



Thailand Statistician  
July 2011; 9(2) : 143-150  
<http://statassoc.or.th>  
Contributed paper

## A Generalized $\pi ps$ Sampling Scheme of Two Units

**Lokanath Sahoo\* [a] and Shishir Nayak [b]**

[a] Department of Statistics, Utkal University, Bhubaneswar 751004, India

[b] Department of Statistics, Dhenkanal College, Dhenkanal, India

\* Author for correspondence; e-mail: [Insahoostatuu@rediffmail.com](mailto:Insahoostatuu@rediffmail.com)

Received: 13 March 2011

Accepted: 17 May 2011

### Abstract

This paper proposes a generalized method of  $\pi ps$  sampling of two units for estimating a finite population total. The novel feature of the method is that not only it retains its  $\pi ps$  properties but also flexible in the sense of leading to many other  $\pi ps$  sampling schemes.

---

**Keywords:** auxiliary variable, inclusion probability, joint inclusion probability, unequal probability sampling.

### 1. Introduction and Principles of $\pi ps$ Sampling Scheme

Let  $y_i$  be the value of the study variable  $y$  for the  $i$ -th unit of a finite population  $U, i = 1, 2, \dots, N$ . Assume that a sample  $s$  of  $n$  distinct units is drawn from  $U$  according to some unequal probability sampling without replacement scheme with  $\pi_i$  as the inclusion probability of  $i$ -th unit and  $\pi_{ij}$  as the joint inclusion probability of  $i$ -th and  $j$ -th units. For estimating population total  $Y = \sum_{i=1}^N y_i$ , Horvitz and

Thompson [1] considered an estimator (called as HT estimator), defined by  $t_{HT} = \sum_{i \in s} \frac{y_i}{\pi_i}$ . It is true that the HT method of estimation works effectively if  $\pi_i$  is exactly proportional to  $y_i$ . But, since the  $y$  – values are unknown at the sampling stage, sampling schemes which ensure  $\pi_i \propto x_i$  are usually employed in practice, where  $x_i (> 0)$  is the size measure of the  $i$  – th unit of  $U$  and such schemes are called  $\pi ps$  sampling schemes. As the  $\pi ps$  schemes are operated in combination with HT estimator, they must satisfy some desirable features viz., (i)  $\pi_i = np_i$ , where

$p_i = \frac{x_i}{X}$  is the initial probability of selection of  $i$  – th unit such that  $X = \sum_{i=1}^N x_i$ , (ii)

$\sum_{i=1}^N \pi_i = n$ , (iii)  $\sum_{i \neq j} \pi_{ij} = (n-1)\pi_i$ , (iv)  $\sum_i \sum_{j < i} \pi_{ij} = \frac{1}{2}n(n-1)$ , and (v)

$\pi_i \pi_j \leq \pi_{ij}$ , for all  $i \neq j$ , in order to make Sen [2], and Yates and Grundy [3] unbiased estimator of  $Var(t_{HT})$  given by

$$v(t_{HT}) = \frac{1}{2} \sum_{i \neq j \in s} \frac{\pi_i \pi_j - \pi_{ij}}{\pi_{ij}} \left( \frac{y_i}{\pi_i} - \frac{y_j}{\pi_j} \right)^2, \quad (1.1)$$

non-negative.

Many concentrated efforts have been made in the literature to develop  $\pi ps$  schemes. Brewer and Hanif [4] and Chaudhuri and Vos [5] have made elaborate discussions on a number of such methods. But a majority of them are restricted to  $n = 2$  only as the calculation of  $\pi_{ij}$  becomes cumbersome when  $n > 2$ . However,  $\pi ps$  schemes with  $n = 2$  are useful in stratified sampling, where stratification is sufficiently 'deep' (cf, Chaudhuri and Vos [5, p.148]).

Our present paper makes an attempt to develop a generalized sampling scheme for achieving  $\pi ps$  requirements and providing an unbiased and non-negative Sen-Yates-Grundy variance estimator. A number of  $\pi ps$  schemes are identified as particular cases

of this generalized scheme. Although the scheme can be applicable for  $n > 2$ , we are confined to  $n = 2$  only in order to avoid complexity in deriving expression for  $\pi_{ij}$ .

## 2. Suggested Sampling Scheme

For each  $i$ , define  $h_i = p_i^\delta / \sum_{j=1}^N p_j^d$  and a collection of revised probabilities  $\{P_1, P_2, \dots, P_N\}$  for the  $N$  population units where  $P_i$  is defined by

$$P_i = \frac{(2p_i - \lambda h_i)(1 - h_i)}{(1 - 2h_i)}, \quad i = 1, 2, \dots, N, \quad (2.1)$$

such that  $\delta$  and  $\lambda$  are constants. Here  $\delta$  is pre-determined whereas  $\lambda$  is determined in order to fulfill the basic requirement  $\sum_{i=1}^N P_i = 1$  which finally, after a considerable simplification provides

$$\lambda = \sum_{i=1}^N \frac{p_i}{1 - 2h_i} / \sum_{i=1}^N \frac{h_i(1 - h_i)}{1 - 2h_i}.$$

The suggested generalized sampling scheme for  $n = 2$  [ $S(\delta)$ , say] consists of the following steps:

*Step I:* Draw the first unit, say  $i$ , with revised probability  $P_i$  and without replacement

*Step II:* Draw the second unit, say  $j$ , from the remaining  $(N - 1)$  units with conditional probability

$$P_{j/i} = \frac{h_j}{1 - h_i}. \quad (2.2)$$

**Remark 2.1 :** The suggested method obviously requires that the revised probability  $P_i$  should be a non-negative quantity. Hence, a sufficient condition for applicability of the scheme is that  $h_i \leq \min\left(\frac{1}{2}, \frac{2p_i}{\lambda}\right) \forall i$ . But, this is not surprising as many popular  $\pi ps$  methods considered in the survey sampling literature are dependent on this type of restrictions (cf, Brewer [6], Sampford [7], Durbin [8]).

### 3. Inclusion Probabilities and Properties of $S(\delta)$

We note that,

$$\begin{aligned}\pi_i &= P_i + \sum_{j \neq i} P_j \frac{h_i}{1-h_j} \\ &= 2p_i - h_i \left[ \lambda \left( 1 + \sum_{j=1}^N \frac{h_j}{1-h_j} \right) - 2 \sum_{j=1}^N \frac{p_j}{1-2h_j} \right].\end{aligned}$$

Then, substituting value of  $\lambda$  we get, on simplification, that

$$\pi_i = 2p_i. \quad (3.1)$$

The second order inclusion probabilities are given by

$$\begin{aligned}\pi_{ij} &= P_i P_{j/i} + P_j P_{i/j} \\ &= \frac{(2p_i - \lambda h_i)h_j}{(1-2h_i)} + \frac{(2p_j - \lambda h_j)h_i}{(1-2h_j)}.\end{aligned} \quad (3.2)$$

Now we establish the following properties in respect of  $S(\delta)$ :

$$(a) \quad \sum_{i=1}^N \pi_i = 2 \sum_{i=1}^N p_i = 2$$

$$\begin{aligned}(b) \quad \sum_{j \neq i} \pi_{ij} &= \frac{2p_i - \lambda h_i}{(1-2h_i)} \sum_{j \neq i}^N h_j + h_i \sum_{j \neq i}^N \frac{2p_j - \lambda h_j}{(1-2h_j)} \\ &= 2p_i - h_i \left[ \lambda \left( 1 + \sum_{j=1}^N \frac{h_j}{1-h_j} \right) - 2 \sum_{j=1}^N \frac{p_j}{1-2h_j} \right] \\ &= 2p_i \\ &= \pi_i\end{aligned}$$

$$(c) \quad \sum_{i=1}^N \sum_{j < i} \pi_{ij} = \sum_{i=1}^N \left( \frac{1}{2} \sum_{i \neq j}^N \pi_{ij} \right) = \frac{1}{2} \sum_{i=1}^N \pi_i = 1$$

(d) After a considerable simplification, for any arbitrary  $i$  and  $j$ , we have

$$\begin{aligned}
\pi_i \pi_j - \pi_{ij} &= \frac{(2p_i - \lambda h_i)(2p_j - \lambda h_j)}{(1-2h_i)(1-2h_j)} \left( \sum_{k>2} h_k \right)^2 \\
&\quad + h_i h_j \left[ \sum_{k>2} \frac{2p_k - \lambda h_k}{1-2h_k} \right]^2 + \pi_{ij} \sum_{k>2} \frac{(2p_k - \lambda h_k)h_k}{(1-2h_k)} \\
&\geq 0,
\end{aligned}$$

implying that under  $S(\delta)$ ,  $v(t_{HT}) \geq 0$ .

#### 4. Some Special Cases of $S(\delta)$

We now consider some noteworthy specific cases of  $S(\delta)$ . But, it is very clear that the domain of  $S(\delta)$  is not restricted only to these cases. Some more such schemes can also come out for other choices of  $\delta$ .

**Case I** : Let  $\delta = 0$ , then  $h_i = \frac{1}{N}$ ,  $\lambda = \frac{N}{N-1}$ ,  $P_i = \frac{2(N-1)p_i - 1}{N-2}$  and

$P_{j/i} = \frac{1}{N-1}$ . Hence, we have  $\pi_i = 2p_i$  and

$\pi_{ij} = \frac{2}{N-2} \left[ (p_i + p_j) - \frac{1}{N-1} \right]$  which are identical to those for the Midzuno's [9]

sampling scheme for  $n = 2$  (see also Horvitz and Thompson [1]).

**Case II** : Let  $\delta = 1$ , then  $h_i = p_i$ ,  $\lambda = \sum_{i=1}^N \frac{p_i}{1-2p_i} \Big/ \sum_{i=1}^N \frac{p_i(1-p_i)}{1-2p_i}$ ,

$P_i = \frac{p_i(1-p_i)}{1-2p_i} \Big/ \sum_{i=1}^N \frac{p_i(1-p_i)}{1-2p_i}$  and  $P_{j/i} = \frac{p_j}{1-p_i}$ . Thus, we obtain

$\pi_i = 2p_i$  and  $\pi_{ij} = 2p_i p_j \left( \frac{1}{1-2p_i} + \frac{1}{1-2p_j} \right) \Big/ \left( 1 + \sum_{j=1}^N \frac{p_j}{1-2p_j} \right)$ . This

$\pi ps$  scheme is due to Brewer [6], Durbin [8] and Rao [10].

**Case III :** When  $\delta = -1$ ,  $h_i = \frac{1}{Tp_i}$  where  $T = \sum_{i=1}^N \frac{1}{p_i}$ . This case leads to a

$\pi ps$  design with revised probability of selecting  $i$ -th unit being given by  $P_i = \frac{(2Tp_i^2 - \lambda)(Tp_i - 1)}{Tp_i(Tp_i - 2)}$ , where  $\lambda = T \sum_{i=1}^N \frac{p_i^2}{Tp_i - 2} \Big/ \frac{Tp_i - 1}{p_i(Tp_i - 2)}$  such that

$P_{j/i} = \frac{p_i}{(Tp_j - 1)p_j}$ ,  $\pi_i = 2p_i$  and  $\pi_{ij} = \frac{2Tp_i^2 - \lambda}{T(Tp_i - 2)p_j} + \frac{2Tp_j^2 - \lambda}{T(Tp_j - 2)p_i}$ . This

design was considered by Senapati et al. [11].

**Case IV :** When  $\delta = 2$ , we see that  $h_i = \frac{p_i^2}{Z}$ , where  $Z = \sum_{i=1}^N p_i^2$ . This case gives

rise to a new  $\pi ps$  design for which  $\gamma = \sum_{i=1}^N \frac{Zp_i}{Z - 2p_i^2} \Big/ \sum_{i=1}^N \frac{p_i^2(Z - p_i^2)}{Z(Z - 2p_i^2)}$ ,

$P_i = \frac{(2Zp_i - \gamma p_i^2)(Z - p_i^2)}{Z(Z - 2p_i^2)}$ ,  $P_{j/i} = \frac{p_j^2}{Z - p_i^2}$ ,  $\pi_i = 2p_i$  and

$\pi_{ij} = \frac{(2Zp_i - \gamma p_i^2)p_j^2}{Z(Z - 2p_i^2)} + \frac{(2Zp_j - \gamma p_j^2)p_i^2}{Z(Z - 2p_j^2)}$ . This design was developed by Sahoo

et al. [12]. In a similar manner, on considering  $\delta = -2$ , we can generate another new sampling scheme as a member of  $S(\delta)$ .

#### 4. Optimum Value of $\delta$

The specific cases of  $S(\delta)$  considered in the earlier section are restricted to some integral values of  $\delta$  only; although fractional values can be considered for this purpose. But, the selection of  $\delta$  restricts the operation of  $S(\delta)$  because  $P_i > 0$  for a finite range of  $\delta$  only depending on the configurations of  $x$ - and  $y$ -values for  $U$ . Analytically, it is not possible to trace out an optimum value of  $\delta$  for which the scheme attains the maximum precision. However, we computed the relative efficiency (RE) of  $S(\delta)$  compared to the probability proportional to size with replacement scheme for

different values of  $\delta$  using data on a number of natural and artificial populations available in the survey sampling literature. From these computed values, we noticed that RE is either a concave or a convex function of  $\delta$  attaining a minimum or maximum value for a value of  $\delta \in [1,2]$ . We further computed this performance measure for different values of  $\delta$  in  $[1,2]$ . However, we observed for all cases that the RE is either maximum or minimum for  $\delta = 1.1$  (approx.). But, this cannot be accepted as a unique criterion for all practical purposes, because our numerical study has a limited scope.

## 5. Conclusions

The foregoing discussions clearly indicate that the proposed generalized scheme is very much attractive in the sense that it can retain its  $\pi ps$  properties and provides a non-negative value of  $v(t_{HT})$  without imposing any restriction on the choice of the parameter  $\delta$  although the revised probability  $P_i$  itself is a function of  $\delta$ . Hence, for various choices of  $\delta$ , the scheme  $S(\delta)$  is capable of producing a family of  $\pi ps$  sampling schemes for selecting two units from a finite population.

## Acknowledgement

The authors are grateful to the referees for providing some valuable comments on an earlier draft of the paper.

## References

- [1] Horvitz, D.G. and Thompson, D.J., A generalization of sampling without replacement from a finite universe, *Journal of the American Statistical Association*, 1952; 47: 663-685.
- [2] Sen, A.R., On the estimator of the variance in sampling with varying probabilities, *Journal of the Indian Society of Agricultural Statistics*, 1953; 5: 119-127.
- [3] Yates, F. and Grundy, P.M., Selection without replacement from within strata with probability proportional to size, *Journal of the Royal Statistical Society*, 1953; B15: 235-261.
- [4] Brewer, K.R.W. and Hanif, M., Sampling With Unequal Probabilities, Lecture Notes in Statistics, Springer-Verlag, 1983.

- [5] Chaudhuri, A. and Vos, J.W.E., Unified Theory and Strategies of Survey Sampling, North Holland, 1988.
- [6] Brewer, K.R.W., Ratio estimation in finite populations: Some results deducible from the assumption of an underlying stochastic process, *Australian Journal of Statistics*, 1963; 5: 93-105.
- [7] Sampford, M.R., On sampling without replacement with unequal probabilities of selection, *Biometrika*, 1967; 54: 499-513.
- [8] Durbin, J., Design of multi-stage surveys for the estimation of sampling errors, *Applied Statistics*, 1967; 16: 152-164.
- [9] Midzuno, H., On the sampling system with probability proportionate to sum of sizes, *Annals of the Institute of Statistical Mathematics*, 1952; 3: 99-107.
- [10] Rao, J.N.K., On two simple schemes of unequal probability sampling without replacement, *Journal of the Indian Statistical Association*, 1965; 3: 173-180.
- [11] Senapati, S.C., Sahoo, L.N. and Mishra, G., On a scheme of sampling of two units with inclusion probability proportional to size, *Austrian Journal of Statistics*, 2006; 35: 445-454.
- [12] Sahoo, L.N., Nayak, S.R. and Sahoo, R.K. A new IPPS sampling scheme of two units, *Thailand Statistician*, 2011; 9: 93-102.