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Abstract 

In this paper, we describe the generation of a uniformly scattered set of points 

in the k-dimensional ball (Bk) based on the transformation from the set of points in the k-

dimensional unit cube (Ck). We apply four number-theoretic methods, which are 

described in Fang and Wang (1994) for generation of uniform designs in Ck, to generate 

the uniform design in Bk. These four number-theoretic methods are the good lattice point 

(GLP) method, the power-modulo a prime (PMP) method, the square root sequence 

(SRS) method and the Hammersley (HAM) set method. We study k =2, 3, and 4 

dimensions with the number of design points (N) = 29, 53 and 98 for each k.  Three 

distance-based criteria (the root mean squared distance (RMSD), the average distance 

(AD), and the maximum distance (MD)), are used for choosing the best design among a 

set of points and the RMSD is the major criterion for choosing the best design. When the 

number of factors (k) is small, the GLP is suitable for generation of a uniform design in 

Bk. The HAM and SRS methods are suitable when N and k are large. 

______________________________ 
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1. Introduction 

When there are a large number of factors, the required number of runs in a full 

factorial design is very large. For example, if there are 10 factors with 6 levels for each 

factor, then the number of all possible runs is 610 which is very large and, therefore, 

cannot actually be run. If a fractional-factorial design or an orthogonal design is used, the 

number of runs is at least  6m for m = 2, 3, …, 9. For small m, the model must be simple 

and interactions will be confounded with main effects. For larger m, the design size is 

again impractically large. In recent years, there has been rapid growth in the use of 

computer experimentation. Computer experiments have been used to study complex 

processes, and they require computer code to simulate part or all of a process that 

usually has many input variables. Inputting values for these variables will generate an 

“observation'' or “response'' from the computer code, but unlike the classical experiments 

on physical processes, computer experiments are deterministic. That is, every time the 

code is run with the same inputs, the outputted observations will be identical. Thus, there 

is no random error in the model. In addition, a larger experimental space (or domain) can 

be employed to explore complicated nonlinear functions. For the details of physical and 

computer experiments, see Fang, Li, and Sudjianto [1] and Santer, Williams and Notz [2]. 

Sacks, et al.  [3] presented examples of computer experiments and concluded 

three primary objectives of computer experiments are: (i) predict the response at untried 

inputs, (ii) optimize a function of the response and (iii) tune the computer model (code) 

based on physical data. Because there is no random error, an additional assumption 

made in a computer experiment is that the true response surface (the relationship 

between the inputs and outputs) is unknown. When few or no details on the functional 

behavior of the response parameters are available, it is important to be able to obtain 

information from the entire experimental design space. For this reason, the methods for 

computer experiments tend to place samples representing settings of the input variables 

on the interior of the experimental design space in what is often termed a space-filling 

set of samples. Sampling in the interior of the experimental design space can reduce 

bias error resulting from assuming a model that does not adequately represent the true 

relationship between the input and output variables. Space-filling is one criterion that a 

design for computer experiments should adequately satisfy. Therefore, design points 

should be evenly or uniformly spread throughout the entire region (Husslage et al. [4]). A 

design which has its points placed throughout the space is called a space-filling design. 

McKay, Beckman and Conover [5] were the first to explicitly consider 

experimental designs applied to a deterministic computer model. They proposed Latin 
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Hypercube Sampling (LHS), an extension of stratified sampling, which ensures that each 

of the input variables (factors) has all segments within its range represented. A design 

using a Latin hypercube sample can be computationally cheap to run because it can 

include relatively few combinations of input values and it can also cope with experiments 

having many input variables.  

Fang [6] and Wang and Fang [7] proposed the uniform design (UD) and 

provided tables for certain classes of Uniform designs. Uniform design is another kind of 

the space-filling design. The Uniform design concept is to generate a set of experimental 

points using quasi-Monte Carlo methods or number-theoretic methods such that the 

points are uniformly scattered throughout the experimental space with low discrepancy. 

Uniform designs were initially applied in China for the design of new products in the 

textile and metallurgical industries, and in engineering and agriculture applications. See 

Liang, Fang and Xu [8] for a history of Uniform design applications. 

Number-theoretic methods (NTMs) or quasi-Monte Carlo methods are special 

methods which represent a combination of number theory and numerical analysis. The 

methods have been applied to numerical integration techniques, but more recently have 

been applied in many applications in statistics. For example, Fang [6] and Wang and 

Fang [7] were the first to apply NTMs for generating a set of design points when the 

experimental space is a k-dimensional unit cube, denoted Ck , such that these points are 

uniformly scattered in Ck. In addition, Fang and Wang [9] gave a general outline 

regarding the transformation of the design points in Ck to other experimental design 

spaces. In particular, they discussed transformations from the unit cube to the ball and to 

the sphere, and to the simplex in mixture designs. The most common measure of 

assessing the uniformity in their research is the discrepancy and its various versions. A 

lower discrepancy value implies a better design based on uniformity of scatter of the 

points in the design space. See Hua and Wang [10], Niederreiter [11] and Hickernell [12] 

for the details of discrepancy and its versions. 

Borkowski and Piepel [13] discussed two number-theoretic methods for 

generating uniform designs for single and multiple component constraints in the mixture 

designs. The two methods are called the one-pass exchange algorithm and the power-

modulo-a-prime method. They used three distance-based criteria (the root mean 

squared distance (RMSD), the average distance (AD), and the maximum distance (MD)), 

for choosing the best design among a set of number-theoretic mixture designs (NTMDs). 

The article is organized as follows: In Section 2, we describe the four NTMs for 

generation of uniformly scattered sets of points in Ck, which can be transformed to other 
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experimental spaces, in particular, the k-dimensional ball, denoted Bk. The four NTMs 

are the good lattice point (GLP) method, the power-modulo a prime (PMP) method, the 

square root sequence (SRS) method, and the Hammersley set (HAM) method. In 

Section 3, we describe the transformation method from the points in Ck to the uniformly 

scattered points in Bk. In Section 4, the three distance-based criteria for assessing the 

uniformity in this study are presented. Section 5 presents a comparison study of 

generation the uniform design in Bk, using 4 NTMs for low dimensions k such that k = 2, 

3, and 4 dimensions, and for each k, the number of design points N can be considered in 

small (N = 29), medium (N = 53) and large (N = 98). The first two values of N are primes 

and the last is written in the form N = 2pl ,   where p is an odd prime and l ≥ 1, these are 

examples of number of design points which can be considered for all 4 NTMs.  The 

conclusions and discussion are given in Section 6. 

 

2. Methods for Generation uniformly Scattered Sets of Points in Ck 

 There are several methods for the generation of uniformly scattered sets of 

points in k- dimensional unit cube Ck. Fang and Wang [9] classified the set of points from 

these methods into 3 types; (i) good lattice point (GLP) sets generated using the good 

lattice point method or the power-modulo a prime method; (ii) good point (GP) sets 

generated using  the square root sequence method, the power of the (k+1)st root method, 

or the cyclotomic field method; (iii) H-sets which are generated using the Halton set 

method or the Hammersley set method. In this paper, we will study only the following 

four methods:  

 

I. Good Lattice Point (GLP) Method  

This method was described by Wang and Fang [7]. For a given number of 

design points N and number of factors k, let h = (h1, h2, …, hk) be a vector of positive 

integers such that  

a) the greatest common divisor of N and hi (gcd (N, hi)) = 1 for i = 1, 2, …, 

k and  

b) Nhhh k <<<<≤ 211  

These GLP sets can be generated as follows: 

i) For each hi ; i = 1, 2, …, k  and for j = 1, 2, …, N,  calculate  

                                       qji     =    j hi (mod N)                                   (1) 



Wipawan Laoarun                         107 

If qji   = 0, then set  qji   = N. The values of qji form an N x k matrix L and because gcd (N, 

hi) = 1, each column of  L is  equivalent to a permutation of 1, 2, …, N. The matrix L is 

called a lattice point  matrix of integers.  

ii)     Create a matrix C by transforming each  qji in L  to 

                             xji     =   










 −

N
q ji

2
12

                                                     (2) 

Hence each column of C is equivalent to a permutation of ,,, 
NN 2
3

2
1  

N
N

N
N

2
12

2
32 −− , .  

Define xj  =  (xj1, xj2, …, xjk) to be jth row of C and PN be the set { x1, x2, …, xN} formed 

from the N rows of C. PN is called the lattice point set of the generating vector (N;h1, 

h2, …, hk). Wang and Fang [7] suggested that the number of factors k needs to be less 

than or equal to the Euler function Φ (N), which denotes the number of integers m 

satisfying 1 ≤ m < N, and gcd(m , N) = 1.  Suppose N = rl
r

ll ppp 21
21 ⋅ and 

rppp ,, 21 are different primes, then Φ(N) = 







−








−

rpp
N 1111

1
   and Φ (N) = N-1 

when N is prime. For example, take N = 7 points and k = 3 factors. There are Φ(7) = 6 hi  

values {1, 2, …, 6} which satisfy the condition gcd(hi , 7) = 1. These hi  values yield the 

generating vector h = (1, h2, h3) where 1<h2 < h3<7. Suppose the generating vector is h = 

(1, 4, 5). The value of h1 = 1, h2 = 4 and h3 = 5 are used to calculate qj1, qj2 and qj3 for j = 

1, 2, …, 7 as in (1) to form a 37× matrix L and transforming each qji in L to xji as in (2) to 

form a 37× matrix C . Hence, for h = (1, 4, 5), the matrices L and C are 





























=

777
236
465
624
153
312
541

    
    
    
    
    
    
    

    L ,   and  





























=

141314131413
1431451411
1471411149
1411143147

141149145
147141143
149147141

/   /   /
/     /   /
/   /     /
/     /     /

/     /     /
/     /     /
/     /     /

 
 

    C  . 

 

II.    Power-modulo a prime (PMP) method  
When the number of design points is a prime number p. Korobov [14] 

suggested the generating vector       
h = (h1, h2, …, hk)  ≡  (1, a, a2, …, ak-1) (mod p)                                        (3) 
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where 1 < a < p and a can be chosen among the primitive roots modulo p. That is a 

satisfies 

    ai  ≠  aj (mod p)     ; 1 ≤ i < j < p                                        (4) 

The condition of gcd (N, hi) = 1 is still needed.  Note that this method depends on the set 

of primitive roots modulo p.  If design size N is not a prime number, but N can be written 

in the form N = 2, 4, pl or 2pl , where p is an odd prime and l ≥ 1, then a primitive root 

modulo N will exist. The number of primitive roots modulo N is Φ (Φ (N)). To find the 

primitive roots, we will apply the following definition from Niven and Zuckerman [15], the 

theorem and corollary from Rosen (1985, chapter 8)[16], and the condition in (4). 

 
Definition A reduced residue set modulo N is a set of integers ri such that gcd(ri, 

N) = 1, ri ≠ rj (mod N) if i ≠ j, and such that every x primes to N is congruent  modulo N to 

some member ri of the set. 

 
Theorem If a and N are relatively prime positive integers and if a is a primitive 

root modulo N, then the integers   a1, a2, …, aΦ (N)  form a reduced residue set modulo N.  

 

It is clear that a1, a2, …, aΦ (N)  form a reduced residue set modulo N if and only if  gcd(ai, 

N) = 1 for i = 1, 2, …, Φ (N) and a1, a2, …, aΦ (N) are incongruent in pairs modulo N.  

 
Corollary Let  a be a primitive root modulo m. Then au is a primitive root modulo 

m if and only if gcd(u, Φ (m)) = 1. 

 

In practice, we use the smallest primitive root for generating other primitive 

roots.  The next step is to use the generating vector h in (3) to generate the qji   as in (1) 

and then transform each qji   to xji as in (2).  This will yield the matrix C and the set PN 

formed by the rows of C.  For the PMP method, PN is called the lattice point set.  For 

example, consider N = 7 points and k = 3 factors. The number of primitive roots modulo 

7 is 2, and the smallest primitive root modulo 7 is 3. Hence the generating vector h = (1, 

3, 32) mod 7 = (1, 3, 2), and then it is used to generate qji as in (1) and transforming each 

qji in L to xji as in (2). 
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III.   Square root sequence (SRS) method  

This  method  uses  a good point vector   γ   which contains the square root of k  

different prime numbers  p1, p2, …, pk to generate a set of N points PN. Specifically 

                  γ  =  ( )kpp ,,1                                                    (5) 

and                        PN   = { } { }( ){ }jj k ⋅⋅ γγ ,,1     ;  j  =  1, 2, …, N                          (6) 

and  { }ji ⋅γ  stands for the fractional part of ji ⋅γ . For example, consider N = 7 points 

and k = 3 factors. Using three different prime numbers p1=2,  p2 =3, and  p3 = 5 to 

generate a good point  vector γ. A good point vector γ is  γ = ( 532 ,, ). Hence, a set 

of 7 points P7 is 





























=

652501244089950
416403923048530
180306603007110
944309282065690
708201962024260
472104641082840
236107321041420

.    .    .
.    .    .
.    .    .
.    .    .
.    .    .
.    .    .
.    .    .

 

 
 

  P7 . 

IV.   Hammersley set (HAM) method  

This method suggested by Hammersley [17]  is based on forming an H-set from  

the Halton set method. For k-1 different prime numbers p1, …, pk-1, the Hammersley set 

is defined by the set of points {x1, x2, …, xN } where 

        xj   =   





 −

−
)(,),(, jyjy

N
j

kpp 112
12

   ;  j = 1, 2, …, N.                      (7) 

and           )( jy
ip   =   12

1
1

0
−−−− +++ r

irii pbpbpb                                            (8) 

and the natural number j has a pi –digit representation 

                       j  =   r
irii pbpbpbb ++++ 2

210                                                   (9) 

such that 0 ≤ bl ≤ pi -1  ; l = 0,1,2,…,r  and i = 1, 2, …, k . From (9),  j can be written in 

base-pi notation  j  =  011 bbbb rr − . In (8), the value of )( jy
ip  is between 0 and 1, 

and )( jy
ip  is called the radical inverse of j with base pi. For example, take N = 7 points 

and k = 3 factors using 2 different prime numbers base p1 = 2 and p2 = 3. For j = 1, 2, …, 

7 each j can be written in the binary and  tertiary representations, hence, the values of bl 

for y2(j) and y3(j) are: 
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p1 = 2 p2 = 3 

j b0 b1 b2 y2(j) j b0 b1 b2 y3(j) 

1 = 1+0(2) 1   0.5 1 = 1+0(3) 1   0.3333 

2 = 0+1(2) 0 1  0.25 2 = 2+0(3) 2   0.6667 

3 = 1+1(2) 1 1  0.75 3 = 0+1(3) 0 1  0.1111 

4 = 0+0(2)+1(2)2 0 0 1 0.125 4 = 1+1(3) 1 1  0.4444 

5 = 1+0(2)+1(2)2 1 0 1 0.625 5 = 2+1(3) 2 1  0.7778 

6 = 0+1(2)+1(2)2 0 1 1 0.325 6 = 0+2(3) 0 2  0.2222 

7 = 1+1(2)+1(2)2 1 1 1 0.875 7 = 1+2(3) 1 2  0.5556 

 

y2(j) and y3(j) yield xj as in (7) and then the set of points is a 37× matrix X , where 





























=

555608750092860
222203750078570
777806250064290
444401250050000
111107500035710
666702500021430
333305000007140

.    .    . 

.    .    . 

.    .    . 
.    .    .
.    .    .
.    .    .
.    .    .

 
  

 
 

  X  

 For the details of these 4 methods and other methods, see Fang and Wang [9]. 

In the next section, we present details for the generation NT-nets in the k-dimensional 

Ball (Bk) 

 

3. Methods for Generation of Uniformly Scattered Sets of Points in Bk 

Assume the experimental space is the k- dimensional Ball B defined as 

Bk  =   {(x1, x2, …, xk) : 1
1

2 ≤∑
=

k

i
ix  } . 

The following method for generation the uniformly scattered sets of points in Bk is due to 

Wang and Fang [18] which is also contained in Fang and Wang [9].  The approach is to  

generate an N- point NT- net in Ck, and then map its points into Bk.    

Let {cj ; j = 1, 2, …, N} be an NT-net in Ck.  Each element jic is generated by 

one of the NT methods described earlier. Let xj be an NT-net in Bk. each element xji is 

computed by 
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xji  =  1jb 1 
2

+
=
∏ ijjm
i

m
CS ,     for i  = 1, 2, …, k-1 and j = 1, 2, …, N. 

xjk  =  1jb jm
k

m
S

2=
∏                                       (10) 

where  

jmS  =  sin( jmb π ),   jmC  =  cos( jmb π ),    for m = 1, 2, …, k-1 and j = 1, 2, …, 

N. 

 jkS  =  sin( jkb 2π ),  jkC  =  cos( jkb 2π ) 

 1jb   =  k
jc /1
1 ,             jmb  = )( jmm cF 1− ,       for m = 1, 2, …, k 

This method for generating uniformly scattered sets of points { X1, X2, …, XN } is based 

on the following theory of transformations. 

Let vector X = (X1, X2, …, Xk) be uniformly distributed in Bk. Using the spherical 

coordinate transformation, this set of uniformly distributed points in Bk has the  form 

Xi   =  φ1 S2⋅⋅⋅Si Ci+1 ,                    for i = 1, 2, …, k-1        (11) 

              Xk  =  φ1 S2⋅⋅⋅Sk-1 Sk 

where 

Sm  =  sin(πφm), Cm  = cos(πφm),             for m = 1,2, …, k-1 

Sk  =  sin(2πφk), Ck  =  cos(2πφk), 

and φ  =  (φ1, φ2, …, φk ) ∈ Ck is a k×1 vector such that 

1.   φ1, φ2, …, φk are mutually independent and 

2.   φi has p.d.f.    











=






 +−

=

=

−

  ..., 2,  if ,               

2
1,

2
1

))(sin(

1 if ,                               

     )(

1

ki
ikB

ik

p
k-i

k

i
πφπ

φ

φ           (12) 

where 10 ≤≤ φ and B(a,b)  denotes the beta function. Note that )(φkp  = 1 which shows 

that φi ~ U(0,1). The c.d.f. of φi is 













=






 +−

=

= ∫   ..., 2,  if ,               ))(sin(

2
1,

2
1

1 if ,                                                              

     )(

0

kidx
ikB

i

F k-i

k

i

φ

πφπ

φ

φ  (13) 
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By applying the inverse transform method, we obtain the set of φi and then use the 

values of φi to compute the values of xji as in (10). Hence, we will obtain the uniformly 

scattered set in Bk . We give two examples of the generation of obtain the uniformly 

scattered sets in Bk for k = 2 and 3 factors in the Appendix. 

 
4. Design Comparison Criteria 

A uniform design is a design whose points are uniformly scattered over the 

design space. In the beginning of the study, the design space Ck is considered. 

Uniformity of scatter may be achieved by minimizing a discrepancy criterion. There are 

many versions of discrepancy used for assessing the uniformity. The F- discrepancy, the 

star Lp – discrepancy which has been used in quasi-Monte Carlo methods (Hua and 

Wang [10] and Niederreiter [11]). The modified L2  - discrepancy proposed by Hickernell 

[12], which includes L2 – discrepancies of projections of the design point in all lower 

dimensional subspace of Ck.  The centered L2 – discrepancy which contains all L2  - 

discrepancies each calculated using one of the 2k vertices of Ck as the origin. The wrap-

around L2 - discrepancy is calculated after wrapping around each one-dimensional 

subspace of Ck into a closed loop. The definitions and properties of these discrepancies 

can be found in Hickernell [12] and [19], Fang et al.  [20], Fang, Li, and Sudjianto [1].  In 

2009, Borkowski and Piepel [13] developed two number-theoretic methods for 

generating uniform designs for constrained mixture experiments. They used three 

distance-based measures: the root mean squared distance (rmsd (X)), the average 

distance (ad (X)), and the maximum distance (md (X)) to evaluate a design’s uniformity 

of scatter. 

In this study, three distance-based criteria for assessing the uniformity are used 

to compare the designs.  These criteria are the rmsd (X), the ad (X), and the md (X) as in 

Borkowski and Piepel [13]. Let X be an N- point design and ul be a random sample point 

in the set of evaluation points in Bk for l = 1,2, …, M. The rmsd, ad, and md distance 

criteria for a design with N points PN = { x1, x2, …, xN}  are defined as 

     rmsd (X) = ∑
=

M

l

ld
M

1

21 )),(( Xu                                       (14) 

          ad (X) = ∑
=

M

l

ld
M

1

1 ),( Xu                                              (15) 

         md (X) = ),(max Xu l
l

d                                               (16) 
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where d(ul, X) = ),(min jl
j

d xu = 21]))([(min ′−− jljl
j

xuxu  is the minimum of the 

Euclidean distance between evaluation set point ul in Bk and the jth design point xj of X. 

When comparing two designs, if the values of these criteria are smaller for the first 

design than the second design, then the implication is that the points in the first design 

are more uniformly scattered than the points in the other design. 

 
5. Results of the Study 

 In this study, we consider the generation of NT-nets in the k- dimension ball (Bk) 

for k = 2, 3, and 4 dimensions, and for each k, we consider N = 29, 53 and 98 points. 

The methods used for generating NT-nets are the GLP, PMP, SRS and HAM methods.  

For each study, a random sample of 5,000 points in Bk was used to evaluate the three 

criteria for assessing the uniformity of scatter.  

 

a) Results for k = 2 factors 
i) When N = 29 points 

Because N = 29 is prime number, there are 28 hi  values satisfying the condition gcd(N, 

hi) = 1. Table 1 contains the three distance criteria values and the vectors generating NT-

nets by the GLP method.  When we compare designs based on the rmsd and ad values, 

the results are similar.  The design generated by h = (1,8) is slightly better than the 

design generated by h = (1,21).  But when we compare designs under the md criterion, 

the best design is generated by h = (1,12) with md = 0.270217. The worst design under 

all three criteria is generated by h = (1,28).  Figures 1(a), 1(b), 1(c) and 1(d) are plots of 

the 29 points in B2  resulting from generators h = (1,8) , h = (1,21), h = (1,12) and h = 

(1,28), respectively.  Visually, we see that the design in Figures 1(a), 1(b) and 1(c) are 

similar with respect to the uniformity of the scatter but the design points in Figure 1(d) 

are not uniformly scattered. 

 For the PMP method, there are  Φ(Φ (29)) =  Φ (28) = 12 primitive roots 

modulo 29.  The residue set modulo 29 for the least primitive root 2 is 

{21,23,25,29,211,213,215,217,219,223,225, 227}mod(29) = 

{2,8,3,19,18,14,27,21,26,10,11,15}mod(29).  Thus, the primitive roots modulo 29 are ai = 

2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, and 27 for i = 1,2, …, 12, respectively.  In the 

rightmost columns of Table 1, the three distance criteria values are sorted by the rmsd 

value for all possible generators h = (1, ai ) from the PMP method. The PMP method 
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results are same as the GLP having the same generator h, but the worst design from the 

PMP method is generated from h = (1,15). 

 

Table 1. Distance Criteria Values and the GLP and PMP method generators of NT-nets 

in B2 for N = 29 points. These values are sorted by ascending rmsd (X) values. 

GLP PMP 

rmsd (X) ad (X) md (X) 
Generator 

(h) rmsd (X) ad (X) md (X) 
Generator 

(h) 

0.136439 0.127265 0.324344 (1,8) 0.136439 0.127265 0.324344 (1,8) 

0.136690 0.127682 0.290507 (1,21) 0.136690 0.127682 0.290507 (1,21) 

0.138037 0.128722 0.270217 (1,12) 0.141608 0.131478 0.302936 (1,18) 

0.138540 0.129259 0.305499 (1,17) 0.142169 0.131760 0.330997 (1,11) 

0.141608 0.131478 0.302936 (1,18) 0.144120 0.132605 0.298439 (1,3) 

0.141694 0.131475 0.306881 (1,16) 0.146366 0.134783 0.305104 (1,26) 

0.142169 0.131760 0.330997 (1,11) 0.161889 0.146306 0.334711 (1,2) 

0.142257 0.131398 0.314182 (1,9) 0.163815 0.148114 0.337405 (1,27) 

0.142508 0.131951 0.290091 (1,13) 0.190136 0.168927 0.427550 (1,10) 

0.143230 0.132665 0.327854 (1,20) 0.190725 0.169198 0.467031 (1,19) 

0.144120 0.132605 0.298439 (1,3) 0.214354 0.188895 0.516992 (1,14) 

0.146366 0.134783 0.305104 (1,26) 0.215669 0.189886 0.501395 (1,15) 

0.146987 0.135164 0.321314 (1,4)     

0.149088 0.137184 0.323464 (1,25)     

0.151711 0.138212 0.367389 (1,5)     

0.153432 0.140542 0.343198 (1,24)     

0.160957 0.146471 0.386431 (1,6)     

0.161486 0.146568 0.374005 (1,23)     

0.161889 0.146306 0.334711 (1,2)     

0.163815 0.148114 0.337405 (1,27)     

0.172043 0.154074 0.445655 (1,7)     

0.173880 0.156433 0.391837 (1,22)     

0.190136 0.168927 0.427550 (1,10)     

0.190725 0.169198 0.467031 (1,19)     

0.214354 0.188895 0.516992 (1,14)     

0.215669 0.189886 0.501395 (1,15)     

0.249531 0.218608 0.594201 (1,28)     
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(a) NT-nets with h = (1,8) (b) NT-nets with h = (1,21) 

  

(c) NT-nets with h = (1,12) (d) NT-nets with h = (1,28) 

  

Figure 1.   Plot of 29-point NT-nets in B2 generated by the GLP method.   
 

 
Figure 2.   Plot of 29-point NT-nets in B2 with the PMP method generator h = (1,15). 

 

 The results for the SRS method are contained in Table 2. Table 2 contains each 

good point vector γ having the form given in (5). The points in the NT-nets PN 

corresponding to each γ are defined in (6). The design rankings based on the rmsd, ad 

and md values are the same. The design generated by  γ = ( 32 , ) has the three 

smallest criteria values which indicates that its points are more uniformly scattered in B2 

than the points from the other designs. Figures 3(a), 3(b) and 3(c) are plots of the 29-

point NT-nets for γ = ( 32 , ), γ = ( 53 , ), and  γ = ( 52 , ), respectively. 
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Table 2. Distance Criteria Values and the SRS method good point generators of NT-nets 

in B2 for N = 29 points. These values are sorted by ascending rmsd (X) values. 

rmsd (X) ad (X) md (X) Good Point (γ) 

0.147757 0.135413 0.350237 ( 32 , ) 

0.159425 0.144816 0.394857 ( 53 , ) 

0.168435 0.154761 0.373294 ( 52 , ) 
 

(a) NT-nets with γ = ( 32 , ) (b) NT-nets with γ  =( 53 , )  (c) NT-nets with γ =( 52 , ) 

   
Figure 3.  Plots of 29-point NT-nets in B2 generated by the SRS method.    
 The results from the HAM method are contained in Table 3. For k = 2 , the NT-

nets given by the form in (7) depend on one small prime number p. For N = 29, the 

possible values are p = 2, 3. The design of base p = 3 is slightly more uniformly 

scattered than the design of base p = 2.  Plots of the points from these two designs are 

shown in Figures 4(a), and 4(b). 

 
Table 3. Distance Criteria Values and the HAM method base (p) generators of NT-nets 

in B2 for N = 29 points. These values are sorted by ascending rmsd (X) values. 

rmsd (X) ad (X) md (X) Base (p) 
0.141230 0.130585 0.301331 3 
0.147183 0.135514 0.332841 2 

 

(a) NT-nets with p = 3 (b) NT-nets with p  = 2  

  
Figure 4.  Plots of 29-point NT-nets in B2 generated by the HAM method.  
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        ii)    When N = 53 points 

 The results for this case are summarized in Tables 4 to 6 and the plots in 

Figures 5 to 8.  Table 4 gives the results of the best 24 designs generated by the GLP 

method and the results of all 24 possible designs generated by the PMP method. The 

value of h2 in generating vector h  is a primitive root modulo 53. For these two methods, 

the design rankings are similar based on the rmsd and ad values. The first 4 designs are 

the same based on rmsd and ad criteria with  the best design generated from h = (1,45) 

which is slightly better than the design generated from h = (1, 12). However, when based 

on md values, the best design is generated from h = (1,8).  For the GLP method, the 

worst design has generator h = (1, 52) with rmsd = 0.243044, ad = . 0.210891 and md = 

0.590174 while the worst design from the PMP method is generated from  h = (1, 27). 

Figures 5(a) to 5(d) and Figure 6 contain plots of the design points which correspond to 

the results from Table 4.  

 
Table 4. Distance Criteria Values and the GLP and PMP method generators of NT-nets 

in B2 for N = 53 points. These values are sorted by ascending rmsd (X) values. 

GLP PMP 

rmsd (X) ad (X) md (X) 
Generator 

(h) rmsd (X) ad (X) md (X) 
Generator 

(h) 
0.100843 0.094405 0.198189 (1,45) 0.100843 0.094405 0.198189 (1,45) 
0.101587 0.094733 0.194988 (1,12) 0.101587 0.094733 0.194988 (1,12) 
0.101700 0.095103 0.190312 (1,8) 0.101700 0.095103 0.190312 (1,8) 
0.101792 0.094889 0.230793 (1,41) 0.101792 0.094889 0.230793 (1,41) 
0.101969 0.094904 0.202372 (1,46) 0.103740 0.096558 0.197536 (1,39) 
0.102450 0.095572 0.202592 (1,7) 0.103791 0.096183 0.201239 (1,14) 
0.103005 0.096108 0.193654 (1,43) 0.104363 0.097188 0.231850 (1,34) 
0.103420 0.096302 0.212518 (1,10) 0.104774 0.097517 0.213700 (1,19) 
0.103740 0.096558 0.197536 (1,39) 0.104869 0.097259 0.219878 (1,22) 
0.103791 0.096183 0.201239 (1,14) 0.105069 0.097246 0.220347 (1,48) 
0.104363 0.097188 0.231850 (1,34) 0.105164 0.097635 0.220440 (1,5) 
0.104774 0.097517 0.213700 (1,19) 0.105406 0.097473 0.243484 (1,31) 
0.104869 0.097259 0.219878 (1,22) 0.118208 0.106382 0.266881 (1,3) 
0.105069 0.097246 0.220347 (1,48) 0.119473 0.108128 0.271986 (1,33) 
0.105164 0.097635 0.220440 (1,5) 0.120030 0.108776 0.306769 (1,20) 
0.105406 0.097473 0.243484 (1,31) 0.120464 0.108189 0.268394 (1,50) 
0.105546 0.097751 0.211633 (1,30) 0.147730 0.129581 0.318320 (1,2) 
0.105668 0.097958 0.229091 (1,23) 0.148007 0.130965 0.359310 (1,32) 
0.107387 0.099056 0.231176 (1,29) 0.148276 0.130759 0.344577 (1,21) 
0.107918 0.099540 0.249192 (1,24) 0.149203 0.131149 0.320462 (1,51) 
0.110060 0.100927 0.253969 (1,16) 0.182262 0.158611 0.421621 (1,18) 
0.111105 0.102137 0.279052 (1,37) 0.183017 0.159085 0.458986 (1,35) 
0.111194 0.101785 0.242294 (1,4) 0.207773 0.180227 0.497676 (1,26) 
0.111981 0.102333 0.237632 (1,28) 0.209652 0.181813 0.485231 (1,27) 
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(a) NT-nets with h = (1,45) (b) NT-nets with h = (1,12) 

  
(c) NT-nets with h = (1,8) (d) NT-nets with h = (1,52) 

  
Figure 5.   Plots of 53-point NT-nets in B2 generated by the GLP method.   

 
Figure 6.   Plot of 53-point NT-nets in B2 with the PMP method generator h = (1, 27). 

  

 Table 5 gives the results of three designs generated by the SRS method. For all 

three distance criteria, the best design is generated from γ = ( 32 , ). That is, the 

points of this design are more uniformly scattered than the points from the other two 

designs. This can be seen in Figure 7(a), 7(b), and 7(c). 

 
Table 5. Distance Criteria Values and the SRS method good point generators of NT-nets 

in B2 for N = 53 points. These values are sorted by ascending rmsd (X) values. 

 

rmsd (X) ad (X) md (X) Good Point (γ) 

0.117900 0.108207 0.260046 ( 32 , ) 

0.120505 0.108567 0.283109 ( 53 , ) 

0.151117 0.136365 0.373294 ( 52 , ) 
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(a) NT-nets with γ = ( 32 , ) (b) NT-nets with γ  =( 53 , )  (c) NT-nets with γ =( 52 , ) 

   

Figure 7.  Plots of 53-point NT-nets in B2 generated by the SRS method.    
  

 Table 6 contains the results of two designs generated by the HAM method.  

Small prime numbers p = 2, 3 were the base p generators. For all three distance criteria, 

the points of the base 3 design are more uniformly scattered than the points from the 

base 2 design.  Plots of the points from these two designs are shown in Figures 8(a), 

and 8(b). 

 
Table 6. Distance Criteria Values and the HAM method base (p) generators of NT-nets 

in B2 for N = 53. These values are sorted by the ascending rmsd (X) values. 

rmsd (X) ad (X) md (X) Base (p) 
0.103225 0.095861 0.216255 3 
0.105922 0.097806 0.227075 2 

 
(a) NT-nets with p = 3 (b) NT-nets with p  = 2  

  
Figure 8.  Plots of 53-point NT-nets in B2 generated by the HAM method.    

 

       iii)   When N = 98 points 

 Since N = 98 is not a prime number but it is in the form of 2pl ,where p = 7, then 

the number of primitive roots modulo 98 is equal to  φ(φ(98)) (i.e,12). There are 12 

possible primitive roots ai  = 3, 5, 17, 33, 45, 47, 59, 61, 67, 73, 75, 87, and 89 for the 

PMP method. Table 7 gives the results of the best 12 designs from all 41 possible 
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designs generated by the GLP method and the all 12 possible designs generated by the 

PMP method based on the rmsd.  

 

Table 7. Distance Criteria Values and the GLP and PMP method generators of NT-nets 

in B2 for N = 100 points. These values are sorted by ascending rmsd (X) values. 

GLP PMP 

rmsd (X) ad (X) md (X) 
Gener
-ator 
(h) 

rmsd (X) ad (X) md (X) 
Gener 
-ator 
(h) 

0.072744 0.068184 0.136632 (1,69) 0.074503 0.069308 0.151050 (1,45) 
0.073233 0.068612 0.143196 (1,29) 0.077076 0.071543 0.168998 (1,17) 
0.073771 0.068868 0.153353 (1,71) 0.078335 0.072483 0.164642 (1,75) 
0.073968 0.068964 0.155702 (1,43) 0.084080 0.076266 0.205485 (1,5) 
0.074466 0.069396 0.164289 (1,55) 0.086681 0.078496 0.196285 (1,47) 
0.074503 0.069308 0.151050 (1,45) 0.087142 0.079155 0.184846 (1,61) 
0.074597 0.069662 0.149500 (1,27) 0.093301 0.084028 0.215441 (1,89) 
0.075132 0.069904 0.171276 (1,53) 0.102685 0.090784 0.254789 (1,87) 
0.076804 0.071301 0.166153 (1,81) 0.106462 0.092415 0.258674 (1,3) 
0.077076 0.071543 0.168998 (1,17) 0.109496 0.096884 0.214207 (1,73) 
0.078092 0.072340 0.159982 (1,57) 0.143176 0.123891 0.361536 (1,59) 
0.078095 0.072250 0.156027 (1,23) 0.179240 0.153843 0.426044 (1,33) 
 

The best design generated by the GLP method under all three distance criteria 

is generated from h = (1,69) which is slightly better than the designed generated from h 

= (1,29). The worst design under all three criteria is generated from h = (1,97) with rmsd 

= 0.239426, ad = 0.206785 and md = 0.597041 which is not shown in Table 7.  Figures 9 

(a), 9(b) and 9(c) are plots of the 98 points in B2 resulting from generators h = (1,69) , h 

= (1,29) and h = (1,97), respectively.  Visually, the designs in Figures 9(a) and 9(b) are 

similar with respect to the uniformity of the scatter while the design points in Figure 9(c) 

are not uniformly scattered. The best design generated by the PMP method is generated 

from h = (1,45) which is the sixth ranking of the design generated by the GLP method. 

The worst design by the PMP method is generated from h = (1,33). The 98 points plots 

in B2 resulting from generators h = (1,45) and h = (1,33) are displayed in Figure 9(d) and 

9(e).     
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(a) NT-nets with h = (1,69) 

 

(b) NT-nets with h = (1,29) 

 

(c) NT-nets with h = (1,97) 

   

(d) NT-nets with h = (1,45)   

   

(e) NT-nets with h = (1,33) 

 

 

Figure 9.   Plot of 98-point NT-nets in B2 generated by the GLP method ((a)-(c)) and the 

PMP method ((d) and (e)).   
 

 Table 8 gives the results of three designs generated by the SRS method. For all 

three distance criteria, the best design is generated from γ = ( 53 , ). That is, the 

points of this design are more uniformly scattered than the points from the other two 

designs. This can be seen in Figure 10(a), 10(b), and 10(c). 

 
Table 8. Distance Criteria Values and the SRS method good point generators of NT-nets 

in B2 for N = 98 points. These values are sorted by ascending rmsd (X) values. 

rmsd (X) ad (X) md (X) Good Point (γ) 

0.079946 0.073352 0.170911 ( 53 , ) 

0.101628 0.092084 0.228960 ( 32 , ) 

0.124850 0.110021 0.330541 ( 52 , ) 
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(a) NT-nets with γ = ( 53 , ) (b) NT-nets with γ  =( 32 , )  (c) NT-nets with γ =( 52 , ) 

   

Figure 10.  Plots of 98-point NT-nets in B2 generated by the SRS method.    

  

The results for the HAM method are presented in Table 9. Small prime numbers 

p = 2, 3 were the base p generators as the case N = 29 and 53. For all three distance 

criteria, the points of the base 3 design are more uniformly scattered than the points from 

the base 2 design.  Plots of the points from these two designs are shown in Figures 

11(a), and 11(b). 

 
Table 9. Distance Criteria Values and the HAM method base (p) generators of NT-nets 

in B2 for N = 100. These values are sorted by the ascending rmsd (X) values. 

rmsd (X) ad (X) md (X) Base (p) 
0.075140 0.069925 0.169136 3 
0.075964 0.070404 0.162888 2 

 

(a) NT-nets with p = 3 (b) NT-nets with p  = 2  

  

Figure 11.  Plots of 98-point NT-nets in B2 generated by the HAM method. 
 

b) Results for k = 3 and 4 factors 

Tables 10 and 11 contain the results of the best design generated by each of 

the four methods for N = 29, 53 and 98 points based on the rmsd value criterion when k 

= 3 and 4 factors, respectively. For all cases of N, the GLP method is superior to other 

methods and it differs from the PMP method, while the SRS method gives the worst 
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results. As expected,  when we consider each method, the three distance criteria values 

decrease as N increases.   

 

Table 10. The best design (based on the rmsd value) generated by the GLP, PMP, SRS 

and HAM method for N = 29, 53 and 98 points when k = 3. 

N Method rmsd (X) ad (X) md (X) h, γ, or p 

29 GLP 0.274025 0.261650 0.528516      h = (1,16,18) 
 PMP 0.276385 0.263915 0.560728      h = (1,21,6) 
 SRS 0.289855 0.273437 0.662971  γ  = ( 732 ,, ) 
 HAM 0.285972 0.271915 0.560395      p  = 3, 5 

53 GLP 0.223327 0.213482 0.420141       h = (1,33,38) 
 PMP 0.225720 0.215369 0.433361       h = (1,41,38) 
 SRS 0.234671 0.223105 0.507424   γ  = ( 732 ,, ) 
 HAM 0.229844 0.218941 0.465015      p  = 2, 3 

98 GLP 0.179971 0.172159 0.328209       h = (1,57,87) 
 PMP 0.186644 0.177738 0.358523       h = (1,17,93) 
 SRS 0.193350 0.181937 0.376656    γ  = ( 532 ,, ) 
 HAM 0.187132 0.178073 0.408362      p  = 2, 3 

 

 

Table 11. The best design (based on the rmsd value) generated by the GLP, PMP, SRS 

and HAM method for N = 29, 53 and 98 points when k = 4. 

N Method rmsd (X) ad (X) md (X) h, γ, or p 

29 GLP 0.402052 0.388903 0.696920 h = (1,5,7,16) 
 PMP 0.407460 0.393178 0.759638 h = (1,8 6,19) 
 SRS 0.415973 0.399717 0.779002 γ  = ( 7532 ,,, ) 
 HAM 0.409966 0.395858 0.702240 p  = 2,3,5 

53 GLP 0.340157 0.329004 0.639111 h = (1,12,20,30) 
 PMP 0.347659 0.335911 0.612382 h = (1,41 38,21) 
 SRS 0.357600 0.344896 0.662651 γ  = ( 7532 ,,, ) 
 HAM 0.352600 0.339672 0.660201 p  = 2,3,7 

98 GLP 0.288124 0.278573 0.522658 h = (1,53,83,93) 
 PMP 0.295210 0.285214 0.524845 h = (1,77,29,33) 
 SRS 0.301981 0.290668 0.628644 γ  = ( 11752 ,,, ) 
 HAM 0.300306 0.289472 0.542292 p  = 2,3,7 

 

6. Conclusion and Discussion 
 In this study, we describe the generation of NT-nets on the k-dimensional ball 

(Bk) based on transformation the points from the k-dimensional unit cube (Ck) for k = 2, 3 

and 4 dimensions. For each k, we studied primes N = 29 and 53, and the larger non-

prime N = 98.  The methods used for generating NT-nets are the GLP, PMP, SRS and 
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HAM methods.  For each study, a random sample of 5,000 points in Bk was used to 

evaluate the three criteria for assessing the uniformity of scatter.  

 The number of possible designs generated by the GLP method depends on the 

number of the integer hi such that gcd(hi, N) = 1 for i = 2,3, …., k. Hence when N is a 

prime number and k is large, the number of possible designs is also large and this 

requires extensive computing time. The number of possible designs generated by the 

PMP method depends on the number of the primitive roots modulo N which has fewer 

possible designs than the GLP method. However, when N and k are large, the PMP 

method may require long computing time. The number of possible designs generated by 

the SRS and HAM methods depends on k and the first k-1 prime numbers. Hence, these 

last two NTMs require less computing time than the GLP and PMP methods.  

 The results from this study suggest that the GLP method may, in general, 

generate the best uniform designs. The PMP, HAM and SRS rank second, third and 

fourth rank with respect to design generation based on the rmsd criterion for all N and k. 

When k = 2, the best design generators for the GLP and PMP methods were the same. 

However, for each N and k, the criterion values are slightly different.  When we compare 

the distance criteria across N for each method and k, the three criteria values decrease 

as N increases. 

 When N and k are large, the SRS and HAM methods yield criteria values which 

are slightly greater than the GLP and PMP methods and these differences decrease with 

increasing N and k. However, these methods require less computing time than the GLP 

and PMP methods. Thus, the SRS and HAM method may be considered for construction 

of designs having uniformly scattered design points in Bk for large N and k. 
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Appendix 
 
Generation of uniformly Scattered Sets of Points in Bk 

We will give the examples for generating the set of uniformly scattered points in 

Bk for k = 2 and 3 factors by using the c.d.f of φi for i = 1, 2, .., k as in (13) and applying 

the inverse transform method to generate φi for i = 1, 2, .., k. 

 

1) For k = 2 factors 
Let Ui be mutually independent with U(0,1) distribution for i = 1, 2, …, k.  From 

(13), the  

c.d.f of φ1 and φ2 are 2
1     φφ =)(F  and  2 )(φF = φ . Let U1 = 2

1     φφ =)(F , then φ  = )( 1
1

1 uF −  

= 2/1
1U . Suppose φ1 = φ , hence φ1 = 21

1
/U . That is, for each element of φ1 and U1, we 

obtain φj1 = 2/1
1jU = 1jb  in (10) for j = 1, 2, …, N. Let U2 =    2 =)(φF φ, then φ  =  )( 2

1
2 uF −   

=  U2.  Suppose φ2 = φ , hence φ2 = U2.  That is, for each element of φ2 and U2, we obtain 

φj2 = Uj2  = 2jb  in (10) .  Substituting the values of  1jb and 2jb into(10), and by (11) it 

yields  

X1  = 21
1

/U cos(2πU2)   and   X2  = 21
1

/U sin(2πU2) , 

from which the set of uniformly scattered points in B2 {X1, X2} will be obtained. 

 

 

2) For k = 3 factors 

From (13), the c.d.f of φ1, φ2 and φ3 are 2
1     φφ =)(F ,  2 )(φF = ))cos(( πφ−1

2
1 , and  

)(φ3F = φ.   By using the inverse transform method, the elements of φi for i = 1, 2, 3 are  
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φj1 = 31
1
/

jU ,  2jφ = )arccos( 2211
jU−

π
,  and   3jφ = Uj3  for j = 1, 2, …, N. Hence, we obtain 

X1 = 31
1

/U (1-2U2) ,  

X2 = 2 31
1

/U 21
22 1 /))(( UU −  cos(2πU3) , and 

X3 = 2 31
1

/U 21
22 1 /))(( UU −  sin(2πU3) , 

from which the  set of uniformly scattered points in B3 {X1, X2, X3} will be obtained. 
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