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Abstract

In this paper, we describe the generation of a uniformly scattered set of points
in the k-dimensional ball (Bx) based on the transformation from the set of points in the k-
dimensional unit cube (Ck). We apply four number-theoretic methods, which are
described in Fang and Wang (1994) for generation of uniform designs in ck to generate
the uniform design in Bk. These four number-theoretic methods are the good lattice point
(GLP) method, the power-modulo a prime (PMP) method, the square root sequence
(SRS) method and the Hammersley (HAM) set method. We study k =2, 3, and 4
dimensions with the number of design points (N) = 29, 53 and 98 for each k. Three
distance-based criteria (the root mean squared distance (RMSD), the average distance
(AD), and the maximum distance (MD)), are used for choosing the best design among a
set of points and the RMSD is the major criterion for choosing the best design. When the
number of factors (k) is small, the GLP is suitable for generation of a uniform design in

Bk. The HAM and SRS methods are suitable when N and k are large.
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1.Introduction

When there are a large number of factors, the required number of runs in a full
factorial design is very large. For example, if there are 10 factors with 6 levels for each
factor, then the number of all possible runs is 6%° which is very large and, therefore,
cannot actually be run. If a fractional-factorial design or an orthogonal design is used, the
number of runs is at least 6™ form = 2, 3, ..., 9. For small m, the model must be simple
and interactions will be confounded with main effects. For larger m, the design size is
again impractically large. In recent years, there has been rapid growth in the use of
computer experimentation. Computer experiments have been used to study complex
processes, and they require computer code to simulate part or all of a process that
usually has many input variables. Inputting values for these variables will generate an
“observation” or “response" from the computer code, but unlike the classical experiments
on physical processes, computer experiments are deterministic. That is, every time the
code is run with the same inputs, the outputted observations will be identical. Thus, there
is no random error in the model. In addition, a larger experimental space (or domain) can
be employed to explore complicated nonlinear functions. For the details of physical and
computer experiments, see Fang, Li, and Sudjianto [1] and Santer, Williams and Notz [2].

Sacks, et al. [3] presented examples of computer experiments and concluded
three primary objectives of computer experiments are: (i) predict the response at untried
inputs, (ii) optimize a function of the response and (iii) tune the computer model (code)
based on physical data. Because there is no random error, an additional assumption
made in a computer experiment is that the true response surface (the relationship
between the inputs and outputs) is unknown. When few or no details on the functional
behavior of the response parameters are available, it is important to be able to obtain
information from the entire experimental design space. For this reason, the methods for
computer experiments tend to place samples representing settings of the input variables
on the interior of the experimental design space in what is often termed a space-filling
set of samples. Sampling in the interior of the experimental design space can reduce
bias error resulting from assuming a model that does not adequately represent the true
relationship between the input and output variables. Space-filling is one criterion that a
design for computer experiments should adequately satisfy. Therefore, design points
should be evenly or uniformly spread throughout the entire region (Husslage et al. [4]). A
design which has its points placed throughout the space is called a space-filling design.

McKay, Beckman and Conover [5] were the first to explicitly consider

experimental designs applied to a deterministic computer model. They proposed Latin
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Hypercube Sampling (LHS), an extension of stratified sampling, which ensures that each
of the input variables (factors) has all segments within its range represented. A design
using a Latin hypercube sample can be computationally cheap to run because it can
include relatively few combinations of input values and it can also cope with experiments
having many input variables.

Fang [6] and Wang and Fang [7] proposed the uniform design (UD) and
provided tables for certain classes of Uniform designs. Uniform design is another kind of
the space-filling design. The Uniform design concept is to generate a set of experimental
points using quasi-Monte Carlo methods or number-theoretic methods such that the
points are uniformly scattered throughout the experimental space with low discrepancy.
Uniform designs were initially applied in China for the design of new products in the
textile and metallurgical industries, and in engineering and agriculture applications. See
Liang, Fang and Xu [8] for a history of Uniform design applications.

Number-theoretic methods (NTMs) or quasi-Monte Carlo methods are special
methods which represent a combination of number theory and numerical analysis. The
methods have been applied to numerical integration techniques, but more recently have
been applied in many applications in statistics. For example, Fang [6] and Wang and
Fang [7] were the first to apply NTMs for generating a set of design points when the
experimental space is a k-dimensional unit cube, denoted C*, such that these points are
uniformly scattered in c*. In addition, Fang and Wang [9] gave a general outline
regarding the transformation of the design points in c* to other experimental design
spaces. In particular, they discussed transformations from the unit cube to the ball and to
the sphere, and to the simplex in mixture designs. The most common measure of
assessing the uniformity in their research is the discrepancy and its various versions. A
lower discrepancy value implies a better design based on uniformity of scatter of the
points in the design space. See Hua and Wang [10], Niederreiter [11] and Hickernell [12]
for the details of discrepancy and its versions.

Borkowski and Piepel [13] discussed two number-theoretic methods for
generating uniform designs for single and multiple component constraints in the mixture
designs. The two methods are called the one-pass exchange algorithm and the power-
modulo-a-prime method. They used three distance-based criteria (the root mean
squared distance (RMSD), the average distance (AD), and the maximum distance (MD)),
for choosing the best design among a set of number-theoretic mixture designs (NTMDs).

The article is organized as follows: In Section 2, we describe the four NTMs for

generation of uniformly scattered sets of points in C*, which can be transformed to other
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experimental spaces, in particular, the k-dimensional ball, denoted By. The four NTMs
are the good lattice point (GLP) method, the power-modulo a prime (PMP) method, the
square root sequence (SRS) method, and the Hammersley set (HAM) method. In
Section 3, we describe the transformation method from the points in c* to the uniformly
scattered points in By. In Section 4, the three distance-based criteria for assessing the
uniformity in this study are presented. Section 5 presents a comparison study of
generation the uniform design in By, using 4 NTMs for low dimensions k such that k = 2,
3, and 4 dimensions, and for each k, the number of design points N can be considered in
small (N = 29), medium (N = 53) and large (N = 98). The first two values of N are primes
and the last is written in the form N = 2pI , Where pis an odd prime and | = 1, these are
examples of number of design points which can be considered for all 4 NTMs. The

conclusions and discussion are given in Section 6.

2. Methods for Generation uniformly Scattered Sets of Points in on

There are several methods for the generation of uniformly scattered sets of
points in k- dimensional unit cube ck Fang and Wang [9] classified the set of points from
these methods into 3 types; (i) good lattice point (GLP) sets generated using the good
lattice point method or the power-modulo a prime method; (i) good point (GP) sets
generated using the square root sequence method, the power of the (k+1)St root method,
or the cyclotomic field method; (iii) H-sets which are generated using the Halton set
method or the Hammersley set method. In this paper, we will study only the following

four methods:

. Good Lattice Point (GLP) Method
This method was described by Wang and Fang [7]. For a given number of
design points N and number of factors k, let h = (hy, hy, ..., hy) be a vector of positive
integers such that
a) the greatest common divisor of N and h; (gcd (N, h))=1fori=1, 2, ...,
k and

by 1<h <h,<...<h <N

These GLP sets can be generated as follows:
i) Foreachh;;i=1,2,..,k andforj=1,2, ...,N, calculate
gi = jhi(modN) @
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If gi =0, then set g = N. The values of gjform an N x k matrix L and because gcd (N,
hi) = 1, each column of L is equivalent to a permutation of 1, 2, ..., N. The matrix L is
called a lattice point matrix of integers.

ii) Create a matrix C by transforming each gjinL to

2q; -1
Xji = {qZJN } 2

Hence each column of C is equivalent to a permutation of 1 3 2N -3 2N _1.

2N'2N"7 2N ' 2N

Define x; = (X, Xj2, ..., Xj) to be jth row of C and Py be the set { x1, Xz, ..., Xn} formed

from the N rows of C. Py is called the lattice point set of the generating vector (N;h;,
hy, ..., hy). Wang and Fang [7] suggested that the number of factors k needs to be less

than or equal to the Euler function @ (N), which denotes the number of integers m

satisfying 1 < m < N, and gcd(m , N) = 1. Suppose N = Pll'Plgz"'Plr' and

P;s Py,... P, are different primes, then @&(N) = N(l—pi]m(l—i] and @ (N) = N-1
1 r

when N is prime. For example, take N = 7 points and k = 3 factors. There are @(7) = 6 h;
values {1, 2, ..., 6} which satisfy the condition gcd(h; , 7) = 1. These h; values yield the
generating vector h = (1, hy, h3) where 1<h; < h3<7. Suppose the generating vector is h =
(1, 4, 5). The value of hy= 1, h = 4 and hs = 5 are used to calculate g1, gz and gz for j =
1,2, ..., 7asin (1) to form a 7x3 matrix L and transforming each g; in L to x; as in (2) to

form a 7x3 matrix C . Hence, for h = (1, 4, 5), the matrices Land C are

145 vi4  7/14 9/14
213 3/14 V14 7/14
351 5/14 9/14 114
L=|426|, and C =|7/14 3/14 1114
56 4 9/14 11/14 7/14
6 32 11/14 5/14 3/14
777 13/14 13/14 13/14

Il.  Power-modulo a prime (PMP) method

When the number of design points is a prime number p. Korobov [14]
suggested the generating vector

h=(hy hy ..., h) = (1, & & ..., 8% (mod p) ©)
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where 1 < a < p and a can be chosen among the primitive roots modulo p. That is a
satisfies
a = ad(modp) ;1<i<j<p 4

The condition of gcd (N, hj) = 1 is still needed. Note that this method depends on the set
of primitive roots modulo p. If design size N is not a prime number, but N can be written
in the form N = 2, 4, pI or 2pI , where p is an odd prime and | = 1, then a primitive root
modulo N will exist. The number of primitive roots modulo N is @ (@ (N)). To find the
primitive roots, we will apply the following definition from Niven and Zuckerman [15], the

theorem and corollary from Rosen (1985, chapter 8)[16], and the condition in (4).

Definition A reduced residue set modulo N is a set of integers r; such that gcd(ri,
N) = 1, ri = r; (mod N) if i # j, and such that every x primes to N is congruent modulo N to

some member r; of the set.

Theorem If a and N are relatively prime positive integers and if a is a primitive

root modulo N, then the integers al, a2, a”™ form a reduced residue set modulo N.

It is clear that al, a2, a®™ form a reduced residue set modulo N if and only if gcd(ai,

N)y=1fori=1,2,..., @(N)and al, a2, a?™ are incongruent in pairs modulo N.

Corollary Let a be a primitive root modulo m. Then a" is a primitive root modulo

m if and only if gcd(u, @ (m)) = 1.

In practice, we use the smallest primitive root for generating other primitive
roots. The next step is to use the generating vector h in (3) to generate the g; as in (1)
and then transform each g; to x; as in (2). This will yield the matrix C and the set Py
formed by the rows of C. For the PMP method, Py is called the lattice point set. For
example, consider N = 7 points and k = 3 factors. The number of primitive roots modulo
7 is 2, and the smallest primitive root modulo 7 is 3. Hence the generating vector h = (1,
3, 32) mod 7 = (1, 3, 2), and then it is used to generate g as in (1) and transforming each

gii in L to xji as in (2).
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lll. Square root sequence (SRS) method
This method uses a good point vector Yy which contains the square root of k

different prime numbers pi, p2, ..., Pk to generate a set of N points Py. Specifically

¥ = (oo yoc) 5)
and Po = {(fr- bbb ti= 120N 6)
and {7i . J} stands for the fractional part of y; - J - For example, consider N = 7 points
and k = 3 factors. Using three different prime numbers p;=2, p>=3, and p3=5to
generate a good point vector y. A good point vectory is y = (\/E\/g\/g ). Hence, a set

of 7 points Pz is

04142 07321 0.2361
08284 04641 04721
02426 01962 0.7082
P; ={ 06569 09282 09443 |.
00711 06603 01803
04853 03923 04164
08995 01244 06525

IV. Hammersley set (HAM) method
This method suggested by Hammersley [17] is based on forming an H-set from
the Halton set method. For k-1 different prime numbers pj, ..., px1, the Hammersley set

is defined by the set of points {x1, X2, ..., Xn } where

X = [%,ypl(j),...,ypk,l(j)j L i=1,2, N, @)
and Yo, (1) = bopit+bypi®+...+b pi" (8)
and the natural number j has a p; —digit representation

j = bo+bypj +byp? +...+b,pf )
suchthat0 < b <p;i-1 ;1=0,1,2,...,r andi=1, 2, ..., k. From (9), j can be written in
base-pi notation j = byb,_;..bibg. In (8), the value of Y, (]) is between 0 and 1,

and Yo, (j) is called the radical inverse of j with base p;. For example, take N = 7 points

and k = 3 factors using 2 different prime numbers base pp=2and p,=3. Forj=1, 2, ...,
7 each j can be written in the binary and tertiary representations, hence, the values of b,

for y2(j) and ya(j) are:
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p1=2 p2=3
i bo | b1 | b2 ya()) j bo | b1 | b2 ya(i)
1=1+0(2) 1 05 1=1+03) | 1 0.3333
2= 0+1(2) 0|1 025 | 2=2+0(3) | 2 0.6667
3=1+1(2) 11 075 |3=0+13)| 0 | 1 0.1111
4 = 0+0(2)+1(2)> 00| 1] 0125 |[4=1+13)| 1 | 1 0.4444
5 = 1+0(2)+1(2)? 10| 1] 0625 |5=2¢1(3)| 2 | 1 0.7778
6 = 0+1(2)+1(2)> 01| 1| 035 |6=0+23)| 0 | 2 0.2222
7= 1+1(2)+1(2)° 10 1|1 o875 |7=1+23)| 1 | 2 0.5556

y2(j) and ys(j) yield x; as in (7) and then the set of points is a7 x3 matrix X , where

00714 05000 0.3333
02143 0.2500 0.6667
03571 07500 01111
X =| 05000 01250 04444
06429 06250 0.7778
0.7857 03750 0.2222
09286 08750 05556

For the details of these 4 methods and other methods, see Fang and Wang [9].
In the next section, we present details for the generation NT-nets in the k-dimensional
Ball (Bk)

3. Methods for Generation of Uniformly Scattered Sets of Points in Bk

Assume the experimental space is the k- dimensional Ball B defined as
k
Bk = {(x1, X2, ..., Xi) : ZX'Z <1}.
i=1

The following method for generation the uniformly scattered sets of points in By is due to
Wang and Fang [18] which is also contained in Fang and Wang [9]. The approach is to
generate an N- point NT- net in c*, and then map its points into By.

Let{cj;j =1, 2, ..., N} be an NT-net in c*. Each element Cji is generated by

one of the NT methods described earlier. Let xj be an NT-net in Bx. each element X;i is

computed by
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i
Xji = bj1 ml"_IZSijJ-J+1 fori =1,2,...,k-1andj=1,2,...,N.

K
Xk = bj m1_7[23jm (10)

where

Sjm = sin(zbjyn), Cjy = cos(zbjy), form=1,2, .. klandj=12, ..,
Sjk = sin(zﬂbjk), Cjk = COS(Zﬂbjk)

b = cfif, bjm = Fn'Cjm) . form=1,2, ...k

This method for generating uniformly scattered sets of points { Xi, Xz, ..., Xy } is based
on the following theory of transformations.
Let vector X = (X1, X2, ..., Xk) be uniformly distributed in By. Using the spherical

coordinate transformation, this set of uniformly distributed points in B¢ has the form
Xi = ¢ S2--Si Cisa, fori=1,2,..,k-1 (11)
Xk = ¢ S2--Ska Sk
where
Sm = sin(tdn), Cm = cos(ngm), form=1.2, .., k-1
Sk = sin(2rd), Ck = cos(2rd),
and ¢ = (é, &, ..., k) € C¥is a 1x k vector such that

1. ¢, ¢, ..., ¢ are mutually independent and

kgkt Jifi=1
2. ghaspdf. p;(g) = % ifi=2,..k 12)
2%
2" 2

where 0 < ¢ <land B(a,b) denotes the beta function. Note that p, (¢) = 1 which shows

that ¢ ~ U(0,1). The c.d.f. of ¢ is

A ifi=1

Fl@) =%
B(llk—|+lj
2" 2

[
J'(sin(7z¢))'<'i dx Jifi=2,..k (13
0
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By applying the inverse transform method, we obtain the set of ¢ and then use the

values of ¢ to compute the values of x; as in (10). Hence, we will obtain the uniformly
scattered set in Bx. We give two examples of the generation of obtain the uniformly

scattered sets in Bxfor k = 2 and 3 factors in the Appendix.

4. Design Comparison Criteria

A uniform design is a design whose points are uniformly scattered over the
design space. In the beginning of the study, the design space c is considered.
Uniformity of scatter may be achieved by minimizing a discrepancy criterion. There are
many versions of discrepancy used for assessing the uniformity. The F- discrepancy, the
star L, — discrepancy which has been used in quasi-Monte Carlo methods (Hua and
Wang [10] and Niederreiter [11]). The modified L, - discrepancy proposed by Hickernell
[12], which includes L, — discrepancies of projections of the design point in all lower
dimensional subspace of c*. The centered L, — discrepancy which contains all L, -
discrepancies each calculated using one of the 2" vertices of C* as the origin. The wrap-
around L, - discrepancy is calculated after wrapping around each one-dimensional
subspace of c*into a closed loop. The definitions and properties of these discrepancies
can be found in Hickernell [12] and [19], Fang et al. [20], Fang, Li, and Sudjianto [1]. In
2009, Borkowski and Piepel [13] developed two number-theoretic methods for
generating uniform designs for constrained mixture experiments. They used three
distance-based measures: the root mean squared distance (rmsd (X)), the average
distance (ad (X)), and the maximum distance (md (X)) to evaluate a design’s uniformity
of scatter.

In this study, three distance-based criteria for assessing the uniformity are used
to compare the designs. These criteria are the rmsd (X), the ad (X), and the md (X) as in
Borkowskiand Piepel [13]. Let X be an N- point design and u; be a random sample point
in the set of evaluation points in Bk for | = 1,2, ..., M. The rmsd, ad, and md distance

criteria for a design with N points Py = { X1, X2, ..., Xn} are defined as

rmsd (X) = ;‘;X(d(u,,x»2 (14)
1=1

mm:iZﬂwx) (15)

=1

md (X) = max d(u,,X) (16)
1
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where d(u, X) =mind(u,,x)=min[(u, - x;)(u, = x,)'] /2 is the minimum of the

J J
Euclidean distance between evaluation set point u; in B¢ and the jth design point x; of X.
When comparing two designs, if the values of these criteria are smaller for the first
design than the second design, then the implication is that the points in the first design

are more uniformly scattered than the points in the other design.

5. Results of the Study

In this study, we consider the generation of NT-nets in the k- dimension ball (By)
for k = 2, 3, and 4 dimensions, and for each k, we consider N = 29, 53 and 98 points.
The methods used for generating NT-nets are the GLP, PMP, SRS and HAM methods.
For each study, a random sample of 5,000 points in Bx was used to evaluate the three

criteria for assessing the uniformity of scatter.

a) Results for k = 2 factors
i)  When N =29 points
Because N = 29 is prime number, there are 28 h; values satisfying the condition gcd(N,
h;) = 1. Table 1 contains the three distance criteria values and the vectors generating NT-
nets by the GLP method. When we compare designs based on the rmsd and ad values,
the results are similar. The design generated by h = (1,8) is slightly better than the
design generated by h = (1,21). But when we compare designs under the md criterion,
the best design is generated by h = (1,12) with md = 0.270217. The worst design under
all three criteria is generated by h = (1,28). Figures 1(a), 1(b), 1(c) and 1(d) are plots of
the 29 points in B, resulting from generators h = (1,8) , h = (1,21), h = (1,12) and h =
(1,28), respectively. Visually, we see that the design in Figures 1(a), 1(b) and 1(c) are
similar with respect to the uniformity of the scatter but the design points in Figure 1(d)
are not uniformly scattered.
For the PMP method, there are @(@ (29)) = @ (28) = 12 primitive roots

modulo 29. The residue set modulo 29 for the least primitive root 2 is
{21,23,25,29,211’213,215’217,219’223,225’ 227}m 0d(29) -
{2,8,3,19,18,14,27,21,26,10,11,15}mod(29). Thus, the primitive roots modulo 29 are a; =
2,3, 8, 10, 11, 14, 15, 18, 19, 21, 26, and 27 for i = 1,2, ..., 12, respectively. In the
rightmost columns of Table 1, the three distance criteria values are sorted by the rmsd

value for all possible generators h = (1, a; ) from the PMP method. The PMP method



114

Thailand Statistician, 2011; 9(2):103-127

results are same as the GLP having the same generator h, but the worst design from the
PMP method is generated from h = (1,15).

Table 1. Distance Criteria Values and the GLP and PMP method generators of NT-nets

in B, for N = 29 points. These values are sorted by ascending rmsd (X) values.

GLP PMP

Generator Generator
rmsd (X) ad (X) md (X) (h) rmsd (X) ad (X) md (X) (h)
0.136439 | 0.127265 | 0.324344 1,8) 0.136439 | 0.127265 | 0.324344 1,8)
0.136690 | 0.127682 | 0.290507 1,21) 0.136690 | 0.127682 | 0.290507 1,21)
0.138037 | 0.128722 | 0.270217 1,12) 0.141608 | 0.131478 | 0.302936 (1,18)
0.138540 | 0.129259 | 0.305499 @,17) 0.142169 | 0.131760 | 0.330997 (,11)
0.141608 | 0.131478 | 0.302936 (1,18) 0.144120 | 0.132605 | 0.298439 1,3)
0.141694 | 0.131475 | 0.306881 (1,16) 0.146366 | 0.134783 | 0.305104 (1,26)
0.142169 | 0.131760 | 0.330997 (,11) 0.161889 | 0.146306 | 0.334711 1,2)
0.142257 | 0.131398 | 0.314182 1,9) 0.163815 | 0.148114 | 0.337405 @,27)
0.142508 | 0.131951 | 0.290091 (1,13) 0.190136 | 0.168927 | 0.427550 (1,10)
0.143230 | 0.132665 | 0.327854 (1,20) 0.190725 | 0.169198 | 0.467031 (1,19)
0.144120 | 0.132605 | 0.298439 1,3) 0.214354 | 0.188895 | 0.516992 (1,14)
0.146366 | 0.134783 | 0.305104 (1,26) 0.215669 | 0.189886 | 0.501395 (1,15)
0.146987 | 0.135164 | 0.321314 (1,4)
0.149088 | 0.137184 | 0.323464 (1,25)
0.151711 | 0.138212 | 0.367389 (1,5)
0.153432 | 0.140542 | 0.343198 (1,24)
0.160957 | 0.146471 | 0.386431 (1,6)
0.161486 | 0.146568 | 0.374005 (1,23)
0.161889 | 0.146306 | 0.334711 1,2)
0.163815 | 0.148114 | 0.337405 (1,27)
0.172043 | 0.154074 | 0.445655 ,7)
0.173880 | 0.156433 | 0.391837 (1,22)
0.190136 | 0.168927 | 0.427550 (1,10)
0.190725 | 0.169198 | 0.467031 (1,19)
0.214354 | 0.188895 | 0.516992 (1,14)
0.215669 | 0.189886 | 0.501395 (1,15)
0.249531 | 0.218608 | 0.594201 (1,28)
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(a) NT-nets with h =(1,8) (b) NT-nets with h = (1,21)

(c) NT-nets with h = (1,12) (d) NT-nets with h = (1,28)

Figure 1. Plot of 29-point NT-nets in B, generated by the GLP method.
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Figure 2. Plot of 29-point NT-nets in B, with the PMP method generator h = (1,15).

The results for the SRS method are contained in Table 2. Table 2 contains each

good point vector Yy having the form given in (5). The points in the NT-nets Py
corresponding to each Y are defined in (6). The design rankings based on the rmsd, ad

and md values are the same. The design generated by 7y = (\/E,\/E) has the three

smallest criteria values which indicates that its points are more uniformly scattered in B,
than the points from the other designs. Figures 3(a), 3(b) and 3(c) are plots of the 29-

point NT-nets fory = (\/E,\/g), Y= (\/E,\/g), and v = (\/E,\/g), respectively.
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Table 2. Distance Criteria Values and the SRS method good point generators of NT-nets

in B, for N = 29 points. These values are sorted by ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Good Point (y)
0.147757 0.135413 0.350237 (V2,4/3)
0.159425 0.144816 0.394857 (+3.45)
0.168435 0.154761 0.373294 (V2,45)

(@) NT-nets withy = (v/2,4/3)  (b) NT-nets withy =(+/3,4/5)  (c) NT-nets with y =(+/2,+/5 )

Figure 3. Plots of 29-point NT-nets in B, generated by the SRS method.

The results from the HAM method are contained in Table 3. Fork = 2, the NT-
nets given by the form in (7) depend on one small prime number p. For N = 29, the
possible values are p = 2, 3. The design of base p = 3 is slightly more uniformly

scattered than the design of base p = 2. Plots of the points from these two designs are

shown in Figures 4(a), and 4(b).

Table 3. Distance Criteria Values and the HAM method base (p) generators of NT-nets

in B, for N = 29 points. These values are sorted by ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Base (p)
0.141230 0.130585 0.301331 3
0.147183 0.135514 0.332841 2

(&) NT-nets with p =3

|
i
|
|
|
ol

(b) NT-nets withp =2

Figure 4. Plots of 29-point NT-nets in B, generated by the HAM method.
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ii) When N =53 points

The results for this case are summarized in Tables 4 to 6 and the plots in
Figures 5 to 8. Table 4 gives the results of the best 24 designs generated by the GLP
method and the results of all 24 possible designs generated by the PMP method. The
value of h, in generating vector h is a primitive root modulo 53. For these two methods,
the design rankings are similarbased on the rmsd and ad values. The first 4 designs are
the same based on rmsd and ad criteria with the best design generated from h = (1,45)
which is slightly better than the design generated from h = (1, 12). However, when based
on md values, the best design is generated from h = (1,8). For the GLP method, the
worst design has generator h = (1, 52) with rmsd = 0.243044, ad = . 0.210891 and md =
0.590174 while the worst design from the PMP method is generated from h = (1, 27).
Figures 5(a) to 5(d) and Figure 6 contain plots of the design points which correspond to

the results from Table 4.

Table 4. Distance Criteria Values and the GLP and PMP method generators of NT-nets
in B, for N = 53 points. These values are sorted by ascending rmsd (X) values.

GLP PMP
Generator Generator

rmsd (X) ad (X) md (X) (h) rmsd (X) ad (X) md (X) (h)

0.100843 | 0.094405 | 0.198189 (1,45) 0.100843 | 0.094405 | 0.198189 (1,45)
0.101587 | 0.094733 | 0.194988 1,12) 0.101587 | 0.094733 | 0.194988 1,12)
0.101700 | 0.095103 | 0.190312 (1,8) 0.101700 | 0.095103 | 0.190312 1,8)
0.101792 | 0.094889 | 0.230793 (1,41) 0.101792 | 0.094889 | 0.230793 (1,41)
0.101969 | 0.094904 | 0.202372 (1,46) 0.103740 | 0.096558 | 0.197536 (1,39)
0.102450 | 0.095572 | 0.202592 a,7) 0.103791 | 0.096183 | 0.201239 (1,14)
0.103005 | 0.096108 | 0.193654 (1,43) 0.104363 | 0.097188 | 0.231850 (1,34)
0.103420 | 0.096302 | 0.212518 (1,10) 0.104774 | 0.097517 | 0.213700 (1,19)
0.103740 | 0.096558 | 0.197536 (1,39) 0.104869 | 0.097259 | 0.219878 (1,22)
0.103791 | 0.096183 | 0.201239 (1,14) 0.105069 | 0.097246 | 0.220347 (1,48)
0.104363 | 0.097188 | 0.231850 (1,34) 0.105164 | 0.097635 | 0.220440 1,5)
0.104774 | 0.097517 | 0.213700 (1,19) 0.105406 | 0.097473 | 0.243484 (1,31)
0.104869 | 0.097259 | 0.219878 (1,22) 0.118208 | 0.106382 | 0.266881 1,3)
0.105069 | 0.097246 | 0.220347 (1,48) 0.119473 | 0.108128 | 0.271986 (1,33)
0.105164 | 0.097635 | 0.220440 (1,5) 0.120030 | 0.108776 | 0.306769 (1,20)
0.105406 | 0.097473 | 0.243484 (1,31) 0.120464 | 0.108189 | 0.268394 (1,50)
0.105546 | 0.097751 | 0.211633 (1,30) 0.147730 | 0.129581 | 0.318320 1,2)
0.105668 | 0.097958 | 0.229091 (1,23) 0.148007 | 0.130965 | 0.359310 (1,32)
0.107387 | 0.099056 | 0.231176 (1,29) 0.148276 | 0.130759 | 0.344577 (1,21)
0.107918 | 0.099540 | 0.249192 (1,24) 0.149203 | 0.131149 | 0.320462 (1,51)
0.110060 | 0.100927 | 0.253969 (1,16) 0.182262 | 0.158611 | 0.421621 (1,18)
0.111105 | 0.102137 | 0.279052 (1,37) 0.183017 | 0.159085 | 0.458986 (1,35)
0.111194 | 0.101785 | 0.242294 1,4) 0.207773 | 0.180227 | 0.497676 (1,26)
0.111981 | 0.102333 | 0.237632 (1,28) 0.209652 | 0.181813 | 0.485231 (1,27)
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(a) NT-nets with h = (1,45) (b) NT-nets with h = (1,12)

|
4
.

(c) NT-nets with h = (1,8) (d) NT-nets with h = (1,52)

Figure 5. Plots of 53-point NT-nets in B, generated by the GLP method.

B
& . 1

Figure 6. Plot of 53-point NT-nets in B, with the PMP method generator h = (1, 27).

Table 5 gives the results of three designs generated by the SRS method. For all
three distance criteria, the best design is generated from y = (\/5\/5 ). That is, the

points of this design are more uniformly scattered than the points from the other two
designs. This can be seen in Figure 7(a), 7(b), and 7(c).

Table 5. Distance Criteria Values and the SRS method good point generators of NT-nets

in B, for N = 53 points. These values are sorted by ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Good Point (y)
0.117900 0.108207 0260046 | (V2,4/3)
0.120505 0.108567 0283109 | (¥3.45)
0.151117 0.136365 0373204 | (J2,45)
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(@) NT-nets withy = (+/2,4/3)  (b) NT-nets withy =(+/3,4/5)  (c) NT-nets with y =(+/2,4/5 )

ol

Figure 7. Plots of 53-point NT-nets in B, generated by the SRS method.

Table 6 contains the results of two designs generated by the HAM method.
Small prime numbers p = 2, 3 were the base p generators. For all three distance criteria,
the points of the base 3 design are more uniformly scattered than the points from the
base 2 design. Plots of the points from these two designs are shown in Figures 8(a),
and 8(b).

Table 6. Distance Criteria Values and the HAM method base (p) generators of NT-nets

in B2for N = 53. These values are sorted by the ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Base (p)
0.103225 0.095861 0.216255 3
0.105922 0.097806 0.227075 2

(@) NT-nets with p =3 (b) NT-nets withp =2

Figure 8. Plots of 53-point NT-nets in B, generated by the HAM method.

iii) When N = 98 points
Since N = 98 is not a prime number but it is in the form of 2pI ,where p =7, then
the number of primitive roots modulo 98 is equal to @#98)) (i.e,12). There are 12
possible primitive roots a; = 3, 5, 17, 33, 45, 47, 59, 61, 67, 73, 75, 87, and 89 for the
PMP method. Table 7 gives the results of the best 12 designs from all 41 possible
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designs generated by the GLP method and the all 12 possible designs generated by the
PMP method based on the rmsd.

Table 7. Distance Criteria Values and the GLP and PMP method generators of NT-nets

in B, for N = 100 points. These values are sorted by ascending rmsd (X) values.

GLP PMP

Gener Gener

rmsd (X) ad (X) md (X) -ator rmsd (X) ad (X) md (X) -ator
(h) (h)

0.072744 | 0.068184 | 0.136632 | (1,69) || 0.074503 | 0.069308 | 0.151050 | (1,45)
0.073233 | 0.068612 | 0.143196 | (1,29) 0.077076 | 0.071543 | 0.168998 | (1,17)
0.073771 | 0.068868 | 0.153353 | (1,71) | 0.078335 | 0.072483 | 0.164642 | (1,75)
0.073968 | 0.068964 | 0.155702 | (1,43) || 0.084080 | 0.076266 | 0.205485 | (1,5)
0.074466 | 0.069396 | 0.164289 | (1,55) 0.086681 | 0.078496 | 0.196285 | (1,47)
0.074503 | 0.069308 | 0.151050 | (1,45) | 0.087142 | 0.079155 | 0.184846 | (1,61)
0.074597 | 0.069662 | 0.149500 | (1,27) | 0.093301 | 0.084028 | 0.215441 | (1,89)
0.075132 | 0.069904 | 0.171276 | (1,53) 0.102685 | 0.090784 | 0.254789 | (1,87)
0.076804 | 0.071301 | 0.166153 | (1,81) 0.106462 | 0.092415 | 0.258674 1,3)
0.077076 | 0.071543 | 0.168998 | (1,17) | 0.109496 | 0.096884 | 0.214207 | (1,73)
0.078092 | 0.072340 | 0.159982 | (1,57) 0.143176 | 0.123891 | 0.361536 | (1,59)
0.078095 | 0.072250 | 0.156027 | (1,23) 0.179240 | 0.153843 | 0.426044 | (1,33)

The best design generated by the GLP method under all three distance criteria
is generated from h = (1,69) which is slightly better than the designed generated from h
= (1,29). The worst design under all three criteria is generated from h = (1,97) with rmsd
=0.239426, ad = 0.206785 and md = 0.597041 which is not shown in Table 7. Figures 9
(a), 9(b) and 9(c) are plots of the 98 points in B, resulting from generators h = (1,69) , h
=(1,29) and h = (1,97), respectively. Visually, the designs in Figures 9(a) and 9(b) are
similar with respect to the uniformity of the scatter while the design points in Figure 9(c)
are not uniformly scattered. The best design generated by the PMP method is generated
from h = (1,45) which is the sixth ranking of the design generated by the GLP method.
The worst design by the PMP method is generated from h = (1,33). The 98 points plots
in B, resulting from generators h = (1,45) and h = (1,33) are displayed in Figure 9(d) and
9(e).
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(a) NT-nets with h = (1,69) (b) NT-nets with h = (1,29) (c) NT-nets with h = (1,97)
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(d) NT-nets with h = (1,45) (e) NT-nets with h = (1,33)
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Figure 9. Plot of 98-point NT-nets in B, generated by the GLP method ((a)-(c)) and the
PMP method ((d) and (e)).

Table 8 gives the results of three designs generated by the SRS method. For all
three distance criteria, the best design is generated from y = (\/E,\/g). That is, the

points of this design are more uniformly scattered than the points from the other two

designs. This can be seen in Figure 10(a), 10(b), and 10(c).

Table 8. Distance Criteria Values and the SRS method good point generators of NT-nets

in B, for N = 98 points. These values are sorted by ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Good Point (y)
0.079946 0.073352 0.170911 (V3.45)
0.101628 0.092084 0.228960 (V2,4/3)

0.124850 0.110021 0.330541 (\/E.\/g)
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(@) NT-nets withy = (4/3,4/5)  (b) NT-nets withy =(+/2,4/3)  (c) NT-nets with y =(+/2,4/5 )
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Figure 10. Plots of 98-point NT-nets in B, generated by the SRS method.

The results for the HAM method are presented in Table 9. Small prime numbers
p = 2, 3 were the base p generators as the case N = 29 and 53. For all three distance
criteria, the points of the base 3 design are more uniformly scattered than the points from

the base 2 design. Plots of the points from these two designs are shown in Figures

11(a), and 11(b).

Table 9. Distance Criteria Values and the HAM method base (p) generators of NT-nets

in Bofor N = 100. These values are sorted by the ascending rmsd (X) values.

rmsd (X) ad (X) md (X) Base (p)
0.075140 0.069925 0.169136 3
0.075964 0.070404 0.162888 2
(&) NT-nets with p =3 (b) NT-nets withp =2
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Figure 11. Plots of 98-point NT-nets in B, generated by the HAM method.

b) Results for k = 3 and 4 factors

Tables 10 and 11 contain the results of the best design generated by each of
the four methods for N = 29, 53 and 98 points based on the rmsd value criterion when k
= 3 and 4 factors, respectively. For all cases of N, the GLP method is superior to other

methods and it differs from the PMP method, while the SRS method gives the worst
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results. As expected, when we consider each method, the three distance criteria values
decrease as N increases.

Table 10. The best design (based on the rmsd value) generated by the GLP, PMP, SRS
and HAM method for N = 29, 53 and 98 points when k = 3.

N Method rmsd (X) ad (X) md (X) h,y,orp

29 GLP 0.274025 0.261650 0.528516 h = (1,16,18)
PMP 0.276385 0.263915 0.560728 h = (1,21,6)
SRS 0.289855 0.273437 0.662971 Y = (J2,43.47)
HAM 0.285972 0.271915 0.560395 p =35

53 GLP 0.223327 0.213482 0.420141 h = (1,33,38)
PMP 0.225720 0.215369 0.433361 h = (1,41,38)
SRS 0.234671 0.223105 0.507424 Y = (V2A3.47)
HAM 0.229844 0.218941 0.465015 p=23

98 GLP 0.179971 0.172159 0.328209 h = (1,57,87)
PMP 0.186644 0.177738 0.358523 h =(1,17,93)
SRS 0.193350 0.181937 0.376656 Y =(J2,43.45)
HAM 0.187132 0.178073 0.408362 p=23

Table 11. The best design (based on the rmsd value) generated by the GLP, PMP, SRS
and HAM method for N = 29, 53 and 98 points when k = 4.

N Method rmsd (X) ad (X) md (X) h,y,orp

29 GLP 0.402052 0.388903 0.696920 | h =(1,5,7,16)
PMP 0.407460 0.393178 0.759638 | h =(1,86,19)
SRS 0.415973 0.399717 0.779002 |y = (4/2,4/3,4/5,47)
HAM 0.409966 0.395858 0.702240 | p =235

53 GLP 0.340157 0.329004 0.639111 | h =(1,12,20,30)
PMP 0.347659 0.335911 0.612382 | h =(1,4138,21)
SRS 0.357600 0.344896 0.662651 | y = (42,4/3.4/5.47)
HAM 0.352600 0.339672 0.660201 | p =237

98 GLP 0.288124 0.278573 0.522658 | h =(1,53,83,93)
PMP 0.295210 0.285214 0.524845 | h =(1,77,29,33)
SRS 0.301981 0.290668 0.628644 | vy = (42,45,47,411)
HAM 0.300306 0.289472 0.542292 | p =237

6. Conclusion and Discussion

In this study, we describe the generation of NT-nets on the k-dimensional ball
(Bk) based on transformation the points from the k-dimensional unit cube (Ck) fork=2,3
and 4 dimensions. For each k, we studied primes N = 29 and 53, and the larger non-
prime N = 98. The methods used for generating NT-nets are the GLP, PMP, SRS and
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HAM methods. For each study, a random sample of 5,000 points in Bx was used to
evaluate the three criteria for assessing the uniformity of scatter.

The number of possible designs generated by the GLP method depends on the
number of the integer h; such that gcd(h;, N) = 1 fori = 2,3, ...., k. Hence when N is a
prime number and k is large, the number of possible designs is also large and this
requires extensive computing time. The number of possible designs generated by the
PMP method depends on the number of the primitive roots modulo N which has fewer
possible designs than the GLP method. However, when N and k are large, the PMP
method may require long computing time. The number of possible designs generated by
the SRS and HAM methods depends on k and the first k-1 prime numbers. Hence, these
last two NTMs require less computing time than the GLP and PMP methods.

The results from this study suggest that the GLP method may, in general,
generate the best uniform designs. The PMP, HAM and SRS rank second, third and
fourth rank with respect to design generation based on the rmsd criterion for all N and k.
When k = 2, the best design generators for the GLP and PMP methods were the same.
However, for each N and k, the criterion values are slightly different. When we compare
the distance criteria across N for each method and k, the three criteria values decrease
as N increases.

WhenN and k are large, the SRS and HAM methods yield criteria values which
are slightly greater than the GLP and PMP methods and these differences decrease with
increasing N and k. However, these methods require less computing time than the GLP
and PMP methods. Thus, the SRS and HAM method may be considered for construction
of designs having uniformly scattered design points in B for large N and k.
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Appendix

Generation of uniformly Scattered Sets of Points in Bi
We will give the examples for generating the set of uniformly scattered points in

Bk for k = 2 and 3 factors by using the c.d.fof g fori=1, 2, .., k as in (13) and applying

the inverse transform method to generate ¢ fori=1, 2, .., k.

1) For k =2 factors
Let U; be mutually independent with U(0,1) distribution fori =1, 2, ..., k. From
(13), the

c.d.fof ¢ and ¢ are Fy(¢) = ¢° and Fo(f) = ¢. Let Us = Fy(4) = ¢°, then ¢ =F*(u,)
=Ull/2. Suppose ¢ = ¢, hence ¢ =U11/2. That is, for each element of ¢ and U;, we
obtain ¢ =U}{*= b, in (10)forj=1,2, ..., N. Let Us = F,(g) = ¢, then ¢ = F;'(u,)
= U, Suppose ¢ = ¢, hence ¢, = U, That is, for each element of ¢, and U,, we obtain
¢#2=Up = b, in (10) . Substituting the values of b, and b, into(10), and by (11) it
yields

X; = U2 cos(2nUz) and X, = UF/2sin(2nUy),

from which the set of uniformly scattered points in B, {X1, X2} will be obtained.

2) For k = 3 factors

From (13), the c.d.f of ¢1, ¢ and gz are Fy(¢) = 42, Fy(4) = %(1— cos(zg¢)) , and

Fs(¢) = ¢. By using the inverse transform method, the elements of ¢ fori=1, 2, 3 are
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0 :U}P, Pj2 = %arccos(l—Zsz) , and $jz = Uz forj=1, 2, ..., N. Hence, we obtain

X1 = U3 (1-2uy) ,
Xz = 2U33 (U,(1-U,))Y? cos(2nUs) , and

X3=2U$% (U,(1-U,))Y? sin@2nUs)

from which the set of uniformly scattered points in B3 {X1, X2, X3} will be obtained.
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