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Abstract

The purpose of this paper is to investigate the main theoretical properties of a
new lifetime three-parameter family of distributions. We will call this family as Crack
distribution (CR) because it may be applied for modeling of some physical characteristics
of fatigue cracks. CR-distribution relates to the following two-parameter distributions : the
Birnbaum-Saunders distribution, the Inverse Gaussian distribution and the Length
Biased Inverse Gaussian distribution. These are well-known fatigue-lifetime distributions.
They are the special cases of CR-distribution based on non-classical parametrization.
The main theoretical properties such as the characteristic function, the moment
generating function and the cumulative distribution function on three-parameter CR-

distribution are established in closed form.

Keywords: The Crack distribution, fatigue-lifetime distribution, parametrization.

1.Introduction

Reliability Theory achieved numerous applications in Physics, Engineering,
Statistics, Environment Sciences, and Economics. One of important notions in the
Reliability Theory is the notion of a lifetime distribution. In this paper, we will study the
new three-parameter family of fatigue-lifetime distributions: the Crack distribution. It is
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related to three known two-parameter distributions: the Birnbaum-Saunders distribution,
the Inverse Gaussian distribution, and the Length Biased Inverse Gaussian distribution.
The value of random variables with these distributions could model the time before
failure of an object due to a fatigue crack.

We refer to Birnbaum and Saunders [1,2] where the Birnbaum-Saunders
distribution was introduced. Desmond [3] compared two fatigue-life models i.e.
Birnbaum-Saunders distribution and Inverse Gaussian distribution. The Birnbaum-
Saunders distribution is used in case of cyclic loading while the Inverse Gaussian
distribution is used in case of non-cyclic loading. A practitioner could use the CR-
distribution introduced in this paper as a general form that covers both cases.

Shuster [4] indicated a method to obtain the exact probabilities of the Inverse
Gaussian distribution by using Standard Normal tables and Logs tables. Chhikara and
Folks [5] gathered many properties of the Inverse Gaussian distribution. Khattree [6]
studied about the Length Biased Inverse Gaussian distribution and Gamma distribution.

Ahmed, Budsaba, Lisawadi, and Volodin [7] proposed a new parametrization of
the Birnbaum-Saunders distribution and provided various estimation strategies for its
parameters. Their new parametrization is important since it fits the physical phenomena
of fatigue cracks. The parameters (see the definition below) 4 = 0 and & = 0 correspond
to the thickness of the machine element and the nominal treatment pressure on the
machine element, respectively.

In this paper, we will study the CR-distribution by adding the new weight
parameter ». The engineering interpretation of Crack random variable is time after a
machine element is started to be forced by a cyclic or non-cyclic loading until the crack
achieves the critical value. After a machine element is forced, a slightly crack may
happen but the element could still works. When it arrives the critical point, tolerance
exceeds and the element does not properly work anymore.

The plan of the paper is as follows. First we introduce the probability density
function (p.d.f.) based on the proposed parametrization of the Birnbaum-Saunders
distribution, the Inverse Gaussian distribution, the Length Biased Inverse Gaussian
distribution. Next we present an integral formula that we need for our calculations. After
we will show how all four above-mentioned distributions are related. Next we will provide
the characteristic function, the moment generating function and the cumulative
distribution function of three-parameter CR-distribution in the closed form based on the

proposed parameters of Ahmed, Budsaba, Lisawadi, and Volodin [7].



Phitchaphat Bowonrattanaset 197

2. Preliminaries

2.1 The Birnbaum-Saunders Distribution
First we provide the density function of the Birnbaum-Saunders distribution in
the classical parametrization.

A random variable ¥ has the Birnbaum-Saunders distribution, if its p.d.f. is as follows
x+ 8 [ 1 mx B ] )
—= ——|=+==2]|.iffx=0
fas(x:ie, f) = g 2a(2mf) 22?2 =P an‘(ﬂ x ] *
0 ., otherwise,

where z = 0 is the shape parameter, and § = 0 is the scale parameter and the median.
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The mean of ¥ is § {1 +?j and the variance is @ {1 += )

If a random variable 7 has standard normal distribution, that is z ~ {0,1) then the

relations between ¥ and Z are as follows
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The cumulative distribution function (c.d.f.) of x with the classical parametrization is

given by
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In this paper we consider the following new parametrization. A random variable 3 has

the Birnbaum-Saunders distribution, denoted as BS({4, #] if its p.d.f. is
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The relations between classical parameters .5 and proposed parameters 4, g are as
follows
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2.2 The Inverse Gaussian Distribution
Again, we start with the classical parametrization.

A random variable ¥ has the Inverse Gaussian distribution, if its p.d.f. is as follows

- — )=
frelo w ) = J%x‘!“exp (—M—;#-f—) x =0
0 ,otherwise,
where parameter i = 0is the mean of the distribution and § = 0 is a scale parameter.
The new parametrization of the Inverse Gaussian distribution, denoted as IG{ 4, &7 is as
follows. A random variable ¥ has the Inverse Gaussian distribution if its p.d.f. is
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The relations between classical parameters g, 5 and proposed parameters 4, g are as

follows

u?
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A:E and # =
It

2.3 The Length Biased Inverse Gaussian Distribution

Remind that the length biased pdf of its original p.d.f. is defined as follows.
Let ¥ be a non-negative random variable having an absolutely continuous p.d.f. (-} and
a finite first moment E[x¥]. We say that a non-negative random variable ¥ has the length

biased random variable associated with ¥, if its p.d.f. is given by the formula

- Fx)
hix) :'E_r[;f',:r =0,

We know that the first moment of the Inverse Gaussian distribution is E{¥) = u = i8.

Hence, the p.d.f. of the Length Biased Inverse Gaussian distribution is given by the

following formula

= (E]li 2 ﬂlﬂ =0
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] Jotherwize,
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2.4 Definite Integrals of exponentials of Complicated Arguments and Powers

In this section we present some definite integrals which are used in calculations
of the characteristic and moment generating functions for the CR-distribution. The
formulae are taken from the famous Table of integrals, series, and products by
Gradshteyn and Ryzhik [8].

Let g and g be complex numbers. Then

[Txtexp (px - a/0dr = [Femp (-2p) @
] N A
where Re(g) = 0,Re(g) = 0
and
= ) wma =
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where Re(p) = 0.Re{g) = 0.
Note that from (5) for n = 1 we have
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where Re{g) = 0,Re(g) = 0.

3. The Probability Density Function of the Crack Distribution
We say that a continuous random variable ¥ has the Crack distribution with

parameters 1 = 0,8 =0, and 0 < p = 1denoted as CR{4.8,p), ifits p.d.f.is

1@
exp [—= ".IE_A Iz L,x=0

0 Jotherwize
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Note the following relations of the p.d.f. for Birnbaum-Saunders, the Inverse

/2 142
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Gaussian, and the Length Biased Inverse Gaussian distributions with the CR-
distribution

The following are the special cases of the CR- distribution.
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figlx A6) .p=1
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Note that

1
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and it is mentioned in [7] that the new parameters of the Birnbaum-Saunders distribution
have the following physical interpretation. Parameter 4 = 0 corresponds to the thickness
of a machine element under consideration for a crack development and & = 0

corresponds to nominal treatment pressure of the machine element.

4. The Characteristic Function of the Crack Distribution

Theorem. The characteristic function of a random variable ¥ ~ CR(1.8,p) is
g Al 1—~1-28ti)

[1-p(1—+1—z821)).

M=
Px Nprrs

Proof. By the definition
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Let us consider each integral in (8) separately. From (6) with p = %— ti (obviously

Re(g) = iﬂ =0)and g = £2 (again, Re(g) = 2% . 0) we obtain

[ e [—(5 —t1) x —E2 dx = '; exp(—AvT = 26%1) ©)

A

From (4) with the same g and g we obtain
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Iy ™Y exp [— (% — ti:]:r - %] dx = |IT
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Putting (9) and (10) into (8), we get that
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Note that as any characteristic function it is defined for all —z= = ¢ = .

5. The Moment Generating Function
Theorem. The moment generating function of i ~ ¢R{1.8.p) is
gAl1—1-28)
q[.?xl:f:l 1:[1 —‘pl:l—"..l— ?EEJ]
1=

and it is defined for ¢ = —’é

Proof. Note that the proof of the formula for the moment generating function repeats the

proof of the formula for the characteristic function if instead of it we consider just ¢ and

hence omitted. The only thing that we should mention is that the integrals exist if ¢ = _—Lﬂ.

Not looking that the derivations of characteristic and moment generating functions are

very similar, they present two different results. The characteristic function is defined for

all real t, while the moment generating function is defined for t = %

6. The Cumulative Distribution Function

Theorem. The cumulative distribution function of x ~ CR{:L g.p)is

&
Frplm A f.p) = N

‘& s , ' la
— A= |-1-z2pet|i-2 L x>0
le 4 '\qﬂ |

i S =0,

where #(x) is the standard normal distribution function.

Proof. To prove the theorem, we show that

Note that

d
EFER[I’ A p) = fegla A d.p)
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(10)
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Next, for x =0
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Itis clear that - Fg (: 1.6, 7) = fea (x: 4. 8,p) = 0for x < 0.

It is obvious that F(- ¥ )= 0 and F(¥ )= 1.

7. Conclusion

This paper can be considered as a starting point for study on the new three-
parameter lifetime distribution, the CR- distribution, which relates to three known two-
parameter distributions. We provided the closed forms of the characteristic function,
moment generating function (including their existing conditions), and the cumulative
distribution function of CR- distribution based on the new parametrization. The existing

condition ¢ = "—lﬂ of the moment generating function depends on parameter # only.

There are still many topics on CR- distribution to investigate, such as statistical
inference and the survival analysis. It will give us more results if we can join the statistical

knowledge and the engineering knowledge on this subject.
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