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Abstract

This paper introduces and illustrates a new generalized ordinal logit (GOL)
model which connects the four commonly-used multicategory logit models by using two
hyper-parameters. The commonly used models in multicategory models are the
adjacent-categories logit model (AC), the proportional odds (PO) model, and two
variants of the continuation-ratio logit (CR) models. The GOL model generalizes these
four models in the sense that each is a special case of the larger GOL model, and this
GOL model is used for multicategory response data. In this article, we discuss
(maximum likelihood) estimation and testing related to the GOL model, providing
SAS/IML computer programs for the same, and illustrating the use of the proposed

model with two real datasets.
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1. Introduction

Regression analysis is a statistical method tool that has been used in the fields
of many disciplines such as in business, social sciences, medicine, etc. The purpose for
this tool is to predict response variables Y by using explanatory variables X. When the
response variable Y is qualitative and is classified into k categories. Multicategory
Logistic regression models have been handled. These models assume that the
response counts for the categories of Y have a multinomial distribution. They include
many common models [1] such as the baseline-category logit (BCL), adjacent-
categories logits (AC), proportional odds (PO) and continuation-ratio logits models (CR).
In Minitab, the default for “ordinal logistic regression” is BCL model. This is the same as
the default for “nominal logistic regression” which is AC model. These are the defaults
for other software packages. Thus, we will concern only with AC. For some datasets,
these models are not sufficiently rich to fit these datasets. In order to solve this problem,
the multicategory logit models need to be extended. So the generalized ordinal logit
(GOL) model is proposed to connect multicategory logit models.

In addition, we use the model name followed by “s” to denote that the
independent variable x has been scaled using the usual Box-Cox transformation formula
in Schabenberger and Pierce [2]. Thus, “ACs” denotes the AC (adjacent category) model
with scaled x variable.

This article is organized as follows: In Section 2, we describe the methodology
for connecting the multicategory logit models. Results from GOL model are given in
Section 3. We present two examples to illustrate the GOL model in Section 4, and our

discussion is provided in Section 5.

2. Methodology

Considering the common models in multicategory logit models such as AC,
PO and CR. The CR model has two forms of logits called CRA and CRB. If PO model
has different slopes, we call it the UPO model. The associated logit transformations for

these various models are given in Table 1.
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Table 1. Multinomial Logits for the AC, UPO, CRA and CRB Models.
logits AC UPO CRA CRB
TT. T T TT.
1 | log| =X | log —2— log| =% log 1
_72'2_ _72'2 +7Z'3 _72'2 _ﬂ'2 +7Z'3
T T, + T T, + T T
2 | log| =% | | log| =2 log| —2—2 log| =%
_7[3 | L 7[3 L 77’-3 _7[3
T T T TT.
1 | log =X | log L log| =% log L
| 7T, | | Tyt s+ 7y, | 7T, | T, + 7yt 7,
T T, + T T, + T T
2 | log| =% | | logl =2 log| 22 log 2
| 73 | _7Z'3+7r4 R _7r3+7z'4
T .+, + T .+, + T T
3 | log =2 | log| 2—2—=28 logl =—*2—2| | log| =
| 74 L Ty L Ty L 74

W e present the GOL model to connect the multicategory logit models by using

two extra parameters @,and 6,, called

“GOL parameters”, where 0<¢, <land

0<6, <1. When we fix the value of g,and &, to be Oor 1, the GOL model collapses

to be AC, PO, CRA and CRB models (see Table 3). As such, the GOL model is the

generalized of these commonly-used multicategory logit models.

The GOL model with k = 3 categories has k —1 logits, and these are of the form:

The first equation:

%

log

T, + 6 (7 +...+7)

The middle (k-3) logits:

O, (7 + o+ Ty ) T

Thmyas + O (T myuz + -+ 7 )

The last equation:

log

O,(m,+... 47 ) +7

Ty

=a,+ [ X

= ak—m + ﬂk—m X

=+ B X

,m=23 ... (k-2);
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In this paper we focus on the GOL model for the cases k= 3 and k = 4, but
generalizations to larger value of k are straightforward. The GOL logits are shown in
Table 2.

Table 2. GOL logits.

k | logits GOL
T
1 |og "
7, + 0,
3 _
O,z +7
2 log| 12
L 7
s
1 | log 1
| 7, + 0, (7 +7,)
o7+
4 2 |og 271 2
| T, + 0,7,

_02 (m,+7,)+ 7,

Ty

If we assign the values of 6, and 6,, we obtain the sub-models as shown in
Table 3.

Table 3. Corresponding values of ¢, and @, for Sub-models.

0, | 6, Sub-models
01 0 AC
111 UPO

0 1 CRA
110 CRB

Then we derive formulas to find parameter estimates for the GOL model in this manner.
Let ex; = exp(ay + B1X), exe = exp(oy + P2X), ...respectively.

We derive probabilities and find parameter estimates for the GOL model as follows:
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k
From the GOL logit equations that have k — lequations with the constraint . z; =1.
i=1

Taking the anti-logarithm, we solve the system of linear equations to get the estimated
probabilities.

When k =3 .The GOL logit equations are

U

log ———— =q,+ [, X
1 1
7, + 0,
0,7, +7x
2°%1 2
log| =—2+—= =a, + 5, X
T3

3
with constraint Y. z; =1.Taking the anti-logarithm, we get equations
i=1

Ty

—1 =ex,
7, + 0,
O, +7
271 T = ex,
T3
or

Ty =ex, (7, +9172'3)
O, +m, =6€X,7m,

T,y =1

When k =4 .The GOL logit equations are

T
log ! =a, + B X
7, +6,(7,+7,)
(0.7 +7
log| =% =a,+ 3, X
| 73+ 0,7,
0, (, +1,)+ 7
Iog 2( 1 2) 3 =0!3+ﬂ3X
L 74
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4
with constraint Y. z; =1.Taking the anti-logarithm, we get equations
i=1

4!
=ex,
7w, + 0, (7, +7,)
O,m, + 7, —ex,
n,+0r,
Oy (m +7y) + 75 _ ex,
qn
or
42 =ex, (7, + 6, (75 + 7,))
0,7, + 7, =ex,(7,+6,7,)
0,(7,+7,)+ 7, =eX,7,

AT,y =1

For the parameter estimates of models, we use the maximum likelihood
estimation method. Let L be the log-likelihood expressed at a single value of X and
corresponding to the multinomial distribution. @ is vector of parameters in the models.
The likelihood function (denoted “I”) and log likelihood function (denoted “L") for
k = 3,4 are shown in Table 4. Maximum likelihood estimates for the various models are

obtained by maximizing L (or equivalently |) with respect to the model parameters 6.

Thus, the probability mass function of Y, represented by f () is as follows;

|
For k=3, f(y) :Lﬂlylﬁzyzﬂf Where Zslzri =1 and iyi =n.
Yy, ty,! i=1 i-1

nl 4 4
y — —
wlm i )t Where Y 7, =1 and Zlyi =n.
i=

=4 T =3y vy .
YiiY2iYsiY,: =1
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Table 4. Likelihood and Log-Likelihood Expressions for k = 3 and 4 Cases.

k | Likelihood function Log likelihood function

3| lerlimfon)? L=c+y,logz +y,logz, +y;logz,

4| loen)nlaln)t | L=c+y,logz +y,logr, +y,logz, +y,logz,

The maximum likelihood estimate (MLE) of #[3] is given by

~ n k - n k
o=argmax[[[[~]" =argmaxy > y; logz;
0 idj4 0 idia

The variance -covariance matrix of é for large samples is approximated by
Var(0) ~ % M 1(0)

where N is the total number of observations; in this expression M(0) is the Fisher
information matrix for the given design with jkth (ij)element equal to the negative of the
expected value of the second derivative of L with respect to the jth (Hand K"

(j))parameters. We assume that M () is nonsingular; in the event that it is singular, a

generalized inverse is used to obtain the corresponding variance-covariance matrix.

Since the models are nonlinear, the maximum likelihood estimate may be found
by using iterative methods such as the Gauss-Newton iterative method. Bates & Watts
[4] indicated that The Gauss-Newton iterative method is continued until the value of
parameter on successive iterations stabilize. This can be measured by the size of each
parameter increment relative to the previous parameter value, which is the basis for one
of the common criteria used to declare convergence. In SAS, when the Newton-Raphson
iterative method is used, criteria for convergence is that at least one element of the
(projected) gradient is greater than 0.001.

For each given dataset, we write a SAS/IML program to find parameter
estimates in only AC, UPO, CRA, CRB and GOL models, using the Newton-Raphson
iterative method. Then we choose the best model to describe each dataset by using the
minimum negative log-likelihood.

After the model has been selected, we use parameter estimates in the model to

obtain estimated probabilities and fitted values for the model.
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3. Results
After solving systems of equations in GOL logit model in section 2, we get

probabilities as shown in Table 5. From this table, If we specify the values of &,and 6,

as shown in Table 3, we will obtain the probabilities in multinomial logits model as shown
in Table 6.

Table 5. Probabilities in GOL models fork = 3, 4.

k | Categories Probabilities
6, +ex,)ex
1 7= (1 2)eX,
den
ex, — 6,0,ex
2 ry =227
3 den
1+ 0,ex
3 TTg = - 72M
den
den 1+ (6, + 6, — 6,0,)ex; +eX, +ex; X,
1 o ex [0 {1+ L+ 6, — 6,0,)ex, +exs}+ex,eXs]
! den
5 . —6,0,ex; + 6jex, — 6,0, (L— 6,)ex,eX, — 0,0,8XX5 + €X,€X5
§ den
4l3 . 6,6, (0, —1)ex; — 6,0,ex, +eX5 — 6,6,eX,eX, + 0,€XX5
den
1+6,(1+6, - 6,0,)ex; + 6,ex, + 6,ex,€X,
4 Ty =
den
d 1+ (6, + 0, — 0,0,)[eX; + X, +€X; EX, + Xy €X3]
en
+ X3 + X, X3 + €X; EX9EX5

Note: “den” is represented for denominator in probability terms.
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Table 6. Probabilities in multinomial logits model.

k | Probabilities AC UPO CRA CRB
T eX,eX, eX, eX,eX, exX,
den 1+ex; den 1+ex;
7[2 6X2 eXZ - EX1 EX2 eX2
den den den den
3| x, 1 1 1 1
den 1+ex, 1+ex, den
AC den 1+ex, +ex;ex,
UPO CRA den (dL+ex;)@+exy)
CRB
T eX1€X,EX5 ex; €X1€X,EX5 ex;
den 1+ex, den 1+ex
den dena den dena
72'3 EX3 eX3 - 6X2 EX2 6X3
4 den denb denb den
T, 1 1 1 1
den 1+exg 1+exg den
AC den 1+ eXg + €X,8Xg + EXEX,EXg
UPO CRA dena (dL+ex;)d+exy)
CRB denb (1+ex,)1+exs)
den (L+ex;)@+exy)(L+exs)

4. Application to datasets

In this section, we apply the GOL model described in section 2 to two real
datasets from various references. We first consider the pregnant mice dataset given in
Agresti [5]. This dataset was the outcome from a developmental toxicity study for 1435
pregnant mice. Each mouse was exposed to one of five concentration levels of
diethylene glycol dimethyl ether for ten days early in the pregnancy. The uterine contents
of the pregnant mice were examined for defects in two days later. There are three

possible outcomes for each fetus, viz, dead, malformation and normal; see Table 7.
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The second illustrationis the house fly dataset given in Zocchi and Atkinson [6].
This dataset were resulted from an experiment in which seven sets of 500 pupae each
were exposed to one of several doses of radiation. The interested number of flies were
recorded. The response data are trinomial with variables:

X is dose of radiation.

Y, is number of flies that died before the opening of the pupae.
Y, is number of flies that died before complete emerged.

Y5 is number of flies that complete emerged.

In this latter dataset, for reasons discussed below we use Box and Cox

4

transformation for the independent variable X, z = , where vy is an additional

(scale) parameter to be estimated for the dataset/model combination.

Table 7. Diethylene glycol dimethyl ether pregnant mice data and fitted values.

Concentration Response
(mg/kg per day) Dead Malformation Normal Total
X Y1 y2 Y3
0 15 (11.11) 1 (0.95) 281 (284.94) 297
62.5 17 (13.26) 0(2.24) 225 (226.50) 242
125 22 (24.83) 7 (8.20) 283 (278.97) | 312
250 38 (48.26) 59 (51.54) 202 (199.20) 299
500 144 (139.09) 132 (138.98) 9 (6.93) 285

The fitted values that shown in parentheses in Table 7 are obtained using the CRB

model,

TT.
log) ——| =a, + B, X
Ty + 70,

T
log| —= =a,+ f3,X
73
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We next fit each of the above models to this dataset; the results — both the
maximum likelihood estimates and the asymptotic standard errors — are given in Table 8.
Table 8. Parameter estimates and standard errors (in parentheses) for the pregnant

mice dataset using the AC, UPO, CRA, CRB and GOL models.

Model Parameter Estimates (Asymptotic Standard Errors) - Log-

oy a, B By 0, 0, likelihood
AC 0.9834 -4.9528 | -0.0021 | 0.0140

(0.2708) | (0.2492) | (0.0006) | (0.0008) | ---- 753.2203
UPO -3.5988 -3.5733 | 0.0072 0.0122

(0.1571) | (0.1559) | (0.0004) | (0.0006) | ---- 743.5459
CRA 0.9046 -3.6783 -0.0019 0.0127

(0.2600) | (0.1697) | (0.0006) | (0.0007) | - 753.7615
CRB -3.2479 -5.7019 | 0.0064 0.0174

(0.1577) | (0.3323) | (0.0004) | (0.0012) | - 730.3872
GOL -1.8540 | -5.5382 | 0.0037 0.0169 0.3004 0.0470

(0.8220) | (0.4117) | (0.0016) | (0.0013) | (0.2208) | (0.0550) | 728.3356

By using the minimum negative log-likelihood, GOL model is chosen. But the
negative log-likelihood is very close to the value in CRB model. Now consider the
different between these two values of the negative log-likelihood, which is 730.3872 -

728.3356 = 2.0516. When we use model testing for nested model of this form, we see
that the test statistic is ;[22 = 2(2.0516) = 4.1032, p-value = 0.1285. Thus, the different of

these two values of negative log-likelihood is not significant at « =0.05, and so we

choose CRB model for this dataset for reasons of parsimony. That is, the fitted model is:

log — "+ | =—3.2479+0.0064
72'2 +7Z'3

log| %2 — 57019+ 0.0174x
Ty
Equivalently,

e—3.2478+0.0064 X

T, =
'lte

—3.2478+0.0064 x
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e75.7019+0.0174x

7[2 = (1+ e73.2478+0.0064>()(1+ e75.7019+0.0174X)

A 1

72'3 = (1+ e_3.2478+0.0064x )(1+ e—5.7019+0.0174X)

We now turn to the second illustrative dataset.

Table 9. House fly data and fitted values.

Response categories
Dose of Unopened Died before Complete Total
radiation Pupae finishing emergence
emergence
X Y1 y2 Y3
80 62 (58.23) 5 (4.63) 433 (437.15) 500
100 94 (99.41) 24 (23.45) 382 (377.14) 500
120 179 (184.77) 60 (63.93) 261 (251.30) 500
140 335 (319.99) 80 (82.98) 85 (97.03) 500
160 432 (438.05) 46 (42.53) 22 (19.42) 500
180 487 (487.06) 11 (10.63) 2(2.32) 500
200 498 (498.18) 2 (1.65) 0(0.18) 500

The fitted values that shown in parentheses in Table 9 are obtained using the UPOs

model
T
log =, + 2
T, + 7T,
T+ 7T,
logg ——=| =a,+p5,2

7Ty
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Table 10. Parameters estimate and standard errors (in parentheses) for the house fly
dataset using the ACs, UPOs, CRAs, CRBs and GOLs models.

Model | Parameter Estimates (Asymptotic Standard Errors) - Log-

oy a, /;1 ﬂz Y 491 92 likelihood
ACs 0.6466 -3.3646 0.0005 0.0013 3.3651

(0.0843) | (0.0650) | (0.0005) | (0.0012) | (0.3596) | ---- 1805.9313
UPOs | -2.8560 | -3.0120 0.0110 0.0142 2.5298

(0.1669) | (0.1750) (0.0036) | (0.0045) | (0.1250) | ---- 1782.7272
CRAs | 0.6462 -2.2944 0.0004 0.0015 3.4375

(0.1268) | (0.1244) (0.0002) | (0.0005) | (0.1451) | --- 1805.1136
CRBs | -3.4441 | -5.1437 0.0371 0.0441 2.0562

(0.3819) | (0.4997) (0.0227) | (0.0269) | (0.2376) | ---- 1789.9706
GOLs | -2.0271 | -3.2872 0.0086 0.0130 2.5700 0.5016 0.7045

(0.8162) | (0.5209) (0.0045) | (0.0057) | (0.1741) | (0.3400) | (0.3440) | 1782.2119

By using the minimum negative log-likelihood, the GOLs model is chosen. But

the negative log-likelihood is very close to the value in UPOs model. Now consider the

different between these two values of the negative log-likelihood, which is 1782.7272 -

1782.2119 = 0.5153. When we use model testing for nested model of this form, we see

that the test statistic is 7522 = 2(0.5153) = 1.0306, p-value = 0.5973. So the difference of

these two values of negative log-likelihood is not significant at « =0.05, and so we

choose the UPOs model for this dataset. Thus, the fitted model is

with

log

log

)

A

A

z

7, +7Z'3_

Ty

e

T+ 7T,

—2.8560+0.0110 z

=-2.8560 + 0.0110 z

=-3.0120 + 0.0142 z

:1+e

—2.8560+0.0110 z

e

—-3.0120+0.0142 z

—€

—2.8560+0.0110 z

T, = (1+ e_2.8560+0.0110 z )(1+ e—3.0120+0.0142 Z)

Ty =

A

1

1+e

-3.0120+0.0142 z
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5. Conclusion and Discussion
In this study, we have developed the generalized ordinal logit (GOL) model
which is generalized of multicategory logit models. This model is used for multicategory

response data with k categories, where k = 3,4 . It seems to see that GOL models can

be fitted well with these two real datasets. Since the GOL model has two hyper-
parameters and since the models are nested, whenever the change in the -2*log-
likelihood values is not too great, we choose the smaller model for the sake of
parsimony. We note that there is a potential use of our proposed model for real datasets

with k categories response data where k = 3,4 . Therefore the GOL models are useful

for prediction of future values response in disciplines of medicine, social sciences, etc.
Another important consequence of our new model is by providing researchers with a way
to connect the various multicategory logit models with an eye to obtaining robust optimal
designs (good for testing goodness of fit). We take up this latter topic in a forthcoming

paper as this is the topic of our ongoing research.
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Appendices
a) APPENDIX A. Analysis of the Pregnant Mice Dataset using SAS/IML

proc iml;

start NLLUPO(th) global(xx,y1,y2,y3);

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4];
exl=exp(b01l+b1l1*xx); ex2=exp(b02+b12*xx);
eel=exl/(1+exl); ee2=ex2/(1+ex2);

pil=eel; pi2=ee2-eel; pi3=1/(1+ex2);
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLUPO;

thOupo={-5 -4 0.01 0.01 };

conupo={-9 -9 0.0001 0.0001,-3111};

start NLLAC(th) global(xx,y1,y2,y3);
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b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4];
exl=exp(b01+bl1*xx); ex2=exp(b02+b12*xx);
on=1+0%*ex1; den=on+ex2+exl#ex2;
pil=exl#ex2/den; pi2=ex2/den; pi3=1/den;
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLAC;

thOac={ 1 -6 -0.002 0.02},

conac={0.1 -9 -0.1 0.00001,3 -3 -0.0000001 0.1 };

start NLLCRA(th) global(xx,y1,y2,y3);

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4];
exl=exp(b01+bll*xx); ex2=exp(b02+b12*xx);
on=1+0%*ex1; den=(on+ex1)#(on+ex2);
pil=exl#ex2/den; pi2=ex2/den; pi3=1/(on+ex2);
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLCRA;

thOcra={-5 -4 0.01 0.01 };
concra={-9-9-10.0001,3111};

start NLLCRB(th) global(xx,y1,y2,y3);

b01=th[1]; b02=th[2]; b11=th[3]; b12=th[4];
exl=exp(b01+b11*xx); ex2=exp(b02+b12*xx);
on=1+0%*ex1; den=(on+ex1)#(on+ex2);
pil=exl/(on+exl); pi2=ex2/den; pi3=1/den;
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLCRB;

thOcrb={-5 -4 0.01 0.01 };
concrb={-9-9-10.0001,3111}

start NLLALL(th) global(xx,y1,y2,y3);
thl=th[1]; th2=th[2]; b01=th[3]; b02=th[4]; b11=th[5]; b12=th[6];
exl=exp(b01+b11*xx); ex2=exp(b02+b12*xx);
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on=1+0%*ex1; den=on+(th1l+th2-th1*th2)*exl+ex2+exl#ex2;
pil=(thl*exl+exl#ex2)/den; pi2=(ex2-th1*th2*ex1)/den;
pi3=(on+th2*exl)/den;
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLALL;

thOall={0.95 0.05 -3.2 -5.7 0.0064 0.0174};
conall={0.000000001 0.000000001 -5 -7 -0.1 0.0001,
0.999999999 0.999999999 1.5-20.10.1 };

xx={0.00000000000000001,62.5,125,250,500};
y1={15,17,22,38,144}; y2={1,0,7,59,132};
y3={281,225,283,202,9};0pt={.,0};

call niptr(rc,thupo,"NLLUPO",thOupo,opt,conupo); NLLUPOmin=NLLUPO(thupo);
print thupo NLLUPOmin;

call nlptr(rc,thac,"NLLAC",thOac,opt,conac); NLLACmin=NLLAC(thac);

print thac NLLACmin;

call niptr(rc,thcra,"NLLCRA" thOcra,opt,concra); NLLCRAmMin=NLLCRA(thcra);
print thcra NLLCRAMin;

call niptr(rc,therb,"NLLCRB",thOcrb,opt,concrb); NLLCRBmin=NLLCRB(thcrb);
print thcrb NLLCRBmin;

call niptr(rc,thall,"NLLALL",thOall,opt,conall); NLLALLmin=NLLALL (thall);

print thall NLLALLmin;

b) APPENDIX B. Analysis of the House Fly Dataset using SAS/IML
proc iml;

start NLLUPOSs(th) global(xx,y1,y2,y3);
aal=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5];
zz=(1/gam)*(xx##Hgam-1);
exl=exp(aal+bbl*zz); ex2=exp(aa2+bh2*zz);
eel=exl/(1+ex1); ee2=ex2/(1+ex2);
pil=eel; pi2=(ee2-eel); pi3=1/(1+ex2);
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);
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finish NLLUPOs;

thOupos={-5-4 0.06 0.06 2}

conupos={-9 -9 0.0001 0.0001 -1,
21 1 1 4

start NLLACs(th) global(xx,y1,y2,y3);
aal=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5];
zz=(1/gam)*(xxd##Hgam-1);
exl=exp(aal+bbl*zz); ex2=exp(aa2+bb2*zz);
on=1+0*ex1; den=on+ex2+exl#ex2;
eps=0.00001+0*on;
pil=exl#ex2/den+eps; pi2=ex2/den; pi3=1/den;
tomax=t(yl)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);
finish NLLACs;
thOacs={-1 -6 0.0002 0.0005 1};
conacs={-3-19-0.1 0.00001 -1,
3-301 01 4},

start NLLCRAs(th) global(xx,y1,y2,y3);
aal=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5];
zz=(1/gam)*(xxd#Hgam-1);
exl=exp(aal+bbl*zz); ex2=exp(aa2+bb2*zz);
on=1+0%ex1; den=(on+exl)#(on+ex2);
pil=exl#ex2/den; pi2=ex2/den; pi3=1/(on+ex2);
tomax=t(yl)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLCRASs;

thOcras={-1 -6 0.0001 0.0007 1}

concras={-9 -9 -1 0.0001 -1,

311 1 4y

start NLLCRBs(th) global(xx,y1,y2,y3);
aal=th[1]; aa2=th[2]; bb1=th[3]; bb2=th[4]; gam=th[5];
zz=(1/gam)*(xxd##Hgam-1);
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exl=exp(aal+bbl*zz); ex2=exp(aa2+bh2*zz);
on=1+0%*ex1; den=(on+exl)#(on+ex2);
pil=exl/(on+exl); pi2=ex2/den; pi3=1/den;
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);

finish NLLCRBs;

thOcrbs={-5 -9 0.0001 0.0007 1};

concrbs={-9 -19 -1 0.0001 -1,

311 1 4y

thOalla={0.8 0.2 -2 -3 0.001 0.002 3},
start NLLALLs(th) global(xx,y1,y2,y3);
th1=th[1]; th2=th[2]; aal=th[3]; aa2=th[4]; bb1=th[5]; bb2=th[6]; gam=th[7];
zz=(1/gam)*(xx##Hgam-1);
exl=exp(aal+bbl*zz); ex2=exp(aa2+bb2*zz);
on=1+0%*ex1; den=on+(th1+th2-th1*th2)*ex1+ex2+exl#ex2;
pil=(th1*exl+exl#ex2)/den; pi2=(ex2-th1*th2*exl)/den; pi3=(on+th2*exl)/den;
tomax=t(y1)*log(pil)+t(y2)*log(pi2)+t(y3)*log(pi3);
return(-tomax);
finish NLLALLs;
conalls={0.001 0.001 -4 -4 0.0001 0.0001 0.9,
0.9990.999-1 -1 0.9 0.9 4},

xx={8,10,12,14,16,18,20};

y1={62,94,179,335,432,487,498}; y2={5,24,60,80,46,11,2};
y3={433,382,261,85,22,2,0};

opt={.,0};

call niptr(rc,thpos,"nllpos”,thOpos,opt,conpos);  nliminpos=nllpos(thpos);  print thpos
nliminpos;

call niptr(rc,thupos,"nllupos”,thOupos,opt,conupos); nliminupos=nllupos(thupos); print
thupos nliminupos;

call niptr(rc,thacs,"nllacs",thOacs,opt,conacs);  nliminacs=nllacs(thacs); print thacs
nliminacs;
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call niptr(rc,thcras,"nlicras",thOcras,opt,concras); nlimincras=nlicras(thcras); print
thcras nllimincras;
call niptr(rc,therbs,"nllcrbs”,thOcrbs,opt,concrbs); nlimincrbs=nlicrbs(thcrbs); print
thcrbs nlimincrbs;
call niptr(rc,thalls,"nllalls",thallb,opt,conalls);  nliminalls=nllalls(thalls); print
thalls nliminalls;
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