
 

Thailand Statistician 

July 2010; 8(2) : 109-122 

http://statassoc.or.th 

                      Contributed paper  

 
Forecasting the Stock Exchange Rate of Thailand Index by 

Conditional  Heteroscedastic Autoregressive Nonlinear Model 
with Autocorrelated Errors 
Autcha Araveeporn [a] Sujit K. Ghosh [b] and Kamon  Budsaba* [a]  

[a] Department of Mathematics and Statistics, Faculty of Science and Technology, 

Thammasat University, Pathum Thani 12120, Thailand.  

[b] Department of Statistics at NC State University, Raleigh, NC 27695-8203, USA. 

* Author for correspondence; e-mail : kamon@mathstat.sci.tu.ac.th 
 

Received: 4  January  2010 

Accepted:  30 March  2010 

Abstract 

The goal of this work is to develop a nonparametric regression model that not 

only account for possibly non-linear trend (i.e., conditional mean of the response variable) 

but also account for possibly non-linear conditional variance of response (i.e., 

heteroscedasticity) as a function of predictor variables in the presence of auto-correlated 

errors. The trend and the heteroscedasticity are modeled using a class of penalized 

spline. The residuals are modeled as a long autoregressive process which can 

approximate almost any autoregressive moving average (ARMA) process by selecting 

an appropriate number of lag residuals. Both classical and Bayesian methodologies are 

developed to obtain the smooth estimates of the conditional mean and variance 

functions. The resulting estimated residuals are then used to fit a possibly long AR 

process by suitably choosing the order of AR using the Akaike Information Criteria (AIC). 

The forecasting performance of the proposed methods is then applied to the series of 

monthly observations of the Stock Exchange Rate of Thailand (SERT) to illustrate the 

methodology. The forecasts these methods are compared with those obtained based on 

future six months of withheld observations. 
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1. Introduction 

The heteroscedasticity or volatility has been modeled in the fields of business 

and finance in the form of time series that often exhibit nonstationarity. The 

nonstationarity of time series might be caused by several aspects including changes in 

trend, volatility and random walk, especially when the data are systematically collected 

over a long period of time. 

The modeling of available explanatory variables has a variety of applications in 

time series models. The nonparametric method is the choice for estimating regression 

function between two sets of variables that consist of a vector of predictor and a 

response  variable which may have a nonlinear relationship. Robinson [1] suggested the 

use of nonparametric estimation in the context of time series model, Marsy and 

Tjøstheim [2] extended the nonparametric regression to use nonlinear autoregressive 

conditional heteroscedastic model. 

Typically, the nonparametric regression methods are based on a smoothing 

technique which produces a smoother. A smoother is a tool for summarizing the trend of 

a response variable as a function of one or more predictor variables. The single predictor 

case is called scatterplot smoothing that can be used to enhance the visual appearance 

of the scatterplot of response versus predictor variable, to help our eyes pick out the 

trend in the plot [3]. There are many smoothing techniques, E.g., a local polynomial 

regression [4,5], regression splines [6,7], smoothing splines [8,9], and penalized spline 

[10]. These smoothing techniques are generally based on the assumption of 

homoscedastic variance model which may not be suitable when the data involves high 

volatility. 

There are several methods to model volatility in time series, such as the 

autoregressive conditional heteroscedastic model (ARCH) by Engle [11], who was the 

first to introduce the ARCH model to obtain the predictive variance for U.K. inflation rate. 

Gouriéroux and Monfort [12] and Masry and Tjøstheim [13] have proposed the 

conditional heteroscedastic autoregressive nonlinear (CHARN) model in financial time 

series. For simplicity, the case is one lag of the CHARN model were studied to model the 

foreign exchange rates [14]. Nonparametric smoothing techniques can be applied for the 

estimation of CHARN model by considering the response and predictor variables in 

terms of nonparametric regression by using the nonparametric conditional 

heteroscedastic autoregressive nonlinear model (NCHARN). 
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The prediction of nonlinear time series is difficult because of the volatility and 

autocorrelated errors, so the autoregression have been applied on the error term. 

Various nonlinear autoregressive model have appeared in literature; Haggan and Ozaki 

[15] modeled nonlinear vibration by using an amplitude-dependent autoregressive time 

series model defined as exponential autoregressive (EXPAR) model; Tong [16] 

introduced the threshold autoregressive(TAR) model in nonlinear time series; and Chan 

and Tong [17] developed TAR model to smooth-transition autoregressive (STAR) model. 

In this paper we focus on NCHARN models with autocorrelated errors using 

penalized spline and develop Bayesian approach for penalized spline. Section 2 

presents the methodology of penalized spline [10] to estimate smoothing trend. Section 3 

describes the NCHARN models with autocorrelated errors and applies the methodology 

from Section 2 to real data in Section 4, we discuss the results in Section 5. 

 

2.  Methodology 

The general methodjology of smoothing technique modeling starting with the  

simple  nonparametric regression model can be written as 

ttt xy εµ += )( ,         t = 1,2,…                                            (1) 

where tε  are i.i.d. N(0, 2
εσ ) ,  ),( tt xy  are a set of response and predictor  variables,  

and (.)µ   is a smooth unknown trend function  which is also the conditional mean of  

ty  given to txx = .  

The penalized spline is a method to estimate a unknown smooth function  

using the truncated power function [18], and the penalized spline can be expressed as 

                       ∑ ∑
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where ))(,0(~],...,[ 2/12/12
1

Τ− ΩΩ= βσβββ NT
K  ,  and  the (l,k)th entry of Ω   is 

12 −− m
kl ττ  and  only  the coefficient of  

12 −− m
ktx τ  are penalized so that a 

reasonably large order  K can be used. 

In this case, we focus m=2, or the so-called low-rank thin-plate spline which 

tend to have very good numerical properties. The low-rank thin-plate spline 

representation of  (.)µ  is  
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where T
K ),...,,,( 110 ββααθ =  is the vector of regression coefficients, and 

Kτττ <<< ...21   are fixed knots. The number of knots,  K can be selected using a 

cross validation method or information theoretic methods (e.g., BIC or AIC). 

This class of  penalized spline smoothers , (.)µ̂ , may also be expressed  in 

convenient  vector  form  

                yCDCCC TT 13 )(ˆ −+= λµ                                                 (4) 
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λ =   is a smoothing parameter  estimated by the  restricted maximum 

likelihood method. 

 
3.  NCHARN Model with Autocorrelated Errors 

Consider the NCHARN model as 

                                tttt xxy εσµ )()( +=   ,       t=1,2,…                              (5) 

where (.)µ  is a smooth unknown trend (condition mean) function and (.)2σ  is a 

smooth unknown volatility (condition variance) function. In this structure, ty   denotes a  

response variable and  tx   denotes a predictor variable. 

The error process { },...2,1, =ttε    is assumed to follow  an autoregressive 

(AR) process  given by 

                              ∑
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where kρρ ,...,1    and  k will be estimated based on the data { }ntxy tt ,...,1);,( =  . 

We further assume that  { },....2,1; =tet  is a white noise i.e., te ’s are independently 

and identically distributed with mean 0 and variance 1. It would be of interest to estimate 

the trend, (.)µ , and volatility, (.)2σ , the order of AR process k and the AR coefficients, 

kρρ ,...,1 . 

Next we test these standardized residuals nεε ,...,1   for possible 

autocorrelation. We choose the order k  by using Akaike's information criteria (AIC) and 

the AR coefficients  kρρ ,...,1  by using maximum likelihood method based on the 

autoregressive  process. 

 

3.1 Trend and  Volatility Estimation using Classical  Penalized  Spline 

The trend )( txµ   and volatility )(2
txσ   can also be considered in NCHARN 

model.  As an initial step, we start by estimating the trend )( txµ  using a homoscedastic  

nonparametric regression model written as 

ttt xy δµ += )(  ,      t = 1,2,…                                 (7) 

where ttt x εσδ )(=  . Next, we obtain  )(ˆ txµ   from the method of penalized spline 

smoother in Section 2  with package SemiPar in R Program which downloaded  from  

 http://cran.r-project.org. The residuals can be estimated as  

)(ˆˆ
ttt xy µδ −=  

                                                   22 ))(()ˆ( ttt x εσδ =                                                   (8) 

We transform  






=

2
)(

exp)( t
t

xh
xσ  ,  and take log with residuals in (8) 

                                         22 log)(ˆlog ttt xh εδ +=                                                     (9) 

                   ][loglog)(][logˆlog 2222
ttttt ExhE εεεδ −+=−                           (10) 

If we require  tε  to be normally distributed with mean 0 and variance 1, then  

][log 2
tE ε  =  -1.2704 and hence we can  apply in penalized spline to obtain 

http://cran.r-project.org/
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2704.1log)(2704.1ˆlog 22 ++=+ ttt xh εδ                                (11)   

                                            ttt xhy ε~)(~ +=                                                         (12) 

where  2704.1ˆlog~ 2 += tty δ   and 2704.1log~ 2 += tt εε . Next, we obtain a 

smooth estimate )(ˆ txh   using penalized spline by using (12) and update the volatility 

estimate to be 
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At the second stage of estimation we update the trend estimate by using the following 

model 
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)(ˆ txg  is the  estimate  obtained by using penalized spline, the second stage estimate 

of  )( txµ   is given by  
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Finally, when the estimates of  )( txµ   and )( txσ   converge we obtain 

                                                  
)(ˆ

)(ˆˆ
t
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t x

xy
σ
µ

ε
−

= , t = 1,2,…                                   (18) 

as the standardized  residuals  based  on the converged values  of   )(ˆ txµ   and 

)(ˆ txσ   as describe above by using the AR process.   
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3.2  Trend and  Volatility Estimation using Bayesian Penalized  Spline 

To perform Bayesian data analysis for the penalized spline, it helps to set up 

the model as a three-level hierarchical model. At the first level of hierarchy, the 

conditional distribution of the observation ty 's is specified, given the unobserved 

random coefficients α,,ba  and  β  ; at the second level, the fixed effect is parameter  

a  and α  from multivariate normal distribution, and the random effect  of b , and β   is 

specified given the parameter  bΣ  and  βΣ from multivariate normal distribution; and 

finally at the last level, the prior distribution of  bΣ  and  βΣ   is specified from Inverse 

Wishart distribution. In this section, we will assume that  tε 's are iid  ),0( 2
εσN  .   

We are able to express the penalized spline model in the following hierarchical  

structure, 

))(),((~,,, 2
ttt xxNbay σµβα  
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                        ),(~,),(~ βββ KRIWKRIW bbb ΣΣ                     (19) 

where  Taaa ),( 10= ,  T
Kbbb ),..,( 1= , T),( 10 ααα = ,  T

K ),..,( 1 βββ = . 

 We use the so-called Markov Chain Monte Carlo (MCMC) methods to generate 

samples from the posterior distribution of T
bba ),,,,,( ββαθ ΣΣ= . MCMC methods 

consist of algorithms to construct a Markov chain of the parameters such that its 

stationary distribution is the posterior distribution of the parameters. Hence, under certain 

regularity conditions, the realization of the Markov chain can be thought of as 

approximate values sampled from the posterior distribution of θ   given the ty 's. We 
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carry out the Metropolis-Hastings sampler  a widely used MCMC method, to obtain 

dependent samples from the posterior distribution using the  WinBUGS  that installed  

from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. The model  (19)  is  

specified in WinBUGS  as  follows 

for  (t in 1:n) 

 {y[t]~dnorm(mu[t], tau[t]) 

 mu[t]   <-  inprod(X[t,],beta.mu[1:2]) + inprod(Z[t,],gamma.mu[1:n.knots]) 

 tau[t]   <- pow(log(sd[t]),-2) 

 sd[t]   <-   inprod(X[t,],beta.tau[1:2]) + inprod(Z[t,],gamma.tau[1:n.knots]) } 

The number of sample sizes, n, is a constant in the program. The first statement 

specifies that the t-th y has a normal distribution with mean, tµ  , and precision  

2−= tt στ . Both the matrix  X and  Z are obtained outside WinBUGS and the code of 

matrix is referred in Crainiceanu, Ruppert, and Wand [19]. 

We consider Metropolis-Hastings algorithm to obtain dependent samples from 

the posterior distribution )()()()( θπθθθ yfhyp ≡∝  , a powerful Markov Chain 

method to simulate multivariate distribution.  To evolution of a Markov Chain depends on 

the transition kernel density (TKD), )',( θθK   and also known as the proposal density. 

Starting with )0(θ    iteration for k = 1,2,…, m+M, and the TKD is )',( θθK . 

The metropolis-Hasting algorithm is 

1. Draw  )',(~ )1(
0 θθθ −knew K   

2. Draw )1,0(~ Uu   and set 
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where m is burn-in and M is the number of samples generated after burn-in. 

 

 Repeating the above sampling  steps, we obtain a discrete-time Markov chain  

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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( ){ },...2,1;,,,,, )()()()()()( =ΣΣ kba kk
b

kkkk
ββα  whose stationary distribution is the 

joint  posterior  density of the parameters. 

The MCMC samples (after sufficient number of turn-in samples) of θ  are 

obtained via WinBUGS to compute approximate posterior summaries of the parameters 

as the posterior estimation of θ . In particular, we use the posterior median as point 

estimates to estimate of  )( txµ   and  )(2
txσ .  Let 
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denote posterior estimate of )( txµ   and  )(2
txσ , where α̂,ˆ,ˆ ba  and β̂  denote the 

component-wise posterior median of α,,ba  and  β . 

Finally   the standardized residuals are calculated by 

)(ˆ
)(ˆˆ

t

tt
t x

xy
σ
µ

ε
−

= , t = 1,2,… 

to obtain the estimate the order of the AR process of the errors. 

 

3.3  Autoregressive Process 

The maximum  likelihood estimator of error process  is evaluated  from the  

probability density function of each  tε  is 
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The  likelihood  function in form of  tε  is written as 
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The log-likelihood function denoted  )( kl ρ   is given by 
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The maximum likelihood estimator of  kρ  causes the equation  
k
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 =0 and we get  

the maximum likelihood estimator  of  kρ  is 
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We choose  the order  k by using Akaike’s  information criteria, AIC, as 

                                        AIC = pL 2)(ln2 +− θ                                                   (24) 

where  )(θL   is the likelihood  function  evaluated at the maximum  likelihood  

estimates and  p  is the total number of parameter estimated. 

 

4. Application to SERT Index 

In this section, we apply the methods described in Section 2 to the price index of 

Thailand.  The Stock Exchange Rate of Thailand (SERT) index is an important  index in 

Thailand that started trading on April 30, 1975. The data consisted of 396 records of the 

monthly volume of SERT index from January 1976 to December 2008 that can be found 

at  http://www.set.or.th/th/market/market\_statistics.html. 

 Let  denote the SRET Index of month t where t=1 represents January of 1976 

and t=390 represents June of 2008. The method of the classical penalized spline and 

Bayesian penalized spline are used to forecast future values of SERT index for July, 

2008 to December, 2008 given in Table 1.  The estimate the order  and coefficients of the 

AR process of the standardized residuals by the classical penalized spline  and Bayesian 

penalized spline  are  shown in Tables  2 and 3. 
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Table 1. The actual SERT Index, the forecast values (FV), 95%  prediction interval of 

future values (95%PI), mean absolute deviation (MAD) for classical penalized spline and 

Bayesian   penalized spline 

m SERT 
Index 

Classical Penalized Spline Bayesian   penalized spline 
FV 95% PI FV 95% PI 

1 
2 
3 
4 
5 
6 

676.32 
684.44 
596.54 
416.53 
401.84 
449.96 

697.48 
632.96 
574.04 
507.95 
464.88 
412.81 

(611.96,783.01) 
(503.33,762.59) 
(422.69,725.40) 
(348.74,667.68) 
(305.09,624.68) 
(259.98,565.63) 

711.65 
643.10 
577.56 
527.06 
466.74 
448.86 

(601.23,822.08) 
(496.08,790.13) 
(405.26,749.86) 
(343.98,710.14) 
(278.53,654.94) 
(259.03,638.70) 

MAD  47.79 - 45.36 - 
 

From Table 1, it is apparent that the Mean Absolute Deviation(MAD) by 

Bayesian penalized spline method is slightly smaller than that of the classical penalized 

spline method. However it can not be concluded that Bayesian penalized spline method 

performs significantly better than classical penalized spline, because the predictive 

intervals obtained by both methods over lap each other in all of the six test cases. The 

classical penalized spline method being non iterative is computationally easier to 

implemented than that of the Bayesian penalized spline. 
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Figure 1. The actual SERT index(SERT 2008), forecast values(y.pred) and 95%  

prediction interval of future values (uci and lci) for classical penalized spline and 

Bayesian   penalized spline. 
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Figure 1 is shown  the forecast values and 95% prediction interval of withheld 

SERT values obtained by the classical penalized spline method and Bayesian penalized 

spline method. It follows from the figure that the both methods provides predictive 

intervals that capture all future values. 

Comparing MAD values from Table 1, it can be seen that the Bayesian 

approach for penalized spline method provides the smaller MAD. However, it should be 

noted that both the Bayesian estimate (based on penalized spline) are iterative and may 

not be computationally fast. On the other hand, the classical penalized spline are non-

iterative and provide reasonably good estimates in terms of minimizing the MAD. 

 

Table 2. The estimate the order(k)  and coefficients (  ) of the AR process of  the 

standardized residuals  by  the classical  penalized spline 

 

k 

 

1 

1.3492   

2 

-0.4421    

3 

0.0375    

4 

0.0360   

5 

-0.2005    

6 

0.2010   

k 

 

7 

-0.0503   

8 

-0.1620   

9 

0.1946   

10 

-0.1419    

11 

0.0987   

12 

-0.1501 

k 

 

13 

0.1092   

14 

-0.0427   

15 

-0.0822    

16 

0.1219   

17 

-0.1241   

18 

-0.0081    

k 

 

19 

0.1624   

20 

-0.0862    

21 

0.0990   

22 

-0.2722    

23 

0.1361   

 

 

Table 3. The estimate the order(k)  and coefficients (  ) of the AR process of  the 

standardized residuals  by  the Bayesian penalized spline   

   

k 

 

1 

0.8779    

2 

0.0407   

3 

-0.1910    

4 

0.0358   

5 

-0.0247   

6 

-0.0772    

k 

 

7 

0.1895   

8 

-0.0696   

9 

-0.0706      

10 

0.2080   

11 

-0.2069   

 

 

From Tables 2 and 3, it is apparent that the order of k of AR process from 

classical penalized spline is  higher  than the Bayesian penalized spline. However, the 

variance of classical penalized spline is  0.006334 that  is smaller  than   the variance  of 

the Bayesian  penalized spline at  23.45. 
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5.  Discussion 

In this article, we have investigated and compared the classical penalized spline 

method and the Bayesian penalized spline method to estimate smooth unknown trend 

and smooth unknown volatility based on a conditional heteroscedastic autoregressive 

nonlinear model. The Bayesian method performs slightly better than the classical 

penalized spline based method in terms of minimizing the MAD. The autoregressive 

process is useful for prediction of future values. 
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