1.059 0.995 

5 1.038 1.062 1.040 1.501 1.153 1.011 

8 1.083 1.080 1.087 1.505 1.140 1.034 

10 1.051 1.067 1.107 1.532 1.098 1.053 

 

Table 5.1. indicates that the estimates under stratified inverse random sampling 

without replacement are more efficient than those with replacement. The estimates 

under stratified inverse PPS sampling without replacement have higher efficiencies than 

those under stratified inverse PPS sampling with replacement. 

 

Table 5.2. Comparison of the Relative Efficiencies of the Estimates under Stratified 

Inverse Random Sampling and Stratified Inverse PPS Sampling 

 

ρ  
% of hM  

Stratified Inverse PPS Sampling to 
Random Sampling with 

Replacement 

Inverse PPS Sampling to 
Random Sampling without 

Replacement 

( )stR.E. y  ( )st
ˆR.E. M  ( )CstR.E. y  ( )stR.E. y  ( )st

ˆR.E. M  ( )CstR.E. y  

0.1 

2 0.911 0.984 0.983 0.908 0.995 1.000 

5 0.891 1.013 1.026 0.898 0.979 1.020 

8 0.908 1.014 1.001 0.903 1.003 1.006 

10 0.900 1.019 0.976 0.893 1.011 1.002 
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ρ  
% of hM  

Stratified Inverse PPS Sampling to 

Random Sampling with 
Replacement 

Stratified Inverse PPS Sampling to 

Random Sampling without 
Replacement 

( )stR.E. y  ( )st
ˆR.E. M  ( )CstR.E. y  ( )stR.E. y  ( )st

ˆR.E. M  ( )CstR.E. y  

0.2 

2 0.929 1.006 1.000 0.927 1.022 0.998 

5 0.895 1.001 1.008 0.909 1.012 1.000 

8 0.912 1.030 0.999 0.907 0.987 0.985 

10 0.915 0.998 1.007 0.920 1.001 0.990 

0.5 

2 0.930 1.009 1.009 0.995 1.074 1.001 

5 0.838 1.027 0.998 0.957 1.058 1.001 

8 0.811 1.081 1.045 0.934 1.031 1.019 

10 0.733 1.005 0.999 0.903 1.040 1.009 

0.6 

2 0.914 1.045 1.007 0.980 1.043 1.001 

5 0.802 1.000 1.004 0.954 1.052 1.005 

8 0.734 1.013 1.051 0.954 1.072 1.002 

10 0.683 1.045 1.016 0.910 1.063 1.001 

0.8 

2 1.102 1.152 1.026 1.293 1.052 1.000 

5 0.924 1.045 1.042 1.244 1.004 1.001 

8 0.857 1.063 1.018 1.248 1.090 1.019 

10 0.868 1.036 1.040 1.166 1.042 1.025 

0.9 

2 1.639 1.141 1.067 2.059 1.145 1.018 

5 1.431 1.100 1.051 2.069 1.195 1.022 

8 1.352 1.054 1.055 1.878 1.112 1.004 

10 1.332 1.088 1.054 1.943 1.120 1.003 

 

Table 5.2. shows that when the correlation coefficient (ρ) is greater than 0.8, the 

efficiencies of the estimates under stratified PPS sampling with replacement are larger 

than those under stratified inverse random sampling with replacement. When the 

correlation coefficient is greater than 0.7 the relative efficiencies of the estimates under 

stratified PPS sampling without replacement are larger than those under stratified 

inverse random sampling without replacement. However, the relative efficiencies of the 

estimates decrease when hm  increases.  
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6. Conclusion 

This paper considers stratified inverse sampling with four variations. The 

parameters estimated are the population mean of a study variable ( )Y , the number of 

units in a class of interest ( )M  and the mean from units in a class of interest ( )CY . 

Unbiased estimators of Y  and M  are given and unbiased estimates of their variances 

are found. The biased estimate of CY  is presented. When the number of sampled units 

in a class of interest increases, the variances or mean squared errors of the estimators 

decrease. The results of the simulation study indicate that stratified inverse random 

sampling without replacement have a smaller estimates of variances or mean squared 

error of estimators than that of estimates under random sampling with replacement. 

Stratified inverse PPS sampling without replacement gives higher efficient estimators 

than PPS sampling with replacement. Stratified inverse PPS sampling designs should be 

used in a survey when the auxiliary variable is highly correlated to the study variable. 
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