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Abstract 

 This paper introduces and illustrates a new generalized ordinal logit  (GOL) 

model which connects the four commonly-used multicategory logit models by using two 

hyper-parameters. The commonly used models in multicategory models are the 

adjacent-categories logit model (AC), the proportional odds (PO) model, and  two 

variants of the continuation-ratio logit (CR) models. The GOL model generalizes these 

four models in the sense that each is a special case of the larger GOL model, and this 

GOL model is used for multicategory response data. In this article, we discuss 

(maximum likelihood) estimation and testing related to the GOL model, providing 

SAS/IML computer programs for the same, and illustrating the use of the proposed 

model with two real datasets. 
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1.  Introduction 

 Regression analysis is a statistical method tool that has been used in the fields 

of many disciplines such as in business, social sciences, medicine, etc. The purpose for 

this tool is to predict response variables Y by using explanatory variables X. When the 

response variable Y is qualitative and is classified into k  categories.  Multicategory 

Logistic regression models have been handled. These models assume that  the 

response counts for the categories of Y have a multinomial distribution. They include 

many common models [1] such as the baseline-category logit (BCL),  adjacent-

categories logits (AC),  proportional odds (PO) and continuation-ratio logits models (CR). 

In Minitab, the default for “ordinal logistic regression” is BCL model. This is the same as 

the default for “nominal logistic regression”  which is AC model. These are the defaults 

for other software packages. Thus, we will concern only with AC. For some datasets, 

these models are not sufficiently rich to fit these datasets.  In order to solve this problem, 

the multicategory logit models need to be extended. So the generalized ordinal logit 

(GOL) model is proposed to connect multicategory logit models.  

In addition, we use the model name followed by “s” to denote that the 

independent variable x has been scaled using the usual Box-Cox transformation formula 

in Schabenberger and Pierce [2]. Thus, “ACs” denotes the AC (adjacent category) model 

with scaled x variable. 

 This article is organized as follows: In Section 2, we describe the methodology 

for connecting the multicategory logit models. Results from GOL model are given in 

Section 3. We present two examples to illustrate the GOL model in Section 4, and our 

discussion is provided in Section 5.      

 

2.  Methodology 

Considering the common models in multicategory logit models such as  AC,  

PO and CR. The CR model has two forms of logits called CRA and CRB. If PO model 

has different slopes, we call it the UPO model. The associated logit transformations for 

these various models are given in Table 1.  
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Table 1. Multinomial Logits for the AC, UPO, CRA and CRB Models. 
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We present the GOL model to connect the multicategory logit models  by using 

two extra parameters 1θ and 2θ , called  “GOL parameters”, where 10 1 ≤≤ θ and 

10 2 ≤≤ θ . When we fix the value of 1θ and 2θ  to be 0 or 1 , the GOL model collapses 

to be AC, PO, CRA and CRB models (see Table 3). As such, the GOL model is the 

generalized of these commonly-used multicategory logit models. 

The GOL model with k ≥ 3 categories has k –1 logits, and these are of the form: 

The first equation: 
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In this paper we focus on the GOL model for the cases k= 3 and k = 4, but 

generalizations to larger value of k are straightforward. The GOL logits are shown in 

Table 2. 
 

Table 2. GOL logits. 

k logits GOL 
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If we assign the values of 1θ  and 2θ , we obtain the sub-models as shown in 

Table 3. 

Table 3. Corresponding values of 1θ and 2θ for Sub-models. 

 

 

 

 

 

 

 
Then we derive formulas to find parameter estimates for the GOL model in this manner. 

Let  ex1 = exp(α1 + β1x), ex2 = exp(α2 + β2x), …respectively. 

We derive probabilities and find parameter estimates for the GOL model as follows: 

1θ  2θ  Sub-models 

0  0  AC 

1 1 UPO 

0  1 CRA 

1 0  CRB 
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From the GOL logit equations that have 1−k equations with the constraint ∑
=

=
k

i
i

1
1π . 

Taking the anti-logarithm, we solve the system of linear equations to get the estimated 

probabilities. 

 

When 3=k .The GOL logit equations are 
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with constraint ∑
=

=
4

1
1

i
iπ .Taking the anti-logarithm, we get equations 
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For the parameter estimates of models, we use the maximum likelihood 

estimation method. Let L be the log-likelihood expressed at a single value of x and 

corresponding to the multinomial distribution. θ  is vector of parameters in the models. 

The likelihood function (denoted “l”) and log likelihood function (denoted “L”) for 

4,3=k are shown in Table 4.  Maximum likelihood estimates for the various models are 

obtained by maximizing L (or equivalently l) with respect to the model parameters θ.  

Thus, the probability mass function of Y, represented by )(yf  is as follows;  
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Table 4. Likelihood and Log-Likelihood Expressions for k = 3 and 4 Cases. 

 
The maximum likelihood estimate (MLE) of θ [3]   is given by   

∏∏
= =

=
n

i

k

j

y
j

ij

1 1
maxargˆ πθ
θ

j

n

i

k

j
ijy π

θ
∑ ∑
= =

=
1 1

logmaxarg  

The variance -covariance matrix of θ̂  for large samples is approximated by 
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where N  is the total number of observations; in this expression M(θ) is the Fisher 

information matrix for the given design with jkth (ij)element equal to the negative of the 

expected value of the second derivative of L with respect to the jth (i)and kth 

(j)parameters. We assume that )(θM is nonsingular; in the event that it is singular, a 

generalized inverse is used to obtain the corresponding variance-covariance matrix. 

Since the models are nonlinear, the maximum likelihood estimate may be found 

by using iterative methods such as the Gauss-Newton iterative method. Bates & Watts 

[4] indicated that The Gauss-Newton iterative method is continued until the value of 

parameter on successive iterations stabilize. This can be measured by the size of each 

parameter increment relative to the previous parameter value, which is the basis for one 

of the common criteria used to declare convergence. In SAS, when the Newton-Raphson 

iterative method is used, criteria for convergence is that at least one element of the 

(projected) gradient is greater than 0.001. 

For each given dataset, we write a SAS/IML program to find parameter 

estimates in only AC, UPO, CRA, CRB and GOL models, using the Newton-Raphson 

iterative method. Then we choose the best model to describe each dataset by using the 

minimum negative log-likelihood.  

After the model has been selected, we use parameter estimates in the model to 

obtain estimated probabilities and fitted values for the model. 
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3. Results 

 After solving systems of equations in GOL logit model in section 2, we get 

probabilities as shown in Table 5. From this table, If we specify the values of 1θ and 2θ  

as shown in Table 3, we will obtain the probabilities in multinomial logits model as shown 

in Table 6. 
 

Table 5. Probabilities in GOL models for k = 3, 4. 

k Categories Probabilities 
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Note: “den” is represented for denominator in probability terms. 
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Table 6. Probabilities in multinomial logits model. 

k Probabilities AC UPO CRA CRB 
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4. Application to datasets 

In this section, we apply the GOL model described in section 2 to two real 

datasets from various references. We first consider the pregnant mice dataset given in 

Agresti [5]. This dataset was the outcome from a developmental toxicity study for 1435 

pregnant mice. Each mouse was exposed to one of five concentration levels of 

diethylene glycol dimethyl ether for ten days early in the pregnancy. The uterine contents 

of the pregnant mice were examined for defects in two days later. There are three 

possible outcomes for each fetus, viz, dead, malformation and normal; see Table 7. 
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The second illustration is the house fly dataset given in Zocchi and Atkinson [6]. 

This dataset were resulted from an experiment in which seven sets of 500 pupae each 

were exposed to one of several doses of radiation. The interested number of flies  were 

recorded. The response data are trinomial with variables: 

x   is dose of radiation. 

1y  is number of flies that died before the opening of the pupae. 

2y  is number of flies that died before complete emerged. 

3y  is number of flies that complete emerged. 

 

In this latter dataset, for reasons discussed below we use Box and Cox 

transformation for the independent variable x , 
γ

γ

1
10

−







=

x

z , where γ is an additional 

(scale) parameter to be estimated for the dataset/model combination. 

 
Table 7. Diethylene glycol dimethyl ether pregnant mice data and fitted values. 

Concentration 
(mg/kg per day) 

x 

                            Response 
   Dead               Malformation         Normal 
       y1                      y2                           y3 

Total 

0 

62.5 

125 

250 

500 

  15 (11.11)          1 (0.95)          281 (284.94)  

  17 (13.26)          0 (2.24)          225 (226.50)  

  22 (24.83)          7 (8.20)          283 (278.97)          

  38 (48.26)        59 (51.54)        202 (199.20) 

144 (139.09)    132 (138.98)          9 (6.93)  

297 

242 

312 

299 

285 

 

The fitted values that shown in parentheses in Table 7 are obtained using the CRB 

model,  


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We next fit each of the above models to this dataset; the results – both the 

maximum likelihood estimates and the asymptotic standard errors – are given in Table 8. 

Table 8. Parameter estimates and standard errors (in parentheses) for the pregnant 

mice dataset using the AC, UPO, CRA, CRB and GOL models. 

Model Parameter Estimates (Asymptotic Standard Errors) - Log-

likelihood 1α  2α  1β  2β  1θ  2θ  

AC 0.9834 

(0.2708) 

-4.9528 

(0.2492) 

-0.0021 

(0.0006) 

0.0140 

(0.0008) 

 

---- 

 

---- 

 

753.2203 

UPO -3.5988 

(0.1571) 

-3.5733 

(0.1559) 

0.0072 

(0.0004) 

0.0122 

(0.0006) 

 

---- 

 

---- 

 

743.5459 

CRA 0.9046 

(0.2600) 

-3.6783 

(0.1697) 

-0.0019 

(0.0006) 

0.0127 

(0.0007) 

 

---- 

 

---- 

 

753.7615 

CRB -3.2479 

(0.1577) 

-5.7019 

(0.3323) 

0.0064 

(0.0004) 

0.0174 

(0.0012) 

 

---- 

 

---- 
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GOL -1.8540 

(0.8220) 

-5.5382 

(0.4117) 

0.0037 

(0.0016) 

0.0169 

(0.0013) 

0.3004 

(0.2208) 

0.0470 

(0.0550) 

 

728.3356 

 

By using the minimum negative log-likelihood, GOL model is chosen. But the 

negative log-likelihood is very close to the value in CRB model.  Now consider the 

different between these two values of the negative log-likelihood, which is 730.3872 - 

728.3356 = 2.0516. When we use model testing for nested model of this form, we see 

that the test statistic is 2
2χ  = 2(2.0516) = 4.1032, p-value = 0.1285. Thus, the different of 

these two values of negative log-likelihood is not significant at 05.0=α , and so we 

choose CRB model for this dataset for reasons of parsimony. That is, the fitted model is: 


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We now turn to the second illustrative dataset. 

 

Table 9. House fly data and fitted values. 

Dose of 
radiation 

 

x 

Response categories 

Total 
 

Unopened 
Pupae 

 
y1 

Died before 
finishing 

emergence 
y2 

Complete 
emergence 

 
y3 

80     62 (58.23)     5 (4.63)   433 (437.15) 500 

100     94 (99.41)   24 (23.45)   382 (377.14) 500 

120   179 (184.77)   60 (63.93)   261 (251.30) 500 

140   335 (319.99)   80 (82.98)    85 (97.03) 500 

160   432 (438.05)   46 (42.53)    22 (19.42) 500 

180   487 (487.06)   11 (10.63)      2 (2.32) 500 

200   498 (498.18)     2 (1.65)      0 (0.18) 500 

 

The fitted values that  shown in parentheses in Table 9 are obtained using the UPOs 

model  









+ 32

1log
ππ

π
 z11 βα +=  








 +

3

21log
π

ππ
 z22 βα +=  

 
 
 
 
 



Somsri Jamroenpinyo                          99 

Table 10. Parameters estimate and standard errors (in parentheses) for the house fly 

dataset using the ACs, UPOs, CRAs, CRBs and GOLs models. 
Model Parameter Estimates (Asymptotic Standard Errors) - Log-

likelihood 
1α  2α  1β  2β  γ 

1θ  2θ  

ACs 0.6466 

(0.0843) 

-3.3646 

(0.0650) 

0.0005 

(0.0005) 

0.0013 

(0.0012) 

3.3651 

(0.3596) 

 

---- 

 

---- 

 

1805.9313 

UPOs -2.8560 

(0.1669) 

-3.0120 

(0.1750) 

0.0110 

(0.0036) 

0.0142 

(0.0045) 

2.5298 

(0.1250) 

 

---- 

 

---- 

 

1782.7272 

CRAs 0.6462 

(0.1268) 

-2.2944 

(0.1244) 

0.0004 

(0.0002) 

0.0015 

(0.0005) 

3.4375 

(0.1451) 

 

---- 

 

---- 

 

1805.1136 

CRBs -3.4441 

(0.3819) 

-5.1437 

(0.4997) 

0.0371 

(0.0227) 

0.0441 

(0.0269) 

2.0562 

(0.2376) 

 

---- 

 

---- 

 

1789.9706 

GOLs -2.0271 

(0.8162) 

-3.2872 

(0.5209) 

0.0086 

(0.0045) 

0.0130 

(0.0057) 

2.5700 

(0.1741) 

0.5016 

(0.3400) 

0.7045 

(0.3440) 

 

1782.2119 

 

By using the minimum negative log-likelihood, the GOLs model is chosen. But 

the negative log-likelihood is very close to the value in UPOs model.  Now consider the 

different between these two values of the negative log-likelihood, which is 1782.7272 -

1782.2119 = 0.5153. When we use model testing for nested model of this form, we see 

that the test statistic is 2
2χ = 2(0.5153) = 1.0306, p-value = 0.5973. So the difference of 

these two values of negative log-likelihood is not significant at 05.0=α , and so we 

choose the UPOs model for this dataset.  Thus, the fitted model is  
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5. Conclusion and Discussion 

 In this study, we have developed the generalized ordinal logit (GOL) model 

which is generalized of multicategory logit models. This model is used for multicategory 

response data with k  categories, where 4,3=k . It seems to see that GOL models can 

be fitted well with these two real datasets. Since the GOL model has two hyper-

parameters and since the models are nested, whenever the change in the -2*log-

likelihood values is not too great, we choose the smaller model for the sake of 

parsimony.  We note that there is a potential use of our proposed model for real datasets 

with k categories response data where 4,3=k . Therefore the GOL models are useful 

for prediction of future values response in disciplines of medicine, social sciences, etc.  

Another important consequence of our new model is by providing researchers with a way 

to connect the various multicategory logit models with an eye to obtaining robust optimal 

designs (good for testing goodness of fit).  We take up this latter topic in a forthcoming 

paper as this is the topic of our ongoing research. 
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Appendices 
a) APPENDIX A. Analysis of the Pregnant Mice Dataset using SAS/IML 
 

proc iml; 
 
start NLLUPO(th) global(xx,y1,y2,y3); 

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4]; 

ex1=exp(b01+b11*xx); ex2=exp(b02+b12*xx); 

ee1=ex1/(1+ex1); ee2=ex2/(1+ex2); 

pi1=ee1; pi2=ee2-ee1; pi3=1/(1+ex2); 

tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

return(-tomax); 

finish NLLUPO; 

th0upo={-5 -4 0.01 0.01 }; 

conupo={-9 -9 0.0001 0.0001,-3 1 1 1 }; 

 

start NLLAC(th) global(xx,y1,y2,y3); 
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b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4]; 

ex1=exp(b01+b11*xx); ex2=exp(b02+b12*xx); 

on=1+0*ex1; den=on+ex2+ex1#ex2; 

pi1=ex1#ex2/den; pi2=ex2/den; pi3=1/den; 

tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

return(-tomax); 

finish NLLAC; 

th0ac={ 1 -6 -0.002 0.02}; 

conac={0.1 -9 -0.1 0.00001,3 -3 -0.0000001 0.1 }; 

 

start NLLCRA(th) global(xx,y1,y2,y3); 

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4]; 

ex1=exp(b01+b11*xx); ex2=exp(b02+b12*xx); 

on=1+0*ex1; den=(on+ex1)#(on+ex2); 

pi1=ex1#ex2/den; pi2=ex2/den; pi3=1/(on+ex2); 

tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

return(-tomax); 

finish NLLCRA; 

th0cra={-5 -4 0.01 0.01 }; 

concra={-9 -9 -1 0.0001,3 1 1 1 }; 

 

start NLLCRB(th) global(xx,y1,y2,y3); 

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4]; 

ex1=exp(b01+b11*xx); ex2=exp(b02+b12*xx); 

on=1+0*ex1; den=(on+ex1)#(on+ex2); 

pi1=ex1/(on+ex1); pi2=ex2/den; pi3=1/den; 

tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

return(-tomax); 

finish NLLCRB; 

th0crb={-5 -4 0.01 0.01 }; 

concrb={-9 -9 -1 0.0001,3 1 1 1 }; 

 

start NLLALL(th) global(xx,y1,y2,y3); 

th1=th[1]; th2=th[2]; b01=th[3]; b02=th[4]; b11=th[5]; b12=th[6]; 

ex1=exp(b01+b11*xx); ex2=exp(b02+b12*xx); 



102                                                                     Thailand Statistician, 2012; 10(1):87-105 

on=1+0*ex1; den=on+(th1+th2-th1*th2)*ex1+ex2+ex1#ex2; 

pi1=(th1*ex1+ex1#ex2)/den; pi2=(ex2-th1*th2*ex1)/den; 

pi3=(on+th2*ex1)/den; 

tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

return(-tomax); 

finish NLLALL; 

th0all={0.95 0.05 -3.2 -5.7 0.0064 0.0174}; 

conall={0.000000001 0.000000001 -5 -7 -0.1 0.0001, 

0.999999999 0.999999999 1.5 -2 0.1 0.1 }; 

 

xx={0.00000000000000001,62.5,125,250,500}; 

y1={15,17,22,38,144}; y2={1,0,7,59,132}; 

y3={281,225,283,202,9};opt={.,0}; 

 

call nlptr(rc,thupo,"NLLUPO",th0upo,opt,conupo); NLLUPOmin=NLLUPO(thupo); 

print thupo NLLUPOmin; 

call nlptr(rc,thac,"NLLAC",th0ac,opt,conac); NLLACmin=NLLAC(thac); 

print thac NLLACmin; 

call nlptr(rc,thcra,"NLLCRA",th0cra,opt,concra); NLLCRAmin=NLLCRA(thcra); 

print thcra NLLCRAmin; 

call nlptr(rc,thcrb,"NLLCRB",th0crb,opt,concrb); NLLCRBmin=NLLCRB(thcrb); 

print thcrb NLLCRBmin; 

call nlptr(rc,thall,"NLLALL",th0all,opt,conall); NLLALLmin=NLLALL(thall); 

print thall NLLALLmin; 

 

b) APPENDIX B. Analysis of the House Fly Dataset using SAS/IML 
proc iml; 

 
  start NLLUPOs(th) global(xx,y1,y2,y3); 

     aa1=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5]; 

     zz=(1/gam)*(xx##gam-1); 

     ex1=exp(aa1+bb1*zz); ex2=exp(aa2+bb2*zz); 

     ee1=ex1/(1+ex1); ee2=ex2/(1+ex2); 

     pi1=ee1; pi2=(ee2-ee1); pi3=1/(1+ex2); 

     tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

     return(-tomax); 
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  finish NLLUPOs; 

  th0upos={-5 -4    0.06    0.06     2}; 

  conupos={-9 -9    0.0001  0.0001  -1, 

           -2  1    1       1        4}; 

 

  start NLLACs(th) global(xx,y1,y2,y3); 

     aa1=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5]; 

     zz=(1/gam)*(xx##gam-1); 

     ex1=exp(aa1+bb1*zz); ex2=exp(aa2+bb2*zz); 

     on=1+0*ex1; den=on+ex2+ex1#ex2; 

  eps=0.00001+0*on; 

     pi1=ex1#ex2/den+eps; pi2=ex2/den; pi3=1/den; 

     tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

     return(-tomax); 

  finish NLLACs; 

  th0acs={ -1  -6  0.0002  0.0005    1}; 

  conacs={ -3 -19 -0.1     0.00001  -1, 

            3  -3  0.1     0.1       4}; 

 

  start NLLCRAs(th) global(xx,y1,y2,y3); 

     aa1=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5]; 

     zz=(1/gam)*(xx##gam-1); 

     ex1=exp(aa1+bb1*zz); ex2=exp(aa2+bb2*zz); 

     on=1+0*ex1; den=(on+ex1)#(on+ex2); 

     pi1=ex1#ex2/den; pi2=ex2/den; pi3=1/(on+ex2); 

     tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

     return(-tomax); 

  finish NLLCRAs; 

  th0cras={-1 -6  0.0001  0.0007  1 }; 

  concras={-9 -9  -1      0.0001 -1, 

            3  1  1       1       4}; 

 

  start NLLCRBs(th) global(xx,y1,y2,y3); 

     aa1=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5]; 

     zz=(1/gam)*(xx##gam-1); 
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     ex1=exp(aa1+bb1*zz); ex2=exp(aa2+bb2*zz); 

     on=1+0*ex1; den=(on+ex1)#(on+ex2); 

     pi1=ex1/(on+ex1); pi2=ex2/den; pi3=1/den; 

     tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

     return(-tomax); 

  finish NLLCRBs; 

  th0crbs={-5  -9  0.0001  0.0007  1}; 

  concrbs={-9 -19  -1      0.0001 -1, 

            3   1  1       1       4}; 

 

 

  th0alla={0.8 0.2 -2 -3 0.001 0.002 3}; 

  start NLLALLs(th) global(xx,y1,y2,y3); 

     th1=th[1]; th2=th[2]; aa1=th[3]; aa2=th[4]; bb1=th[5]; bb2=th[6]; gam=th[7]; 

     zz=(1/gam)*(xx##gam-1); 

     ex1=exp(aa1+bb1*zz); ex2=exp(aa2+bb2*zz); 

     on=1+0*ex1; den=on+(th1+th2-th1*th2)*ex1+ex2+ex1#ex2; 

     pi1=(th1*ex1+ex1#ex2)/den; pi2=(ex2-th1*th2*ex1)/den; pi3=(on+th2*ex1)/den; 

     tomax=t(y1)*log(pi1)+t(y2)*log(pi2)+t(y3)*log(pi3); 

     return(-tomax); 

  finish NLLALLs; 

  conalls={0.001 0.001 -4   -4   0.0001  0.0001    0.9, 

           0.999 0.999 -.1  -.1  0.9     0.9        4}; 

 

  xx={8,10,12,14,16,18,20};  

  y1={62,94,179,335,432,487,498}; y2={5,24,60,80,46,11,2}; 

y3={433,382,261,85,22,2,0};  

  opt={.,0}; 

  call nlptr(rc,thpos,"nllpos",th0pos,opt,conpos);      nllminpos=nllpos(thpos);     print thpos 

nllminpos; 

  call nlptr(rc,thupos,"nllupos",th0upos,opt,conupos);  nllminupos=nllupos(thupos);  print 

thupos nllminupos; 

  call nlptr(rc,thacs,"nllacs",th0acs,opt,conacs);      nllminacs=nllacs(thacs);     print thacs 

nllminacs; 
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  call nlptr(rc,thcras,"nllcras",th0cras,opt,concras);  nllmincras=nllcras(thcras);  print 

thcras nllmincras; 

  call nlptr(rc,thcrbs,"nllcrbs",th0crbs,opt,concrbs);  nllmincrbs=nllcrbs(thcrbs);  print 

thcrbs nllmincrbs; 

   call nlptr(rc,thalls,"nllalls",thallb,opt,conalls);   nllminalls=nllalls(thalls);  print 

thalls nllminalls; 
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