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Abstract 
 This paper proposes a generalized method of psπ sampling of two units for 

estimating a finite population total. The novel feature of the method is that not only it 

retains its psπ properties but also flexible in the sense of leading to many 

other psπ sampling schemes. 
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1. Introduction and Principles of psπ Sampling Scheme  

 Let iy  be the value of the study variable y for the −i th unit of a finite 

population .,...,2,1, NiU = Assume that a sample s  of n distinct units is drawn from 

U according to some unequal probability sampling without replacement scheme with 

iπ  as the inclusion probability of −i th unit and ijπ  as the joint inclusion probability of 

−i th  and −j th units. For estimating population total ,
1
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i
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Thompson [1] considered an estimator (called as HT estimator), defined 

by ∑
∈

=
si i

i
HT

y
t

π
.  It is true that the HT method of estimation works effectively if iπ is 

exactly proportional to iy . But, since the −y values are unknown at the sampling stage, 

sampling schemes which ensure ii x∝π  are usually employed in practice, 

where ix )0(> is the size measure of the −i th unit of U and such schemes are 

called psπ sampling schemes. As the psπ schemes are operated in combination with  HT  

estimator,  they must satisfy  some desirable  features viz.,  (i) ,ii np=π  where  
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ijji πππ ≤ , for all ji ≠ , in order to make Sen [2], and Yates and Grundy [3] 

unbiased estimator of )( HTtVar  given by 

2

2
1)( 










−

−
= ∑

∈≠ j

j

i

i

sji ij

ijji
HT

yy
tv

πππ
πππ

,        (1.1) 

non-negative.  

Many concentrated efforts have been made in the literature to develop 

psπ schemes. Brewer and Hanif [4] and Chaudhuri and Vos [5] have made elaborate 

discussions on a number of such methods. But a majority of them are restricted to 

2=n  only as the calculation of ijπ  becomes cumbersome when 2>n . However, 

psπ  schemes with 2=n are useful in stratified sampling, where stratification is 

sufficiently ‘deep’ (cf, Chaudhuri and Vos [5, p.148]).  

Our present paper makes an attempt to develop a generalized sampling scheme for 

achieving psπ  requirements and providing an unbiased and non-negative Sen-Yates-

Grundy variance estimator. A number of psπ schemes are identified as particular cases 
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of this generalized scheme. Although the scheme can be applicable for 2>n , we are 

confined to 2=n only in order to avoid complexity in deriving expression for ijπ . 

 

2. Suggested Sampling Scheme 

 For each ,i define ∑
=

=
N

j

d
jii pph

1

δ and a collection of revised 

probabilities{ }NPPP ,...,, 21  for the N  population units where iP  is defined by 
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such that δ  and λ  are constants. Here δ  is pre-determined whereas λ  is 

determined in order to fulfill the basic requirement ∑
=

=
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i
iP

1
1 which finally, after a 

considerable simplification provides 
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The suggested generalized sampling scheme for 2=n  [ ),(δS say] consists of 

the following steps:  

Step I:  Draw the first unit, say i , with revised probability iP  and without replacement  

Step II: Draw the second unit, say j , from the remaining )1( −N  units with conditional 

probability  

i

j
ij h

h
P

−
=

1
.                          (2.2) 

Remark 2.1 : The suggested method obviously requires that the revised probability iP  

should be a non-negative quantity. Hence, a sufficient condition for applicability of the 

scheme is that 




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,
2
1min i∀ . But, this is not surprising as many popular 

psπ methods considered in the survey sampling literature are dependent on this type of 

restrictions (cf, Brewer [6], Sampford [7], Durbin [8]).  
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3. Inclusion Probabilities and Properties of )(δS  

We note that, 
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Then, substituting value ofλ we get, on simplification, that  

  ii p2=π .                (3.1)    

The second order inclusion probabilities are given by  
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Now we establish the following properties in respect of )(δS : 
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(d) After a considerable simplification, for any arbitrary i  and j , we have 



L.N. Sahoo                                     147 

2

2)21)(21(
)2)(2(









−−

−−
=− ∑

>k
k

ji

jjii
ijji h

hh
hphp λλ

πππ  

                   ∑∑
>> −

−
+








−
−

+
2

2

2 )21(
)2(

21
2

k k

kkk
ij

k k

kk
ji h

hhp
h

hp
hh

λ
π

λ
 

                   0≥ , 

implying that under ),(δS 0)( ≥HTtv . 

 

4. Some Special Cases of )(δS  

We now consider some noteworthy specific cases of ).(δS But, it is very clear 

that the domain of )(δS is not restricted only to these cases. Some more such schemes 

can also come out for other choices of .δ  

Case I : Let ,0=δ  then 
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sampling scheme for 2=n (see also Horvitz and Thompson [1]). 
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psπ scheme is due to Brewer [6], Durbin [8] and Rao [10].  
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Case III : When ,1−=δ
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psπ design with revised probability of selecting −i th unit being given 
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Case IV : When ,2=δ  we see that 
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et al. [12]. In a similar manner, on considering ,2−=δ we can generate another new 

sampling scheme as a member of ).(δS  

 

4.  Optimum Value of δ  

The specific cases of )(δS considered in the earlier section are restricted to 

some integral values of δ only; although fractional values can be considered for this 

purpose. But, the selection of δ  restricts the operation of )(δS because 0>iP  for a 

finite range of δ  only   depending on the configurations of −x  and −y values for U . 

Analytically, it is not possible to trace out an optimum value of δ  for which the scheme 

attains the maximum precision. However, we computed the relative efficiency (RE) 

of )(δS compared to the probability proportional to size with replacement scheme for 
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different values of δ  using data on a number of natural and artificial populations 

available in  the survey sampling literature. From these computed values, we noticed that 

RE is either a concave or a convex function of δ attaining a minimum or maximum value 

for a value of ]2,1[∈δ . We further computed this performance measure for different 

values ofδ in ]2,1[ . However, we observed for all cases that the RE is either maximum 

or minimum for 1.1=δ (approx.). But, this cannot be accepted as a unique criterion for 

all practical purposes, because our numerical study has a limited scope.  

 

5. Conclusions 

The foregoing discussions clearly indicate that the proposed generalized scheme 

is very much attractive in the sense that it can retain its psπ  properties and provides a 

non-negative value of )( HTtv  without imposing any restriction on the choice of the 

parameterδ although the revised probability iP  itself is a function of δ . Hence, for 

various choices of ,δ the scheme )(δS is capable of producing a family of 

psπ sampling schemes for selecting two units from a finite population. 
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