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Abstract
The goal of this work is to develop a nonparametric regression model that not
only account for possibly non-linear trend (i.e., conditional mean of the response variable)
but also account for possibly non-linear conditional variance of response (i.e.,
heteroscedasticity) as a function of predictor variables in the presence of auto-correlated
errors. The trend and the heteroscedasticity are modeled using a class of penalized
spline. The residuals are modeled as a long autoregressive process which can
approximate almost any autoregressive moving average (ARMA) process by selecting
an appropriate number of lag residuals. Both classical and Bayesian methodologies are
developed to obtain the smooth estimates of the conditional mean and variance
functions. The resulting estimated residuals are then used to fit a possibly long AR
process by suitably choosing the order of AR using the Akaike Information Criteria (AIC).
The forecasting performance of the proposed methods is then applied to the series of
monthly observations of the Stock Exchange Rate of Thailand (SERT) to illustrate the
methodology. The forecasts these methods are compared with those obtained based on

future six months of withheld observations.
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1.Introduction

The heteroscedasticity or volatility has been modeled in the fields of business
and finance in the form of time series that often exhibit nonstationarity. The
nonstationarity of time series might be caused by several aspects including changes in
trend, volatility and random walk, especially when the data are systematically collected
over a long period of time.

The modeling of available explanatory variables has a variety of applications in
time series models. The nonparametric method is the choice for estimating regression
function between two sets of variables that consist of a vector of predictor and a
response variable which may have a nonlinear relationship. Robinson [1] suggested the
use of nonparametric estimation in the context of time series model, Marsy and
Tjgstheim [2] extended the nonparametric regression to use nonlinear autoregressive
conditional heteroscedastic model.

Typically, the nonparametric regression methods are based on a smoothing
technique which produces a smoother. A smoother is a tool for summarizing the trend of
a response variable as a function of one or more predictor variables. The single predictor
case is called scatterplot smoothing that can be used to enhance the visual appearance
of the scatterplot of response versus predictor variable, to help our eyes pick out the
trend in the plot [3]. There are many smoothing techniques, E.g., a local polynomial
regression [4,5], regression splines [6,7], smoothing splines [8,9], and penalized spline
[10]. These smoothing techniques are generally based on the assumption of
homoscedastic variance model which may not be suitable when the data involves high
volatility.

There are several methods to model volatility in time series, such as the
autoregressive conditional heteroscedastic model (ARCH) by Engle [11], who was the
first to introduce the ARCH model to obtain the predictive variance for U.K. inflation rate.
Gouriéroux and Monfort [12] and Masry and Tjgstheim [13] have proposed the
conditional heteroscedastic autoregressive nonlinear (CHARN) model in financial time
series. For simplicity, the case is one lag of the CHARN model were studied to model the
foreign exchange rates [14]. Nonparametric smoothing techniques can be applied for the
estimation of CHARN model by considering the response and predictor variables in
terms of nonparametric regression by using the nonparametric conditional

heteroscedastic autoregressive nonlinear model (NCHARN).
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The prediction of nonlinear time series is difficult because of the volatility and
autocorrelated errors, so the autoregression have been applied on the error term.
Various nonlinear autoregressive model have appeared in literature; Haggan and Ozaki
[15] modeled nonlinear vibration by using an amplitude-dependent autoregressive time
series model defined as exponential autoregressive (EXPAR) model; Tong [16]
introduced the threshold autoregressive(TAR) model in nonlinear time series; and Chan
and Tong [17] developed TAR model to smooth-transition autoregressive (STAR) model.

In this paper we focus on NCHARN models with autocorrelated errors using
penalized spline and develop Bayesian approach for penalized spline. Section 2
presents the methodology of penalized spline [10] to estimate smoothing trend. Section 3
describes the NCHARN models with autocorrelated errors and applies the methodology

from Section 2 to real data in Section 4, we discuss the results in Section 5.

2. Methodology
The general methodjology of smoothing technique modeling starting with the

simple nonparametric regression model can be written as

Y, =;U(Xt)+8t’ t=1,2,... (1

where &, are i.i.d. N(O, 052) , (yt , Xt) are a set of response and predictor variables,
and 4(.) isasmooth unknown trend function which is also the conditional mean of
Y, givento X =X;.

The penalized spline is a method to estimate a unknown smooth function

using the truncated power function [18], and the penalized spline can be expressed as
m-1 ) K A
() =Y ax +> Bx -7 @)
j=0 k=1
where B =[S, B 1" ~ N (01029—1/2(91/2)T) , and the (,k)th entry of Q is

2m-1 . 2m-1 .
|T| - Z'k| and only the coefficient of |Xt — Z'k| are penalized so that a

reasonably large order K can be used.
In this case, we focus m=2, or the so-called low-rank thin-plate spline which

tend to have very good numerical properties. The low-rank thin-plate spline

representation of z(.) is
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K

3

u(X,0) = ag + oy X + E ﬂk|xt _Tk| ®)
k=

where 8 = (a,,a,, By, Py )T is the vector of regression coefficients, and

Ty <7, <..<Ty are fixed knots. The number of knots, K can be selected using a
cross validation method or information theoretic methods (e.g., BIC or AIC).
This class of penalized spline smoothers , [1() , may also be expressed in
convenient vector form
A=C(C"C+2D)*C"y @

where

D _ |:02><2 02><K :|
3 H -
C = I:l Xt |Xt - z-k |l£k£K :Létén OK><2 (QJI-(IZ)T Q:IL(IZ

2
oy . . . . .
and 4 = _'g is a smoothing parameter estimated by the restricted maximum
o

&

likelihood method.

3. NCHARN Model with Autocorrelated Errors
Consider the NCHARN model as

Yy, =ulx)+o(x)e , t=12,.. (5)
where g(.) is a smooth unknown trend (condition mean) function and 0'2(.) is a
smooth unknown volatility (condition variance) function. In this structure, Yy, denotes a
response variable and X, denotes a predictor variable.

The error process {Et 1= 1,2,...} is assumed to follow an autoregressive

(AR) process given by

k
& =D PiE T& ®)

j-1
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where p,,..., 0, and kwill be estimated based on the data {(yt , Xt);t =1.., n} .

We further assume that {et it = 1,2,....} is a white noise i.e., €, 's are independently
and identically distributed with mean 0 and variance 1. It would be of interest to estimate

the trend, £(.), and volatility, o’ (.), the order of AR process k and the AR coefficients,

Prrves Py
Next we test these standardized residuals &,...,&, for possible

autocorrelation. We choose the order k by using Akaike's information criteria (AIC) and

the AR coefficients p,,..., P, by using maximum likelihood method based on the

autoregressive process.

3.1 Trend and Volatility Estimation using Classical Penalized Spline

The trend £2(X,) and volatility &*(X,) can also be considered in NCHARN

model. As an initial step, we start by estimating the trend ,u(Xt) using a homoscedastic

nonparametric regression model written as

Y, =u(x)+8,, t=12,.. ™

where 8, = o(X,) &, . Next, we obtain z(X,) from the method of penalized spline

smoother in Section 2 with package SemiPar in R Program which downloaded from

http://cran.r-project.org. The residuals can be estimated as

3I =Y _/[l(xt)

(5})2 = (O-(Xt) gt)z 8)
h(x,) o
We transform o—(xt) =exp T , and take log with residuals in (8)
logs? = h(x,) + log &2 ©)
log 52 — E[log £2] = h(x,) + log £ — E[log £2] (10)

If we require &, to be normally distributed with mean 0 and variance 1, then

E[Iog 8t2] = -1.2704 and hence we can apply in penalized spline to obtain
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log 62 +1.2704 = h(x,) + log &2 +1.2704 (11)
yt = h(Xt) + Et 12)
where Y, =log 5‘3 +1.2704 and &, = log &} +1.2704 . Next, we obtain a

smooth estimate N(X,) using penalized spline by using (12) and update the volatility

estimate to be

o(x,)= exp{@} (13)
At the second stage of estimation we update the trend estimate by using the following
model
Yy, = u(X,)+exp ﬁ(xt) &, (14)
exp —@ Y, = exps— ﬁ(;‘) w(x,)+ &, (15)
Yo =9(x)+¢ (16)

~

where Y, = exp{— @} Y, and g(x,) = exp{— @}U(Xt) . Finally, if

@(Xt) is the estimate obtained by using penalized spline, the second stage estimate

of w(X,) is given by

" h(x) | ~
x) - exp{%}g(xo an
Finally, when the estimates of y(Xt) and G(Xt) converge we obtain
A — f(x
&, =ytA—'u(t),t:1,2,... 18)
(%)

as the standardized residuals based on the converged values of [J(Xt) and

&(Xt) as describe above by using the AR process.
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3.2 Trend and Volatility Estimation using Bayesian Penalized Spline
To perform Bayesian data analysis for the penalized spline, it helps to set up

the model as a three-level hierarchical model. At the first level of hierarchy, the
conditional distribution of the observation Y, 's is specified, given the unobserved
random coefficients @,b, & and é ; at the second level, the fixed effect is parameter
a and ¢ from multivariate normal distribution, and the random effect of b, and é is
specified given the parameter Zb and Zﬁ.from multivariate normal distribution; and

finally at the last level, the prior distribution of Zb and Zﬂ is specified from Inverse

Wishart distribution. I this section, we will assume that &,'s areiid N(0,07) .

We are able to express the penalized spline model in the following hierarchical

structure,

vlaba f ~ N(ux).o*(x))

K
(X)) =y +agX +zbk|xt _Tk|3
k=1

o’ (x,) = log{a, + a; X, +kZ|:‘ﬂk|xt —rk|3}|
a~MVN(0,Z,) , a~MVN(Q,Z,)
b[Z, ~MVN(0,2,) , B[E, ~MVN(0,Z,)
S, ~ IW(R,,Ky) =, ~ IW(R,,K,) (19)

where g:(ao,al)T, b=(b 1"'bK)T’ Q:(ao’al)T’ éz(ﬂl’“’ﬂK)T

We use the so-called Markov Chain Monte Carlo (MCMC) methods to generate
samples from the posterior distribution of & = (a, Q,g,ﬂ,zb,zﬁ)T . MCMC methods

consist of algorithms to construct a Markov chain of the parameters such that its
stationary distribution is the posterior distribution of the parameters. Hence, under certain

regularity conditions, the realization of the Markov chain can be thought of as

approximate values sampled from the posterior distribution of & given the Y,'s. We
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carry out the Metropolis-Hastings sampler a widely used MCMC method, to obtain
dependent samples from the posterior distribution using the WinBUGS that installed
from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. The model (19) is
specified in WinBUGS as follows

for (tin 1:n)

{y[t]~dnorm(mul[t], tault])

mu[t] <- inprod(X[t,],beta.mu[1:2]) + inprod(Z[t,],gamma.mu[1:n.knots])

tauft] <- pow(log(sd[t]),-2)

sd[t] <- inprod(X[t,],beta.tau[1:2]) + inprod(Z[t,],gamma.tau[1:n.knots]) }

The number of sample sizes, n, is a constant in the program. The first statement

specifies that the t-th y has a normal distribution with mean, f , and precision

T, = 0'{2. Both the matrix X and Z are obtained outside WinBUGS and the code of

matrix is referred in Crainiceanu, Ruppert, and Wand [19].

We consider Metropolis-Hastings algorithm to obtain dependent samples from
the posterior distribution p(H‘y) o« h(f) = f(y|l9)7r(l9) , a powerful Markov Chain

method to simulate multivariate distribution. To evolution of a Markov Chain depends on

the transition kernel density (TKD), K (6#,8') and also known as the proposal density.

Starting with 8© iteration for k = 1,2,..., m+M, and the TKD is K (6,6").
The metropolis-Hasting algorithm is
1. praw ™ ~ K, (0%7",0")
2. Draw U~U(0,1) and set

™" if u< p(@*™,6m™")

oY, otherwise

IO

where the acceptance probability p(6,6") is defined as
h(6")K,(6',0) 1
n(O)K, (6,6

where m is burn-in and M is the number of samples generated after burn-in.

p(0,0") = min{

Repeating the above sampling steps, we obtain a discrete-time Markov chain
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{ (Q.(k) ,Q(k) ,Q(k) , ﬂ(k) , Zék) , ZS() ); k = 1,2,...} whose stationary distribution is the

joint posterior density of the parameters.

The MCMC samples (after sufficient number of turn-in samples) of @ are

obtained via WinBUGS to compute approximate posterior summaries of the parameters

as the posterior estimation of €. In particular, we use the posterior median as point

estimates to estimate of z(X,) and o”(X,). Let

K .
a(%,) =8, +a;x +Zbk|xt _Tk|3
k1
and

K ~
52(x,) =[log{d, + % + . Belx — 7|’}
k=1

denote posterior estimate of,u(Xt) and O'Z(Xt), where é,b,é and f denote the

component-wise posterior median of &,b,a and /.

Finally the standardized residuals are calculated by

_ Yi _I&(Xt) t=

&, A =12,
o ()

to obtain the estimate the order of the AR process of the errors.

3.3 Autoregressive Process

The maximum likelihood estimator of error process is evaluated from the
probability density function of each &, is
2

(27) ™M exp —%‘ , —0<g <©® (20)

The likelihood function in form of & is written as

(n=k)/2 19 ¢
—(n—

L(py) = (27) exp _Ez 8t_zpjgn—j (21)

t=2 j=1

The log-likelihood function denoted (0, ) is given by



118 Thailand Statistician, 2010; 8(2):109-122

K 2

1(p,) ———|09(2 )——Z ijs (22)

t 2 j=
The maximum likelihood estimator of p, causes the equation M =0 and we get
0Py
the maximum likelihood estimator of p, is
n
Z Er€ik
P = ok . k=12,... (23)
St 3 e
t=k+1 t=k+1
We choose the order k by using Akaike’s information criteria, AIC, as
AC= —-2InL(€)+2p (24)

where L (@) is the likelihood function evaluated at the maximum likelihood

estimates and p is the total number of parameter estimated.

4. Application to SERT Index

In this section, we apply the methods described in Section 2 to the price index of
Thailand. The Stock Exchange Rate of Thailand (SERT) index is an important index in
Thailand that started trading on April 30, 1975. The data consisted of 396 records of the
monthly volume of SERT index from January 1976 to December 2008 that can be found
at http://www.set.or.th/th/market/market\_statistics.html.

Let ¥ denote the SRET Index of month t where t=1 represents January of 1976
and t=390 represents June of 2008. The method of the classical penalized spline and
Bayesian penalized spline are used to forecast future values of SERT index for July,
2008 to December, 2008 given in Table 1. The estimate the order and coefficients of the
AR process of the standardized residuals by the classical penalized spline and Bayesian

penalized spline are shown in Tables 2 and 3.
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Table 1. The actual SERT Index, the forecast values (FV), 95% prediction interval of
future values (95%PIl), mean absolute deviation (MAD) for classical penalized spline and

Bayesian penalized spline

m SERT Classical Penalized Spline Bayesian penalized spline
Index FV 95% PI FV 95% PI
1 676.32 697.48 (611.96,783.01) 711.65 (601.23,822.08)
2 684.44 632.96 (503.33,762.59) 643.10 (496.08,790.13)
3 596.54 574.04 (422.69,725.40) 577.56 (405.26,749.86)
4 416.53 507.95 (348.74,667.68) 527.06 (343.98,710.14)
5 401.84 464.88 (305.09,624.68) 466.74 (278.53,654.94)
6 449.96 412.81 (259.98,565.63) 448.86 (259.03,638.70)
MAD 47.79 - 45.36 -

From Table 1, it is apparent that the Mean Absolute Deviation(MAD) by
Bayesian penalized spline method is slightly smaller than that of the classical penalized
spline method. However it can not be concluded that Bayesian penalized spline method
performs significantly better than classical penalized spline, because the predictive
intervals obtained by both methods over lap each other in all of the six test cases. The
classical penalized spline method being non iterative is computationally easier to

implemented than that of the Bayesian penalized spline.

Classical Penaliz Bayesian Penali

o o
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o _| o _
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Figure 1. The actual SERT index(SERT 2008), forecast values(y.pred) and 95%
prediction interval of future values (uci and Ici) for classical penalized spline and

Bayesian penalized spline.
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Figure 1 is shown the forecast values and 95% prediction interval of withheld
SERT values obtained by the classical penalized spline method and Bayesian penalized
spline method. It follows from the figure that the both methods provides predictive
intervals that capture all future values.

Comparing MAD values from Table 1, it can be seen that the Bayesian
approach for penalized spline method provides the smaller MAD. However, it should be
noted that both the Bayesian estimate (based on penalized spline) are iterative and may
not be computationally fast. On the other hand, the classical penalized spline are non-

iterative and provide reasonably good estimates in terms of minimizing the MAD.

Table 2. The estimate the order(k) and coefficients (s ) of the AR process of the

standardized residuals by the classical penalized spline

k 1 2 3 4 5 6
P 1.3492 -0.4421 0.0375 0.0360 -0.2005 0.2010
k 7 8 9 10 11 12
P -0.0503 -0.1620 0.1946 -0.1419 0.0987 -0.1501
k 13 14 15 16 17 18

P 0.1092 -0.0427 -0.0822 0.1219 -0.1241 -0.0081
k 19 20 21 22 23

P 0.1624 -0.0862 0.0990 -0.2722 0.1361

Table 3. The estimate the order(k) and coefficients (@; ) of the AR process of the

standardized residuals by the Bayesian penalized spline

k 1 2 3 4 5 6
Pr 0.8779 0.0407 -0.1910 0.0358 -0.0247 -0.0772
k 7 8 9 10 11

P 0.1895 -0.0696 -0.0706 0.2080 -0.2069

From Tables 2 and 3, it is

apparent that the order of k of AR process from

classical penalized spline is higher than the Bayesian penalized spline. However, the

variance of classical penalized spline is 0.006334 that is smaller than

the Bayesian penalized spline at 23.45.

the variance of
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5. Discussion

In this article, we have investigated and compared the classical penalized spline
method and the Bayesian penalized spline method to estimate smooth unknown trend
and smooth unknown volatility based on a conditional heteroscedastic autoregressive
nonlinear model. The Bayesian method performs slightly better than the classical
penalized spline based method in terms of minimizing the MAD. The autoregressive

process is useful for prediction of future values.
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